Solution to problem 9 in Julia
This commit is contained in:
parent
1fff7a8554
commit
74ee7f5a10
38
src/Julia/Problem009.jl
Normal file
38
src/Julia/Problem009.jl
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
#=
|
||||||
|
Created on 01 Jul 2021
|
||||||
|
|
||||||
|
@author: David Doblas Jiménez
|
||||||
|
@email: daviddoji@pm.me
|
||||||
|
|
||||||
|
Solution for Problem 9 of Project Euler
|
||||||
|
https://projecteuler.net/problem=9
|
||||||
|
=#
|
||||||
|
|
||||||
|
function Problem9()
|
||||||
|
#=
|
||||||
|
A Pythagorean triplet is a set of three natural numbers, a < b < c,
|
||||||
|
for which a^2 + b^2 = c^2
|
||||||
|
|
||||||
|
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
||||||
|
|
||||||
|
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
||||||
|
Find the product abc.
|
||||||
|
=#
|
||||||
|
|
||||||
|
upper_limit = 1000
|
||||||
|
for a in 1:upper_limit + 1
|
||||||
|
for b in a + 1:upper_limit + 1
|
||||||
|
c = upper_limit - a - b
|
||||||
|
if a * a + b * b == c * c
|
||||||
|
# It is now implied that b < c, because we have a > 0
|
||||||
|
return a * b * c
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
println("Time to evaluate Problem 9:")
|
||||||
|
@time Problem9()
|
||||||
|
println("")
|
||||||
|
println("Result for Problem 9: ", Problem9())
|
Loading…
x
Reference in New Issue
Block a user