Solution to problem 63 in Julia
This commit is contained in:
parent
286d1b564b
commit
0a8c1398b5
37
src/Julia/Problem063.jl
Normal file
37
src/Julia/Problem063.jl
Normal file
@ -0,0 +1,37 @@
|
||||
#=
|
||||
Created on 09 Aug 2022
|
||||
|
||||
@author: David Doblas Jiménez
|
||||
@email: daviddoji@pm.me
|
||||
|
||||
Solution for Problem 63 of Project Euler
|
||||
https://projecteuler.net/problem=63
|
||||
=#
|
||||
|
||||
using BenchmarkTools
|
||||
|
||||
function Problem63()
|
||||
#=
|
||||
The 5-digit number, 16807=7^5, is also a fifth power. Similarly, the
|
||||
9-digit number, 134217728=8^9, is a ninth power.
|
||||
|
||||
How many n-digit positive integers exist which are also an nth power?
|
||||
=#
|
||||
ans::Int8 = 0
|
||||
# no need to go higher than 10, because 10**2 = 100
|
||||
for number in 1:11
|
||||
for pow in 1:31
|
||||
if length(digits(number^pow)) == pow
|
||||
ans += 1
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
return ans
|
||||
end
|
||||
|
||||
|
||||
println("Time to evaluate Problem $(lpad(63, 3, "0")):")
|
||||
@btime Problem63()
|
||||
println("")
|
||||
println("Result for Problem $(lpad(63, 3, "0")): ", Problem63())
|
Loading…
x
Reference in New Issue
Block a user