fixed upwinding, tweaked loss notation

This commit is contained in:
NT 2021-11-03 14:23:09 +01:00
parent 5094a1abef
commit d4507a0847

View File

@ -238,8 +238,8 @@ The $\frac{ \partial L }{ \partial d}$ component is typically simple enough: we'
$$
\frac{ \partial L }{ \partial d}
= \partial | \mathcal P ( d^{~0}, \mathbf{u}, t^e) - d^{\text{target}}|^2 / \partial d
= 2 (d(t^e)-d^{\text{target}}).
= \frac{ \partial | \mathcal P ( d^{~0}, \mathbf{u}, t^e) - d^{\text{target}}|^2 }{ \partial d }
= 2 \big( d(t^e)-d^{\text{target}} \big).
$$
If $d$ is represented as a vector, e.g., for one entry per cell of a mesh,
@ -284,8 +284,8 @@ gives the following:
$$ \begin{aligned}
& d_i(t+\Delta t) = d_i - u_i^+ (d_{i+1} - d_{i}) + u_i^- (d_{i} - d_{i-1}) \text{ with } \\
& u_i^+ = \text{max}(u_i \Delta t / \Delta x,0) \\
& u_i^- = \text{min}(u_i \Delta t / \Delta x,0)
& u_i^+ = \text{min}(u_i \Delta t / \Delta x,0) \\
& u_i^- = \text{max}(u_i \Delta t / \Delta x,0)
\end{aligned} $$
```{figure} resources/diffphys-advect1d.jpg
@ -296,7 +296,8 @@ name: advection-upwind
1st-order upwinding uses a simple one-sided finite-difference stencil that takes into account the direction of the motion
```
Thus, for a positive $u_i$ we have
Thus, for a negative $u_i$, we're using $u_i^+$ to look in the opposite direction of the velocity, i.e., _backward_ in terms of the motion. $u_i^-$ will be zero in this case. For positive $u_i$ it's vice versa, and we'll get a zero'ed $u_i^+$, and a backward difference stencil via $u_i^-$.
To pick the former case, for a negative $u_i$ we get
$$
\mathcal P ( d_i(t), \mathbf{u}(t), t + \Delta t) = (1 + \frac{u_i \Delta t }{ \Delta x}) d_i - \frac{u_i \Delta t }{ \Delta x} d_{i+1}
@ -357,16 +358,16 @@ will give us a contribution to $\Delta \mathbf{u}$ which we can accumulate for a
$$ \begin{aligned}
\Delta \mathbf{u} =&
\frac{ \partial d(t^e) }{ \partial \mathbf{u} }
\frac{ \partial L }{ \partial d(t^e) }
+
\frac{ \partial L }{ \partial d(t^e) } \\
& + \
\frac{ \partial d(t^e - \Delta t) }{ \partial \mathbf{u}}
\frac{ \partial d(t^e) }{ \partial d(t^e - \Delta t) }
\frac{ \partial L }{ \partial d(t^e)}
\\
&
+ \ \cdots \ + \\
+ \ \cdots \ \\
&
\Big( \frac{ \partial d(t^0) }{ \partial \mathbf{u}} \cdots
+ \ \Big( \frac{ \partial d(t^0) }{ \partial \mathbf{u}} \cdots
\frac{ \partial d(t^e - \Delta t) }{ \partial d(t^e - 2 \Delta t) }
\frac{ \partial d(t^e) }{ \partial d(t^e - \Delta t) }
\frac{ \partial L }{ \partial d(t^e)} \Big)