diff --git a/src/Julia/Problem012.jl b/src/Julia/Problem012.jl new file mode 100644 index 0000000..ceaee11 --- /dev/null +++ b/src/Julia/Problem012.jl @@ -0,0 +1,65 @@ +#= +Created on 21 Jul 2021 + +@author: David Doblas Jiménez +@email: daviddoji@pm.me + +Solution for Problem 12 of Project Euler +https://projecteuler.net/problem=12 +=# + + + +function Problem12() + #= + The sequence of triangle numbers is generated by adding the natural + numbers. So the 7th triangle number would be: + 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. + + The first ten terms would be: + 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... + + Let us list the factors of the first seven triangle numbers: + + 1: 1 + 3: 1,3 + 6: 1,2,3,6 + 10: 1,2,5,10 + 15: 1,3,5,15 + 21: 1,3,7,21 + 28: 1,2,4,7,14,28 + + We can see that 28 is the first triangle number to have over five divisors. + + What is the value of the first triangle number to have over five hundred + divisors? + =# + + function num_divisors(n) + res = floor(sqrt(n)) + divs = [] + for i in 1:res + if n%i == 0 + append!(divs,i) + end + end + if res^2 == n + pop!(divs) + end + return 2*length(divs) + end + + triangle = 0 + for i in Iterators.countfrom(1) + triangle += i + if num_divisors(triangle) > 500 + return string(triangle) + end + end +end + + +println("Time to evaluate Problem 12:") +@time Problem12() +println("") +println("Result for Problem 12: ", Problem12()) \ No newline at end of file