
Problem 31

Investigating combinations of English currency denominations

In England the currency is made up of pound, ¿, and pence, p, and there are eight coins in
general circulation:

1p, 2p, 5p, 10p, 20p, 50p, ¿1 (100p) and ¿2 (200p).

It is possible to make ¿2 in the following way:

1×¿1 + 1×50p + 2×20p + 1×5p + 1×2p + 3×1p
How many di�erent ways can ¿2 be made using any number of coins?

Let us start with the largest coins (¿2). We can make the target amount (¿2) either using
just one ¿2 coin, or using some smaller coins instead. Therefore, the ways to make ¿2 with any
coins are: 1 + ways to make ¿2 with smaller coins.

Now, let us calculate the ways to make ¿2 with smaller coins. We can classify the di�erent
ways in three groups:

• 0×¿1 + even smaller coins (up to ¿2)

• 1×¿1 + even smaller coins (up to ¿1)

• 2×¿1 + nothing

The number of ways contained in the �rst group can be expressed like the original problem,
but without ¿2 and ¿1 coins.

For the second group we have the original problem with a target amount of just ¿1 and
without ¿2 and ¿1 coins.

The third group counts as just one way, since the target amount (¿2) is a multiple of the
largest coin (¿1).

In general:

w(t, c) =


1 if c = 1 or t = 0

∑b t
c
c

i=0 w(t− ic, s(c)) if c > 1 and t > 0

where:

• t is the target amount,

• c is the value of the largest available coin,

• s(c) is the value of the next coin smaller than c, and

• w(t, c) is the number of ways to make the target amount t with coins of value c and/or
smaller coins.

c© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo

The next program uses the aforementioned recursive function:

coins [1..8] = { 1, 2, 5, 10, 20, 50, 100, 200 }

amount = 200

function ways (target , avc):

if avc <= 1 then return 1

res = 0

while target >= 0 do:

res = res + ways (target , avc -1)

target = target - coins[avc]

return res

print ways (amount , 8)

This program calculates the correct result for the problem in the blink of an eye (4ms1).
Nevertheless, it is far from being optimal. If we set the total amount to 1000 (¿10), then the
program takes more than 3s to compute the result. During this time, the function is called
325,195,472 times. The value of w(10, 2) �which is 6, by the way� is calculated 94,300 times.
For the lowest values of t and c, the function is called millions of times.

Obviously, we can use memoization to avoid those super�uous repeated calculations. The
next program stores the results of w(t, c) in an array, and reuses them if the function is called
again with the same t and c:

coins [1..8] = { 1, 2, 5, 10, 20, 50, 100, 200 }

amount = 200

memo [0.. amount][2..8] = { all 0 }

function ways (target , avc):

if avc <= 1 then return 1

t = target

if memo[t][avc] > 0 then return memo[t][avc]

res = 0

while target >= 0 do:

res = res + ways (target , avc -1)

target = target - coins[avc]

memo[t][avc] = res

return res

print ways (amount , 8)

This version computes the ways to make ¿10 in 4ms, at the cost of using an array of 27KB
approximately2. With this particular set of coins, the array size might be reduced, due to the
fact that many elements are never used. Though, we will focus on a more drastic optimization.

1All times were measured with implementations in C, on an Intel R© CoreTM2 T7200 @ 2.00GHz
2With 32-bit integers: (1000 + 1)× 7× 4 = 28028B

c© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo

Let us analyse the dependencies between the di�erent values of w(t, c).

Dependencies between values of w(t, c)

c = 1 c = 2 c = 5 c = 10
t = 0 1

��

1 1 1
t = 1 1 55 1

��

1 1
t = 2 1

��9
99

99
99

99
99

2 2 2
t = 3 1 2 2 2
t = 4 1

,,

3 3 3
t = 5 1 3 4 4
t = 6 1 55 4 55 5 55 5
t = 7 1 4 6 6
t = 8 1 5 7 7

The function w(t, c) can be reformulated as follows:

w′(t, c) =


1 if c = 1 or t = 0

w′(t, s(c)) if c > 1 and t < c

w′(t, s(c)) + w′(t− c, c) if c > 1 and t ≥ c

It is as straightforward as the previous version. The ways to make ¿2 with ¿1 coins and/or
smaller coins, for instance, include:

• Ways to make ¿2 with coins smaller than ¿1 (this is the 0×¿1 case)

• Ways to make ¿1 with ¿1 coins and/or smaller coins (cases 1×¿1 and 2×¿1)

If we implemented w′(t, c) literally, we would get a very ine�cient solution, since it uses
recursion instead of the loop of the initial program. It would be slower and it would use too
much stack space �the maximum number of nested calls would be proportional to the target
amount�.

Having said this, the interesting aspect of w′(t, c) is the graph of dependencies between
di�erent values of the function:

Dependencies3 between values of w′(t, c)

c = 1 c = 2 c = 5 c = 10
t = 0 1

))
// 1

##

1 1
t = 1 1

))
// 1 // 1

��

1
t = 2 1

))
// 2

##

2 2
t = 3 1

))
2 2 2

t = 4 1
))

// 3

##

3 3
t = 5 1

))
3 4 4

t = 6 1 // 4 // 5 // 5
t = 7 1 4 6 6
t = 8 1 5 7 7

3Note that some of the arrows depicted in the table ��rst column and �rst row� do not represent recursive

calls of the function w′(t, c), since it has been directly de�ned as 1 in these cases

c© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo

The 1's from the �rst row and the �rst column follow longer paths of additions until they
reach their �nal destination. In exchange, every element is calculated by adding at most two
other elements. Thus, we can precalculate the whole array in less time.

Furthermore, every w′(t, c) element depends, at most, on:

1. a previous element of its column c, and

2. the element at the same row t in the previous column c− 1

Due to this interesting fact, we can use a simple 1D array, calculating a full column at a time,
while we overwrite the previous column.

The next program is an adaptation of the solution provided by wizeman �post number 16
in the thread for problem 31 in the forum�. Using 64-bit numbers it can calculate, for instance,
the ways to make ¿100 (1,133,873,304,647,601) in 3ms �setting amount=10000�.

coins [1..8] = { 1, 2, 5, 10, 20, 50, 100, 200 }

amount = 200

ways [0.. amount] = { uninitialized array }

ways [0] = 1;

for i = 1 to 8 do:

for j = coins[i] to amount do:

ways[j] = ways[j] + ways[j-coins[i]]

print ways[amount]

The second program solves subproblems on demand, attacking the largest problem �rst, and
moving to smaller and smaller subproblems as required. It represents the top-down approach of
dynamic programming.

The third program, instead, starts solving the smallest subproblem, and then it solves larger
and larger subproblems. It represents the bottom-up approach of dynamic programming, and it
is signi�cantly faster for several reasons:

• As mentioned above, every element is calculated by adding at most two other elements.

• It requires less memory and accesses it in a cache-friendly way.

• It uses loops instead of expensive function calls.

The �rst reason is quite important from the point of view of computational complexity. A
memoized recursive implementation of w′(t, c), though maybe stack-abusive4, would also be
faster than the memoized recursive implementation of w(t, c).

4Interestingly, when memoization is used, the maximum number of nested recursive calls depends strongly on

the order in which the two recursive calls of w′(t, c) are issued.

c© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo

