Add statement for problem 66
This commit is contained in:
parent
9b0f077d2b
commit
3448af9498
@ -18,7 +18,30 @@ from utils import timeit
|
|||||||
@timeit("Problem 066")
|
@timeit("Problem 066")
|
||||||
def compute():
|
def compute():
|
||||||
"""
|
"""
|
||||||
# Statement
|
Consider quadratic Diophantine equations of the form:
|
||||||
|
|
||||||
|
x^2 - Dy^2 = 1
|
||||||
|
|
||||||
|
For example, when D = 13, the minimal solution in x is
|
||||||
|
649^2 - 13 * 180^2 = 1
|
||||||
|
|
||||||
|
It can be assumed that there are no solutions in positive integers when D is
|
||||||
|
square.
|
||||||
|
|
||||||
|
By finding minimal solutions in x for D = {2, 3, 5, 6, 7}, we obtain the
|
||||||
|
following:
|
||||||
|
|
||||||
|
3^2 - 2 * 2^2 = 1
|
||||||
|
2^2 - 3 * 1^2 = 1
|
||||||
|
9^2 - 5 * 4^2 = 1
|
||||||
|
5^2 - 6 * 2^2 = 1
|
||||||
|
8^2 - 7 * 3^2 = 1
|
||||||
|
|
||||||
|
Hence, by considering minimal solutions in x for D <= 7, the largest x is
|
||||||
|
obtained when D = 5.
|
||||||
|
|
||||||
|
Find the value of D <= 1000 in minimal solutions of x for which the largest
|
||||||
|
value of x is obtained.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
max_d, max_x = 0, 0
|
max_d, max_x = 0, 0
|
||||||
|
Loading…
x
Reference in New Issue
Block a user