
Project Euler: Problem 15

Contents

1 Recursive Solution 2

2 Iterative Solution 3

3 Combinatorial Solution 4



Project Euler: Problem 15 2

1 Recursive Solution

By inspection, the number of routes from (0, 0) to (m,n) is equal to the number of routes from
(0, 0) to (m− 1, n) plus the number of routes from (0, 0) to (m,n− 1). This implies a very simple
recursive algorithm:

Algorithm 1 Recursive route-counting function

function countRoutes(m,n)
if n = 0 OR m = 0 then

return 1
end if
return countRoutes(m,n− 1) + countRoutes(m− 1, n)

end function

However, it is too slow to give the answer in reasonable time: consider that countRoutes(20, 20)
calls countRoutes(20, 19) and countRoutes(19, 20). The former calls countRoutes(20, 18)
and countRoutes(19, 19), while the latter calls countRoutes(19, 19) and countRoutes(18, 20).

Notice how countRoutes(19, 19) is present in both of those branches two levels down from the
top. Our algorithm is recomputing the same results multiple times. This problem only gets worse
as we delve deeper into the recursion. This can be avoided by using memoization, a top-down
programming technique of caching results for later use. This way each result is only calculated
once.

Algorithm 2 Recursive route-counting function, O(mn) time

cache← dict() . Dictionary object

function countRoutes(m,n)
if n = 0 OR m = 0 then

return 1
end if

if cache[(m,n)] is defined then
return cache[(m,n)]

end if

cache[(m,n)]← countRoutes(m,n− 1) + countRoutes(m− 1, n)
return cache[(m,n)]

end function

Notice that the cache-lookup code comes after the 0-check for m and n. These two pieces could
technically go in either order and work just fine for our purposes, but there’s really no need to
spend time/resources performing a dictionary lookup if we can “quit” early.

Copyright Project Euler, further distribution without the consent of the author(s) prohibited.
Author: Pim Spelier



Project Euler: Problem 15 3

2 Iterative Solution

While the memoized recursion may be suitable for the purposes of the problem, memoized recur-
sion often requires more memory, and some languages have trouble with deeply-nested recursive
calls.

We can translate our recursion into an iterative solution using a bottom-up programming technique
called dynamic programming. Instead of starting from n = 20 and m = 20 and working our way
down, we can start from the bottom “base cases” and work our way up, saving the results in a
two-dimensional array (which we’ll denote via “grid”) where grid[i][j] corresponds to the result
countRoutes(i, j).

A “base case” is typically a simple case where the recursive algorithm ends. For us, that’s any time
m or n equals 0, for which the result is always 1. So we initialize all grid[i][0] and grid[0][j] to 1
and then iterate across all i ≤ m and j ≤ n to calculate each result, storing the results in the array
as we go. At the very end, grid[m][n] will have the desired answer.

Algorithm 3 Iterative route-counting function, O(mn) time

function countRoutes(m,n)
grid← array[m + 1][n + 1] . A two-dimensional 0-indexed array of size m + 1 by n + 1

for i = 0 to m do
grid[i][0]← 1

end for

for j = 0 to n do
grid[0][j]← 1

end for

for i = 1 to m do
for j = 1 to n do

grid[i][j]← grid[i− 1][j] + grid[i][j − 1]
end for

end for

return grid[m][n]
end function

Copyright Project Euler, further distribution without the consent of the author(s) prohibited.
Author: Pim Spelier



Project Euler: Problem 15 4

3 Combinatorial Solution

However, these solutions are both O(mn), and we can do better using combinatorics. In a grid of
size m by n, we know that no matter what path we take, there will be exactly m movements to the
right (R) and n movements down (D). This means the pathway can be represented as a string of
R’s and D’s of length m + n.

How many ways can we allocate m R’s and n D’s in such a string? Note that for a single configu-
ration, once we place the the R’s we immediately know where the D’s must go (as they cannot go
anywhere else). All we really have to know is how many ways we can place the R’s. The number
of ways we can do this, mathematically, is denoted with the binomial coefficient

(
m+n
m

)
.

This is called a combination, the number of ways of choosing k items from a group of n items where
the order of the k items does not matter1:

(
n

k

)
=

n!

k!(n− k)!
=

n× (n− 1)× ...× (n− k + 1)

k!
(3.0.1)

Using this formula, we can calculate
(
m+n
m

)
for general n and m, but seeing as our grid is a perfect

square (m = n):

(
2n

n

)
=

2n× (2n− 1)× ...× (n + 2)× (n + 1)

n× (n− 1)× ...× 2× 1
=

n∏
i=1

n + i

i
(3.0.2)

This gives us a much faster O(n) solution:

Algorithm 4 Combination-based route-counting function, O(n) time and O(1) memory

function countRoutes(n) . n by n grid
result = 1

for i = 1 to n do
result← result× (n + i)/i

end for

return result
end function

1In equation 3.0.1, let x! be the factorial function, x! = x× (x− 1)× (x− 2)× ...× 2× 1

Copyright Project Euler, further distribution without the consent of the author(s) prohibited.
Author: Pim Spelier


