Solution to problem 45
This commit is contained in:
parent
20c35a6140
commit
27b277187a
42
src/Python/Problem045.py
Normal file
42
src/Python/Problem045.py
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Created on 09 Sep 2021
|
||||||
|
|
||||||
|
@author: David Doblas Jiménez
|
||||||
|
@email: daviddoji@pm.me
|
||||||
|
|
||||||
|
Solution for problem 45 of Project Euler
|
||||||
|
https://projecteuler.net/problem=45
|
||||||
|
"""
|
||||||
|
|
||||||
|
from utils import timeit
|
||||||
|
|
||||||
|
def pentagonal(n):
|
||||||
|
return int(n*(3*n-1)/2)
|
||||||
|
|
||||||
|
def hexagonal(n):
|
||||||
|
return int(n*(2*n-1))
|
||||||
|
|
||||||
|
@timeit("Problem 45")
|
||||||
|
def compute():
|
||||||
|
"""
|
||||||
|
Triangle, pentagonal, and hexagonal numbers are generated by the following formulae:
|
||||||
|
Triangle Tn=n(n+1)/2 1, 3, 6, 10, 15, ...
|
||||||
|
Pentagonal Pn=n(3n−1)/2 1, 5, 12, 22, 35, ...
|
||||||
|
Hexagonal Hn=n(2n−1) 1, 6, 15, 28, 45, ...
|
||||||
|
|
||||||
|
It can be verified that T285 = P165 = H143 = 40755.
|
||||||
|
|
||||||
|
Find the next triangle number that is also pentagonal and hexagonal.
|
||||||
|
"""
|
||||||
|
pentagonal_list = set(pentagonal(n) for n in range(2,100_000))
|
||||||
|
# all hexagonal numbers are also triangle numbers!
|
||||||
|
hexagonal_list = set(hexagonal(n) for n in range(2,100_000))
|
||||||
|
|
||||||
|
ans = sorted(hexagonal_list & pentagonal_list)
|
||||||
|
# First one is already known
|
||||||
|
return ans[1]
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
print(f"Result for Problem 45: {compute()}")
|
Loading…
x
Reference in New Issue
Block a user