

Why is a clean, simple, flexible, evolvable, and agile
architecture important?
Software architecture is the high level structure of a software system, the
discipline of creating such structures, and the documentation of these
structures. [1]
It is the set of structures needed to reason about the software system, and
comprises the software elements, the relations between them, and the
properties of both elements and relations. [2]

In today’s software development world, requirements change,
environments change, team members change, technologies change, and so
should the architecture of our systems.

The architecture defines the parts of a system that are hard and costly to
change. Therefore we are in need of a clean, simple, flexible, evolvable, and
agile architecture to be able to keep up with all the changes surrounding us.

Clean architecture [3]
An architecture that allows to replace details and is easy to verify.

Entities: Entities encapsulate enterprise-wide business rules. An entity can
be an object with methods, or it can be a set of data structures and
functions.

Use cases: Use cases orchestrate the flow of data to and from the entities,
and direct those entities to use their enterprise-wide business rules to
achieve the goals of the use cases.

Interface adapters: Adapters that convert data from the format most
convenient for the use cases and entities, to the format most convenient for
some external agency such as a database or the Web.

Frameworks and drivers: Glue code to connect UI, databases, devices etc.
to the inner circles.

Program Flow: Starts on the outside and ends on the outside, but can go
through several layers (user clicks a button, use case loads some entities
from DB, entities decide something that is presented on the UI)

Dependency management
The concentric circles represent different areas of software. In general, the
further in you go, the higher level the software becomes. The outer circles
are mechanisms. The inner circles are policies.

Source code dependencies can only point inwards. Nothing in an inner circle
can know anything at all about something in an outer circle. Use
dependency inversion to build up the system (classes in an outer circle
implement interfaces of an inner circle or listen to events from inner
circles).

Independent of frameworks
The architecture does not depend on the existence of some library of
feature-laden software. This allows you to use such frameworks as tools,
rather than having to cram your system into their technical constraints.

Testable
The business rules and use cases can be tested without UI, database, Web
server, or any other external element.

Independent of system boundaries (UI, database, …)
The UI, database, or any other external element can easily change without
any impact on use cases and business rules.

Simple architecture
An architecture that is easy to understand. Simplicity is, however,
subjective.

Consistent design decisions
One problem has one solution. Similar problems are solved similarly.

Number of concepts/technologies
Simple solutions make use of only a few different concepts and
technologies.

Number of interactions
The less interactions the simpler the design.

A reasonable amount of components with only efferent coupling and most
of the others with preferably only afferent coupling.

Size
Small systems/components are easier to grasp than big ones. Build large
systems out of small parts.

Modularity
Build your system by connecting independent modules with a clearly
defined interface (e.g. with adapters).

Flexible architecture
An architecture that supports change.

Separation of concerns
Divide your system into distinct features with as little overlap in
functionality as possible so that they can be combined freely.

Software reflects user’s mental model
When the structure and interactions inside the software match the user’s
mental model, changes in the real world can more easily be applied in
software.

Abstraction
Separating ideas from specific implementations provides the flexibility to
change the implementation. But beware of `over abstraction`.

Interface slimness
Fat interfaces between components lead to strong coupling. Design the
interfaces to be as slim as possible. But beware of `ambiguous interfaces`.

Prefer composition over inheritance
Inheritance increases coupling between parent and child, thereby limiting
reuse.

Tangle-/cycle-free dependencies
The dependency graph of the elements of the architecture has no cycles,
thus allowing locally bounded changes.

Evolvable architecture
An architecture that is easy to adapt step by step to keep up with changes.

Matches current needs, not the future
The architecture of the current system should match the current needs
(functional and non-functional) – not some future ones. This results in
simpler, easier to understand solutions. Otherwise, the risk of waste is very
high.

No dead-ends, architecture can be extended/adapted
The current architecture should be extendable and adaptable so that future
needs can be addressed. When evaluating different alternatives, choose
one that is open for change.

Architecture agnostic components
When components don’t care about which architecture they run in, the
architecture can be changed without having to rewrite the components.

Sacrificial architecture [4]
When the software has outlived its architecture, throw the architecture
away and start over. This mindset can be used to build a first version with a
very simple architecture, then start over for the next.

Rolling refactoring [5]
When a new version of a concept is introduced, then the old one is
refactored out step by step. There can be at most two versions of a concept
in an application (and it should be temporary).

Agile architecture
An architecture that supports agile software development by enabling the
principles of the Agile Manifesto [6].

Allow change quickly
The architecture allows quick changes through flexibility and evolvability.

Verifiable at any time
The architecture can be verified (fulfils all quality aspects) at any time (e.g.
every Sprint).

Rapid deployment
The architecture supports continuous and rapid deployment so that
stakeholders can give feedback continuously.

Always working
The system is always working (probably with limited functionality) so that it
is potentially shippable any time/at end of Sprint. Use assumptions,
simplifications, simulators, shortcuts, hard-coding to build a walking
skeleton.

Workflow
Use a top-down approach to find the architecture.

1. Context
What belongs to your system and what does not? Which external services
will you use?

2. Break down into parts
Split the whole into parts by applying separation of concerns and the single-
responsibility principle.

3. Communication
Which data flows through which call, message or event from one part to
another? What are the properties of the channels (sync/async, reliability, …)

4. Repeat for each part
Repeat the above-mentioned three steps for each part as if it were your
system.
A part is a bounded context, subsystem or component.

Defer decisions
Decide only things you have enough knowledge about. Otherwise find a way
to defer the decision and build up more knowledge. A good architecture
allows you to defer most decisions.

Abstraction
Use an abstraction to hide details so that you don’t have to decide about
the details, but can use a simulation/fake at first to build up more
knowledge.

Simplification
Simplify the problem so that a decision can be made and work can progress.
Use this to break free from a blocking state, but be aware of the risks a
wrong decision could have.

Wilful ignorance
Refuse to decide and wait until more knowledge about the problem and its
potential solutions is built up.

Decision delegation
Build the (part of a) system in a way that doesn’t require any decision, by
making some other (part of the) system responsible that can be
implemented later. E.g. instead of deciding how to persist data, make the
code calling your code responsible for passing all needed data to your code.
This allows you to build your whole business logic and decide about
persistence when implementing the host that runs the business logic.

Architecture influencing forces
Quality attributes
The needed quality attributes (functionality, reliability, usability, efficiency,
maintainability, portability, …) are the primary drivers for architectural
decisions.

Team know-how and skills
The whole team understands and supports architecture and can make
design decisions according to the architecture.

Easiness of implementation
How easy an envisioned architecture can be implemented is a quality
attribute.

Cost of operations
Most costs of a software system accrue during operations, not
implementation.

Risks
Every technology, library, and design decision has its risks.

Inherent opportunities
Things the architecture would allow us to do (but without investing any
additional effort because we may never need it).

Technology churn
Availability of new (better) technologies, resulting in a need for architecture
change.

Trade-offs
Designing an architecture comprises making trade-offs between conflicting
goals. Trade-offs must reflect the priorities of quality attributes set by the
stakeholders. Trade-offs should be documented and communicated to all
stakeholders.

Architecture degrading forces
Architectural drift
Introduction of design decisions into a system’s actual architecture that are
not included in, encompassed by, or implied by the planned architecture.

Architectural erosion
Introduction of design decisions into a system’s actual architecture that
violate its planned architecture.

Architecture killers
Split brain
Different parts of the system claim ownership of the same data or their
interpretation resulting in inconsistencies and difficult synchronisation.

Coupling in space and time
E.g. shared code to remove duplication hinders independent advancements,
a service that needs other services to be up and running, an `initialise`
method that has to be called prior to any other method on the class (better
use constructor injection or a factory).

Dead-end
A design decision that prevents further adaptability without a major
refactoring or rewrite.

Direction of

Dependencies

Use Cases

Interface Adapters

Frameworks & Drivers

Entities UI

External
Interfaces

DB

Web

Program Flow

time

knowledge

learn decide enrich

C
le

an
 si

m
pl

e
fle

xi
bl

e
ev

ol
va

bl
e

ag
ile

 A
rc

h
it

ec
tu

re

Priorities
Simplicity before generality [7]

Concrete implementations are easier to understand than generalised
concepts.

Hard-coded before configurable
Configurability leads to if/else constructs or polymorphism inside the code,
resulting in more complicated code.

Use before reuse [7]

Don’t design for reuse before the code has never actually been used. This
leads to overgeneralisation, inapt interfaces and increased complexity.

Working before optimised
First, make it work, then optimise. Premature optimisation leads to more
complex solutions or to local instead of global optimisations.

Quality attributes before functional requirements
Use quality scenarios to guide your architectural decisions because most of
the times, quality attributes have more impact than functional
requirements.

Combined small systems over building a single big system
Big systems are more complicated to comprehend than a combination of
small systems. But beware of complexity hidden in the communication
between the systems.

Principles [8]
The teams that code the system, design the system.
Teams themselves are empowered to define, develop, and deliver software,
and they are held accountable for the results.

Build the simplest architecture that can possibly work.
Simplicity leads to comprehensibility, changeability, low defect introduction.

When in doubt, code it out.
Get real feedback from running code, then decide.

They build it, they test it.
Testing is an integral part of building software, not an afterthought.

System architecture is a role collaboration.
The whole team participates in architecture decisions.

There is no monopoly on innovation.
Every team member has time to innovate (spikes, hackathons, pet project).

Tips and tricks
Start with concepts, not with technologies.
Don’t think in technologies, think in concepts. Then choose technologies
matching the concepts and adapt concepts to technological limitations.

Think about your envisioned architecture, but also lay a
way from here to there.
Break your architecture work into steps. Use assumptions and
simplifications in early steps. Always make sure that there is a path from the
current architecture to the envisioned architecture.

Most of the time, persistence is a secondary thought
You always have some data. But that is no reason to start your design with
the database. Business logic and workflows are more important.

Decouple from environment
Design everything so that it has to know nothing about its environment.

Prototypes, proof of concepts, feasibility studies
Break risks and grow knowledge fast, then decide.

Use architecture patterns as inspiration, not as solutions.
Architecture patterns are good examples of solutions to specific problems.
Use them to find solutions for your problems and do not apply them to your
problems.

Architectural aspects
Persistence
Form of data (document-based, relational, graph, key-value), backup,
transactions, size of data, throughput, replication, availability, concurrency.

Translation (UI and data)
Static (e.g. resources) vs. dynamic, switchable during
implementation/installation/start-up/runtime.

Communication between parts
Asynchronous/synchronous, un-/reliable, latency, throughput, availability of
connection, method calls/events/messages.

Scaling
Run on multiple threads/processes/machines, availability, consistency,
redundancy.

Security
Authentication, authorisation, threats, encryption (of communication and
data). See [9]

Journaling, auditing
Operations, granularity, access to journal, tampering, regulatory.

Reporting
Access to data (production/dedicated database/data warehouse), delivery
mechanism (synchronous/asynchronous), formats (Web, PDF, …).

Data migration, data import
Available time frame for migration/import, data quality, default values for
missing values, value merging/splitting.

Releasability
Release as one, per service or per component (e.g. plug-in). Automatic or
manual release.

Versioning
One product vs. a product family, technical/marketing version, manually or
automatically generated, releases/service packs/hot fixes, SemVer. [10]

Backward compatibility
APIs, data (input/output/persisted), environment (e.g. old OS).

Response times
Service time (actually performing the work) + wait time + transmission time

Archiving data
Data growth rate, access to archived data, split relations in relational data.

Distribution
Beware of the fallacies of distributed computing: the network is reliable,
latency is zero, bandwidth is infinite, the network is secure, topology
doesn’t change, there is one administrator, transport cost is zero, the
network is homogeneous.

Public interfaces
Versioning, immutability and stability of contracts and schemas.

Documentation
Questions to ask yourself [11]
Who is the consumer? What do they need? How do you deliver the
documentation to them? How do you know when they are ready for it?
How do you produce it? What input do you need to produce it?

Manual and automatic production
Manual: someone writes the documentation, high risk of being out-of-date,
very flexible
Automatic [12]: generated from code, can be regenerated anytime and is
therefore never out of date, finding right level of abstraction is hard. Works
good for state machines, bootstrapping mechanics, and structural
breakdown.

About now, not the future
Only document what you did, not what you want to do.

Shared
The whole team participates in producing the documentation.

Architecture smells
Causes: applying a design solution in an inappropriate context, mixing
design fragments that have undesirable emergent behaviours.

Overlayered architecture
When there are layers on layers on layers on layers ... in your application.
Not providing abstraction, lots of boilerplate code.

Overabstraction
Too abstract to be understandable. Concrete designs are easier to
understand.

Overconfigurability
Everything is configurable because no decisions were made how the
software should behave.

Overkill architecture
A simple problem with a complex (however technically interesting) solution.

Futuristic architecture
The architecture wants to anticipate a lot of future possible changes. This
adds complexity and most likely also waste.

Technology enthusiastic architecture
Lots of new cool technology is introduced just for the sake of it.

Paper tiger architecture
The architecture exists only on paper (UML diagrams) with no connection to
the reality.

Connector envy [13]
A component doing the job that should be delegated to a connector:
communication (transfer of data), coordination (transfer of control),
conversion (bridge different data formats, types, protocols), and facilitation
(load-balancing, monitoring, fault tolerance).

Scattered parasitic functionality [13]
A single concern is scattered across multiple components and at least one
component addresses multiple orthogonal concerns.

Ambiguous interfaces [13]
Ambiguous interfaces are interfaces that offer only a single general entry
point into a component (e.g. pass an object, or general purpose events over
an event bus). They are not explorable.

Extraneous adjacent connector [13]
Two connectors of different types are used to link a pair of components.
E.g. event (asynchronous) and service call (synchronous).

Event: loosely coupled  availability, replicability.
Method call: easy to understand.
Both: neither.

Bibliography
[1] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.

Merson, R. Nord and J. Stafford, Documenting Software
Architectures: Views and Beyond, 2nd ed., Boston: Addison-Wesley,
2010.

[2] Wikipedia, “Software architecture,” [Online]. Available:
http://en.wikipedia.org/wiki/Software_architecture. [Accessed
2015].

[3] R. C. Martin, “The Clean Architecture,” [Online]. Available:
http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-
architecture.html. [Accessed 2015].

[4] M. Fowler, “Sacrificial Architecture,” [Online]. Available:
http://martinfowler.com/bliki/SacrificialArchitecture.html.

[5] [Online]. Available:
https://lostechies.com/jimmybogard/2015/01/15/combating-the-
lava-layer-anti-pattern-with-rolling-refactoring/.

[6] “Manifesto for Agile Software Development,” [Online]. Available:
http://agilemanifesto.org/principles.html. [Accessed 2015].

[7] K. Henney. [Online]. Available:
http://www.artima.com/weblogs/viewpost.jsp?thread=351149.

[8] D. Leffingwell, “Principles of Agile Architecture,” [Online]. Available:
http://scalingsoftwareagilityblog.com/wp-
content/uploads/2008/08/principles_agile_architecture.pdf.
[Accessed 2015].

[9] [Online]. Available: https://www.owasp.org.

[10] [Online]. Available: http://semver.org/.

[11] [Online]. Available:
http://thinkrelevance.com/blog/2013/10/07/begin-with-the-end-in-
mind.

[12] [Online]. Available:
http://www.planetgeek.ch/2014/06/17/effective-teams-know-your-
code/.

[13] J. Garcia, D. Popescu, G. Edwards and N. Medvidovic, “Toward a
Catalogue of Architectural Bad Smells,” [Online]. Available:
http://softarch.usc.edu/~josh/pubs/qosa_2009.pdf. [Accessed
2015].

Legend:

DO

DON’T

 Urs Enzler www.bbv.ch June 2015 V1.0
This work by Urs Enzler is licensed under a Creative
Commons Attribution 4.0 International License.

C
le

an
 si

m
pl

e
fle

xi
bl

e
ev

ol
va

bl
e

ag
ile

 A
rc

h
it

ec
tu

re

