
Copyright Project Euler, further distribution without the consent of the author(s) prohibited
Author: hk

Problem 36

Find the sum of all numbers less than one million, which are palindromic
in base 10 and base 2.

In the overview for problem 4 a function was presented that checks if a number is a
palindrome in base 10. This can be extended to a function that does the job for any specified
base:

Function isPalindrome(n,base)
 reversed := 0
 k := n
 while k > 0
 reversed := base*reversed + k mod base
 k := k div base
 return (n = reversed)

It is easy to see that a number in base 2 must be odd to be a palindrome.

So our basic program might run as follows:

i := 1
sum := 0
while i < 1000000

if isPalindrome(i,10) and isPalindrome(i,2) then
 sum := sum + i

 i := i + 2
output sum

This works for the given limit but becomes rather slow for higher targets. However, it is
possible to generate palindromes in any given base rather than checking all numbers for two
bases.

Suppose we have a palindrome of the form xyzzyx in base b, then the first 3 digits define the
palindrome. However, the 3 digits xyz also define the palindrome xyzyx. So the 3-digit number
xyz defines a 5-digit palindrome and a 6 digit palindrome. From which follows that every
positive number less than bn generates two palindromes less than b2n. This holds for every
base b.

For the given limit it follows that we need only generate about 2000 palindromes in one of the
two bases and check it in the other. This is much faster than checking 1000000 (or 500000)
numbers for one of the two bases first. For a limit of 108 we would need to generate only
about 20000 palindromes instead of checking 5·107 numbers.

Copyright Project Euler, further distribution without the consent of the author(s) prohibited
Author: hk

Let’s define our general palindrome generator to have a choice between an odd-digit
palindrome and an even-digit palindrome.

Our palindrome generator might then look like:

Function makePalindrome(n,base,oddlength)
res := n
if oddlength then n := n div base
while n > 0
 res := base*res + n mod base
 n := n div base
return res

To generate palindromes in base 2 this function can be made more efficient using ‘shift’ and
‘and’ operations rather than ‘mod’ and ‘div’ operators like this:

Function makePalindromeBase2(n,oddlength)
res := n
if oddlength then n := n shiftRight 1
while n>0
 res := res shiftLeft 1 + n and 1
 n := n shiftRight 1
return res

Our program might then look like:

limit := 1000000
sum := 0
i := 1
p := makePalindromeBase2(i,true)
while p < limit
 if isPalindrome(p,10) then sum := sum + p
 i := i+1
 p := makePalindromeBase2(i,true)

i := 1
p := makePalindromeBase2(i,false)
while p < limit
 if isPalindrome(p,10) then sum := sum + p
 i := i+1
 p := makePalindromeBase2(i,false)
output sum

The presented program can handle limits as high as 1,000,000,000 in less than 20
milliseconds using a compiled language.

