diff --git a/physicalloss.md b/physicalloss.md index 56319bf..09a4da2 100644 --- a/physicalloss.md +++ b/physicalloss.md @@ -7,7 +7,48 @@ Still interesting, leverages analytic derivatives of NNs, but lots of problems --- -Some notation from SoL: +% \newcommand{\pde}{\mathcal{P}} % PDE ops +% \newcommand{\pdec}{\pde_{s}} +% \newcommand{\manifsrc}{\mathscr{S}} % coarse / "source" +% \newcommand{\pder}{\pde_{R}} +% \newcommand{\manifref}{\mathscr{R}} + +% vc - coarse solutions +% \renewcommand{\vc}[1]{\vs_{#1}} % plain coarse state at time t +% \newcommand{\vcN}{\vs} % plain coarse state without time +% vc - coarse solutions, modified by correction +% \newcommand{\vct}[1]{\tilde{\vs}_{#1}} % modified / over time at time t +% \newcommand{\vctN}{\tilde{\vs}} % modified / over time without time +% vr - fine/reference solutions +% \renewcommand{\vr}[1]{\mathbf{r}_{#1}} % fine / reference state at time t , never modified +% \newcommand{\vrN}{\mathbf{r}} % plain coarse state without time + +% \newcommand{\project}{\mathcal{T}} % transfer operator fine <> coarse +% \newcommand{\loss}{\mathcal{L}} % generic loss function +% \newcommand{\nn}{f_{\theta}} +% \newcommand{\dt}{\Delta t} % timestep +% \newcommand{\corrPre}{\mathcal{C}_{\text{pre}}} % analytic correction , "pre computed" +% \newcommand{\corr}{\mathcal{C}} % just C for now... +% \newcommand{\nnfunc}{F} % {\text{NN}} + + +Some notation from SoL, move with parts from overview into "appendix"? + + + +We typically solve a discretized PDE $\mathcal{P}$ by performing discrete time steps of size $\Delta t$. +Each subsequent step can depend on any number of previous steps, +$\mathbf{u}(\mathbf{x},t+\Delta t) = \mathcal{P}(\mathbf{u}(\mathbf{x},t), \mathbf{u}(\mathbf{x},t-\Delta t),...)$, +where +$\mathbf{x} \in \Omega \subseteq \mathbb{R}^d$ for the domain $\Omega$ in $d$ +dimensions, and $t \in \mathbb{R}^{+}$. + +Numerical methods yield approximations of a smooth function such as $\mathbf{u}$ in a discrete +setting and invariably introduce errors. These errors can be measured in terms +of the deviation from the exact analytical solution. +For discrete simulations of +PDEs, these errors are typically expressed as a function of the truncation, $O(\Delta t^k)$ +for a given step size $\Delta t$ and an exponent $k$ that is discretization dependent. The following PDEs typically work with a continuous velocity field $\mathbf{u}$ with $d$ dimensions and components, i.e., @@ -41,14 +82,49 @@ $\frac{\partial u}{\partial{t}} + u \nabla u = \nu \nabla \cdot \nabla u $ . --- -Later on, Navier-Stokes, in 2D: +Later on, additional equations... + + + +Navier-Stokes, in 2D: $ \frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x = - - \frac{1}{\rho}\nabla{p} + \nu \nabla\cdot \nabla u_x \\ + - \frac{1}{\rho}\nabla{p} + \nu \nabla\cdot \nabla u_x + \\ \frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y = - - \frac{1}{\rho}\nabla{p} + \nu \nabla\cdot \nabla u_y \\ - \text{subject to} \quad \nabla \cdot \mathbf{u} = 0, + - \frac{1}{\rho}\nabla{p} + \nu \nabla\cdot \nabla u_y + \\ + \text{subject to} \quad \nabla \cdot \mathbf{u} = 0 $ + +Navier-Stokes, in 2D with Boussinesq: + +%$\frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x$ +%$ -\frac{1}{\rho} \nabla p $ + +$ + \frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x = - \frac{1}{\rho} \nabla p + \\ + \frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y = - \frac{1}{\rho} \nabla p + \eta d + \\ + \text{subject to} \quad \nabla \cdot \mathbf{u} = 0, + \\ + \frac{\partial d}{\partial{t}} + \mathbf{u} \cdot \nabla d = 0 +$ + + + +Navier-Stokes, in 3D: + +$ + \frac{\partial u_x}{\partial{t}} + \mathbf{u} \cdot \nabla u_x = - \frac{1}{\rho} \nabla p + \nu \nabla\cdot \nabla u_x + \\ + \frac{\partial u_y}{\partial{t}} + \mathbf{u} \cdot \nabla u_y = - \frac{1}{\rho} \nabla p + \nu \nabla\cdot \nabla u_y + \\ + \frac{\partial u_z}{\partial{t}} + \mathbf{u} \cdot \nabla u_z = - \frac{1}{\rho} \nabla p + \nu \nabla\cdot \nabla u_z + \\ + \text{subject to} \quad \nabla \cdot \mathbf{u} = 0. +$