Solution to problem 42 in Julia
This commit is contained in:
parent
be779b8a52
commit
2c131e9344
55
src/Julia/Problem042.jl
Normal file
55
src/Julia/Problem042.jl
Normal file
@ -0,0 +1,55 @@
|
||||
#=
|
||||
Created on 12 Sep 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 42 of Project Euler
|
||||
https://projecteuler.net/problem=42
|
||||
=#
|
||||
|
||||
using BenchmarkTools
|
||||
using DelimitedFiles
|
||||
|
||||
function triangle_number(num)
|
||||
return Int(0.5*num*(num+1))
|
||||
end
|
||||
|
||||
function word_to_value(word)
|
||||
return sum(Int(letter)-64 for letter in word)
|
||||
end
|
||||
|
||||
function Problem42()
|
||||
#=
|
||||
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1);
|
||||
so the first ten triangle numbers are:
|
||||
|
||||
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
||||
|
||||
By converting each letter in a word to a number corresponding to its alphabetical
|
||||
position and adding these values we form a word value. For example, the word value
|
||||
for SKY is 19 + 11 + 25 = 55 = t10. If the word value is a triangle number then we
|
||||
shall call the word a triangle word.
|
||||
|
||||
Using words.txt, a 16K text file containing nearly two-thousand common English words,
|
||||
how many are triangle words?
|
||||
=#
|
||||
|
||||
triangular_numbers = [triangle_number(n) for n in 1:26]
|
||||
ans = 0
|
||||
file = "/datos/Scripts/Gitea/Project_Euler/src/files/Problem42.txt"
|
||||
words = sort(readdlm(file, ',', String)[:])
|
||||
|
||||
for word in words
|
||||
if word_to_value(word) in triangular_numbers
|
||||
ans += 1
|
||||
end
|
||||
end
|
||||
return ans
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 42:")
|
||||
@btime Problem42()
|
||||
println("")
|
||||
println("Result for Problem 42: ", Problem42())
|
Loading…
x
Reference in New Issue
Block a user