Solution to problem 35 in Julia
This commit is contained in:
parent
1cf3cc68ce
commit
1def60b631
72
src/Julia/Problem035.jl
Normal file
72
src/Julia/Problem035.jl
Normal file
@ -0,0 +1,72 @@
|
||||
#=
|
||||
Created on 02 Sep 2021
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 35 of Project Euler
|
||||
https://projecteuler.net/problem=35
|
||||
=#
|
||||
|
||||
using BenchmarkTools
|
||||
using Combinatorics
|
||||
using Primes
|
||||
|
||||
# function circular_number(n)
|
||||
# result = []
|
||||
# perms = collect(permutations(digits(n), length(n)))
|
||||
# for i in perms
|
||||
# push!(result, parse(Int, join(i)))
|
||||
# end
|
||||
# return result
|
||||
# end
|
||||
|
||||
function circular_number(n)
|
||||
if n <10
|
||||
return [n]
|
||||
end
|
||||
digs=digits(n)
|
||||
d=length(digs)
|
||||
cyc=zeros(Int,d)
|
||||
x=[10^i for i in 0:d-1]
|
||||
for i in 1:d
|
||||
cyc[i]=sum(x .* digs[vcat(i:d,1:i-1)])
|
||||
end
|
||||
return cyc
|
||||
end
|
||||
|
||||
function Problem35()
|
||||
#=
|
||||
The number, 197, is called a circular prime because all rotations of the
|
||||
digits: 197, 971, and 719, are themselves prime.
|
||||
|
||||
There are thirteen such primes below 100:
|
||||
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
|
||||
|
||||
How many circular primes are there below one million?
|
||||
=#
|
||||
circular_primes = []
|
||||
cnt = 0
|
||||
for i in 2:1_000_000
|
||||
if isprime(i)
|
||||
all_primes = true
|
||||
for j in circular_number(i)
|
||||
if !isprime(j)
|
||||
all_primes = false
|
||||
break
|
||||
end
|
||||
end
|
||||
if all_primes
|
||||
cnt +=1 #push!(circular_primes, i)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
return cnt #length(circular_primes)
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem 35:")
|
||||
@btime Problem35()
|
||||
println("")
|
||||
println("Result for Problem 35: ", Problem35())
|
Loading…
x
Reference in New Issue
Block a user