Solution to problem 47 in Julia
This commit is contained in:
parent
fb87f1c9e3
commit
c1119e7521
65
src/Julia/Problem047.jl
Normal file
65
src/Julia/Problem047.jl
Normal file
@ -0,0 +1,65 @@
|
||||
#=
|
||||
Created on 18 Sep 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 47 of Project Euler
|
||||
https://projecteuler.net/problem=47
|
||||
=#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function factor(n)
|
||||
ans = []
|
||||
d = 2
|
||||
while d*d <= n
|
||||
if n % d == 0
|
||||
push!(ans,d)
|
||||
n = n ÷ d
|
||||
else
|
||||
d += 1
|
||||
end
|
||||
end
|
||||
if n > 1
|
||||
push!(ans,n)
|
||||
end
|
||||
return ans
|
||||
end
|
||||
|
||||
function Problem47()
|
||||
#=
|
||||
The first two consecutive numbers to have two distinct prime factors are:
|
||||
|
||||
14 = 2 × 7
|
||||
15 = 3 × 5
|
||||
|
||||
The first three consecutive numbers to have three distinct prime factors are:
|
||||
|
||||
644 = 2² × 7 × 23
|
||||
645 = 3 × 5 × 43
|
||||
646 = 2 × 17 × 19.
|
||||
|
||||
Find the first four consecutive integers to have four distinct prime factors each.
|
||||
What is the first of these numbers?
|
||||
=#
|
||||
ans = []
|
||||
|
||||
for number in 1:1_000_000
|
||||
if length(ans) == 4
|
||||
break
|
||||
elseif length(Set(factor(number))) == 4
|
||||
push!(ans,number)
|
||||
else
|
||||
ans = []
|
||||
end
|
||||
end
|
||||
|
||||
return ans[1]
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 47:")
|
||||
@btime Problem47()
|
||||
println("")
|
||||
println("Result for Problem 47: ", Problem47())
|
Loading…
x
Reference in New Issue
Block a user