Solution to problem 9
This commit is contained in:
parent
74ee7f5a10
commit
041066da0e
38
src/Python/Problem009.py
Normal file
38
src/Python/Problem009.py
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Created on 26 Aug 2017
|
||||||
|
|
||||||
|
@author: David Doblas Jiménez
|
||||||
|
@email: daviddoji@pm.me
|
||||||
|
|
||||||
|
Solution for problem 9 of Project Euler
|
||||||
|
https://projecteuler.net/problem=9
|
||||||
|
"""
|
||||||
|
|
||||||
|
from utils import timeit
|
||||||
|
|
||||||
|
|
||||||
|
@timeit("Problem 9")
|
||||||
|
def compute():
|
||||||
|
"""
|
||||||
|
A Pythagorean triplet is a set of three natural numbers, a < b < c,
|
||||||
|
for which a^2 + b^2 = c^2
|
||||||
|
|
||||||
|
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
||||||
|
|
||||||
|
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
||||||
|
Find the product abc.
|
||||||
|
"""
|
||||||
|
|
||||||
|
upper_limit = 1000
|
||||||
|
for a in range(1, upper_limit + 1):
|
||||||
|
for b in range(a + 1, upper_limit + 1):
|
||||||
|
c = upper_limit - a - b
|
||||||
|
if a * a + b * b == c * c:
|
||||||
|
# It is now implied that b < c, because we have a > 0
|
||||||
|
return a * b * c
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
print(f"Result for Problem 9: {compute()}")
|
Loading…
x
Reference in New Issue
Block a user