fixed Delta t typo in NS equations

This commit is contained in:
NT 2022-05-04 13:00:23 +02:00
parent bb79908b37
commit bfd8ef10da
3 changed files with 9 additions and 13 deletions

View File

@ -12,7 +12,7 @@
"\n",
"## Physical Model\n",
"\n",
"We'll use a Navier-Stokes model with velocity $\\mathbf{u}$, no explicit viscosity term, and a smoke marker density $s$ that drives a simple Boussinesq buoyancy term $\\eta d$ adding a force along the y dimension. For the velocity this gives:\n",
"We'll use an inviscid Navier-Stokes model with velocity $\\mathbf{u}$, no explicit viscosity term, and a smoke marker density $s$ that drives a simple Boussinesq buoyancy term $\\eta d$ adding a force along the y dimension. Due to a lack of an explicit viscosity, the equations are equivalent to the Euler equations. This gives:\n",
"\n",
"$$\\begin{aligned}\n",
" \\frac{\\partial u_x}{\\partial{t}} + \\mathbf{u} \\cdot \\nabla u_x &= - \\frac{1}{\\rho} \\nabla p \n",

View File

@ -3,7 +3,7 @@
# note this script assumes the following paths/versions: python3.7 , /Users/thuerey/Library/Python/3.7/bin/jupyter-book
# do clean git checkout for changes from json-cleanup-for-pdf.py via:
# git checkout diffphys-code-burgers.ipynb diffphys-code-ns.ipynb diffphys-code-sol.ipynb physicalloss-code.ipynb bayesian-code.ipynb supervised-airfoils.ipynb reinflearn-code.ipynb
# git checkout diffphys-code-burgers.ipynb diffphys-code-ns.ipynb diffphys-code-sol.ipynb physicalloss-code.ipynb bayesian-code.ipynb supervised-airfoils.ipynb reinflearn-code.ipynb physgrad-code.ipynb physgrad-comparison.ipynb physgrad-hig-code.ipynb
echo
echo WARNING - still requires one manual quit of first pdf/latex pass, use shift-x to quit

View File

@ -187,19 +187,15 @@ In 2D, the Navier-Stokes equations without any external forces can be written as
$$\begin{aligned}
\frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x &=
- \frac{\Delta t}{\rho}\nabla{p} + \nu \nabla\cdot \nabla u_x
- \frac{1}{\rho}\nabla{p} + \nu \nabla\cdot \nabla u_x
\\
\frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y &=
- \frac{\Delta t}{\rho}\nabla{p} + \nu \nabla\cdot \nabla u_y
- \frac{1}{\rho}\nabla{p} + \nu \nabla\cdot \nabla u_y
\\
\text{subject to} \quad \nabla \cdot \mathbf{u} &= 0
\end{aligned}$$ (model-ns2d)
where, like before, $\nu$ denotes a diffusion constant for viscosity.
In practice, the $\Delta t$ factor for the pressure term can be often simplified to
$1/\rho$ as it simply yields a scaling of the pressure gradient used to make
the velocity divergence free. We'll typically use this simplification later on
in implementations, effectively computing an instantaneous pressure.
An interesting variant is obtained by including the
[Boussinesq approximation](https://en.wikipedia.org/wiki/Boussinesq_approximation_(buoyancy))
@ -208,9 +204,9 @@ With a marker field $v$ that indicates regions of high temperature,
it yields the following set of equations:
$$\begin{aligned}
\frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x &= - \frac{\Delta t}{\rho} \nabla p
\frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x &= - \frac{1}{\rho} \nabla p
\\
\frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y &= - \frac{\Delta t}{\rho} \nabla p + \xi v
\frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y &= - \frac{1}{\rho} \nabla p + \xi v
\\
\text{subject to} \quad \nabla \cdot \mathbf{u} &= 0,
\\
@ -223,11 +219,11 @@ And finally, the Navier-Stokes model in 3D give the following set of equations:
$$
\begin{aligned}
\frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x &= - \frac{\Delta t}{\rho} \nabla p + \nu \nabla\cdot \nabla u_x
\frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x &= - \frac{1}{\rho} \nabla p + \nu \nabla\cdot \nabla u_x
\\
\frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y &= - \frac{\Delta t}{\rho} \nabla p + \nu \nabla\cdot \nabla u_y
\frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y &= - \frac{1}{\rho} \nabla p + \nu \nabla\cdot \nabla u_y
\\
\frac{\partial u_z}{\partial{t}} + \mathbf{u} \cdot \nabla u_z &= - \frac{\Delta t}{\rho} \nabla p + \nu \nabla\cdot \nabla u_z
\frac{\partial u_z}{\partial{t}} + \mathbf{u} \cdot \nabla u_z &= - \frac{1}{\rho} \nabla p + \nu \nabla\cdot \nabla u_z
\\
\text{subject to} \quad \nabla \cdot \mathbf{u} &= 0.
\end{aligned}