fixed Delta t typo in NS equations
This commit is contained in:
parent
bb79908b37
commit
bfd8ef10da
@ -12,7 +12,7 @@
|
||||
"\n",
|
||||
"## Physical Model\n",
|
||||
"\n",
|
||||
"We'll use a Navier-Stokes model with velocity $\\mathbf{u}$, no explicit viscosity term, and a smoke marker density $s$ that drives a simple Boussinesq buoyancy term $\\eta d$ adding a force along the y dimension. For the velocity this gives:\n",
|
||||
"We'll use an inviscid Navier-Stokes model with velocity $\\mathbf{u}$, no explicit viscosity term, and a smoke marker density $s$ that drives a simple Boussinesq buoyancy term $\\eta d$ adding a force along the y dimension. Due to a lack of an explicit viscosity, the equations are equivalent to the Euler equations. This gives:\n",
|
||||
"\n",
|
||||
"$$\\begin{aligned}\n",
|
||||
" \\frac{\\partial u_x}{\\partial{t}} + \\mathbf{u} \\cdot \\nabla u_x &= - \\frac{1}{\\rho} \\nabla p \n",
|
||||
|
@ -3,7 +3,7 @@
|
||||
# note this script assumes the following paths/versions: python3.7 , /Users/thuerey/Library/Python/3.7/bin/jupyter-book
|
||||
|
||||
# do clean git checkout for changes from json-cleanup-for-pdf.py via:
|
||||
# git checkout diffphys-code-burgers.ipynb diffphys-code-ns.ipynb diffphys-code-sol.ipynb physicalloss-code.ipynb bayesian-code.ipynb supervised-airfoils.ipynb reinflearn-code.ipynb
|
||||
# git checkout diffphys-code-burgers.ipynb diffphys-code-ns.ipynb diffphys-code-sol.ipynb physicalloss-code.ipynb bayesian-code.ipynb supervised-airfoils.ipynb reinflearn-code.ipynb physgrad-code.ipynb physgrad-comparison.ipynb physgrad-hig-code.ipynb
|
||||
|
||||
echo
|
||||
echo WARNING - still requires one manual quit of first pdf/latex pass, use shift-x to quit
|
||||
|
@ -187,19 +187,15 @@ In 2D, the Navier-Stokes equations without any external forces can be written as
|
||||
|
||||
$$\begin{aligned}
|
||||
\frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x &=
|
||||
- \frac{\Delta t}{\rho}\nabla{p} + \nu \nabla\cdot \nabla u_x
|
||||
- \frac{1}{\rho}\nabla{p} + \nu \nabla\cdot \nabla u_x
|
||||
\\
|
||||
\frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y &=
|
||||
- \frac{\Delta t}{\rho}\nabla{p} + \nu \nabla\cdot \nabla u_y
|
||||
- \frac{1}{\rho}\nabla{p} + \nu \nabla\cdot \nabla u_y
|
||||
\\
|
||||
\text{subject to} \quad \nabla \cdot \mathbf{u} &= 0
|
||||
\end{aligned}$$ (model-ns2d)
|
||||
|
||||
where, like before, $\nu$ denotes a diffusion constant for viscosity.
|
||||
In practice, the $\Delta t$ factor for the pressure term can be often simplified to
|
||||
$1/\rho$ as it simply yields a scaling of the pressure gradient used to make
|
||||
the velocity divergence free. We'll typically use this simplification later on
|
||||
in implementations, effectively computing an instantaneous pressure.
|
||||
|
||||
An interesting variant is obtained by including the
|
||||
[Boussinesq approximation](https://en.wikipedia.org/wiki/Boussinesq_approximation_(buoyancy))
|
||||
@ -208,9 +204,9 @@ With a marker field $v$ that indicates regions of high temperature,
|
||||
it yields the following set of equations:
|
||||
|
||||
$$\begin{aligned}
|
||||
\frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x &= - \frac{\Delta t}{\rho} \nabla p
|
||||
\frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x &= - \frac{1}{\rho} \nabla p
|
||||
\\
|
||||
\frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y &= - \frac{\Delta t}{\rho} \nabla p + \xi v
|
||||
\frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y &= - \frac{1}{\rho} \nabla p + \xi v
|
||||
\\
|
||||
\text{subject to} \quad \nabla \cdot \mathbf{u} &= 0,
|
||||
\\
|
||||
@ -223,11 +219,11 @@ And finally, the Navier-Stokes model in 3D give the following set of equations:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x &= - \frac{\Delta t}{\rho} \nabla p + \nu \nabla\cdot \nabla u_x
|
||||
\frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x &= - \frac{1}{\rho} \nabla p + \nu \nabla\cdot \nabla u_x
|
||||
\\
|
||||
\frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y &= - \frac{\Delta t}{\rho} \nabla p + \nu \nabla\cdot \nabla u_y
|
||||
\frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y &= - \frac{1}{\rho} \nabla p + \nu \nabla\cdot \nabla u_y
|
||||
\\
|
||||
\frac{\partial u_z}{\partial{t}} + \mathbf{u} \cdot \nabla u_z &= - \frac{\Delta t}{\rho} \nabla p + \nu \nabla\cdot \nabla u_z
|
||||
\frac{\partial u_z}{\partial{t}} + \mathbf{u} \cdot \nabla u_z &= - \frac{1}{\rho} \nabla p + \nu \nabla\cdot \nabla u_z
|
||||
\\
|
||||
\text{subject to} \quad \nabla \cdot \mathbf{u} &= 0.
|
||||
\end{aligned}
|
||||
|
Loading…
Reference in New Issue
Block a user