Solution to problem 30 in Julia
This commit is contained in:
parent
5efa63294c
commit
6297a364af
42
src/Julia/Problem030.jl
Normal file
42
src/Julia/Problem030.jl
Normal file
@ -0,0 +1,42 @@
|
||||
#=
|
||||
Created on 25 Aug 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 30 of Project Euler
|
||||
https://projecteuler.net/problem=30
|
||||
=#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function power_digit_sum(pow, n)
|
||||
return sum(c^pow for c in reverse(digits(n)))
|
||||
end
|
||||
|
||||
function Problem30()
|
||||
#=
|
||||
Surprisingly there are only three numbers that can be written as the sum
|
||||
of fourth powers of their digits:
|
||||
|
||||
1634 = 1^4 + 6^4 + 3^4 + 4^4
|
||||
8208 = 8^4 + 2^4 + 0^4 + 8^4
|
||||
9474 = 9^4 + 4^4 + 7^4 + 4^4
|
||||
|
||||
As 1 = 14 is not a sum it is not included.
|
||||
|
||||
The sum of these numbers is 1634 + 8208 + 9474 = 19316.
|
||||
|
||||
Find the sum of all the numbers that can be written as the sum of fifth
|
||||
powers of their digits.
|
||||
=#
|
||||
ans = sum(i for i in 2:1_000_000 if i == power_digit_sum(5, i))
|
||||
|
||||
return ans
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 30:")
|
||||
@btime Problem30()
|
||||
println("")
|
||||
println("Result for Problem 30: ", Problem30())
|
Loading…
x
Reference in New Issue
Block a user