
Problem 53

How many values of C(n, r), for 1≤n≤100, exceed one-million?

There are exactly ten ways of selecting three from �ve, 12345:

123, 124, 125, 134, 135, 145, 234, 235, 245, and 345

In combinatorics, we use the notation, 5C3 = 10.

In general,

nCr =
n!

r!(n−r)! , where r ≤ n, n! = n× (n− 1)× ...× 3× 2× 1, and 0! = 1.

It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066.

How many, not necessarily distinct, values of nCr, for 1≤n≤100, are greater than one-million?

The naive approach would be to just compute the formula for every n and r where 23≤n≤100
and 1<r<n. Unfortunately, the given formula requires handling extraordinarily large numbers.
The numerator n! over�ows 32 bits at n=13 and, soon after that, it over�ows 64 bits at n=21.
In order to handle up to n=100 we need variables of more than 500 bits.

With a language �or library� capable of handling arbitrarily long numbers, an initial at-
tempt could be:

function factorial (n) Program A
res = 1

while (n > 1)

res = res * n

n = n - 1

return res

count = 0

for n = 1 to 100 do:

for r = 1 to n do:

if factorial(n) / (factorial(r)* factorial(n-r)) > 1000000

count = count + 1

print count

The previous program, implemented using the �C++ Big Integer Library� by Matt Mc-
Cutchen, took 1.27 seconds to compute the result1.

Obviously, the factorials can be precalculated and stored in a lookup table for later use. This
simple optimization reduces the execution time to 51 ms:

f[0..100] = { uninitialized array } Program B
f[0] = 1

for i = 1 to 100 do:

f[i] = f[i-1] * i

count = 0

for n = 1 to 100 do:

for r = 1 to n do:

if f[n] / (f[r]*f[n-r]) > 1000000

count = count + 1

print count

1All times were measured with implementations in C or C++, on an Intel® Core�2 T7200 @ 2.00GHz

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 1

If we change the limit �100 in the original problem� and try higher values, the previous
program behaves as shown in the next graphic:

 0

 10

 20

 30

 40

 50

 100 200 300 400 500 600

T
im

e
(s

ec
on

ds
)

Maximum value of n

Scalability of program B (big integers and precalculated factorials)

B exec. times

3.6·10−10·Maxn
4

The execution time is acceptable with the original limit but, when this limit is increased, the
execution time seems to follow a parabola of fourth degree. The code above contains only two
nested loops, but the operations carried out inside these loops take more and more time as the
limit grows, because they deal with astronomically growing numbers2.

Let's analyse the given formula in order to simplify it as much as possible:

nCr =
n!

r! (n− r)!
(1)

The numerator n! is the number of permutations of n elements3. If we take the �rst r elements
of each permutation, we get all the possible selections of r elements, but every possible selection
appears many times. Once with every possible ordering of both subsets: the r selected elements
and the n−r remaining elements. That is, exactly r! (n−r)! times.

If we expand the formula, taking into account the fact that r ≤ n, we can simplify the
calculations cancelling r! out of the fraction:

nCr =
n!

r! (n− r)!
=

n · (n− 1) · · · (r + 1) ·(((((((
r · (r − 1) · · · 1

��r! (n− r)!
=

n · (n− 1) · · · (r + 1)

(n− r)!
(2)

This optimization is especially useful when r is nearly as large as n. In these cases the
numerator will have just a few terms. On the other extreme, when r is very small, we can
compute nCn−r instead of nCr, since selecting r elements out of n �leaving the rest unselected�
is equivalent to selecting the rest �leaving r unselected�:

nCn−r =
n!

(n− r)! (n− (n− r))!
=

n!

(n− r)! (n− n+ r)!
=

n!

(n− r)! r!
= nCr (3)

In addition, due to this symmetry property, we can just compute nCr with r ranging from
bn2 c to n, and count every value of nCr as two values except when r= n

2 .

2As an example, 59! is greater than 1080, which is the estimated number of particles contained in the observable

universe.
3A permutation is a linear arrangement or ordering of some elements. The permutations of n elements can

be generated as follows: �rst we choose one of the n elements for the �rst place, then we choose one of the

remaining n−1 elements for the second place, and so on. Thus, the number of permutations of n elements is

n · (n− 1) · (n− 2) · · · 1 = n!

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 2

Sadly, when r ≈ n
2 , the numbers involved are still too big compared to the numbers of combi-

nations obtained after the division. If we could divide by some of the terms of the denominator
while multiplying the terms of the numerator �and indeed we can, as we'll see in page 13� the
numbers involved would be smaller.

Let's take a look at the numbers we are calculating:

nCr r=0 r=1 r=2 r=3 r=4 r=5

n=0 1
n=1 1 1
n=2 1 2 1
n=3 1 3 3 1
n=4 1 4 6 4 1
n=5 1 5 10 10 5 1

These numbers resemble the famous Pascal's Triangle, where every number is the sum of the
two directly above it:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

We can verify that this �Pascal's Formula� holds for every nCr where n, r>0:

n−1Cr +
n−1Cr−1 =

(n− 1)!

r! (n− 1− r)!
+

(n− 1)!

(r − 1)! (n− �1− (r − �1))!

=
n!/n

r! (n− r)!/ (n− r)
+

n!/n

(r!/r) (n− r)!

=
n− r

n
· n!

r! (n− r)!
+

r

n
· n!

r! (n− r)!

=
n− r

n
· nCr +

r

n
· nCr =

n− �r + �r

n
· nCr = nCr (4)

Intuitively, if we have a set of n−1 elements and we add one more element, the number of
combinations of r elements out of n is equal to:

� the number of combinations of r elements out of the original set �these do not include the
new element�, plus

� the number of combinations formed by the new element and r−1 elements of the original
set.

Therefore, we can simply compute Pascal's Triangle up to n=100. We don't even need to
use big numbers because we are not interested in the exact value of those numbers that exceed
one-million. We can simply store the value one-million instead, thus avoiding over�ows.

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 3

count = 0 Program C
C[1..100][0..100] = { uninitialized array }

for n = 1 to 100 do:

C[n][0] = C[n][n] = 1

for r = 1 to n-1 do:

C[n][r] = C[n-1][r-1] + C[n-1][r]

if C[n][r] > 1000000 do:

count = count + 1

C[n][r] = 1000000

print count

The previous program stores Pascal's Triangle in a 2D array, but every row is used only for
computing the next row. The next program makes the same calculations using just a simple 1D
array:

count = 0 Program D
C[0..100] = { 1, 1, the rest can be uninitialized }

for n = 2 to 100 do:

C[n-1] = 1

for r = n-1 downto 1 do:

C[r] = C[r] + C[r-1]

if C[r] > 1000000 do:

count = count + 1

C[r] = 1000000

print count

These programs solve the original problem in 82 µs and 39 µs respectively4. The di�erence
between them is probably due to cache e�ects and/or memory bandwidth usage. The next
graphic shows their behaviour when the maximum value of n is increased:

 0

 2

 4

 6

 8

 10

 100 400 700 1000

T
im

e
(m

ill
is

ec
on

ds
)

Maximum value of n

Scalability of programs C and D (Pascal’s Triangle with max. 1000000)

C exec. t. (with 2D array)

D exec. t. (with 1D array)

5.2·10−6·Maxn
2

3.6·10−6·Maxn
2

They are signi�cantly faster than the initial programs. More importantly, when the limit
is increased, the execution times follow parabolas of second degree. The execution time can be
decreased taking bene�t of the symmetry of Pascal's Triangle. The latter program, for example,
takes 27 µs if this is taken into account. Ideally, it should take about 19 µs, but the additional
logic tests and branches slow it down. With a further loop-unroll optimization it got to run in
20 µs.

4Average execution time in 100 consecutive repetitions.

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 4

In order to thoroughly test these algorithms, we will make experiments changing both pa-
rameters of the original problem. The maximum value of n will be henceforth called Maxn

�originally 100�, and the limit value for nCr will be called LimnCr �originally 1,000,000�.

We can still make another dramatic improvement. Given the result obtained in equation (4),
we can assume that, inside Pascal's Triangle, the area consisting in values greater than LimnCr

is in the centre, and it gets wider as we move down. The next �gure, for instance, shows the
area of Pascal's Triangle where nCr≤1000 �marked with `◦'� and the area where nCr>1000
�marked with `·'�:

◦◦ ◦◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ · · · · ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ · · · · · · · ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ · · · · · · · · ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ · · · · · · · · · ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ · · · · · · · · · · ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ · · · · · · · · · · · ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ · · · · · · · · · · · · ◦ ◦ ◦ ◦◦ ◦ ◦ · · · · · · · · · · · · · · · ◦ ◦ ◦◦ ◦ ◦ · · · · · · · · · · · · · · · · ◦ ◦ ◦◦ ◦ ◦ · · · · · · · · · · · · · · · · · ◦ ◦ ◦◦ ◦ ◦ · · · · · · · · · · · · · · · · · · ◦ ◦ ◦◦ ◦ ◦ · · · · · · · · · · · · · · · · · · · ◦ ◦ ◦◦ ◦ ◦ · ◦ ◦ ◦◦ ◦ ◦ · ◦ ◦ ◦◦ ◦ ◦ · ◦ ◦ ◦◦ ◦ ◦ · ◦ ◦ ◦◦ ◦ ◦ · ◦ ◦ ◦◦ ◦ ◦ · ◦ ◦ ◦

Therefore, in the inner loop, when a value grater than LimnCr is found, the amount of such
numbers in row n can be immediately deduced from the values of r and n:

count = 0 Program E
C[0..Maxn] = { 1, 1, the rest can be uninitialized }

for n = 2 to Maxn do:

C[n-1] = 1

r = n - 1

while r >= 1 do:

C[r] = C[r] + C[r-1]

if C[r] > LimnCr do:

count = count + r - (n-r) + 1

C[r] = LimnCr

r = 0

else do:

r = r - 1

print count

The solution described in program E was posted to the thread of the problem by hk on 2008.
Along with the code, he proposed the challenge of computing the solution for Maxn =105 and
LimnCr =1016.

The execution times of programs C and D depended mainly on Maxn. Changing LimnCr

could a�ect them too, but only by a small proportion. We can say that their execution time is
proportional to Max 2

n. Put formally, they take O(Max 2
n) time.

The case of program E is di�erent. If LimnCr would never be reached, program E would
behave like program D. But the values of nCr grow so rapidly as n is increased that they will
eventually reach any practical LimnCr . Note that 35C17 > 232 and 68C34 > 264. After LimnCr

is reached, program E makes less and less iterations of the inner loop as n continues growing.
Hence, we can say that program E takes O(Maxn) time for most practical purposes.

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 5

The next graphic shows the behaviour of program E under the same conditions as the previous
two programs ��xed LimnCr of one-million, values of Maxn ranging from 100 to 1,200 and 32-bit
variables for nCr values�:

 0

 5

 10

 15

 20

 25

 30

 35

 100 400 700 1000

T
im

e
(m

ic
ro

se
co

nd
s)

Maxn

Scalability of program E (computing only P.T. tip and margin; 32−bit version; LimnCr
=106)

E exec. times

0.0245·Maxn

2.5+0.0225·Maxn

Since LimnCr was kept constant, the tip of the triangle �where nCr values were computed
for every possible r� always had the same area. From n = 23 and on, only the margin was
computed, and it got thinner and thinner as n grew. Thus, the time spent in computing the tip
was better amortized with larger values of Maxn.

The next graphics show the behaviour of program E, adapted to 64-bits, under extreme
conditions:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2.5·106 5·106 7.5·106 107

T
im

e
(s

ec
on

ds
)

Maxn

Program E (64−bit), various Maxn and LimnCr

LimnCr
=1

LimnCr
=10

LimnCr
=102

LimnCr
=104

LimnCr
=106

LimnCr
=1010

LimnCr
=1016

LimnCr
=263−1

0.1 µs

1 µs

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

102 103 104 105 106 107

T
im

e
(lo

g.
 s

ca
le

)

Maxn (log. scale)

Same data, seen at logarithmic scale

Note that not only Maxn, but also LimnCr a�ects the execution times. The left graphic shows
that high values of LimnCr slow down the program by some proportion. The right graphic shows,
at low values of Maxn, the penalty of calculating the tip of the triangle, whose area depends on
LimnCr .

We will try now a di�erent approach. Instead of computing the tip of the triangle and the
margin at the right of the area where nCr>LimnCr , we can directly compute only the values of
its boundary. The area where nCr >LimnCr starts at some point in the middle of the triangle
�at 23C10 in the original problem� and it gets wider as we move down through the triangle.
Therefore, we can traverse its border, calculating only some nCr values.

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 6

The next �gure shows an example where we search �or rather count� the values of nCr

greater than 20 where 1≤n≤8:

1

1 1

1 2 1

1 3 3 1

1 4 6 4

1 5 10 10 5

1 6 // 15 // 20

��/
//

//
//

15

1 7 //___
99ttt _ _�

�
�
�_ _21 35 35 21'& %$! "#START // 1 // 8 //___

99ttt _ _�
�

�
�_ _28 56 70 56'& %$! "#END

If the value at the right is greater than the limit, we have to move up-right. Otherwise, we
have to move right. Before we move up-right, we must count the values greater than the limit
that we leave at the right in the current row. If the position before moving up-right is (n, r) then
there are n−2r−1 such values.

Now we need to know how to compute, given the current position (n, r) and its value nCr

the value at the right and the value at the up-right position.

During the development of equation (4) we found that:

n−1Cr =
(n− 1)!

r! (n− 1− r)!
=

n!/n

r! (n− r)!/ (n− r)
=

n− r

n
· n!

r! (n− r)!
=

n− r

n
· nCr (5)

Intuitively, if we have the combinations of r elements out of n, we can reduce them to be
combinations of r elements out of n−1 by removing one of the n elements and, consequently, all
those combinations that include it. Since every original combination excludes n−r elements of
n, the proportion of combinations that exclude the removed element is n−r

n .

Similarly, we can move to the right across Pascal's Triangle with:

nCr+1 =
n!

(r + 1)! (n− (r + 1))!
=

n!

(r + 1) r! (n−r)!
n−r

=
n− r

r + 1
· n!

r! (n− r)!
=

n− r

r + 1
· nCr (6)

Intuitively, if we have the combinations of r elements out of n, we can expand them to be
combinations of r+1 elements by adding one of the remaining n−r elements. Since we have n−r
di�erent options, the number of combinations is multiplied by n−r. Though, while expanding the
combinations in this way, we generated many repeated combinations. For all the combinations
of r out of some r+1 elements there are now r+1 identical combinations containing these r+1
elements. That's why we have to divide by r+1.

Thus, we can move right with nCr+1=
n−r
r+1 ·

nCr and up-right with n−1Cr=
n−r
n ·nCr.

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 7

count = 0 Program F
r = 0

n = Maxn

nCr = 1

while r < n/2 do:

Cright = nCr * (n-r) / (r+1)

if Cright <= LimnCr do:

r = r + 1

nCr = Cright

else do:

Cupright = nCr * (n-r) / n

count = count + n - 2*r - 1

n = n - 1

nCr = Cupright

print count

The next graphic shows the behaviour of this last program when Maxn is increased:

 0

 10

 20

 30

 40

 50

 100 400 700 1000

T
im

e
(m

ic
ro

se
co

nd
s)

Maxn

Scalability of program F (boundary−guided; 32−bit version; LimnCr
=106)

Execution times

0.038·(max. n)

The execution time grows linearly, as expected. The next graphics show the behaviour of
program F, adapted to 64-bits, under extreme conditions:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2.5·106 5·106 7.5·106 107

T
im

e
(s

ec
on

ds
)

Maxn

Program G (64−bit), various Maxn and LimnCr

LimnCr
=1

LimnCr
=10

LimnCr
=102

LimnCr
=104

LimnCr
=106

LimnCr
=1010

LimnCr
=1016

0.1 µs

1 µs

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

102 103 104 105 106 107

T
im

e
(lo

g.
 s

ca
le

)

Maxn (log. scale)

Same data, seen at logarithmic scale

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 8

The case of LimnCr =263−1 was not tested, and the case of LimnCr =1016 was tested only
up to Maxn=1000. The reason is that the multiplications impose more strict limitations due to
possible over�ows. Program E only required 2·LimnCr <264 in order to work properly. Program
F, instead, requires LimnCr ·Maxn<264.

The execution time of program F seems to depend only on Maxn. Program F is a bit faster
on some very particular cases �small Maxn, large LimnCr�. In general, program E is quite
faster because it only makes additions, while program F makes multiplications and divisions.

Another important di�erence is that program F does not require any array. Put formally,
program F requires just O(1) additional space while program E requires O(Maxn) additional
space.

Program F computes less values of nCr than program E. At �rst sight, program E looks
slower because it covers an area �the tip and the right margin of the triangle�, while program
F covers only a border of that area. Even though additions are faster than multiplications and
divisions, one might expect the growth of the area to overcome this advantage at some point,
slowing down program E. Nevertheless, program E is faster precisely with large values of Maxn.
The reason is that the margin of the triangle, where nCr≤LimnCr , is quite thin, getting narrower
as Maxn grows.

We will rely on that fact to optimize5 the last algorithm. WhenMaxn=104 and LimnCr =106,
for example, program F follows the next path across Pascal's Triangle:

10000C0 1→ 10000C1 8586↗ 1414C1 1→ 1414C2 1232↗ 182C2 1→ 182C3 111↗
71C3 1→ 71C4 28↗ 43C4 1→ 43C5 11↗ 32C5 1→ 32C6 5↗ 27C6 1→ 27C7

3↗ 24C7 1→ 24C8 1↗ 23C8 1→ 23C9 1↗ 22C9 2→ 22C11

Most moves are up-right (↗) and, more importantly, most of them are grouped in a few long
runs at the beginning of the path. We can save many up-right moves by estimating the n value
at which the next right move will take place.

By substituting terms in the numerator of equation (2) we can de�ne an upper bound and a
lower bound for nCr:

nCr =
n · (n− 1) · · · (r + 1)

(n− r)!
, therefore:

(r + 1)n−r

(n− r)!
≤ nCr ≤

nn−r

(n− r)!
(7)

These bounds are too loose for small values of r, but they are tight enough for high values
of r. Taking bene�t of the symmetry proven in equation (3), for low values of r:

nCr =
nCn−r =

n · (n− 1) · · · (n− r + 1)

(�n− (�n− r))!
=

n · (n− 1) · · · (n− r + 1)

r!
,

therefore:
(n− r + 1)r

r!
≤ nCr ≤

nr

r!
(8)

Focusing on the lower bound, we can isolate n as follows:

(n− r + 1)r

r!
≤ nCr ↔ (n− r + 1)r ≤ nCr · r! ↔ n ≤ r

√
nCr · r! + r − 1 (9)

5This optimization was suggested by hk during the elaboration of this document.

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 9

During the �rst stage of the travel, every time we have to move up-right after moving right, we
will check if we can save time by jumping to the row where the next move to the right might take
place. In such situations, if the current position is (n, r), and nCr≤LimnCr but

nCr+1>LimnCr ,
we will consider jumping to row n′ where:

n′ =
⌈

r+1
√

(LimnCr + 1) · (r + 1)!
⌉
+ r (10)

Jumping to row n′ implies starting to compute values from n′
C0 = 1, moving to the right

until n′
Cr is reached. Since this requires r steps, we will only do it if the number of steps saved

is greater. That is, if n−n′>r.

Otherwise, if the shortcut is not shorter than the normal path, we will continue with the
normal algorithm until the next move to the right. Furthermore, after the �rst estimation, if any
estimation does not lead to a proper shortcut, no more estimations will be made.

In addition, before taking a shortcut, we will compute n′
Cr+1 too, in order to verify that it

is greater than LimnCr . If it were not greater, then jumping to row n′ might not be safe.

The pseudocode for program G, which implements this algorithm, is divided in three stages:

1. initialise: We walk through row Maxn horizontally searching for the �rst r where nCr>
LimnCr . This usually takes only a few steps, because the nCr values grow very rapidly.

2. climb: We try to take shortcuts. Every time we should move up-right after a move to the
right, we estimate the row number n′ in order to jump there, saving a lot of up-right moves.
In general, if an estimation does not lead to a shortcut worth the e�ort, we will proceed
to the �nal stage. The only exception is the �rst estimation, which might be useless just
because the initial n happened to be near a critical point where we have to move right in
our ascension.

3. finalise: �Shortcuts� are not short any more, so we continue with the normal algorithm,
as in the previous program.

count = 0 Program G
n = Maxn

r = 0

nCr = 1

rFact = 1

procedure initialise

while r < n/2 do:

Cright = nCr * (n-r) / (r+1)

if Cright <= LimnCr do:

nCr = Cright

r = r + 1

rFact = rFact * r

else do:

return

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 10

procedure climb

firstTime = true

while r < n/2 do:

n′ = ceil (power (rFact*(r+1)*(LimnCr +1), 1/(r+1))) + r

advantage = n - n′ - r

if advantage <= 0 do:

if not firstTime then return

else do:

r′ = 0

nCr ′ = 1

while r′ < r do:

nCr ′ = nCr ′ * (n′-r′) / (r′+1)
r′ = r′ + 1

if nCr ′*(n′-r′)/(r′+1) <= LimnCr do:

print �The estimation was wrong! Falling back to slow mode...�
return

else do:

count = count + (n-n′) * (n+n′ -4*r-1) / 2

n = n′

nCr = nCr ′

while r < n/2 do:

Cright = nCr * (n-r) / (r+1)

if Cright > LimnCr

count = count + n - 2*r - 1

nCr = nCr * (n-r) / n

n = n - 1

else do:

break out of inner �while� loop

while r < n/2 do:

Cright = nCr * (n-r) / (r+1)

if Cright <= LimnCr do:

nCr = Cright

r = r + 1

rFact = rFact * r

else do:

break out of inner �while� loop

firstTime = false

procedure finalise

while r < n/2 do:

Cright = nCr * (n-r) / (r+1)

if Cright <= LimnCr do:

r = r + 1

nCr = Cright

else do:

count = count + n - 2*r - 1

nCr = nCr * (n-r) / n

n = n - 1

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 11

initialise

climb

finalise

print count

The next graphics show the behaviour of program G, adapted to 64-bits, under extreme
conditions:

 0

2

4

6

8

10

12

 0 3·106 7·106 107

T
im

e
(m

ic
ro

se
co

nd
s)

Maxn

Program G (64−bit), various Maxn and LimnCr

LimnCr
=1

LimnCr
=10

LimnCr
=102

LimnCr
=104

LimnCr
=106

LimnCr
=1010

LimnCr
=1016

0.1 µs

1 µs

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

102 103 104 105 106 107

T
im

e
(lo

g.
 s

ca
le

)

Maxn (log. scale)

Same data, seen at logarithmic scale

The execution time seems to depend mainly on LimnCr . Program G clearly outperforms the
previous ones. Though, it su�ers the same limitations as program F due to possible over�ows.

The next graphics show the behaviour of program G implemented with arbitrarily long inte-
gers:

 0

0.2

0.4

0.6

0.8

1

1.2

1.4

 0 3·106 7·106 107

T
im

e
(m

ill
is

ec
on

ds
)

Maxn

Program G (big integers), various Maxn and LimnCr

LimnCr
=1

LimnCr
=10

LimnCr
=102

LimnCr
=104

LimnCr
=106

LimnCr
=1010

LimnCr
=1016

LimnCr
=263−1

0.1 µs

1 µs

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

102 103 104 105 106 107

T
im

e
(lo

g.
 s

ca
le

)

Maxn (log. scale)

Same data, seen at logarithmic scale

The execution times grow considerably with the use of big integers, but they are still inter-
esting in many cases, compared to those of the previous programs.

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 12

To summarize, the next graphic depicts a comparison of all the previous programs, in their
32-bit versions, with LimnCr = 106. Note that the time scale is logarithmic, ranging from 1
microsecond to 100 seconds:

1 µs

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

10 s

100 s

 100 400 700 1000

T
im

e
in

 lo
ga

rit
hm

ic
 s

ca
le

Maximum value of n

Comparison of all execution times with LimnCr
=106

Big integers (naive)

Big int., lookup fact.

Sums with 2D array

Sums with 1D array

Sums tip & margin

Boundary−based

B−bb. with shortcuts

Returning to the line of thought abandoned at page 3, in light of the above �ndings, a good
way to compute a single value of nCr might be:

nC0 = 1 and nCr ·
n− r

r + 1
= nCr+1 therefore nCr =

∏
0≤i<r

n− i

i+ 1
(11)

In pseudocode, with a little optimization based on the symmetry of Pascal's Triangle:

function combinations (n, r)

if (r > n-r)

r = n-r

res = 1

for i = 0 to r-1 do:

res = res * (n-i) / (i+1)

retrun res

In any case, this function is of little use in the problem at hand. If we applied it directly,
calling it from nested loops like those of the �rst programs, then we'd get rid of the burden of
big integers. Though, we would have some limitations due to over�ows, and execution times
would still grow proportional to Max 3

n. Put formally, the computational complexity would be
O(Max 3

n).

The intermediate results of the function are other values nCr �with smaller values of r�,
which are useful in this problem. If we took bene�t from that, then the resulting program would
only take O(Max 2

n) time, but it would still be slower than the sum-based programs by a �xed
proportion. On the plus side, it wouldn't require any array.

© Project Euler, further distribution without the consent of the author(s) prohibited
Author: comocomocomocomo Page 13

