
Copyright Project Euler, further distribution without the consent of the author(s) prohibited
Author: hk

Problem 7

Find the 10001st prime

We do not know what answer to expect so we will try to solve this problem using trial
division. However, if a good upper bound for the target prime is known in advance, using a
sieve of Eratosthenes is a much more efficient method.

Some useful facts:
1 is not a prime.
All primes except 2 are odd.
All primes greater than 3 can be written in the form 6k+/-1.

Any number n can have only one primefactor greater than n .
The consequence for primality testing of a number n is: if we cannot find a number f less than

or equal n that divides n then n is prime: the only primefactor of n is n itself

Let’s design an algorithm that tests the primality of a number n based on these facts:

Function isPrime(n)
if n=1 then return false
else
if n<4 then return true //2 and 3 are prime
else
if n mod 2=0 then return false
else
if n<9 then return true //we have already excluded 4,6 and 8.
else
if n mod 3=0 then return false
else

r=floor(n) // n rounded to the greatest integer r so that r*r<=n
f=5

 while f<=r
if n mod f=0 then return false (and step out of the function)
if n mod(f+2)=0 then return false (and step out of the function)
f=f+6

endwhile
return true (in all other cases)

End Function

 We can use this function with:

limit=10001
count=1 //we know that 2 is prime
candidate=1
repeat

candidate=candidate+2
if isPrime(candidate) then count=count+1

until count=limit
output candidate

