
Problem 6: What is the difference between the sum of the
squares and the square of the sums?

First of all, one could use a brute force implementation, because 100 is not a really high limit. This
could be done as follows:

limit = 100
sum sq = 0
sum = 0
for i = 1 to limit do

sum = sum + i
sum sq = sum sq + i2

end for
print sum2 − sum sq

However, such an approach would definitely get in trouble when limit becomes very large.
A closer look at the program shows that the sum variable, at the end, contains the sum of the
integers from 1 to limit. As is widely known, this sum can be directly calculated using the formula
sum(n) = n(n + 1)/2. As you might have expected, such a formula also exists for the sum of squares.
Let us derive this formula.

Thus, we are looking for a function f(n), that for any n gives the sum of 12 up to n2. Assume it is of
the form f(n) = an3 + bn2 + cn + d, with a, b, c, d constants that we have to determine. This we can do
because we can verify that f(0) = 0, f(1) = 1, f(2) = 5, f(3) = 14. This yields four equations in four
variables, namely

d = 0
a + b + c + d = 1

8a + 4b + 2c + d = 5
27a + 9b + 3c + d = 14

Solving this system of equations, we obtain a = 1
3 , b = 1

2 , c = 1
6 , d = 0. This gives f(n) = 1

6 (2n3 + 3n2 +
n) = n

6 (2n + 1)(n + 1).
What remains is to show this f actually is what we want. This we prove by induction: Assuming f is the
correct formula for n, we show it is also for n + 1. Then, because we know it is correct for n = 0, 1, 2, 3,
we know that it’s correct for all n. Thus, we have to show f(n + 1) = f(n) + (n + 1)2. By expanding
both sides we get

f(n + 1) = f(n) + (n + 1)2
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Since both sides are equal, we have proven that f is the correct formula. This means that we can now
write a very simple program to calculate the difference between the sum of the squares and the square
of the sum:

limit = 100
sum = limit(limit + 1)/2
sum sq = (2limit + 1)(limit + 1)limit/6
print sum2 − sum sq

This algorithm is limited only by the size of the integer types your programming language (and computer
memory) support.
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