Solution to problem 44 in Julia
This commit is contained in:
parent
91b1f5c442
commit
20c35a6140
51
src/Julia/Problem044.jl
Normal file
51
src/Julia/Problem044.jl
Normal file
@ -0,0 +1,51 @@
|
||||
#=
|
||||
Created on 14 Sep 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 44 of Project Euler
|
||||
https://projecteuler.net/problem=44
|
||||
=#
|
||||
|
||||
using BenchmarkTools
|
||||
using Combinatorics
|
||||
|
||||
function pentagonal(n)
|
||||
return Int(n*(3*n-1)/2)
|
||||
end
|
||||
|
||||
function Problem44()
|
||||
#=
|
||||
Pentagonal numbers are generated by the formula, Pn=n(3n−1)/2.
|
||||
The first ten pentagonal numbers are:
|
||||
|
||||
1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...
|
||||
|
||||
It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their
|
||||
difference, 70 − 22 = 48, is not pentagonal.
|
||||
|
||||
Find the pair of pentagonal numbers, Pj and Pk, for which their
|
||||
sum and difference are pentagonal and D = |Pk − Pj| is minimised.
|
||||
|
||||
What is the value of D?
|
||||
=#
|
||||
dif = 0
|
||||
pentagonal_list = [pentagonal(n) for n in 1:2500]
|
||||
pairs = combinations(pentagonal_list, 2)
|
||||
for p in pairs
|
||||
if reduce(+, p) in pentagonal_list && abs(reduce(-, p)) in pentagonal_list
|
||||
dif = (abs(reduce(-,p)))
|
||||
# the first one found would be the smallest
|
||||
break
|
||||
end
|
||||
end
|
||||
|
||||
return dif
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 44:")
|
||||
@btime Problem44()
|
||||
println("")
|
||||
println("Result for Problem 44: ", Problem44())
|
Loading…
x
Reference in New Issue
Block a user