
Problem 10. Sum all primes below N million

10.1 The natural looping algorithm

If you have a reasonably fast prime testing algorithm, like the one from the
overview for problem 7, you could simply loop through all promising candidates
(odd numbers or numbers not divisible by either two or three for example) and
sum those that turn out to be prime. The code would then resemble

limit := 2000000

sum := 5 // we know that 2 and 3 are prime

n := 5

while n <= limit

if isPrime(n) then sum := sum+n

n := n+2

if n <= limit and isPrime(n) then sum := sum+n

n := n+4

end while

output sum

and run in a couple of seconds if the limit is one to five million.

Although that prime testing algorithm is already a vast improvement over divid-
ing by all numbers and still a lot better than dividing by all odd numbers (and
in a different league from algorithms which don’t stop dividing at

√
n), it is too

slow if you have to perform many tests. To find all primes up to one million,
testing only numbers not divisible by 2 or 3, over 20 million divisions are carried
out, finding the primes up to five million takes over 200 million divisions.

That is an awful lot of work, how can we substantially reduce it?
Apart from some rather advanced new methods, the best answer to that question
is over 2000 years old. When you want to find all primes below some limit, use
the sieve of Eratosthenes. When you want to test just a handful of not too large
numbers, trial division is adequate. However, suppose you’d want to test a few
hundred numbers between 109 and 1010. Then a mixed strategy is good. First use
a sieve to find the primes up to 105, then perform trial division by these primes.

10.2 The sieve of Eratosthenes

The basic idea behind this ancient method is that instead of looking for divisors
d of n, we mark multiples of d as composites. Since every composite has a prime
divisor, the marking of multpiples need only be done for primes. The classical
algorithm is

c© Project Euler, further distribution without the consent of the author(s) prohibited
Author: daniel.is.fischer



1. Make a list of all numbers from 2 to N .

2. Find the next number p not yet crossed out. This is a prime.
If it is greater than

√
N , go to 5.

3. Cross out all multiples of p which are not yet crossed out.

4. Go to 2.

5. The numbers not crossed out are the primes not exceeding N .

You only need to start crossing out multiples at p2, because any smaller multiple
of p has a prime divisor less than p and has already been crossed out as a multiple
of that. This is also the reason why we can stop after we’ve reached

√
N .

10.2.1 A first implementation

We begin with an implementation close to the description of the algorithm, which
we will improve somewhat after having discussed it. For the list of numbers, we
use a boolean array sieve, indicating which numbers have been crossed out.

limit := 2000000

crosslimit := b
√
limitc

sieve := new boolean array [2 .. limit] false

for n := 4 to limit with step 2 // mark even numbers > 2

sieve[n] := true

end for

for n := 3 to crosslimit with step 2

if not sieve[n] then // n not marked, hence prime

for m := n*n to limit with step 2*n

sieve[m] := true

end for

end if

end for

sum := 0

for n := 2 to limit

if not sieve[n] then

sum := sum+n

end if

end for

output sum

c© Project Euler, further distribution without the consent of the author(s) prohibited
Author: daniel.is.fischer



First, we initialise the array to false because we have not yet crossed out any num-
bers. In crossing out, we discriminate between even and odd numbers, slightly
deviating from the description. After all even numbers > 2 have been crossed
out as multiples of 2, there is no point in crossing them out again as multiples
of their odd divisors. So when crossing out multiples of odd primes p, we can
proceed in steps of 2p instead of p, sparing the even multiples. As noted above,
all multiples of p less than p2 will already have been crossed out as multiples of
smaller primes, so we need not revisit them. Also, if n is an odd composite, when
the loop reaches n, that number and its multiples have already been crossed out,
so we need not enter the inner loop then.

10.2.2 Optimising the sieve

An easy optimisation of the sieve is suggested by the discrimination of odd and
even numbers. Apart from 2, all that the even numbers do is being crossed out

once and occupying space. If we get rid of the even numbers, we save (limit− 2)/
2

crossings out and, more importantly, we use only half the memory. That allows
sieving larger ranges and reduces cache misses, thus improving performance.

Sieving only odd numbers requires a bit of—simple—index-arithmetics. We let
the ith element of the array correspond to the odd number 2i + 1. Thus, if
p = 2i + 1, we find that p2 = 4i2 + 4i + 1 has the index 2i(i + 1) and if m = k · p
corresponds to j, then m + 2p corresponds to j + p. So if the ith index is not yet
crossed out, the inner loop starts at 2i(i + 1) and proceeds with step 2i + 1.

The code becomes

sievebound := (limit-1) div 2 // last index of sieve

sieve := new boolean array [1 .. sievebound] false

crosslimit := (b
√
limitc-1) div 2

for i := 1 to crosslimit

if not sieve[i] then // 2*i+1 is prime, mark multiples

for j:= 2*i*(i+1) to sievebound with step 2*i+1

sieve[j] := true

end for

end if

end for

sum := 2 // 2 is prime

for i := 1 to sievebound

if not sieve[i] then sum := sum+(2*i+1)

end for

output sum

and solves the problem in much less than a second.

c© Project Euler, further distribution without the consent of the author(s) prohibited
Author: daniel.is.fischer


