Solution to problem 39 in Julia
This commit is contained in:
parent
d35117e417
commit
a6cdae898a
49
src/Julia/Problem039.jl
Normal file
49
src/Julia/Problem039.jl
Normal file
@ -0,0 +1,49 @@
|
||||
#=
|
||||
Created on 09 Sep 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 39 of Project Euler
|
||||
https://projecteuler.net/problem=39
|
||||
=#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem39()
|
||||
#=
|
||||
If p is the perimeter of a right angle triangle with integral length sides,
|
||||
{a,b,c}, there are exactly three solutions for p = 120:
|
||||
|
||||
{20,48,52}, {24,45,51}, {30,40,50}
|
||||
|
||||
For which value of p ≤ 1000, is the number of solutions maximised?
|
||||
=#
|
||||
ans, val = 0, 0
|
||||
for p in 2:2:1000
|
||||
sol = 0
|
||||
for a in 1:p
|
||||
for b in a+1:p-2*a
|
||||
c = p - (a + b)
|
||||
if a^2 + b^2 == c^2
|
||||
sol += 1
|
||||
elseif a^2 + b^2 > c^2
|
||||
# As we continue our innermost loop, the left side
|
||||
# gets bigger, right gets smaller, so we're done here
|
||||
break
|
||||
end
|
||||
end
|
||||
end
|
||||
if sol > ans
|
||||
ans, val = sol, p
|
||||
end
|
||||
end
|
||||
|
||||
return val
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 39:")
|
||||
@btime Problem39()
|
||||
println("")
|
||||
println("Result for Problem 39: ", Problem39())
|
Loading…
x
Reference in New Issue
Block a user