
Problem 12 
 
What is the value of the first triangle number to have over five hundred divisors? 

 
Without giving any second thought to the problem, it can be solved by brute force simply by 
generating the triangle numbers as described, dividing each by all the integers up to that triangle 
number, and counting those which are exact divisors. The answer is obtained when the count 
exceeds 500. 
(For this problem, the use of 32-bit integers is sufficient.) 
 
int t=1 //triangle number 
int a=1 
int cnt=0 
while cnt # 500 { 
 cnt = 0 
 a = a+1 
 t = t+a 
 for (int i=1; i #t; i++){ 
  IF t mod i = 0, THEN cnt++ 
  } 
 } 
print t  

 
However, as expected, the above is extremely SLOW. It can be improved somewhat by halting 
divisions when the divisor exceeds the square root of the triangle number. For every exact divisor 
up to the square root, there is a corresponding divisor above the square root. 
 
int t=1 //triangle number 
int a=1 
int cnt=0 
while cnt # 500 { 
 cnt = 0 
 a = a+1 
 t = t+a 
 int ttx = sqrt(t) 
 for (int i=1; i #ttx; i++){ 
  IF t mod i = 0, THEN cnt=cnt+2 
  } 
 IF t=ttx*ttx, THEN cnt–-  //correction for a perfect square 
 } 
print t  

 
Although an improvement, the above is still very slow. 
 
Any integer N can be expressed as follows: 
 



N = p1
a1 (((( p2

a2 (((( p3
a3 (((( ... 

where pn is a distinct prime number, and an is its exponent. 
For example, 28 = 22 ( 71 
 
Furthermore, the number of divisors D(N) of any integer N can be computed from: 
 
D(N) = (a1+1) (((( (a2+1) (((( (a3+1) (((( ... 
an being the exponents of the distinct prime numbers which are factors of N 
 
For example, the number of divisors of 28 would thus be: 
 
D(28) = (2+1)((1+1) = 3(2 = 6 
 
A table of primes will be required to apply this relationship. The efficient preparation of a prime 
table is already covered in the overview for Problem 7 and will not be discussed here. Since the 
largest expected triangle number is within a 32-bit integer, a table containing primes up to 65500 
would be more than sufficient. The following code assumes that this array of primes is already 
available. 
 



int t=1 
int a=1 
int cnt=0 
int tt, i, exponent 
array of int: primearray[1..P] 
while cnt # 500 { 
  cnt = 1 
  a = a+1 
  t = t+a 
  tt = t 
  for (i=1; i #P; i++){ 
//If your array indexing starts at 0, change to i=0 and i<P 
 
    IF primearray[i]*primearray[i] > tt, 
    THEN cnt=2*cnt; break; 
//When the prime divisor would be greater than the residual tt, 
//that residual tt is the last prime factor with an exponent=1 
//No necessity to identify it. 
 
    exponent=1 
    while tt mod primearray[i] = 0 { 
      exponent++; 
      tt = tt/primearray[i]; 
      } 
    IF exponent > 1, THEN cnt=cnt*exponent; 
    IF tt = 1, THEN break; 
    } 
  } 
print t  

 
The above can still be improved a lot by considering the fact that triangle numbers can also be 
obtained according to: 
t = n(((((n+1)/2 
 
The n and n+1 components are necessarily co-prime (i.e. cannot have any common prime factor 
and therefore no common divisor). The total number of divisors of t can thus be obtained 
according to: 
 
D(t) = D(n/2)((((D(n+1) if n is even 
or D(t) = D(n)((((D((n+1)/2) if (n+1) is even 
 
Each component being much smaller than the triangle number itself, it would be much faster to 
determine the divisors of each. And, the required table of primes will also be that much smaller 
and faster to prepare. Primes up to only 1000 will be more than adequate for this problem. In 
addition, the result of the “n+1" component can be reused as that of the “n” component for the 
next triangle number without any need to compute it a second time. 



int n=3    //start with a prime 
int Dn=2   //number of divisors for any prime 
int cnt=0  //to insure the while loop is entered 
int n1, Dn1, i, exponent, 
array of int: primearray[1..P] 
 
while cnt # 500 { 
  n = n+1; 
  n1 = n; 
  IF n1 mod 2 = 0, THEN n1 = n1/2; 
  Dn1 = 1; 
  for (i=1; i #P; i++){ 
//If your array indexing starts at 0, change to i=0 and i<P 
 
    IF primearray[i]*primearray[i] > n1 
    THEN Dn1=2*Dn1; break; 
//When the prime divisor would be greater than the residual n1, 
//that residual n1 is the last prime factor with an exponent=1 
//No necessity to identify it. 
 
    exponent=1 
    while n1 mod primearray[i] = 0 { 
      exponent++; 
      n1 = n1/primearray[i]; 
      } 
    IF exponent > 1, THEN Dn1=Dn1*exponent; 
    IF n1 = 1, THEN break; 
    } 
  cnt = Dn*Dn1 
  Dn = Dn1 
  } 
print n*(n-1)/2  

 
When the above algo is written in assembly (including the generation of primes up to 1000) and 
almost fully optimized, it runs in less than 1 millisec on a P4-1500. It should easily run in less 
than 10 millisec when written in most modern compiled languages. 
 
Even so, it can still be improved a bit more by safely starting the computation with a prime much  
higher than 3. 
 
 
Copyright Project Euler, further distribution without the consent of the author(s) prohibited 
Author: rayfil 


