From 5cb92b4943e2378fe0905c515c1a30d2af92d15a Mon Sep 17 00:00:00 2001 From: N_T <nils.thuerey @ tum.de> Date: Fri, 13 Dec 2024 13:06:49 +0800 Subject: [PATCH] diffusion time prediction updates --- probmodels-time.ipynb | 1610 ++++++++++++++++++++++++++++++++ resources/probmodels-time1.png | Bin 0 -> 140550 bytes resources/probmodels-time2.png | Bin 0 -> 148855 bytes 3 files changed, 1610 insertions(+) create mode 100644 probmodels-time.ipynb create mode 100644 resources/probmodels-time1.png create mode 100644 resources/probmodels-time2.png diff --git a/probmodels-time.ipynb b/probmodels-time.ipynb new file mode 100644 index 0000000..ba70f9c --- /dev/null +++ b/probmodels-time.ipynb @@ -0,0 +1,1610 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "d5oh9eQZLx9c" + }, + "source": [ + "# Diffsion-based Time Prediction\n", + "\n", + "Simulating partial differential equations (PDEs), for example turbulent fluid flows, often requires resolving solutions over time. I.e., we're not insterested\n", + "in a time-averaged or long-term equilibrium state, but the actual changes over time. This requires iterative solvers that are called _auto-regressively_, \n", + "one step after the other, to produce a solution over time. \n", + "Despite all advancements in this area, it is still a critical challenge to achieve stable and accurate predictions for extended temporal horizons. Many dynamical systems are inherently complex and chaotic, making it difficult to faithfully capture intricate physical phenomena over long timeframes. \n", + "At the same time, uncertainties also play a role for time series prediction:\n", + "Even minor ambiguities in the spatially averaged states used for simulations can lead to very different outcomes over time. Moreover, most traditional solvers and learning-based methods process simulation trajectories in a determinstic way. \n", + "They produce a single solution without accounting for the probabilistic nature of turbulent flows. This motivates - as in the previous sections - to view the steps of a time series as a probabilistic distribution over time rather than a deterministic series of states.\n", + "\n", + "The following notebook introduces an approach for temporal predictions:\n", + "* conditional diffusion models are used to compute autoregressive rollouts to obtain a \"probabilistic simulator\"; \n", + "* it is of course highly interesting to compare this diffusion-based predictor to the deterministic baselines and neural operators from the previous chapters;\n", + "* in order to evaluate the results w.r.t. their accuracy, we'll employ a transonic fluid flow for which we can compute statistics from a simulated reference.\n", + "\n", + "Problem formulation: while we've previously often focused on training networks for the task $f(x)=y$, we now focus on \n", + "tasks of the form $f(x_{t})=x_{t+1}$ \n", + "to indicate that any subsequent step, e.g., $f(x_{t+1})=x_{t+2}$, is a problem of the same importance as the first one.\n", + "We still have ground truth values $x^*_{t+1}$, e.g., from an expensive high-fidelity simulation, and aim for a minimzation problem\n", + "\n", + "$$\n", + " \\text{arg min}_{\\theta} | f(x_{t};\\theta) - x^*_{t+1} |_2^2 .\n", + "$$ (learn-autoreg-l2)\n", + "\n", + "```{note} Outlook\n", + "\n", + "One of the most interesting aspects of using diffusion-based time predictors is their temporal stability. It seems that the diffusion process forces the networks to learn handling perturbations and accumulated errors in the states without being completely thrown off track. This is crucial for _unconditional stability_, i.e., neural networks that can be called autoregressively any number of times without blowing up. The training process below yields unconditionally stable networks with a surprisingly simple approach for training (we'll use DDPM below, but flow matching would likewise work).\n", + "\n", + "For a more detailed evaluation of the long term stability of diffusion-based predictions [can be found here](https://ge.in.tum.de/2024/08/05/how-to-train-unconditionally-stable-autoregressive-neural-operators/).\n", + "```\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conditioning\n", + "\n", + "Previously, for the inverse problem setting we only briefly mentioned that the inference task of producing the posterior distribution depends\n", + "on a set of hyperparameters such as a chosen set of boundary conditions. Let's consider $x=(c,d)$, i.e. a datum $x$ is made up of a\n", + "conditioning part $c$ and the target data $d$.\n", + "For time predictions, we additionally have a strong conditioning on the current time step. Hence, this is a good occasion to explain\n", + "some of the subtleties of implementing the conditioning. The central take-away message here is: all inputs for conditioning should be treated\n", + "in the same way as the outputs of the diffusion process.\n", + "\n", + "This seems somewhat counter-intuitive at first: after all, the conditioning is more similar to an input than an output. \n", + "However, it was shown that \"forcing\" the network to denoise the conditioning alongside the target at training time forces\n", + "it to fully consider the conditioning variables. This leads to a tight entangling of features learned for the output with \n", + "the conditioning. Thus for training we consider both parts $c$ and $d$ in the same way. This is illustrated on the left side\n", + "of the following picture. Conditioning $c$ and data components $d$ are treated the same at training time. This illustration \n", + "denotes denoising time by $r$, to distinguish it from the time of the physical process $t$.\n", + "\n", + "\n", + "```{figure} resources/probmodels-time1.png\n", + "---\n", + "height: 160px\n", + "name: probmodels-time-general\n", + "---\n", + "An illustration of forward and backward noising/denoising chains with conditioning $c$ and data $d$. \n", + "```\n", + "\n", + "\n", + "Once the model is trained, we make use of the fact that we know the exact value of $c$. As the noise $\\epsilon$ is likewise\n", + "an input to the model that we have under full control, we can ensure that the conditioning $c_r$ at denoising time $r$ has\n", + "exactly the right content according to the chosen noise field and noising schedule. Hence we invoke $p_\\theta(x_{r-1}; x_r)$\n", + "yielding $c_{r-1}$ as well as $d_{r-1}$, both contained in $x_{r-1}$. The predicted conditioning $c_{r-1}$ will be good\n", + "if the model $p_\\theta$ was trained well, but to make sure there is zero drift we simply recompute $c_{r-1}$ from the known ground truth \n", + "$c$ and the right noise amount $\\epsilon_{r-1}$. We then invoke $p_\\theta(x_{r-2}; x_{r-1})$ with $x_{r-1}$ containing\n", + "the re-commputed $c$ and the $d_{r-1}$ component previously inferred in the previous denoising step.\n", + "\n", + "For time prediction tasks, the situation is not anymore complicated, but slightly more confusing in terms of notation:\n", + "here, the conditioning is the previous time step in _physical_ time $x^t$. (There could be additional global parameters in $c$, but we'll\n", + "ignore those for simplicity; they can simply be appended to $c$.) The $d$ component of each denoising chain will\n", + "yield the next state of our physical system $x^{t+1}$. Thus, at denoising time, the task for our network is to \n", + "denoise both time steps, while we prescribe the correctly noised known state at inference time: $c=x^{t}$, $d=x^{t+1}$. In the schematic from \n", + "before, this yields:\n", + "\n", + "\n", + "```{figure} resources/probmodels-time2.png\n", + "---\n", + "height: 180px\n", + "name: probmodels-time2-time\n", + "---\n", + "Forward and backward chains for time prediction:\n", + "At training time, $c=x^t$ and data $d=x^{t+1}$ are treated jointly.\n", + "For inference, $c$ is overwritten with ground truth values at each iteration of the diffusion model.\n", + "```\n", + "\n", + "\n", + "Note that in both cases, the physics time $t$ is completely orthogonal to $r$, i.e., the denoising process does not\n", + "interact or use $t$ in any other way apart from being given the task to produce an output that obeys the dynamics of our system.\n", + "A nice variation of this approach is to use a variable time step $\\Delta t$ as conditioning parameter in $c$. Below, we'll\n", + "fix $\\Delta t$ and normalize it to $1$ for simplicity.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Implementation \n", + "\n", + "Specifically, this notebook will explain _autoregressive conditional diffusion models_ ([ACDM](https://github.com/tum-pbs/autoreg-pde-diffusion)), following an existing [benchmark and paper](https://arxiv.org/abs/2309.01745). The goal is the creation of a diffusion-based architecture, that can probabilistically and accurately predict the next simulation step of a turbulent flow simulation. \n", + "\n", + "As a first step, we checkout the benchmark code, and download a pre-trained model checkpoint. This might take a few minutes. (Note: the command will not re-download files, if already downloaded successfully)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fatal: destination path 'autoreg-pde-diffusion' already exists and is not an empty directory.\n", + "/home/thuerey/jupyter/autoreg-pde-diffusion\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/thuerey/anaconda3/envs/torch24/lib/python3.12/site-packages/IPython/core/magics/osm.py:417: UserWarning: This is now an optional IPython functionality, setting dhist requires you to install the `pickleshare` library.\n", + " self.shell.db['dhist'] = compress_dhist(dhist)[-100:]\n" + ] + } + ], + "source": [ + "!git clone https://github.com/tum-pbs/autoreg-pde-diffusion.git\n", + "%cd autoreg-pde-diffusion/" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "executionInfo": { + "elapsed": 12676, + "status": "ok", + "timestamp": 1734018802893, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "qyIzar83G7a-", + "outputId": "6f4eaa9e-de73-4f24-aa7a-ecc0b5bde69c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File ‘models/checkpoints_acdm_tra.zip’ already there; not retrieving.\n" + ] + } + ], + "source": [ + "!mkdir -p models/\n", + "!wget -nc \"https://dataserv.ub.tum.de/s/m1734798.001/download?path=/&files=checkpoints_acdm_tra.zip\" -O models/checkpoints_acdm_tra.zip --no-check-certificate\n", + "!unzip -nq models/checkpoints_acdm_tra.zip -d models" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TnTqygCtYU1a" + }, + "source": [ + "Colab already comes with a range of pre-installed packages and we only need to additionally install the *einops* package and the [PBDL-Dataloader](https://github.com/tum-pbs/pbdl-dataset). If you are running this file locally and not inside colab, follow the [installation instructions](https://github.com/tum-pbs/autoreg-pde-diffusion) instead. Afterwards, make sure that the [PBDL-Dataloader](https://github.com/tum-pbs/pbdl-dataset) is also installed via `pip install git+https://github.com/tum-pbs/pbdl-dataset@main`." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "executionInfo": { + "elapsed": 16181, + "status": "ok", + "timestamp": 1734018819068, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "oGoLB0LyYVF8", + "outputId": "dc0cbe8d-a1e4-49ad-a3ea-1a6525200f0e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This notebook is running locally, please follow the ACDM installation instructions and install the PBDL loader\n" + ] + } + ], + "source": [ + "try:\n", + " import google.colab # only to ensure that we are inside colab\n", + " %pip install einops\n", + " %pip install git+https://github.com/tum-pbs/pbdl-dataset@main\n", + "except ImportError:\n", + " print(\"This notebook is running locally, please follow the ACDM installation instructions and install the PBDL loader\")\n", + " pass" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "F1-3XIs4RS6v" + }, + "source": [ + "Lets import some packages that we will need in the follwing." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "executionInfo": { + "elapsed": 10149, + "status": "ok", + "timestamp": 1734018829211, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "frMVkSSlTJX9" + }, + "outputs": [], + "source": [ + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "from torch.utils.data import Dataset, DataLoader, SequentialSampler, RandomSampler\n", + "\n", + "from einops import rearrange\n", + "from functools import partial\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "import math\n", + "import os, json\n", + "from typing import List,Tuple,Dict\n", + "\n", + "from pbdl.torch.loader import Dataloader" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZvxBI7FAYZWW" + }, + "source": [ + "## Backbone Network Definition\n", + "\n", + "Of course, we also need a neural network architecture. Here, we will rely on a [\"modern\" U-Net](https://arxiv.org/abs/2006.11239). In contrast to classic U-Net from {doc}`supervised-airfoils`, this moderinzed version differes in a few important places:\n", + "the skip connection are replaced by attention mechanisms, _GELU_ activations replace _ReLU_, and group normalizations are employed at each layer of the U-Net. This architecture is the backbone of many popular diffusion models, and typically yields at least a few percent improvements over simpler architectures (in some cases also much more).\n", + "\n", + "We start with a residual block that defines the skip connections, as well as the up- and downsampling operations of the U-Net. We will also make use of sinusoidal position embeddings from the [transformer architectures](https://arxiv.org/abs/1706.03762), to integrate the diffusion step with a time embedding MLP throught the U-Net layers." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "executionInfo": { + "elapsed": 12, + "status": "ok", + "timestamp": 1734018829211, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "-8uxbsSEZVFB" + }, + "outputs": [], + "source": [ + "class Residual(nn.Module):\n", + " def __init__(self, fn):\n", + " super().__init__()\n", + " self.fn = fn\n", + "\n", + " def forward(self, x, *args, **kwargs):\n", + " return self.fn(x, *args, **kwargs) + x\n", + "\n", + "def Upsample(dim):\n", + " return nn.ConvTranspose2d(dim, dim, 4, 2, 1)\n", + "\n", + "def Downsample(dim):\n", + " return nn.Conv2d(dim, dim, 4, 2, 1)\n", + "\n", + "\n", + "class SinusoidalPositionEmbeddings(nn.Module):\n", + " def __init__(self, dim):\n", + " super().__init__()\n", + " self.dim = dim\n", + "\n", + " def forward(self, time):\n", + " device = time.device\n", + " half_dim = self.dim // 2\n", + " embeddings = math.log(10000) / (half_dim - 1)\n", + " embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)\n", + " embeddings = time[:, None] * embeddings[None, :]\n", + " embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)\n", + " return embeddings" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Nro6GKc6m7T_" + }, + "source": [ + "Next, this class is the core convolution block in every level of the U-Net architecture, based on the [ConvNeXtBlock](https://arxiv.org/abs/2201.03545)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "executionInfo": { + "elapsed": 11, + "status": "ok", + "timestamp": 1734018829212, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "4_7iwOtumpHM" + }, + "outputs": [], + "source": [ + "class ConvNextBlock(nn.Module):\n", + "\n", + " def __init__(self, dim, dim_out, *, time_emb_dim=None, mult=2, norm=True):\n", + " super().__init__()\n", + " self.mlp = (\n", + " nn.Sequential(nn.GELU(), nn.Linear(time_emb_dim, dim))\n", + " if time_emb_dim is not None else None\n", + " )\n", + "\n", + " self.ds_conv = nn.Conv2d(dim, dim, 7, padding=3, groups=dim)\n", + "\n", + " self.net = nn.Sequential(\n", + " nn.GroupNorm(1, dim) if norm else nn.Identity(),\n", + " nn.Conv2d(dim, dim_out * mult, 3, padding=1),\n", + " nn.GELU(),\n", + " nn.GroupNorm(1, dim_out * mult),\n", + " nn.Conv2d(dim_out * mult, dim_out, 3, padding=1),\n", + " )\n", + "\n", + " self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()\n", + "\n", + " def forward(self, x, time_emb=None):\n", + " h = self.ds_conv(x)\n", + "\n", + " if self.mlp is not None and time_emb is not None:\n", + " assert time_emb is not None, \"time embedding must be passed in\"\n", + " condition = self.mlp(time_emb)\n", + " h = h + rearrange(condition, \"b c -> b c 1 1\")\n", + "\n", + " h = self.net(h)\n", + " return h + self.res_conv(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1Z2H6W6xnTdS" + }, + "source": [ + "We'll also define classes for the _attention_ mechanisms. As regular attention (also known as \"softmax attention\") has a quadratic scaling w.r.t. the input size, it is only applied in the bottleneck layer of the U-Net. Here we have the smallest size of the latent space, and hence the dense connectivity of the attention should not lead to resource explosions.\n", + "\n", + "For the skip connections, _linear_ attention is used instead. As the name implies, it is linear in terms of input size, but still quadratic w.r.t. its internal kernel dimension. That one, however, can be chosen freely, while we're restricted to given (and potentially) large input sizes in the U-Net structure.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "executionInfo": { + "elapsed": 10, + "status": "ok", + "timestamp": 1734018829212, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "OCkCMA1um1Lz" + }, + "outputs": [], + "source": [ + "class Attention(nn.Module):\n", + " def __init__(self, dim, heads=4, dim_head=32):\n", + " super().__init__()\n", + " self.scale = dim_head**-0.5\n", + " self.heads = heads\n", + " hidden_dim = dim_head * heads\n", + " self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)\n", + " self.to_out = nn.Conv2d(hidden_dim, dim, 1)\n", + "\n", + " def forward(self, x):\n", + " b, c, h, w = x.shape\n", + " qkv = self.to_qkv(x).chunk(3, dim=1)\n", + " q, k, v = map(\n", + " lambda t: rearrange(t, \"b (h c) x y -> b h c (x y)\", h=self.heads), qkv\n", + " )\n", + " q = q * self.scale\n", + "\n", + " sim = torch.einsum(\"b h d i, b h d j -> b h i j\", q, k)\n", + " sim = sim - sim.amax(dim=-1, keepdim=True).detach()\n", + " attn = sim.softmax(dim=-1)\n", + "\n", + " out = torch.einsum(\"b h i j, b h d j -> b h i d\", attn, v)\n", + " out = rearrange(out, \"b h (x y) d -> b (h d) x y\", x=h, y=w)\n", + " return self.to_out(out)\n", + "\n", + "\n", + "class LinearAttention(nn.Module):\n", + " def __init__(self, dim, heads=4, dim_head=32):\n", + " super().__init__()\n", + " self.scale = dim_head**-0.5\n", + " self.heads = heads\n", + " hidden_dim = dim_head * heads\n", + " self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)\n", + "\n", + " self.to_out = nn.Sequential(nn.Conv2d(hidden_dim, dim, 1),\n", + " nn.GroupNorm(1, dim))\n", + "\n", + " def forward(self, x):\n", + " b, c, h, w = x.shape\n", + " qkv = self.to_qkv(x).chunk(3, dim=1)\n", + " q, k, v = map(\n", + " lambda t: rearrange(t, \"b (h c) x y -> b h c (x y)\", h=self.heads), qkv\n", + " )\n", + "\n", + " q = q.softmax(dim=-2)\n", + " k = k.softmax(dim=-1)\n", + "\n", + " q = q * self.scale\n", + " context = torch.einsum(\"b h d n, b h e n -> b h d e\", k, v)\n", + "\n", + " out = torch.einsum(\"b h d e, b h d n -> b h e n\", context, q)\n", + " out = rearrange(out, \"b h c (x y) -> b (h c) x y\", h=self.heads, x=h, y=w)\n", + " return self.to_out(out)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The next helper provides a convenient way to add group normalization, which we'll add before up- and down-sampling the intermediate states." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "class PreNorm(nn.Module):\n", + " def __init__(self, dim, fn):\n", + " super().__init__()\n", + " self.fn = fn\n", + " self.norm = nn.GroupNorm(1, dim)\n", + "\n", + " def forward(self, x):\n", + " x = self.norm(x)\n", + " return self.fn(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "er6whJpMn4wT" + }, + "source": [ + "Putting the introduced layers together, the next cell defines the full, attention-based U-Net architecture:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "executionInfo": { + "elapsed": 9, + "status": "ok", + "timestamp": 1734018829212, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "rgvviynOm4ok" + }, + "outputs": [], + "source": [ + "class Unet(nn.Module):\n", + " def __init__(\n", + " self,\n", + " dim,\n", + " init_dim=None,\n", + " out_dim=None,\n", + " dim_mults=(1, 2, 4, 8),\n", + " channels=3,\n", + " with_time_emb=True,\n", + " resnet_block_groups=8,\n", + " use_convnext=True,\n", + " convnext_mult=2,\n", + " ):\n", + " super().__init__()\n", + "\n", + " # determine dimensions\n", + " self.channels = channels\n", + "\n", + " init_dim = init_dim if init_dim is not None else dim // 3 * 2\n", + " self.init_conv = nn.Conv2d(channels, init_dim, 7, padding=3)\n", + "\n", + " dims = [init_dim, *map(lambda m: dim * m, dim_mults)]\n", + " in_out = list(zip(dims[:-1], dims[1:]))\n", + "\n", + " if use_convnext:\n", + " block_klass = partial(ConvNextBlock, mult=convnext_mult)\n", + " else:\n", + " raise NotImplementedError()\n", + "\n", + " # time embeddings\n", + " if with_time_emb:\n", + " time_dim = dim * 4\n", + " self.time_mlp = nn.Sequential(\n", + " SinusoidalPositionEmbeddings(dim),\n", + " nn.Linear(dim, time_dim),\n", + " nn.GELU(),\n", + " nn.Linear(time_dim, time_dim),\n", + " )\n", + "\n", + " else:\n", + " time_dim = None\n", + " self.time_mlp = None\n", + " self.cond_mlp = None\n", + " self.sim_mlp = None\n", + "\n", + " # layers\n", + " self.downs = nn.ModuleList([])\n", + " self.ups = nn.ModuleList([])\n", + " num_resolutions = len(in_out)\n", + "\n", + " for ind, (dim_in, dim_out) in enumerate(in_out):\n", + " is_last = ind >= (num_resolutions - 1)\n", + "\n", + " self.downs.append(\n", + " nn.ModuleList(\n", + " [\n", + " block_klass(dim_in, dim_out, time_emb_dim=time_dim),\n", + " block_klass(dim_out, dim_out, time_emb_dim=time_dim),\n", + " Residual(PreNorm(dim_out, LinearAttention(dim_out))),\n", + " Downsample(dim_out) if not is_last else nn.Identity(),\n", + " ]\n", + " )\n", + " )\n", + "\n", + " mid_dim = dims[-1]\n", + " self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)\n", + " self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim)))\n", + " self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)\n", + "\n", + " for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):\n", + " is_last = ind >= (num_resolutions - 1)\n", + "\n", + " self.ups.append(\n", + " nn.ModuleList(\n", + " [\n", + " block_klass(dim_out * 2, dim_in, time_emb_dim=time_dim),\n", + " block_klass(dim_in, dim_in, time_emb_dim=time_dim),\n", + " Residual(PreNorm(dim_in, LinearAttention(dim_in))),\n", + " Upsample(dim_in) if not is_last else nn.Identity(),\n", + " ]\n", + " )\n", + " )\n", + "\n", + " out_dim = out_dim if out_dim is not None else channels\n", + " self.final_conv = nn.Sequential(\n", + " block_klass(dim, dim), nn.Conv2d(dim, out_dim, 1)\n", + " )\n", + "\n", + " def forward(self, x, time):\n", + " x = self.init_conv(x)\n", + "\n", + " t = self.time_mlp(time) if self.time_mlp is not None else None\n", + "\n", + " h = []\n", + "\n", + " # downsample\n", + " for block1, block2, attn, downsample in self.downs:\n", + " x = block1(x, t)\n", + " x = block2(x, t)\n", + " x = attn(x)\n", + " h.append(x)\n", + " x = downsample(x)\n", + "\n", + " # bottleneck\n", + " x = self.mid_block1(x, t)\n", + " x = self.mid_attn(x)\n", + " x = self.mid_block2(x, t)\n", + "\n", + " # upsample\n", + " for block1, block2, attn, upsample in self.ups:\n", + " x = torch.cat((x, h.pop()), dim=1)\n", + " x = block1(x, t)\n", + " x = block2(x, t)\n", + " x = attn(x)\n", + " x = upsample(x)\n", + "\n", + " return self.final_conv(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hqNr6pvibm1a" + }, + "source": [ + "## Variance Schedule\n", + "\n", + "To determine the noise levels over the course of the diffusion process, a noise schedule is required. Here, we will employ the simple linear schedule proposed by [Ho et al.](https://arxiv.org/abs/2006.11239), with adjusted variance parameters, such that any number of diffusion steps larger than 10 should work well:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "executionInfo": { + "elapsed": 294, + "status": "ok", + "timestamp": 1734018829498, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "hs2qESn_cAeB" + }, + "outputs": [], + "source": [ + "def linear_beta_schedule(timesteps):\n", + " if timesteps < 10:\n", + " raise ValueError(\"Warning: Less than 10 timesteps require adjustments to this schedule!\")\n", + "\n", + " beta_start = 0.0001 * (500/timesteps) # adjust reference values determined for 500 steps\n", + " beta_end = 0.02 * (500/timesteps)\n", + " betas = torch.linspace(beta_start, beta_end, timesteps)\n", + " return torch.clip(betas, 0.0001, 0.9999)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RPXOl1_Ldedm" + }, + "source": [ + "## Diffusion Model Definition\n", + "\n", + "Finally, we have collected all pieces to define a class containing the actual diffusion model.\n", + "\n", + "We first compute the noising schedule for DDPM, and make sure the hyperparameters of the diffusion process are not treated as variables during learning (declaring them as _buffers_ in pytorch via `register_buffer`)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "executionInfo": { + "elapsed": 4, + "status": "ok", + "timestamp": 1734018829498, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "ZwtB1Rmtdohd" + }, + "outputs": [], + "source": [ + "class DiffusionModel(nn.Module):\n", + " def __init__(self, diffusionSteps:int, condChannels:int, dataChannels:int):\n", + " super(DiffusionModel, self).__init__()\n", + "\n", + " self.timesteps = diffusionSteps\n", + " betas = linear_beta_schedule(timesteps=self.timesteps)\n", + "\n", + " betas = betas.unsqueeze(1).unsqueeze(2).unsqueeze(3)\n", + " alphas = 1.0 - betas\n", + " alphasCumprod = torch.cumprod(alphas, axis=0)\n", + " alphasCumprodPrev = F.pad(alphasCumprod[:-1], (0,0,0,0,0,0,1,0), value=1.0)\n", + " sqrtRecipAlphas = torch.sqrt(1.0 / alphas)\n", + "\n", + " # calculations for diffusion q(x_t | x_{t-1}) and others\n", + " sqrtAlphasCumprod = torch.sqrt(alphasCumprod)\n", + " sqrtOneMinusAlphasCumprod = torch.sqrt(1. - alphasCumprod)\n", + "\n", + " # calculations for posterior q(x_{t-1} | x_t, x_0)\n", + " posteriorVariance = betas * (1. - alphasCumprodPrev) / (1. - alphasCumprod)\n", + " sqrtPosteriorVariance = torch.sqrt(posteriorVariance)\n", + "\n", + " self.register_buffer(\"betas\", betas)\n", + " self.register_buffer(\"sqrtRecipAlphas\", sqrtRecipAlphas)\n", + " self.register_buffer(\"sqrtAlphasCumprod\", sqrtAlphasCumprod)\n", + " self.register_buffer(\"sqrtOneMinusAlphasCumprod\", sqrtOneMinusAlphasCumprod)\n", + " self.register_buffer(\"sqrtPosteriorVariance\", sqrtPosteriorVariance)\n", + "\n", + " # backbone model\n", + " self.unet = Unet(\n", + " dim=128,\n", + " channels= condChannels + dataChannels,\n", + " dim_mults=(1,1,1),\n", + " use_convnext=True,\n", + " convnext_mult=1,\n", + " )\n", + "\n", + "\n", + " # input shape (both inputs): B S C W H (D) -> output shape (both outputs): B S nC W H (D)\n", + " def forward(self, conditioning:torch.Tensor, data:torch.Tensor) -> torch.Tensor:\n", + " device = \"cuda\" if data.is_cuda else \"cpu\"\n", + " seqLen = data.shape[1]\n", + "\n", + " # combine batch and sequence dimension for decoder processing\n", + " d = torch.reshape(data, (-1, data.shape[2], data.shape[3], data.shape[4]))\n", + " cond = torch.reshape(conditioning, (-1, conditioning.shape[2], conditioning.shape[3], conditioning.shape[4]))\n", + "\n", + " # TRAINING\n", + " if self.training:\n", + "\n", + " # forward diffusion process that adds noise to data\n", + " d = torch.concat((cond, d), dim=1)\n", + " noise = torch.randn_like(d, device=device)\n", + " t = torch.randint(0, self.timesteps, (d.shape[0],), device=device).long()\n", + " dNoisy = self.sqrtAlphasCumprod[t] * d + self.sqrtOneMinusAlphasCumprod[t] * noise\n", + "\n", + " # noise prediction with network\n", + " predictedNoise = self.unet(dNoisy, t)\n", + "\n", + " # unstack batch and sequence dimension again\n", + " noise = torch.reshape(noise, (-1, seqLen, conditioning.shape[2] + data.shape[2], data.shape[3], data.shape[4]))\n", + " predictedNoise = torch.reshape(predictedNoise, (-1, seqLen, conditioning.shape[2] + data.shape[2], data.shape[3], data.shape[4]))\n", + "\n", + " return noise, predictedNoise\n", + "\n", + "\n", + " # INFERENCE\n", + " else:\n", + " # conditioned reverse diffusion process\n", + " dNoise = torch.randn_like(d, device=device)\n", + " cNoise = torch.randn_like(cond, device=device)\n", + "\n", + " for i in reversed(range(0, self.timesteps)):\n", + " t = i * torch.ones(cond.shape[0], device=device).long()\n", + "\n", + " # compute conditioned part with normal forward diffusion\n", + " condNoisy = self.sqrtAlphasCumprod[t] * cond + self.sqrtOneMinusAlphasCumprod[t] * cNoise\n", + "\n", + " dNoiseCond = torch.concat((condNoisy, dNoise), dim=1)\n", + "\n", + " # backward diffusion process that removes noise to create data\n", + " predictedNoiseCond = self.unet(dNoiseCond, t)\n", + "\n", + " # use model (noise predictor) to predict mean\n", + " modelMean = self.sqrtRecipAlphas[t] * (dNoiseCond - self.betas[t] * predictedNoiseCond / self.sqrtOneMinusAlphasCumprod[t])\n", + "\n", + " dNoise = modelMean[:, cond.shape[1]:modelMean.shape[1]] # discard prediction of conditioning\n", + " if i != 0:\n", + " # sample randomly (only for non-final prediction), use mean directly for final prediction\n", + " dNoise = dNoise + self.sqrtPosteriorVariance[t] * torch.randn_like(dNoise)\n", + "\n", + " # unstack batch and sequence dimension again\n", + " dNoise = torch.reshape(dNoise, (-1, seqLen, data.shape[2], data.shape[3], data.shape[4]))\n", + "\n", + " return dNoise" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wWVCwnkrYdTH" + }, + "source": [ + "The most important function above is the `forward` step of the `DiffusionModel` class. It switches between training and inference via the `self.training` flag, and correspondingly either evalautes a single step in the Markov chain for backpropagation, or the full chain to obtain a sample at inference time. The `c` and `d` prefixes of the variables indicate the distinction between _conditioning_ and _data_ components in $x$, as explained above. E.g., an important line in the inference code is `dNoiseCond=concat(condNoisy, dNoise)` this gixes an $x$ by concatenating conditioning and data. Both parts of the $x$ are jointly denoised, and the conditioning part is removed after network execution via `modelMean[:, cond.shape[1]:modelMean.shape[1]]`. It's overwritten with the ground truth conditioning, so that the diffusion model can focus on producing an accurate `d` part.\n", + "\n", + "---\n", + "\n", + "In the cell below we'll use the `PBDL-Dataloader` class to obtain the training (and testing) dataset. The code below first cleans up (`del`-eting old loaders that might stick around, this is useful for working in Jupyter to avoid HDF5 file lock errors).\n", + "\n", + "A slight complication here is that we'll only use a small part of the full dataset (3 simulations with IDs 20,21 for training and 22 for testing). To make sure we have the right normalization constants for the full dataset (and to spare you the time to download all the full 5GB), the `norm_X_mean` and `norm_X_std` fields of the dataloader are manually initialized with the constants from the full dataset below." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "executionInfo": { + "elapsed": 4957, + "status": "ok", + "timestamp": 1734019158024, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "D7w5FjO-YdbL", + "outputId": "ee11c839-4d8f-4ed4-e259-c3fd60a0b801" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[Kdownload completed\t ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[38;5;240m\u001b[96m 100%\u001b[0m6m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\n", + "\u001b[96m\u001b[1mSuccess:\u001b[22m Loaded transonic-cylinder-flow with 41 simulations (3 selected) and 1 samples each.\u001b[0m\n", + "\u001b[Kdownload completed\t ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[38;5;240m\u001b[96m 100%\u001b[0m6m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\n", + "\u001b[96m\u001b[1mSuccess:\u001b[22m Loaded transonic-cylinder-flow with 41 simulations (2 selected) and 124 samples each.\u001b[0m\n" + ] + } + ], + "source": [ + "# delete loaders if existing to ensure the dataset file is acessible\n", + "try:\n", + " del trainLoader\n", + "except:\n", + " pass\n", + "try:\n", + " del testLoader\n", + "except:\n", + " pass\n", + "\n", + "# adjust dataset normalization buffers to match data normalization of pretrained model\n", + "download = Dataloader(\"transonic-cylinder-flow\", sel_sims=[20,21,22])\n", + "del download\n", + "import h5py\n", + "dataPath = \"datasets/transonic-cylinder-flow.hdf5\"\n", + "with h5py.File(dataPath, \"r+\") as f:\n", + " if \"norm_fields_sca_mean\" in f:\n", + " f.__delitem__(\"norm_fields_sca_mean\")\n", + " if \"norm_fields_sca_std\" in f:\n", + " f.__delitem__(\"norm_fields_sca_std\")\n", + " if \"norm_const_mean\" in f:\n", + " f.__delitem__(\"norm_const_mean\")\n", + " if \"norm_const_std\" in f:\n", + " f.__delitem__(\"norm_const_std\")\n", + "\n", + " f[\"norm_const_mean\"] = np.array([0.70])\n", + " f[\"norm_const_std\"] = np.array([0.118322])\n", + " f[\"norm_fields_sca_mean\"] = np.array([[[0.560642]], [[-0.000129]], [[0.903352]], [[0.637941]]])\n", + " f[\"norm_fields_sca_std\"] = np.array([[[0.216987]], [[0.216987]], [[0.145391]], [[0.119944]]])\n", + " f.close()\n", + "\n", + "\n", + "batch = 32 # training batch size\n", + "\n", + "# training set configuration\n", + "trainLoader = Dataloader(\n", + " \"transonic-cylinder-flow\",\n", + " time_steps=5, # leads to six timesteps that are later strided by a factor of 2 (for dt compatibility with pre-trained model with two input steps and one target step)\n", + " intermediate_time_steps=True,\n", + " step_size=6, # discard some datasamples close together\n", + " sel_sims=[20, 21], # select simulations\n", + " trim_start=250, # discard some initial timesteps from the simulation\n", + " normalize_data=\"mean-std\", # data normalization\n", + " normalize_const=\"mean-std\", # constants normalization\n", + " batch_size=batch,\n", + " shuffle=True,\n", + " drop_last=True,\n", + " num_workers=2,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "B3DWQ1n2fbrD" + }, + "source": [ + "## Training\n", + "\n", + "With all these building blocks and data available now, its time put them together and train the diffusion model. You can choose to either continue training for a few epochs from the provided model checkpoint (takes less than a minute for 10 epochs), or train the model from scratch on the small examplary data set (takes about half an hour for 1000 epochs). Note that the prediction quality and diversity for training the model from scratch will be noticeably worse, due to limited amount of data available here.\n", + "\n", + "Feel free to skip this step entirely, if you don't want to train the network. You can directly continue with the sampling below, by using the pre-trained checkpoint." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RMTe4MbMf0o2", + "outputId": "d83bf340-aedc-480a-ebd8-8d928335e121" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training device: cuda\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_917142/3219208168.py:22: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n", + " loaded = torch.load(\"models/models_tra/128_acdm-r20_02/Model.pth\", map_location=torch.device('cpu'))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Trainable Weights (All Weights): 6994035 (6994035)\n", + "\n", + "Starting training...\n", + " [Epoch 0, Batch 0]: 0.0019515\n", + " [Epoch 0, Batch 1]: 0.0019654\n", + " [Epoch 0, Batch 2]: 0.0008050\n", + " [Epoch 0, Batch 3]: 0.0006933\n", + " [Epoch 0, Batch 4]: 0.0009360\n", + " [Epoch 0, Batch 5]: 0.0018654\n", + " [Epoch 0, Batch 6]: 0.0016832\n", + "[Epoch 0, FULL]: 0.0014143\n", + " [Epoch 1, Batch 0]: 0.0011901\n", + " [Epoch 1, Batch 1]: 0.0018340\n", + " [Epoch 1, Batch 2]: 0.0007823\n", + " [Epoch 1, Batch 3]: 0.0014465\n", + " [Epoch 1, Batch 4]: 0.0011019\n", + " [Epoch 1, Batch 5]: 0.0012040\n", + " [Epoch 1, Batch 6]: 0.0007916\n", + "[Epoch 1, FULL]: 0.0011929\n", + " [Epoch 2, Batch 0]: 0.0008890\n", + " [Epoch 2, Batch 1]: 0.0013503\n", + " [Epoch 2, Batch 2]: 0.0011220\n", + " [Epoch 2, Batch 3]: 0.0009489\n", + " [Epoch 2, Batch 4]: 0.0010360\n", + " [Epoch 2, Batch 5]: 0.0012546\n", + " [Epoch 2, Batch 6]: 0.0009530\n", + "[Epoch 2, FULL]: 0.0010791\n", + " [Epoch 3, Batch 0]: 0.0009957\n", + " [Epoch 3, Batch 1]: 0.0013200\n", + " [Epoch 3, Batch 2]: 0.0025289\n", + " [Epoch 3, Batch 3]: 0.0009580\n", + " [Epoch 3, Batch 4]: 0.0010404\n", + " [Epoch 3, Batch 5]: 0.0010360\n", + " [Epoch 3, Batch 6]: 0.0009525\n", + "[Epoch 3, FULL]: 0.0012616\n", + " [Epoch 4, Batch 0]: 0.0024588\n", + " [Epoch 4, Batch 1]: 0.0013688\n", + " [Epoch 4, Batch 2]: 0.0008885\n", + " [Epoch 4, Batch 3]: 0.0007770\n", + " [Epoch 4, Batch 4]: 0.0008546\n", + " [Epoch 4, Batch 5]: 0.0012591\n", + " [Epoch 4, Batch 6]: 0.0013123\n", + "[Epoch 4, FULL]: 0.0012742\n", + " [Epoch 5, Batch 0]: 0.0013485\n", + " [Epoch 5, Batch 1]: 0.0012143\n", + " [Epoch 5, Batch 2]: 0.0013597\n", + " [Epoch 5, Batch 3]: 0.0007690\n", + " [Epoch 5, Batch 4]: 0.0014855\n", + " [Epoch 5, Batch 5]: 0.0011670\n", + " [Epoch 5, Batch 6]: 0.0015456\n", + "[Epoch 5, FULL]: 0.0012699\n", + " [Epoch 6, Batch 0]: 0.0010924\n", + " [Epoch 6, Batch 1]: 0.0023275\n", + " [Epoch 6, Batch 2]: 0.0008677\n", + " [Epoch 6, Batch 3]: 0.0008471\n", + " [Epoch 6, Batch 4]: 0.0014519\n", + " [Epoch 6, Batch 5]: 0.0011380\n", + " [Epoch 6, Batch 6]: 0.0017657\n", + "[Epoch 6, FULL]: 0.0013558\n", + " [Epoch 7, Batch 0]: 0.0013877\n", + " [Epoch 7, Batch 1]: 0.0011317\n", + " [Epoch 7, Batch 2]: 0.0010489\n", + " [Epoch 7, Batch 3]: 0.0018891\n", + " [Epoch 7, Batch 4]: 0.0020820\n", + " [Epoch 7, Batch 5]: 0.0007572\n", + " [Epoch 7, Batch 6]: 0.0007788\n", + "[Epoch 7, FULL]: 0.0012965\n", + " [Epoch 8, Batch 0]: 0.0017368\n", + " [Epoch 8, Batch 1]: 0.0009061\n", + " [Epoch 8, Batch 2]: 0.0009467\n", + " [Epoch 8, Batch 3]: 0.0009662\n", + " [Epoch 8, Batch 4]: 0.0013592\n", + " [Epoch 8, Batch 5]: 0.0014016\n", + " [Epoch 8, Batch 6]: 0.0010049\n", + "[Epoch 8, FULL]: 0.0011888\n", + " [Epoch 9, Batch 0]: 0.0010400\n", + " [Epoch 9, Batch 1]: 0.0014242\n", + " [Epoch 9, Batch 2]: 0.0011576\n", + " [Epoch 9, Batch 3]: 0.0008646\n", + " [Epoch 9, Batch 4]: 0.0011597\n", + " [Epoch 9, Batch 5]: 0.0011647\n", + " [Epoch 9, Batch 6]: 0.0012795\n", + "[Epoch 9, FULL]: 0.0011557\n", + "Training complete!\n" + ] + } + ], + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "print(\"Training device: %s\" % device)\n", + "\n", + "startFromCheckpoint = True\n", + "\n", + "if startFromCheckpoint:\n", + " epochs = 10 # finetune only for a small number of epochs\n", + " lr = 0.00001 # since the model is already trained, a conservatively low learning rate\n", + "else:\n", + " epochs = 100 # train from scratch for large number of epochs\n", + " lr = 0.0001 # larger learning rate for training from scratch\n", + "\n", + "diffusionSteps = 20 # the provided model checkpoint was pretrained on 20 diffusion steps\n", + "\n", + "# model definition\n", + "condChannels = 2 * 5 # two timesteps with 5 channels each (vel_x, vel_y, dens, pres, mach)\n", + "dataChannels = 5 # one timestep\n", + "model = DiffusionModel(diffusionSteps, condChannels, dataChannels)\n", + "\n", + "if startFromCheckpoint:\n", + " # load weights from checkpoint\n", + " loaded = torch.load(\"models/models_tra/128_acdm-r20_02/Model.pth\", map_location=torch.device('cpu'))\n", + " model.load_state_dict(loaded[\"stateDictDecoder\"])\n", + "model.train()\n", + "model.to(device)\n", + "\n", + "# print model info and trainable weigths\n", + "paramsTrainable = sum([np.prod(p.size()) for p in filter(lambda p: p.requires_grad, model.parameters())])\n", + "params = sum([np.prod(p.size()) for p in model.parameters()])\n", + "#print(model)\n", + "print(\"Trainable Weights (All Weights): %d (%d)\" % (paramsTrainable, params))\n", + "\n", + "# training loop\n", + "print(\"\\nStarting training...\")\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=lr)\n", + "for epoch in range(epochs):\n", + " losses = []\n", + " for s, sample in enumerate(trainLoader, 0):\n", + " optimizer.zero_grad()\n", + "\n", + " input, target = sample\n", + " input = input.unsqueeze(1) # add timestep dimension\n", + " mach = input[:,:,-1:].expand(-1, target.shape[1], -1, -1, -1) # extract mach number from input\n", + " target = torch.concat([target, mach], dim=2) # add mach number to target\n", + " d = torch.concat([input,target], dim=1).to(device).float() # combined [batch, timesteps, channels, x, y] tensor\n", + " d = d[:,::2] # temporal stride of 2 for dt compatiblity with pre-trained model\n", + "\n", + " inputSteps = 2\n", + " cond = []\n", + " for i in range(inputSteps):\n", + " cond += [d[:,i:i+1]] # collect input steps\n", + " conditioning = torch.concat(cond, dim=2) # combine along channel dimension\n", + " data = d[:, inputSteps:inputSteps+1]\n", + "\n", + " noise, predictedNoise = model(conditioning=conditioning, data=data)\n", + "\n", + " loss = F.smooth_l1_loss(noise, predictedNoise)\n", + " print(\" [Epoch %2d, Batch %4d]: %1.7f\" % (epoch, s, loss.detach().cpu().item()))\n", + " loss.backward()\n", + "\n", + " losses += [loss.detach().cpu().item()]\n", + "\n", + " optimizer.step()\n", + " print(\"[Epoch %2d, FULL]: %1.7f\" % (epoch, sum(losses)/len(losses)))\n", + "\n", + "del trainLoader # delete to ensure file access\n", + "print(\"Training complete!\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gWhuinvwdgrO" + }, + "source": [ + "## Test Dataset\n", + "\n", + "Next we download a test dataset to make sure we can evaluate the trained network on new data. Here, we only use sequences from the data set with a different mach number and physical time than the training data above (the simulation with ID 22).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "executionInfo": { + "elapsed": 6, + "status": "aborted", + "timestamp": 1734018830237, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "_QTsgCQgdg2q" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[Kdownload completed\t ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[38;5;240m\u001b[96m 100%\u001b[0m6m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\u001b[96m\n", + "\u001b[96m\u001b[1mSuccess:\u001b[22m Loaded transonic-cylinder-flow with 41 simulations (1 selected) and 2 samples each.\u001b[0m\n" + ] + } + ], + "source": [ + "# delete loaders if existing to ensure the dataset file is acessible\n", + "try:\n", + " del trainLoader\n", + "except:\n", + " pass\n", + "try:\n", + " del testLoader\n", + "except:\n", + " pass\n", + "\n", + "# test set configuration\n", + "testLoader = Dataloader(\n", + " \"transonic-cylinder-flow\",\n", + " time_steps=119, # leads to 120 timesteps that are later strided by a factor of 2 (for dt compatibility with pre-trained model)\n", + " intermediate_time_steps=True,\n", + " step_size=120,\n", + " sel_sims=[22], # select simulations\n", + " trim_start=600, # discard some initial timesteps from the simulation\n", + " normalize_data=\"mean-std\", # data normalization\n", + " normalize_const=\"mean-std\", # constants normalization\n", + " batch_size=1,\n", + " shuffle=False,\n", + " drop_last=False,\n", + " num_workers=0,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aHElpXRLyXRG" + }, + "source": [ + "## Test Inference\n", + "\n", + "We can now sample the trained diffusion model to create probabilistic predictions for a test set of flow trajectories. We store both predictions and ground truth in tensors with shape $(samples \\times sequences \\times sequenceLength \\times channels \\times sizeX \\times sizeY)$, that are used for the visualization below." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "executionInfo": { + "elapsed": 5, + "status": "aborted", + "timestamp": 1734018830237, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "md2dI_uIyXBg" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Starting sampling...\n", + " Sequence 0 finished\n", + " Sequence 1 finished\n", + "Sampling complete!\n", + "\n", + "Ground truth and prediction tensor with shape:\n", + "(samples, sequences, sequenceLength, channels, sizeX, sizeY)\n", + "GT: (1, 2, 60, 5, 128, 64)\n", + "Prediction: (5, 2, 60, 5, 128, 64)\n" + ] + } + ], + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "\n", + "numSamples = 5\n", + "diffusionSteps = 20\n", + "\n", + "try: # load model if not trained/finetuned above\n", + " model\n", + "except NameError:\n", + " condChannels = 2 * 5 # two timesteps with 5 channels each (vel_x, vel_y, dens, pres, mach)\n", + " dataChannels = 5 # one timestep\n", + " model = DiffusionModel(diffusionSteps, condChannels, dataChannels)\n", + "\n", + " # load weights from checkpoint\n", + " loaded = torch.load(\"models/models_tra/128_acdm-r20_02/Model.pth\", map_location=torch.device('cpu'))\n", + " model.load_state_dict(loaded[\"stateDictDecoder\"])\n", + "model.eval()\n", + "model.to(device)\n", + "\n", + "# sampling loop\n", + "print(\"\\nStarting sampling...\")\n", + "gt = []\n", + "pred = []\n", + "with torch.no_grad():\n", + " for s, sample in enumerate(testLoader, 0):\n", + "\n", + " input, target = sample\n", + " input = input.unsqueeze(1) # add timestep dimension\n", + " mach = input[:,:,-1:].expand(-1, target.shape[1], -1, -1, -1) # extract mach number from input\n", + " target = torch.concat([target, mach], dim=2) # add mach number to target\n", + " data = torch.concat([input,target], dim=1).to(device).float() # combined [batch, timesteps, channels, x, y] tensor\n", + " data = data[:,::2] # temporal stride of 2 for dt compatiblity with pre-trained model\n", + "\n", + " gt += [data.unsqueeze(0).cpu().numpy()]\n", + " d = data.to(device).repeat(numSamples,1,1,1,1) # reuse batch dim for samples\n", + "\n", + " prediction = torch.zeros_like(d, device=device)\n", + " inputSteps = 2\n", + "\n", + " for i in range(inputSteps): # no prediction of first steps\n", + " prediction[:,i] = d[:,i]\n", + "\n", + " for i in range(inputSteps, d.shape[1]):\n", + " cond = []\n", + " for j in range(inputSteps,0,-1):\n", + " cond += [prediction[:, i-j : i-(j-1)]] # collect input steps\n", + " cond = torch.concat(cond, dim=2) # combine along channel dimension\n", + "\n", + " result = model(conditioning=cond, data=d[:,i-1:i]) # auto-regressive inference\n", + " result[:,:,-1:] = d[:,i:i+1,-1:] # replace mach number prediction with true values\n", + " prediction[:,i:i+1] = result\n", + "\n", + " prediction = torch.reshape(prediction, (numSamples, -1, d.shape[1], d.shape[2], d.shape[3], d.shape[4]))\n", + " pred += [prediction.cpu().numpy()]\n", + " print(\" Sequence %d finished\" % s)\n", + "\n", + "\n", + "print(\"Sampling complete!\\n\")\n", + "\n", + "gt = np.concatenate(gt, axis=1)\n", + "pred = np.concatenate(pred, axis=1)\n", + "\n", + "print(\"Ground truth and prediction tensor with shape:\")\n", + "print(\"(samples, sequences, sequenceLength, channels, sizeX, sizeY)\")\n", + "print(\"GT: %s\" % str(gt.shape))\n", + "print(\"Prediction: %s\" % str(pred.shape))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "74-6T3Ai9oV8" + }, + "source": [ + "## Accuracy of the Prediction\n", + "\n", + "After the sampling, we can analyze the ground truth flow trajectory and the samples generated by ACDM. Let's start with a direct visualization of the predictions for a qualitative check." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "executionInfo": { + "elapsed": 6, + "status": "aborted", + "timestamp": 1734018830238, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "gcduiINO9n-d" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8UAAAGOCAYAAAC+MqHqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOz9ebBtW1YXDP7GnGvtfc5t3rv5snuZJI9UUCkILSSwKenSCBQUwcgAjcAmgfwkNCJDQ8rSKAxAFGn9yviiKAkMTVppQkAiIL7S9I+EIqUwlCKBTOmRbCDJlvve7c45e685R/0x5phzzLnm2mefe89977wv94g4Z++99tprzbXWHM1vdJOYmXGgAx3oQAc60IEOdKADHehABzrQRyG5F3oABzrQgQ50oAMd6EAHOtCBDnSgA71QdADFBzrQgQ50oAMd6EAHOtCBDnSgj1o6gOIDHehABzrQgQ50oAMd6EAHOtBHLR1A8YEOdKADHehABzrQgQ50oAMd6KOWDqD4QAc60IEOdKADHehABzrQgQ70UUsHUHygAx3oQAc60IEOdKADHehAB/qopQMoPtCBDnSgAx3oQAc60IEOdKADfdTSARQf6EAHOtCBDnSgAx3oQAc60IE+aukAig90oAMd6EAHOtCBDnSgAx3oQB+1dADFBzrQgQ50oAMd6EAHOtCBDnSgj1o6gOIDHehABzrQgQ50oAMd6EAHOtBHLR1A8YEOdKADHehABzrQgQ50oAMd6KOWhhd6AFeFnn76ady/fx/PPPPMCz2UAx3oeaf3vOc9uH79Ot7//ve/0EOp6MCXB/popgNfHuhAV5MOvHmgA109elS+PIDiRPfv38f9sxP89r0PgEHdfZjbLQQGALNdPnd+T3an5vv2uCzHXvye0vEIcC7CEYPInh9gUB4vg/YbY+9ce3+/cLznm3rju9DQeP/fXJFLvgzanp7g/rR5oYcxo8yX9z+wvFM1t8tDqfl1gVdnx+o8VO6938GfiwdviOwrN58fgfY596Ue56IDXjjw4+Kn867jMs77sMeg+eDsoa46X777/vuX9eXsDWb7suGnvXTpRXRld998ujm1/OgAEMMRQOk5UeLTpcfdu2b5uDxB5nZFGczS8ervXiSK6LLk0kXosm+N4dft6cklH/xyyNqySr351867vM8+tuKMz+a/7X5e2E52swPgGd5HDC7CUay/N7ZtO/a5DJlvP9dG6Ixvb17bZ453cMSF6VF56bGLDDPAx2FLd/SmHuZRdeYBFCd65pln8Nv3PoD/87/5XxCZwGny6/vIAOf3wjz5c7SvAEfXxbFKKmg4AhwJHAnIf/IdGCD9HNOvicEDA0cR47UNrh9vcH29wfG4hQNjEz22wWMTPKbgEKL8MQMxutn4OMp5OJ0PnIRN/qwDNqC6EoZ7zuRdDLwnc9M+59p1rNa2UqZqgYjdbpwPZVsSy739ddMCw14G8WMygN73f//fHstxH5WeeeYZ/Pb9D+BT/80bF/dRfgSAEF3m2ZD4MjAhGj7gzMvIc1jva8ub8t7wZcufjLyN0ntS3tFthpgAOAZ7gEcGewaGCHgGeQa5Zn7p7xaM/TwfDK+y5dv2NzOj5RzQsbT9MuZhh3fq9xfgo/MMt4vQ0hgWZEUlC1RUN9fWyov8Me9XzkPmGO/+yv/XQ17E46VnnnkG777/fvyp7/pSRHPvY8NP0ejLokuLTo2JX/O2WPQpR9ne1ZWMojMbXUkRoIhqezs7OMl3dpxe0+eBwWMErSOGoy2OjrY4Gid4FzFmBzTDNXPTXre95t535T2qe1V9j2JfqLxC3lbLLzbnqvnfXO+e/Pqouqs6z4KtMHMC7Oug33UJzbgr+dnjYTTX2vJp87sZvwJ4z//t/4lnnnj5jkG9MKS27Kf8m/8l8x2AGe/17NnMex17NvMfo2+zRsNvyqO8oA+b7/Q1jsB0M2D9shM8fesuXnHtLq4PGwwUMbHDNnpEJkwslZ+RCVP0iCBMRvfrZ+b0Chi7wFXXH5hmvDbjM6Dmtcx/yPe2sqHTPpXenelqs5+lBV1f2cAzHurNBENLvLPEervkQPubroOxsaN1W2NLt7qzqzcbnSnb53pT93/P//Xblse+Bx1A8QIRcSXgHQExzTwHIOwF0owiaCLFWdHlPxTG2QWI1xHj8RY3rp3hyeNT8aSBMbEA4Ck6hEgGHFggsACIYwOGUY8lf26uqX/N59+Wi+77yIBYv9/HLmCaG+P7/lZ3Z3qswHj3yffY5/Hg6sdO1hCNzZwgpMdEnOeo5eGWn61BmbdBt1kjFDUvVLyKAojVCF8yAJTNvfAxDwykPxoiiBiUIlNI46jGWg1St88BcZc6RvJs/9686W57DJPngvw1//2egHgXb9hDsNlm5YGOkzvf2d8+wrW0zpAXAzniGT8+DDEvv8+6Mm9sdRUa/mv20f2AEtRqXxNvYhXhVwHr9YT1EDD6AE8Mn0DxLkDcUu+7h3FstvLrIjT73Q6w2e57ET32UOPbl3d72yueLXaSjCV9XOJh9PU0s+HBDn+/oLr9IkTlpeVPIoYDZXsW1XeNvunRks3a8ttsPAzG3FGceRYQ59TIWK0m3Fid4eZwNue3dHEWEKsjKnBxsqkNrKC3dZYvBbdyhmXjeIIO0wJfqGw65549Iu0ExPtQI/vO267n64LjfXXcBYH4bLeF/R43/x1AcYesEHHEYvcuGOHAboVlvUY5xdkIAdmARSVfBgVgFTFelwjxjfUGaz8BAEICxNsUGY4KfI3HK2rUC9gNiC8Khh8DCL4w7Xtcw8zEJAx/HoO3irFnCDfHfly00+h42OfwIjDCVbFbmvFo5cDinU6r9j7mIzfe35nyt95v4yHfCYjTBbBGhwcGjwwMETQwyMcaDO+iPQDxLEr8MID4YcDwecPv/XyJlx6V9rmeXb8hs02NakDG2uHzypDO25aNZ911ydtdfXfFyYERQZkH9dXqRPvdXs7kRDMgDOw2xvNnFB7kHbYZGzZxEB07RLgxYlxNWA3yNzpxWg0uVtfcozYynq8DJVIl71F9d+kZQM3x7balfTMtgORdc/JSxn/RKd/l2Tk43gWMq2O9CHThRahnxzrMHcoX5csuNc+OqRajQMbFmfJn/SOAPYNWAUfjhCO/xeACACCyk4wvw0uRqYoQKyC2YFg/t5kprX3cjQ4b3pzZCGnsNX8tvb/gvbwoPYztt+f8z3by46RLOv5lOZQPoLghBbtLYLjatwHD/WhU2Z/NG/UusRUKTHXqCSATxgE8RvjjgBvXznBjvcHxsE3nEKGggDjEki5qU9GgynpfQNwDw11jeff9fOz0MIq0a6AvbF86TE/Z7ktL3rqd57sEp8Tj+P0LSI8aoVpSdnPerJ1EXUAcy3FmwUObLj0wMEbQGEFO0oesscnpGDKOh72wBhAvfX/R43W/O2db1zJ6HmlfgF85vnQbarnQM6yrbefIgnPkxIsxSgwsA2OgH6XaNZ+6ci7x4RI/ZkdV7z3MI9x1f0lKGWiMGMaA9ThhNQSMLuYIsV6rkhrmOu5eqrjuZ69tCRDb1OmHoovwabvv0vy3P9lh6zwUPaptYU/fjtnw4i5gfG60GNXuLxqi5v0+tzLfwvRsq2fc5UuqD7wDGHcdlYlPKelSzaDyY8T11QZHKegDKK+5CgRP7FNmpMNkALGCYZsq3QPDMRrQ24DhNjIs+9XXUjmmezr7+bDNHtpGSK+7eEg/XgYwvsjve+r5UY95ATqAYktUXqyAcEDyss1TTroCxHwP1MyT98sgmMyrSZPQ773UOLnrE65dP8WN9QbXxo1496LLdcTb4HPa9Mz7ZWqzwCi1kgaI7wWGX0wAqh1ry/y0B7O3mvAyNGPv9/torR7t+s0ug+VFEoV6FKrSqNG5VQ2v1hHi9H3HWVRqpZoIsTlmPnSqk8mAeIw5Xdp5noPhdlznUXvey3is5xnPvf12zkPzvgWZenwbgX1UHts1rp2gwXy3lC5tj9ts7xnSD0svligxUPRZC4ztd+fR7DEp78127PCj5ctcz2+fZecE9qScdkhRYj9GrNdbrMcSIXbEGQzb1E1bI30RMGy3tfu23y993odm2ST5ens7L8x/oMuP545nYQrvJaP2nf6tbNFt+wLjPKYEjHv8vGv/K07qyOlGi1Hs2aUSoxkl3ptnUzX7Udq5PZbqymjAsAkCRSd6cn20xZOrUzwxngKQUkWbIt0DxLl0cAEMK1/2osIA8NBguLvfguyqfrNj38uiHfxb7dN+39k2s5V36el9eGOWQ7/ffs8H3x1AcUO7vNztfvuknLT1BtbzxiYdU7aZP4I05BkYdBxwfG2Dm0dnOB62eVwTO2yDz3XEmjYdY4kUs4kUV82DGCYdtDE20Iwn0V61vUv34flIk1zaZrd3lScwM9TBzw8gtt9dCqjZY5A9A+iKUwUgzfgrI/xhDtwA4swrlh9sM5/EN7OUaWBuPDmAPYCBwUOUCLFnOM/VvkuAeKm+q2e4LKZNPw5aAJ675ENVqnAZvHRRupCzIe2rY1ayRvKC8S2fce71tanTPUD9Yo0cA5ekO4FiuC45abXvRmtsAn2Zqrc98ZY+SnYSJR5XUke88qGKEO8LhvcBwu1ne5+48/3S5x7tBJ2z4y3Msd58Bh4fzy7IkzyWJdqV3ZHfz0Ftl4ftcWbbZP8XQmxdBikvLk2NpT4cO6mxDeXH8520hjg7q5JZVQHiKL9lArCKePLaCa4Nm+xom6LHNnpMLMB3E4cEgF0GxoFN2rTav+eA4YcCwmZbPzq8AH6fT1qQeQD6E7jH351tz0sqtZ7rBWS0Ayg2pM+hFSJttDhw2Z+xbLwueWjrlGWqlboemCCdadcBq6Mtbhyd4dq4hXcRkQnbFCFWYcBsu+wq4xtBcBFAbATeQxX49ww8FSCPk6n2OXSj2R6K0XuK9jzah8kXgPFiSmE7poehx+mpfEzUU9xLdYu70jXZvLHe34o/o9lZu9ueYwyw8m8qe4BnYJTO0uQKIObZj86nnpd6p4d6dqJLpH1lBBn+V6toF6i8xLHl4z/UMTrguDW0L9lSph0g+cqR3p4d0eJLocyTgM3gyFHi2r+QAEyHT9MxVCRkcUsAPMONMaVNT3BUaoiBAlyDNbbRB8O7gHC7rQeId4GSC0daO7JhqaEZYOadnfv2WI9zXl6UZ3vO3UquoOLXrhMg7bNvGvWLibLdapzGbbRY72FPby6XbDXbs0piEGpbti1p0EixOpkpJH5MUWJ/POElRyc49ltEJDuXXRcQ54BQsoHzahOmC/XSihMPFRFurn0nGLbvLwKUz+Pvy/p+CRzv4yR6WGqnzezzBWyAx4gjDqC4oTby1FPw+eFxJ226pcyEqIWJAtPY7J6WiAABGCOGdcD14zMcDRMcOKeLbIOv64ibtGmJErsCiHkBEMfOuNTg0M/2ux71GKm3HQ8HQpl4HoXa5Q3rfbbjycqy2Wb3qQfwaEx4EaGyAIzr8bSfF0DfjuMsGQdXlbq1iZB5vVS36AjZgbVElSK0fJojUFSleFklDyzcenVoeeQ1F0n5GgBHurix1QB3PfnO5ZeWqHUU2Dl33vwz96srI9rPzbGJqQ+M0fk8G3fn+OfRwzgKZrxBfWAMXt53n0M3APjFkJLZUttYyzahsgY4ME8RtqTOW3lf9FVlWBq+y06qdg525i+l7zW7Iz82MoNLHW81bVqdzzruXZHhpVphe209WooQ17/tbTtfeCyXcp33u0Y3tPN5Xz2xjx5bHMQFZFk+lwHx7VzoAeMOn/bSqKsxmWjxpTQWe56oTaOuv8MsyLOTdl03oQbGxmlVVlMRPqRQL50GB4TjiBvHm9xgK7BkQ27igE3wGRBvo8/p0pOxgevA0DIYngFhO70fBgjP9u/s07uxe86hxQysR1EXS/buOcC4a7/vkgkXZRO7v+pH/fg86ccDKO6QFSIZGGO3d42IQUR5Xa15w61WqTeAVIEw5PfwDLcKWK3LOokAMiAutROF0ZlL2jTyNjUw2nFQn5HV2N0HDLff7wm0Lj0NY9+xdpUlQFgYzy6gvIN66x8+NuoIzH2iCdWSFXnj5QzpcdEu5X4Rao3uOmW64Q/lh9Z5RM2rVaypky07BgwYBiMB4mRctQqgp3xbQ1vHVu2zQ/EujPFRgfEMEF9AXhAMMM6/2Q0ma2WJ3deyi7rGSXP8Ht/b8XX3l2u6jMjSiwUk66X2gDHo4fi0lV1V6nTLky2P9KaQ7q8GuRroerjUDd6vA45W25w2raSgt13rtAXDF011Xro3ba3xEvWWlJvv1PlN/tD8ripP6ThNL5uW5Mc+jjZLM7nVgON9gPEOINBboinvfsWBcdsstmqEB+TxzxvG9m2IrqNllnYBw6Ppvan3VyBs/wAgegaOA544PsXKBWmqxYSz0AfEGhDaBlltJS+7FKkGw3E3EO6mRdvrA3bzzXlg2G7fdZxdx9qXHvY3vbmPzvZ9fnsetfs/jI57zHrxAIobyor9HO+aNiggzIVKl1Q4tMA4n9gYiQTQwPCpC+aYlPQmCYSSLuKygs41xDw3+ouRPzf4W+ZdTIXcNQ+t0b0HkzwvgLj3PFqjdocyXDTSH0YQXJR2gZIdt+5hGi1dSnOmx0wEXqz1b5d+CZ335xIXI9Mq8VkKdRnQPHOvBbiEii84kiy91ILBfAAzHKNEHwkMt9SCY5Pxkr9vgbEFnAuAo/quZzS0TiI2wNiO67xxt9suOnd3ybP2c3svAFTRYTY7XVAeWLDbAuAXW7rmrqWYlvYPrBG55f0YZZ7PVmgw847a+QqzvdPQp+oF4NKhxojVeovj1TYD4jY6bNc6lTHRLDL8uKKH5wJkAMWp1365IDNmBzEgJ+2/a73evajDozvXwd3laFsYZ3ef8wBv99xIINikUedtLz6+1OK/85ZiUnCs/LjEv7Ouyrv4V/nUgt8KEJPhSSB6IKyB8XiLm6szDC5I8Cd6bKIA4m3wVUBoGzym4Eo5QyyguAeGu0B4h724NxDedZyL2KYL9MjrE+9DSyDY8o55f+lBrea8ltcyJNrjfJdlyx5AcYd6wNgKFxsdPneCt+A0dvbPKdPpqTqAfMQwRHiXAIBZe00BcWSY+gnUadNAAceoDe1z6TyD8QWgbgp1tUO189JB5LX1IsMY6Q+r/Brj1m7LH5eG9bD3d8mb2Xy3SFc8EtXSeWsTa2bHvlQ7jwwgrpR6jX5nt7VVsPb7ypBfqGlrgOm86Vc5z6U109oFjs8Dm4wSpatAcaeGE+U7GXK9w2KGRm+sS9/tHGvHoKiA0y5QZgB7ZRxcHAh3+b4CxjUgfl4zTR6RZjpS+dPcoyWjfJHa59bMt2pdYqCeB4yqE7Ua3y4UI11BMTtII8t1xJiWX9LruWh0+KKAeFbykS7hMpY6mjf31Dd7HNcA4EsFg+eBqPb9viC+Or79jBoYN9v2XqapBcb6+3Mu9ypQ6zy2ZQy1A1lSqPdxJHN7j2Vrfh6lG7zyH80cU1UadQR4DYTrETePtrg2bAAA2+hxGoYcIbYlg5NZaSUyIQRnADGy/WvB8FLH6O51ob/PbqfqI4LhXcc+b//LIqvnett63+9DrY7v6PwZ6F2yC/YBx/uOa4EOoLihnse7beIjAsY03Mqp0ztmDVMdKab010mxBDHIAd6X2iatZSqNPpC7TduuetX5enSeIXkRmhn4uz/vNIB7zLhEM8WZT1AOt+P3bG92hXkuuETTLrLHPec3O73n7fnz+wVAfBGDqvW6X2GyTXyA2ghvDcm2rKHXF6C6ZcqTprt0Nr6VyLxaA1wN9RRNZofE61yMMPuAEt/PGtrYceASAPFFlVeSOxUw7siKGSBWMNwBnXYsIhoTOLbzzRqs+1A7povIM5XX53nfqexTmb8tMJ4NgJZ5qWsI7B7uVU+f1uvuOY97wG6fKHExXhvg2zqXUTZTfq7ldzkyFQxItjWMgICdARjWUxUlbpd32RUdbt9fhHY1JLusdYAvXGLxkGR7PMyOu5dus/IO/fnRHsfuUu3P5fsO6J1FvtvPaIBx3naJToLngSrHVOd+KlBWnlyab9y+6YDh/L3pvwEDgC0gFp4sOjMODD4OuLbeYHARU+o0rbXE2lRWAfEUXK4dlnRpyiWDuvRoBYab+XRupsLiDeh83qVL9rHLdvzmQlHiy1IVF9XHD0l9R/HSvs+vHjyAYkOapqnU83C3gqTbta9YgbKxMRoz+KIEiB0K5UlZxsKovdVaR9xrN98yX1lHORl43IzNCra0T26UYI3j829e/apHvwgQ7n23t8GbQFAliPrHzTZZZdxiZt/OjN/etXQiPhcBxHa/R05/3uXZnJ1wx++uKM2a+DDtjB63S010J5wxpCtAbDvCU/PTDITJRJ9kfmRwDMNzyl6OkwOtGUIDKJea5OwX/ddXOy87l20NxPqbcqAlhd0DxIwaHOt4DU8wpXnuCl/VjbfS9vMUZk827BmJulADQaBEs/c0FpjlN10Q3Dv+QpT46gNioUVnFUS16UVnJ9WOY7VpyKVBDgrOWXh+pJ3hbcpmAsQUUEBx2pedTJe4irh2tJVGlsRVR9t9G2ktUe8Ztr9t+5cw5oD4kQHyPo60yiRY0HUdaq+xu3TeEjBe2tYDA7t+39oeVm/vkCu7ulHr+LuNty5wf64ClWXF0I0WV3oSMDqqB6Qbm0NvtdWZbHgwv6cKDOcosQfiCPijkHlwYodN2A2IQ6oltsuO1k1lka/pobLo8r47Pi+B1kcEw8A5gPj5mHoNRGjfZwyzLz7o0TmO4tlhnyeeO4DiDrUNCc4TJOdSo9gFEGNubGvHW4cKnNsW85q2VbedNx7hHO0RcMvQc6TP+XzN+FvFtS8g3gcEP07MVRm8zbY98Dg3F75XSufSwdrNlSG/cMzK+DECfMmQML/ZqxPiEu1p5F8Vqpr4ANXSLzY6dSH+tAYY0yIgtvOBzD5ibFMGwhoJ1XouJojwIJgSiUe5CeaaugirBlh2W/6N2opqLBLPATI350rb6ihxZ61mpjkwhhkv6XEBOJJGZPncC9e0dK32enbxSjt+vb7e6+JpEr/1DO2l8S1cDyVnaKX8X6SAWC+hB4xn+15EX6KRbbNeHOa4RreeC4ibaHFcMXAccLzagohLN1suqznkIezxSPZ5bvPoo5zDln9UargFIT1aiIxVK17smus943cPOu96Z2C+Nwd0jEaGlO36swVQb8bNMzm3wJ8Pa8Sn372YosVEDMeoeRPFnrV60qme28WjWd7qzcDs+VF2TJEBxC1fIi/FFAcgrhnXr5/ieNgiMgkgjh6ByxrEOWXaAOIQTKlgAsc75769joehfewt7ny/dIzO5wuvsvIw1Btbj5ctr5zHNw/LVzvsmBeKHgkUv/GNb3zo3xIR3vzmNz/K6R8LOSNIe8C4J0hIt3WecLeeR41DO+Fsc59kadrIVwuIOW3rKUwdHydgDI1etwLNnh/lsxp/51Vo7g2AL8oslVWAviBoBFQFiLMy7f8u60vSw+s9b479MAZCNnD1i/Ms7osZi11aEv67Tv2QhtALQmSaggAZHC+tibpTdi/NpXTwLiDOLEkp/YvyshJauwigREKTO4o9MiBeihIDxvDN+DEZk5QGx2T26T/U2XxrgNbMMDT3gtSQsJNhCWymfS24qCIEeR87OHN+QePp8KljM0iWsLLncAuT197sh6EeuOoZItSMh8p4ZRx2/0Z+7El1wy1uXi92rBeKHEVEdjNgDKCKFveyOsKCvsxHqAxums+rtE9e4iW/Lzw6A8TGGA9rxrAOGH3INcQtIG7BcC9iuwQOd4FGPc7S0nKL6cjNMZbOMGuMZF9nO+uAYfg+2Q0tCNw1L1v9CQOMl/T40nhU3u4auxm3ZrexlXcWGM90PDU8bj5bMZhtu/bcV5xBjc5sgbHN2nDEYKobVJY5uMd59FlFMunS+orS4E7BcOJRF9LPByAeR9w8Okup01I/LJ2lJUK8TYB4ig4huASKmyVHdcWV1oEGzJ91c58uck932lhL+mRpPz3sefvv2rZre3ffJbCuBkMr8DC3FVUf8kIAqXe/d9xnslio2b3YL3te5CXw5SOB4u/+7u/ubidSIMeL268qKO4tK1F16cNckNjf2qdb1UcBjXGYXtv6i0TOFaVo07bs8kv1uQGdrQkCJ0MXZiIvALB2e9p/NuEvA/DuQx3l2iU10BtDdx4xrpnU+gX0dKxuYCTjt0I6ezLkOYB48bLM/V+MDDQCd2et2D7DbQ2hK0x635bWRLVecDuPhU9p1jxaDGyTYaFGd1tvaIQ1MQFqbOsri5GdlQUhr9uWh+F4tk5xP7XWyA0IF8v78oByxLI1VPWYVIPgnY4ZThAvXT8r33AyMMpAipGRDSDU6apme88pxVTGw05vLgogJgbFFDmG4bfKGJ9ZEok3MZ+/+jzze2NgV7KClm/PArdWDfnaaFQt/vciMs+sB4ivuOmdeK8U1NvyBgBou8E7ErdCSE7l4uhqDqzPsDVw8/c2VbrwogXEyptthAoESds8ilivJgCYAeJ9IsO7aJ8oar4UK9OSjHuY08/qJ9v7t2QwdsDgedR1tuUv7aCKTbU8cMyed693weLYjfydOa721d/nODBsGvWLIVpc6UwUYAwglwACJcijDtviBFi+3wS7fKF5Zm236SAN7qq06VD+2AHTMYOuTTgaJokSs3Sa3kSf1yCegpsB4hhdiQ7bKLF1alc2jrHBLyKz97WPdu3TjgfYHwjve+zLogoHdOSCtQnabY9Il8JTlxBlfiRQ/JM/+ZOzbT/8wz+Mb//2b8ef+lN/Cl/yJV+C1772tQCAd7/73fjBH/xB/Nf/+l/xpje9CV/8xV/8KKd+PER1RMp6uYFa0VtB0m2YMQPEliN0H5SUzRR1gquFrkaHc30Tyueqfw/Vs1WBMacxVIrJMmlrQLZjbN9X92thAl4EaO1Slpb5OoJlfqxioM8MXgWTVHa2hyUYw2wPptf1qLvbzYn3sBnK/nt6uRYBsb035x3rIQyhF5JcM9csj0ZzAW1TvHOJKXeEt4pqFiFuAbExtLPh5WR/ODG64VEBYnLLc8I6YUj1+mw+cv4+DTh/r95WnZd5F2JUfGrkUYngEBCNxCA9aDMnGVUTFY26VUveGEO2BcWyfjPLfVEDUwbZjNHcU6uj7VDM/Sg77MFDrWxYEmFZ7sw7Z4tRyOXeZYBuXnvHTM/CAuHqO3ONL5YUasDyXCrWNTrTpnCeuwyTMbRnDivlQyDPrRwhroztGhA7mz6d+JV9GsbIWI+THvKxAGJ3znSMjKybL1Q7bGWVncdsAUu9XV67I04v++mEJUA840/dx75HK1MaO0mfc3aw9Uoy5idlo4+J1MFmzt9ezwX5qweMrzrNygDNfbBBHt3XOpBnjrl0f2d1/qoT2rRp2+DOpkyHwpvsgHCNsT7eAhDHFDPlSLEsvZRWWokdQBwKKK6CSy3l+WcmonWmoPm+5cGZobjjpjf6sn1/bvOsve3mPfd7FLK6rGcbM5oAEpblxr52pg1eZTnz/DLbI4Hiz/7sz64+v+Utb8F3fMd34Nu//dvxd/7O35nt/3f/7t/Fv/7X/xpvetOb8Pmf//mPcurHQgQspn/lz6hBsgoSBaUZLPUObidFMqZzCmZ6ZTUY03loARADyFHF2oAqs9YK7tnSMzOvMsorNYfL73n5u9719mh2a5oNuwSS/UmrMNU4R7O9OUUBFKn+kzhFr1CiVcrszP3r6Bm0hBlYmenhtL1qotK5vOpSewaEfd9e48w50w6i2U+VwxWntrGWjRq3DX16ze8WU5rsX/5B+b4o9gQCJxuVKnW1GcmSLNvEDpIS7DV1OomAJQGfnTb1WLt1ec048/xzXM7RgC+dm5q9w5xiKjFFpZwIE44mVVvvEdRQbe5FU7s5qzG2w6QERhwh6pcha1a5ZK2/bqlzz+p0csMLHYaqok72cL1t+pVR/sSomoPZ+zJz3GWZ3LmOzjXsXrN4Fxp44UkdwkotMFYK3C9zkGPs4k1CV84paLJGt87Dprttnpfps5sYwRPCEYPWAYOPVW+OXYD44ssuzbe1OkD3iSjAONsY+4BklRtpjs8Asb4H+lOpmr+FH7u0oPuXSkJkXLJvLgmpxj5/tbxalWUsyeg0bLG7ChiuGvjlcxgjvxrsBXlsXwP/BaaeI9nqSgUzjAsuM6o/ykBUeYy6IFhtM/3sJhERYQ3E44Cj1TYtNyqGWDBZGzFFiytAnMAwB2fkgJ0rZfxVOn2LbpfAXE8ZtHrlAkGM1qFX3cMdv3ksdJFxA7WdCMx0nXz1iMuZXoAWm4ZeIl1qo61v+IZvwKd+6qd2AbHS3/7bfxvf+Z3fiX/+z/85Pu/zPu8yT39pdJ6HzaaAAUWQdDsZQg9gKNU/UKA6AhUFiIXk7WIgA2LbBdNSfc7C8L2JMk8VbY1FPS/PhUQGfCgMsi8TtMpsiSmzkbtjn2ZYFSBuQXLv/LpJDVcyhrkup5OjQKiV6j7X2wDiHghqDaMsb/cQWIu1Yud5IHvf6bO48lEprpaXsDSrJ1ZeRP/e5yNWxqMxHI2gV4VLFY8ip4XZdU9BSFEoeZo8sABiL8uraWbJUirz8jh3zwcLiJ0Bwy7XMCvAqq89Z5sQy3IWsQCZUt9shF5Tl+lsZE7fs7kf5lIV8EaWV4cEjK0hm3h3yRFVORsbp+BOqngElcyrwHHeX/ihRIrTpmjGigWje8ej2vUUba35i63ZltWVheqIsTqutOxIt/WoyoBqgVAyxFt+rOoWK2cNKoCMKAb5dCwRqnE9wbv40BHitkP0Eu3SAXocSSWfA8de9FjvTz5CNbc7gLjVD/XRzMl6Y++MmzrfLci1Ho/OnG4WMGSQRUavo+j2+SnymAS7dBzbCwDoIsvCAEZfvygcyTwrAQSaOn/jgLGZj9Vjpc6lGmcVqS1r0qarvhvR6gp57ybGdESYrjPoKMAlHlRZEhMgLksvUakhjgYQa3al2tLG9ivjTxdEKOU5PWC8i9QuszahtRd6hzDze7HBY/v+BaRdt4GtzW4j7I3NVN+Th7jPzeHagS05mi+7lOFSQfEv/MIv4Au+4AvO3e8TPuET8BM/8ROXeepLIp5514DlhiHF6GxaUs0iO2ZS2CYEqtynkoqo6ZxquAYYA7Zi9p6yLRNRG/6kyyreNNsMgZNQA5r5mxQLNYfW66Hm83nUCgWrVHogmXWfXRqqHFPvWxbIeowdGMR6slWRiuGL4jw4T2kahdxNW837NYMwynXJ0TEDvxXoNZqqNSrs6y6qBPwlS5VLJgJKBEo3GOp5wOuGNa1RSekVRtgDucEck/CmNcDbiJTxglfHJhkmDwwM0TTYksm4uBzTLuoZtcYxlQ0Z4gSGAediBsazw7HKlzL/ImIGxvlUyfjRKPEsXXUiuCkZQ/pqHQUot14zYOIAYAIcEWKKqpMpG8nnLZ66+f3Y13HWgivjNKN2W/U7qg6fjW6Hkk0SAXKN0W0dauk+z9OkUYxPqp/P7PPuq7sCNHdWFQM8IrKvSo4cMeJOR5UFR7WRm5vccT3PqrrFNk2zAsWc5yV7IBxHrFKUWJc4VFrimfM+7+vIaKPrpZ4YOYtCwQqjow+q8yJngVVpraYTb9m5+XEl+3cYsMSzydjrV9DOV43S6SoY3WixGZtm5eR0eXVK2nnQXIaNEBOMTF/M8mo/c397Mzb7+0deP/p5oEpnLujLts6fqTS/q2xbKq1XM1+qDds8p8yPM+epvudcwhDWgB8jvOMMhAHkKLFGiqtll4IBxNkxbV51ruhNIGRbNjtMdBZZG8jeO8sylc1KzW+MjdpOzPR1BYhb+6x1gJnf75xil+wwPe9wlbrVIIq5jUC6t5c4rp7etN/t4sHeo7gIXSooHoYB73znO8/d753vfCeG4eqtBkWou09bsoLERouZlgzPdJgElvI2NcQiVca1Cg/2YmxGo6jjDqXdA8btUj0ZUMckSBilhrkxCjmDux4w5ixoKgP/PDcTdZZ9qWZuY0HbTd1jlldK15UBsTV648LwyPw5gKMRmPqeOKWuG6O3OoZ9Bs1XWdEuXISRMrme7JxLBhoQp/ehJ3TR7Nc7vxVqV1/Hzxr6AKiNcdT1xUs1xV3DW4mMgu3VD8/AMUrKvgGTdZS4BsS7usoyUBm3s+VV9FQdwy73N3CcwbBLf62MqLNPzD1kLkZ4c3MXAXFKh6PJ1m9ypUjZUQWUFRgTEchzapTCpT6lYYZu/T6jyCmdxB0GInMPKxlhjW2g/1sqb8Qe4hoY6+97fKTGQ3o+1WvnPC8uMFzItQ5OmPIiA5ijcXJWy6alHbKjKh1q1sinigbbKNQCIK5AMee5CQfEEcCROI1CSslUsvW9lvap97V1wUSMyHUKdc/hbiN4S52tu7LC3htG0e8WGFjHAoyBjgRY9fZbYxeYPU87luwAlgP2druQTusBhSwrDI9aXs3nSydg1DxJej8sf87GaD/sMb6lz1eclpzJwgpcRYtl/4UeOZayPCXjLIVJo57zo+gKlv0AxBUQrgesh5APGY1eium5apQ4MiFqDbEFxMGUIBp7Ng8/ZSHJLTArHSw4Tua2XLrkpG+6qdTnkZ2LQB5cJQ565mUzlspZPTtAQ7vGWN2gzlgXjlfEA5WdW2BsmdTKlIchlS8NINbXJXn8qCzqzt9lf/qsz/osvPOd78Q/+2f/DG3naaWv//qvxzve8Q581md91mWe+tLIUYSjiIECHIphqcZl9Tn/BjPjkzLo4rRGaZqIJlKsCt5preJEcBsCbSVVJKeNcPkrx0+GMIpeKykwZRwVGFbhsaVyvq0YtPnPNkhoPLfdaJX1tPb+0rXnukq9FxXA1r/2WK0WhFHwyILGGrttRM8loWn/yjZU4EZr0mpP+zkTxhgI+gzKANXgnf/V+1gEsAdL94yeyog8x6xuDKoXg6J3Fe8Jj7b8qfuRed8jRscAtXLe1g8H4QunIFCBYFb0BRRqxDOuGBgYznOO4M7rRxfGlo1cgnbV1OUmtOyiSv3OB+SK/x0xvItwTjzx+kfEEkXW+5YjypjPvcRXJRqg1yv3wk2A29o/ht9yvW2SdDmauPym4jkYo5fQ7cppL7MnE9pnaMfffO450exSIVX3VJsOqNEQk86ZIwEzXjzvGqysrhW9/eXS/L0qVPRfmksNP854tMOvPWKrJxmmuVviTS7zsALBk+HJlKbpAif9KtuiB8IRwx9NAlyjy4b4w5A15HXsra6e3beOni72BSoetr/J9yafy4JjM/9MRlhxvhe7o6S3UtHxwN7zVwZUbI/eNVn7pJchs8fh85gqXR+BSm81YGM2rSrwy/PXfQFxdZ/30LFXgM7Tl/p59syaP6UquGLkouXJWb8JA4iVN5mAsALo+pQdU0DJjCgRYleyIHROJzs2Z1hOJLy9paKjjW6uyywMDwC757q1bTG32SobdZ+p0MzRYmciy7nZn90+H1J/7BVTNp8XLnM2Rvu585fH0bEhu+ss7ytTdlBvLvboMuqLLzVc+43f+I1461vfin/6T/8pvu/7vg9f/MVfjI/7uI8DIN2nf/RHfxS/9Vu/hRs3buAbvuEbLvPUl0ZLtVHVNjjxsC0ID6WZIsuGlQFpsWZisDB4DAKIiUoqdTGi0vGb8bZLOTBT7tKnggRZcFCdapzmNzmIx9VrB+uUFhEped1QTq6eoMbgbymbeiS/J/NbmcQN6t0L1KnhSjNAbGtcZp7odDpZHkb2i96u0FquiZPRy+Dq97MOsR1A3PNu1U4N1N7Hc6733AYq9hi7BEN1q6lIRW6+u0LUNvQpVPNnpLp2UVPDunOzNaiQ5pKJEHfrZk3aZil5kDFGEt7hFYOGCBvBpWZOlAZ5toayGNYCjFE/cx23pgsSZvNS71VrZKv331M6vpN06cgE5yKYgRj9LIGDWA1nkz5tQcg2gY+pvj9Zprj05+X5kCOpsXZqqCBHdogXpm4jY7KXOAkvarNjOs+51JUuZJX0fp/Edn5uMZ8NeuYq62IPWpKTFhBfdTBsyaVUiciuRI1bfZm+i8kQDwvHWpRxjKwrrTO5AsRNqqamado0TjDAnhBXDO9l3HbNVqVdz8gC3lbfBi5lVDnaQHXkuReBlmvvTyDVK7N0bf3HSIABVaTYOhJ6YJGNQU+UdJw2kyOzk/2h8kIHrHeduebeZjXfyKxdEa0lvswq8zy+a7+j5hoW7JZ5QzCVy+2OO879AlNfZ8715YCICa70yVk6IOcflfmVMjeyszTxZHZCZWAqEWK3FX48u0YI1xhujHlu27JEW96kUeLsHFbnTs5WaiLVXIZLWpLDZZIxUp07qYLqyKxqzpu5rnpmL5sNoEaWWedOPvR5tlp7Ktrv9EvH2jXe6lV/xp3N6X6J+jWrM+h91J0tRqgO0siVdqg9Z8Q5VNlQjwjALxUUf9InfRLe+ta34ku/9EvxK7/yK/iWb/kWtGsWf+InfiK++7u/G5/8yZ98mae+NOoJEpf+T0nVMXM2vB0VJV+B42QA2nVA5936+grebYFpcoiDAzk2wrjMODV0K29z+bYobzX0JycR4i1loZWXk0njZRLjNStHJvBgUk5iMUS7qRELc9E2pqhSL4A65aL6juxu5b01Ys3nNsVVDeFKAOlhrOXiAMfS+KfcZioOAP1TBs958WXX+mLnTXOq+6BjYCrAON+juVOj771rDEf7XXvPlsgaPuXhXFFabrRlFX0ubUiGd2/3WVpmOUWfH23dbFunmFIzwQA7Aq9SaqbWEgNogXEhA+SslqsMXZUX5js1LOUQKQNs/uAkGgx4F0vkvNwxOAgwJpb6rdn4shFk7kuTnqpR4Jw+PaFKnQbk0USfjONkqJB22E+RLGZj5S4ZyNZDL3fv3HTWXhTXAmKVwbIvMFOmyXAuWS86xASMCVJ6QXoNQMVPvfGbz726YtU/+9anvtDk0zg9hQQwXV4/fDIzzkG7wiM7AHrgv+JPYO6QiahS9+toVOHJDJA1zXqSc8WREEfGYMBo7163naPbJly91SCA8jwDEzykJGFpWaacOp3GkJY4L43ogK6BV2qIqV6ftcnwmnVvNkQQmSWOK+P8boDCUid1AtAC4lktJmmdb7HkKdkZ6QD9GzMb6I7vqs9cbpd9VT42Yz3PkV8uxADiF0F0uNBSNkbRl4OLmKLwq3cRMfgS6Okfssi4JrtuphsyX7KJ3sq8CseE6ZgxuJinQJ4jOsr2vmdAXKLEbkuF901wBOkncBLwkCUAy0TS7/Z2qBg9rW4vG0bJ9nC7v763ZQBVoKZxVtlD6jiVh5bGts92+/2uKd+xlWfbrFmexiuHJRGSBME9KHw2M+8xlyttT55d2SVW3lowzNyzhC5Ol17Y+2mf9mn4H//jf+Cnfuqn8La3vQ3ve9/7AACvetWr8Jmf+Zl43etel4HyReiXf/mX8a3f+q346Z/+afze7/0eNptNdz8iwjRNDzX2NmUJsPUVEVIK57LHOxrl3qbAEqe6VDV+o2FoEyV2Kf1DwbDbAv6UgI1DXDk4SDMQAgAX04RYBltValVEiRJvCe4spT1ujYdPjXBH0PVV4yAx4ujTIX2a255FMKX6DIZEffL7HR6ewhdJMBmBUnngWjDcc4uxGrUlFaVqgGRAceudg54h1RKzAmNriMjjBohK7VXP2KXy0qsb7d4HPYX1/i9cY/3ZgDirnOy+DCyug1fJb262XX1lr+lepSu8HXOJRgEAc0k/7KXcSOYFquuusjdaQJwVb21426627FmiUCOnZZgs8JmDn3TWKvpQpUPapnjtM018It7wMnfatMs2jVyzxqzxHRg5ijfvnk+Fj1AAhu0oagGxMzVjdrxaSlJ1plZganmzo9FyGQrMa3qvuSxQh8mCg0jPU2WVZDkx9+Dbk1N6HOwS2PfIEWM5UDEGstPsHM3czSrCMiC+7O6al0ViW7aCtcwyjUIBgON5CjVQrtXWyLJxHleOqoidYNhNPKv5d6Fsy8vArGWuSyYW8jgK/5RttQGmyzaJFpP0ztpIA0pGl2ZjwMWkX4oTwdoZtoZTHXswn7nc3Cwv6pUkim1RstFUNjW18/ZZRUA7FDIYeX1fPe5Ss6rqOPocm81ZNXGOKCnI1u+5XFb3PD2/+2xb+zsyatHquQSMq0h379q499zR1bVXnZQ3rb6UucaYohh1jjgHedxs/pvnmOeE8maTJj2VKHHRCcZhmrazA6YjgI/DzFaKmb/0nNaWpVIOoBHioGnTyFmWakpJJqAEPJhZ+lgEK7NRbDuU6+1GMI3tVJw7KMBYzdaZzVbGVGUmNaV51P5GTyWGZboezqfS37QR5O779tg6Tmtz2ntQ6eMeU6b91NFU3e+0IUKAsfVQ5PMZmdJj8KWhd52DcowMhpnANjX+Iemxdbt63eteh9e97nWXcqyf/dmfxed8zufg5OQEAPDUU0/h6aefvpRjtzRQbBRUbXwPQLYqIxEGF1OappHvylzK4Ey5wVVOzzQKXgWGmwC/YfgzAp16xHUEVrJ2KBwnwNMaTM1nFANDI8XiWUvnOJM6YjVqMxMmQMweQCTxcLMaAkVJVBFj5trjk5iubmJRhAjK6Rpw3EmBzF7r5gE1EbVsOJmmZbN6xZZRkqGtqZ0iMAHtiCuAmXK0OKdQ98h4y2eer97uVsmkz21a1rxRmhm/jX6Z+5CjYvY6q4MiT9A6Ol+2X1USwGAhHQBWMCdG6hRRO62oZHBY3sxULCeTjmXBngHE28KnmgpW1Z9GwUVxAOJK6ufz2I2xXc+JklZZhDoAU+4wS4VMN0ObhpjUkBlZw77cQ3kfUYCxzD+qxlnxnZln1TqwNi3OAGIXuPoZiECRRWEyUmS9nbsoqdMNj+ZraOTKztqh6vjGANFzmSiHNVa695LkZuWO/O13pLq95qkenmjlQ1V3mbdz87rjOl9wapzIbHWmzLKSninAkBIwBua6K0dd1ehuy4wmLDZ4y3xp06iT40q/jwMhjgCvojkn4Nrnivo5WIMs1xCnXh+l54f9rRyTGYCXbIwIzqUL56VnA8K/7RJNdimmnE4aUVJKNZoe9P7Vc7vyvSp/ZZsiGbG6bcm5Q6ZUqJmjvefZ/lYmfj5l9/jtFxkgpA+9aHCOPufz6DW271WW1GMvWTtYNqjPAwxXiKy8B9DwJjC4gCn6qqyh7Z0z829WdeplrlXN7nqAOOsH0QPhmEFHYZEPqswKK78jAaaO2G8ItEWVFZJxqgZ4kg6QIBaAoOWAKKlTOt/tzUOZIyV4YW6mAmOdrq1qsHaasorpSWHBZ9fxY+YluWIn93mmeW3f7zm3i6ygelxdOUCzSLb0dEufkr2Qm/Vatl7i/T1pFh1W+csoDtVHoKvXArpDX/VVX4WTkxP8/b//9/HVX/3VeOqppx7LedT4diQ1UgAq43uKmkgt0aqBIiIRPDGCUaI5Rch6vqNR7kGjw1Q3udIavTPAnxCmaw7so/weidF5t0HIMMaFbUyQ0k3cFvBnxsMeGUwkqSZDSv9MICsyF1BvZrIA43THMqP1rMCG6xfAcQWMrfetd3EoBm0xcBtArDVkFhzbkwIptQYp0m0uhwgZ4CqTn1O9X0eGl9OngdpQ6NWK9aNdtYC1qa1V3Ur7m2qQXAmjChiT/ntEafIYqU3TzDyarklSwZB5c7GhT6VkkYW3jRLPsjey8c2YO14kgsiOwCPA4zwFiIiz4V2eeQHE4uGs6/9z5CfImDMLOc1CkfGzST8+N504XXZJMweYSqf1fIu44b8WWMb2j6tXQA6eHcMzgwHLU21BhvQiUSp2KrJ8oDZwKy9MVkkFisvpavaxxgKjGNqRoIY+t+UWvbF1rkOpbXjzYqHirAKsw6pEjV0xuLXsiHc02rL3sK1f7wHipomPUzAcytzUemIQENYMWsUc4bXZFG0NPlDSOAFk55WAYYcQpCGmzMMCjMkxOLI4mBMNLiJEwPklIMCzNGpNN651ApV5aGuI7dKOpvGR8ms2dAFomjE5naJGvxPq7Ch9FotAXl/n3896JpxHM7DLhtGb7/R2mG0ZGM/+GCVKjK6Treeczs+0kn9mPFecTS1vtvoSEGCsioADwWs6deUgTWSvv7G1bCTYltRkZ/LEOYsjekJYM4axRIpb+6l9n4M7xs5zE0BbwG+NHEiXywqKBxkzswSw8nNPGRT63XkPspdtVkLSDX9aUt2XeHXWuNHqRhs1tXNXV0chsTEorRAx15P1q10eKXc6MM9+GRw3mSU8P5XcB+WfhAHMSjUsk61x2iuDUXPvyldLWZW9MbbR4aoh6a7r24MeCyj+7d/+bbztbW/D7/3e7+Hs7Ky7DxHha77ma/Y63s/93M/hUz7lU/Av/+W/vMxhdmmX8T24FEVOgkRTOesO1eVYDBRvrip5q7gWhIk/YwwnhLCRumKZQFGCWpHgXPJSAyCj2EN0CMF0rc4KMwkw0xXWb7jUFVNaamRI41oVD5sIDvUwFq4So1wYQdOoc33jkm3eMGrmEQXGrfJj+1Mqh8iCxgjmJp3OTfo9F2FkiB0kKueLw1AjZ1CDIWqUy5zTDrFRqucBYt3e1hP3qF5L115zA4hzSmpzf+YnNr4NNQqSEVS5ya8eiW4oF2WjUcqfExwGF3MGh0OJwrVKzS51lJtr5U7TJqtCuydvuTbGG6MbRAgjJHV6UMVmlTvqiKBxhuR0zEjV+osyHjIKND3f5LzKtqJXHq2fXWT5Kl836qerwDhHhvV9F8EWUJ53yca23ofmpzxj4YvR4lj0+GXMu9Y+rXkHs6ySPP6Gb8i80VIUKMgJ5fDQ/gPFy2BkBXdvwIsJ9O4ioqIvgbnOdCBsgZJdBSCCCvijkqqZA5PWAE4OZLfLUTVxAcPBOK5MeYObONe2xxGgIebU6V6t9xJg1/TOEBzClLrjdgwycgxOayDr3CRIfX+ITuo3gdl52qVwHEFqsFF0DRsjcF6Shbr8w0amFB8RwFoWYAA6J2cwougF0RWd+WuN9w6dp9fqY+34ytrOS0Zzuh45MeffyeuOg9vjdL1gZmxtpNJuv6L6EpCRjdoEL4+z6Eut+VdgHJ3YjJr5uKwzVX4afanAOK1AYFcdKK8pSrwCOIFiHWfbDHLGg9beU3mwpaKjN4A21tODcrLPFfgyicM8Oi7ry1uZ3t4/C1C53j6zVVvKOodq/ai63DhprfOWSXUaUhZjKdlRs62KTDdAODu07DYApQBjYdxWp9sx2Wtp74/+U95kSqXqen7TqLeNFrP5XYeFdDm3nr6fgeGkL6pmg+cEB86jSwXFm80Gf+tv/S18//d/PwBrbM/pIqB4tVrhEz/xEy9ljLtoyfhWZW+N7xjklZkQyFXphyXVp3TMs8qqNriN4Z2EynBKGB4Amw2BV6m5l9a3utKVmvzcuI7RIQYnEaepKEz1pOVzbQC/LYJE0ogJIXKlTMEiVIvxnAB0oJRqjWTkZ/t5NtntFLUzYqZAqZNGbckImyoCZL2WOYpg6sus0atK0wGa/h1BYs+6ZCg7ykbVDJQCVWpkj/12RXxsyuy5ZKMC1kNtAXEjXNNt7B5KAf+sdcOVt9E7tf7gVKcn4FhTp3MGhyMMkCZSncOV+6k80fLl1PClaRbirNEdJCLELvGD1vga0NajVk4U0KbpYQaoV7qB4NRJlcCY9hnQ6FdkKplhyXlWLe+i95CkWWBrhORMl92PRPbNirQz19tjWDuyZ1Neoo2ZI99qxDXyQp1JOaPEGgV2/Moq1TRK0XUN6aWMEkkf6wPh7hhp3pOiRC4f9sqfX3LNxbbp0yMitgCcOpAxX9Iwk+rLSHU0qnVU2Y7nJn06L/WVO09z5tk4ENgTeExZG0wz+8Te8/wcIF2l1RgLQSLEITjw5OpSh3wZDB5IOtAzVbxOFEAs2WXqVG9Jo8V2nXXlbWG1JF/S3Os1CMzLVakeRwMy1YGDFDUGoNkPbdZD1u3WEN+DFrOguCsu5tQY/7PfqD6j8j5vn+1X/3hXWULlkE7jnWVpvYh0ZtuLw1PANvqqtGFwqQyJXHZWzSLFFgzHkrnhWkBs+FMBsdswpmuEcEzgMcJ7sZ1turbKQtVJVY1vPn+RB34DyarccB0p1izAZMtqxU4EQD79RWS/ZWXXdQ06XPx5J57ZmaXUAFEyc1lTkbPjykMcs5SixUuAeIdhqiA138/ZDkZndkDyjKj5y3ySMILqySxr1eBXkJBOp04Y1j5MKMAYZR8ddnFCwnQkp8Zp1RnvnnSpoPhrv/Zr8e/+3b/DrVu38Df+xt/AH/7Dfxg3b9585ON+xmd8Bn75l3/5EkZ4HvWN7yxQkie19bB5jnDRNYZN3WALwayjNlGt4JMw8duUZsLAeBdwZ4R4nLUpmByig4BHko6x2kHWKuwYCTy5fF7rNVZPe15PNIgCVEBIUYBxxVVp0keSSUjBMiAV5RT1oyZB01wZ6Z1OTKARr53dZA0Yrhg2e91QnA0JELfpdMUblw6Zahw1fSZSuk8OYpClLrmUjJHspdvTDb5P3diiV70VQlYhJyGblYRNw7FKuzceKkZRTvmEARBXlIiA0dUVTm1ESnmzZHA4tOsyAqoIqdTfKfjcGu/zZofX20SidP3dcOSKcQY1YO34i8IH0HSu1XlFddTHdtg1kWL2YtiQ4+Ih7eCwXGdjPf6odaVPMs0lg6G+6em3KYLEC1Yk5zmVuL4CvTQzWlmjUCjbjQ9hwaDtnrozmPqv8sYbOaHvq1q0NlqcxBqTyILYRBRy/wGViW1GSeZFRSJX3op+CGLRg4lyLw4ALtX2B7VGtQ+HC5jYFWBcRaRQnlUu+UHnz/BlrmVHBsOSqsk5U8htGewdwkqyLAaql1YCirxeWsKtrJ0qjmeeHHjrclZH1RDPSYq4OFwjJvI5Kh2jgJC8rBNqh5W+rwBxdX8o3yOwjRJTdnrnsiybwWENb18+w6SVijzhJlpc/rL+S4whXzNsX4LSCKwGlvkKZ4Jq/j7rKJVfei/I7Gdlgn1eXY+wHrSea0Tz7eVmU9YT1WsGC1dbZwKYpU8DKUrMhNGFGW9O5FKav6symxSI5O7mpuxP9aXfJBt2o5lVBRTTxPBnEdM1h+11AINZvcXFChDLYCO8czUfMpXMD5UDG8mq9JvirAaQQXEcCwjLumYiyeaycvqSqV6KCYVfe1lKXF6zw8qCTH1DSF20O0MmFHu8Ny0zLyV+VS9Yw3ukstfa13mMNGMtzjZCOkdZhw6ApnnL+xwxZpRz630iztelQLqcwNhsQD86rOVmNiv3EehSQfEP/MAP4NatW3j729+e1ye+DPrGb/xG/Ok//afxr/7Vv8Kb3vSmSztujxzFKiWsTaEeXYDjCL11EYQQ5TfeGYVqvN45Ups8uDMFvzEgdQJoG7G+43By6hC2ybCEA6caZuGOAGYH5ygr2xAIMXhEo6xzpClN9qwoQ4oUJ6OCvRgWMdUwatiXSYQMTWKI52ijS4A2Teik3VPUZBkUVmQV3h5ElnEXosRaX1ZAsekSjHI6Tl03k/MN5OQ3cEBwCXhGTpFYsyxWNnSNYtXxUX3dezcG0n2a/aootabCN8C4pMeROUh74+Rffi76TDUqMENEV4+WIlI2i6MY3oTIEi2mODdyc6qjAZ9aby8KvjG8t5wiyZzmlwHGmwj2zb03ToxsfFuHGZsmPVHkSm10FMCmER8kh5P0F5BO15zmZ5VapPqepScApahxz/j2qRwktHM2W0M0U7QZwFqgq6UTsThaAJQ1ip3Mvfw7Z35rjv8wdmbpWmwO0vBN5bFvAbGpDxc+4nQYuXZ1XOU6T+hzkN9ovReiuQcEaBaKgIdUMpHm8K5mS0qRr360WDRRER7KBgEOjkLKWCh8CSf6cogRE8VqPs4bbGGWJlnxpUajcpS48GQum1GQvAmYrnmEI4Ku4NC7+6X7tHyrTbVCNE7nSfQrbx2wJdDWZSCar8UhNeAqojsYsC2vLkeEW94s+xQqvQdqWZEdozZabLLCbKS4IlMzpLqOCbneMvNx4qMcLQaMfVDTbC1lIwORHYCGXxujXC68vNfTqBiq9kmvM5nB5gA9UrmgeAnJEM/XSfl6rSM6O1Jb+XJFqS1tULL6UpblQ+bNgWNVEpjJPC/bd6MK7CS9KXZsAsXboi/96QTQgOkaQEPM2Mg70UODWTowBl+ix9a+Mnae3wD+lDGcMoazopPBYsvGkRCyo0qcuuytzFd7CiVjxIK0fO3oA819ict5MmizWUppHim2FBsN0JZG6lzu9qzQ7/N++r557i0I7rGIjjNdc9GJTeClOXUuxUiZl5VTKR2QNTiWbSPOY1C5UncUSvaMHZ6C4cpWotzAmLTs7BL48lJB8Qc/+EF87ud+7iMD4u/93u+dbfvyL/9y/L2/9/fw7//9v8ef+3N/Dq95zWvgXCc1EsAb3vCGhzovUanDUMoKMr1uo0/CZAIwIHLA5KROyKaEzRpdbQluQyUKpd619OoTQPabKKm/E+BPHNwZ5YYd2rczIoLZS32Eng8AB0KcHLB1wEQ5bTsrgcQ4xCblbJMaBSVgLI23nBiyxCUtlAD2JUJFgUuESBlSu1GrggG60WKgz5fVxhnAQDGaAON5q4VlSR8zEQRtAGTuQxE6avjLtVIAyBejVw3fShgtKN7F9BsU43qJ2qU/iqe6GA/V+pM9oWXvW3tfCVIL6SjJSK6B8aMK/8dKnL3eVlmXyJSrIsX63cTi+a6iP0a5l9QvA4jPitdbFLsa36kGXw3wFI1ymwBay0llXiYlnAFx0RUxPdNc+x+c7KO1xDq/Ow2/KINiORMPDA6SDqognxkSiXKc+w2wuS1qfHtj9NTL46C8qgfK8nf6K2BX09Sku64ElY28SXWckl5u/pT/9DznP/56bi6h57TdGq7WiWblBVqZkR6SRtbU884EQadsgDGhKrNAzymQx1A69OtcsPWhIM7p7qXfQNI5V9joBlBHdww5CCD2JGCwihRTxOACXPQVAGU1dprGkDSlxpAmGqU1/hVf2mZvgUt2UGC4SWTHdCSD1nriDNI615VFfXZgqdOZBBBPBLdxcBtbw5seuxeZHOCyGA+Ok1OZMaW8e+/k1rTgJdu2xGB2RpZQsStY5jmpzNC5q6mtNguiZ0Tr+5QVxRGpHEAb96FM9lwSkuRPrhEs0eIu6ZjT87UAu9Lt1W86DwPp/H212zmvyr7aEBdbnJB7n+juyrJGjs6WxDN6txc1u4rkjN6st5csDqcXH4GVm4RvE0C1vFlnVhUb1p2lHjgasa1AcUxBF4Z/sAXTEbZPRLhBxjT4AO8iRhez/SznoxSM4pLFoDp7S6KjEyAeTxj+NOaINADwQIhbyno5ZzsNJP04khOolMcZoAYk29U4Ls2z3qvsLe+cTp/ek/2z+qiyLUU3VsFSl2RLH+6gqp8nxtyOM/zTXI/+xO5qnciwY+Xm98YmmKV7O92B83XkKLAGcIxcESlSgLE9j+0BU0WHlS8V55jg16PQpYLiy4oOf9mXfRl6axkzM972trfhbW972+L3RPTQoHjJ+AaMAe4YW07aLAmRgcXTVTE2kB+gM2km2fBOQsRvOCn79LeJ8GcR7CPG+wO2N6U5SCwjlJx60+3NAkbbtbatRySGpBbncyXBpXMzpSR4xyXC4xk8GS9bqiOuPMqqQJOibLlub7y1oGj6Ri5lgVKaGDRNV2z9p/EiaroXFBgSSbp0sMcqBgVVihyZQcG8/7X1LjcLGSqvM8MBmflzIwETKZ/VQ1oBCzO4JFxzxFEFkDPnv6KkxreNSgEmMqXAwjFc0hwa5ZmigzegOBs8qTbJbSgpdsCfKj8mB5WWM3TAME1RQPHZBHc8yC3U5wOIg8qlqFcqdZCMDsqAOEaHOFFZS9zUa/Wax4GAOKTHOKLMiWSsijMrIEZKO/WNbxsNKPVbpuNo8tCLQc/Z8cWOy3rmCfA6ZsQIcRSSyagAskMtg2FPNTBW0LkHOFaD1n7u8gqQFDkVWZF4yDYdcuY+azZJJWNU2ZPolQgxKhJuEGBrAYWmnlpZmBtv1XJCl7lbcqDtE0m+KqT6ruXNkNr6uxRmd2kByYjirLLRIUBBSa0v/VkxvGeRKJOxoUBYI8VgA4zPgvDOCiL7QgJ6zgDNDumaqYEpp03HyQGTAyVALE7uAoy1621MJUiBCAyH6Bghd6AX/yRRgEMC3ahtDl0SR5t1lUZkOjjKc42MPqib+SyAYpVVif+yI0jnfwILeZmxWHi76Jhk4DJ19V8Vjc/RV8P0lR7t3v76eNQREaxmd7I5urpavR8Qe0Wxdesc0GtS/aB83ADi2TJuV5bq0gZAeLTN4ojmpmoWx5CyJStQqCWAmr2RMjf8WYnW+jO1LRMYnhQUR9DZFuwI8UbAegg5Sjy6iNEH+JQ5EpkAL/N+42JOo8/ZI2n1lOEUct4HEf40iHNas3y8Q1y5ZHhKaVP085KCqmeMnePZ1SOTZNYDxs6V+W2vqDdnW4Bc6R3dzaGZz03GYkvWzmtNcEXlrZwzALWyHY3NaZ3KM1AMLKd7s9lBnetItoTnijere94D7wqG9TklOysDYVMieuXSp9/4xjfiG7/xG/GhD30IL3/5yx/6OF/7tV/bBb2Pm1rjuwLGhJxq6DilWIcB0YmA2ZDPgoT1IapnLUWJ/UYZmnNESqLFIkhUoPjTCQAw3ltjuE+YrjE0dSoGAjznpVmgkwGYM5cdfhTjYnWPsb4jwNttY96HKBnWDPCG4TzgAiE2EVgKAoSzERhRosUSnsoCI6dDpPlsn+jSvK2AYsOk1mNVg+HG0G3Wp8xpdSpkSO4hkQh5duV3MIYF2dRp1rri/sh3RYmr61r6vvrQGg6ovHYVILaCy4zTHkpqQtO1O+QGQQqM+4O4WjSSKPhuZCqBlhKVmhCYMJhIsbOC1qRNewOIhS85ZW5o+hdAU0zAKXmjY1L0kUFnAZRaxFIAaEuyFIQjMQKolDoAyCnTMQoY5illdSTvZ4liUtVcSKNQKVEjp69xSMcJDuy0q256wA5wnNYcR53GHZlyXVzd6CnxqXqcKSnoNjrsjbxQu9mkpAGyX/vbnDoNFAXeIxtp1XmqYi7xRN/INn8mq8QC4ho0cC1XYhkap2sXnc5pjctyDAXDFFneM6S+2OkYa9mR5aLqiGw4lGixPAPbQHHh/lwJEl1pedKrUzkNPEIcMFOUNOrIDgNFDBTgMJTfpggo2ayqrdWXKU0y86WCYvmrQDAnHk3PgILIjrBGiVQQqmdQZeog6fpcRyyZHdK80pVa5w3gz+S9GtySOp14gcSJFF0y1L2Y2RMxMCRZlnqC2MZben47B2ZGeXrNxqxxkOV5nHUHCu+gbLfHqYxuY7DOHcFlbqv2WNTten91/JGa45ffUPP5XKpNM5ERnPgwWR42IROMJHsS2DEDzllcVo5oWUoPEOv7K0wEdO1Yp63z1Z5NS6YpRU/YRF85rPKSSAF5BRON1o4nnPgzwp1F+G0EbWN2GiMwKCooBvz1LcYxRYh9yIB4MAGlTZBO7bkckUkyM/S8CsQfRAz3J/jTCbSZshHGzgFxgCcSmeMd3KrO6NCgjjrQVCYAEPvWRjkr5mlon4ACN6/63tp3FS+U7VXm5RJ/kP1hs609LyE7umcA3uyfAXsbJDLfKxjOwJjtSZBtCDbAuKSuEXT1GnVW6bH0OBUWyM8r2Rg5kJDGFozdvnCb9qVLBcX/8B/+Q7z97W/Hn/2zfxbf9m3fhte97nUPBW6/7uu+7jKHdSFSJd/zgAdyGJDqLswMjUxY+YCzIIwMIINit01geJMM7wdJiBhA7DcRbjLCJDH4+rmI7XVfOptqam8KkeVIxyRCmgnggSWyPAgrUwBWdwhHH2EcfyRivDPBn4k1a+0RKUIBoBHWiZLRkTxsQzmfTS/e2a0yA5FkILQ3u1Waebv5nVXsXIzc7BHKBi5XRq9GDezyHNnATgxa70s185vzZsPXGAsVUEZt6Bajdh4NspGJkl5bGz+V95JLA4EyRgOerJLuCFikZyt1HyrkUYBxJcyuJhF2OKvSDqrgPSIc+9RQxGFDMaeDAcipOG4iuDNJxRpOGMOJBcXioKKJ4UJMil3nEwMxltfNVjzjMaU7b9OzJFPqED20CXbVKKJZk7iN9hCXqBmSsOeIujZKQfEkkenSElleA5FEjNX4NretjZBRq1RdUmSaOaKp0DFFquVHAtaJK6Wpx+hGiS0wxsL0s8ZzMnFtPvGs9q/ilZJFYsHuLLMkFECs9V3ZILGAneT7SNwYxsilFRkQW2++BfbK5/n7lN6pJ6GyHM9CltyVo8yXFDs1/8X43rKH1+XSUnbV5B1OQyyBDTW81Vml+vKE5U8N742mSsaaJ9U7A6RnXiwrmqKA1VEcyRwsKE5RYJLaYUeUai7rKLFdMo22otctcM+gOHW2jYySKbHV+S8RYwoOgYTftDOJSw2votENgE4fQtE9c3tqtqU1sHd8b/fTDFLmpO+cDqCexzrX1ehtXKt62/O5al41wFOvRT8DWadWY81OpbJfNi30MyPrduGqBhg7SuVDmPE323NlPboAiNVxacd8RWnJjlUK5OBYanqVIjusXMCZi6UDdZKjYsuSRGlPGOMDxvggwp+kIMtZgNsG0BSLjjR8GQfCMISUVSlR4oEiVj6IkyzN/+gIgUvZEzPg8vlThPgkYjgJ8CdbuJMtMIXkjSLQIFqOPYEH27CyyO86oNDYsPkzVSBtRu38rT53cA81741+YaCyx9uf6+csKy9z8lm+sjqQMdOZ1r4kHZe9FktBviezj3w2uk8ddhpNzoxtx1ZAccWHyf6ZAfdHvDWXCoo/4RM+AQDw7ne/G5/zOZ+DcRzx9NNPd2t/iQi/9Vu/tddx3/Oe9+DGjRt46qmndu53+/Zt3L17F88888zFBw95NoOLM+Nbvd9j8rIFTsIEYgxEiHdt5YZiWKqC34rxPTwQQLy6zxhOI9xZBwwHA4ojY317i+11QjhyiEG8eG5AiV4ElIXLU01wWBFwzKBJBNh4B7j2wYjjD01Y//4ZaBvEczO4VK+QZq26fsghd9ZN6TIxCZMcVQ0E8oxcf6Q2eBOxybU75/hFbM2ATQsDUKdONxEdGzGuQWxhbK0VzE6AmGqHTZ2xnsMea55OAgPEKV1vMnAJOdVMDV4LjKvrzO/1TTIo8nWnexDre1mEuRHqoQZRy6AYRYLJyQwwfhGgYhRnVY5EddycEYQtfIlSMWHjPcYwFGDMyI4evwH8CTDehyj3U4Y/DXNvd5rjEoGK1XvabEHbYJqOlDreXOqQhT5qhVkJemNsqQLUZ6zLi3EytidCTOeLI0CeUup0YhtPsNFp+NShnpFqPcv9acmmUedxq3EfILXMTDlKHJGUnqNkBDXK3aRb24hxqSk2586Gc/nTyCsUGKPcw5zq2PKK4VdS3tHtyt+Gz6socgZTemEoytwA4RxRTgYzJ/mS+w+osk9ykdUBFR0iIpyz8qEAY0CA2Dki82oQIQPiFhh7ighp/ul7NdIjCNtkfA/JIGdAnMgbgj8j+BPRl+N9xnhfUiT9mfCk6xndWV8YuaDpOyHmZm9gOQ+ntHfWtGiXmlUqazIwBV93nM4GGeq6ytT9Fvn5J9AtASuQF1tAQLJLWRWplIIkY8NmCsj501Iy6kQ1Ue25MW6MWX00hgcr53d6btWrJa75sKRQp/0jJd1hUh27yLvW6xkQ6/3Rn8Rax9vrmoNjM2TuXEKq81d9n8+XSr4U6FQ6sbl2K5srZ3TA3NnWveqrQSKS60yOVndGEELqRm2by1mdCQBgytkR/qzw5epuxHA/wJ9OcGeTZE1tJ9GRmrkB0QF8vEY4Qi4jUn3snWSNrHyd6j2l9byzCDa6sDSoDaBtALYTyIBiBkCDA4WhlDvNAh/iwCRj0+bpZsEqY3F+W0dONXf15/q+BcPpJ6of6uBU+VMdafm2GsnSuHZRxWMt8jbbDT92g0X22lTPtUSUs+iqNGpKzipNe9Mocr5Orseg9rlNl46QLFwdl+XTR6RLBcXvete7qs+bzQbvec97Hvm4f+AP/AF82Zd9Gd785jfv3O8f/aN/hO/6ru/CNE0PfS5rfKvwmAkTIowcsCXxSEUQttHjNDUOIJLmN25L8KeE8QEw3Ges7zLGewHDSYDbRNA2iPEdY04zQYgiWACMz57i6LrH5gblJgFxQPZ2ahc+NUZ5oLRNImDrZxnX37fB6vapeNOYAecEEEeUFIpk+IIIaOqzMjBOHXCregzjSRa8wcWYVcZJgqVn5lUGcPVZgSHKZLeGq42KtuA4H9wwMVSRsSzcbnYr4LmMheyx7fWmSI8avVWHWrnUZLgYQ3d2zSU6XKJHlCOINSgonrFqPC0gDp1rzReIYtTbbWX3+gKuIBG44skebwLirBp9wJZ98jo7bNnh1I8ZCHKUpdF8clRJOUHAcC+U2qRtBIVQjG6gvCpIZkmhxiT7S18AqTHU+hep7eVyb61yI54Zg5yUSwaNkOeqNfLgdDgPuJQx4kY5ntiaBGaHyMkSTHWctoaxpR4wLqnTnNLAWQ6Xar1yulk6NiXAS86AT+V9Ve4p7dp21axObXnLGtBJlubUKn0U9t4lQ7uOApisEiMLZo6vysnGtcLXZa+S4ZKBQnIIqAyswDKjTqFOYDgvV0MQEKQgLkUIxVgstcQMoKwNfzWJIGUNlhe1J4cH55KHAOl267WumAlb57HyU+7DwSlbwm0lQjyqvrwbMN4TozsbwTFWfDgfGHU/5/kQhSEkcgvRvVRbddqTQAAx5WdJaZ45swSSNuQrADQ5XgfJHuGgfTmo9BqgFDXOvMnZsLSZRC21OrP6zsj4XoSmenVzm7g16CV6n2SBrtumazxHva1NHaA9Vr4OFH5ugHHdzZk6+thsy8dtdJy93mg25NA3ZT7V8o2qu68lC9KtoW1sjVyOcaWJZ7ZsL6NDMzls5mPWmeqwanTmeI+xfi5I1uG9DdzZFthsxW4NseZJItBqxPbWMbbXlZfkpjtiDE4jxSI7IjtERxKcIlmyiRznjDabBVicH5yBuAyYE3iKAnyt3WTlfQDg5fnWS4yyecVcnpRbbPRQPZ9neNXwnvK5BuEroKq8afpuqC4u4LjD/Begajmxnvjk+q9yvhlnsF6X9elG/RwhpZ0aFVbvuQJgGGBs0X4GDcZIZeFDLS/LXfbb90n3967pInSpoDjGxyMpZM2//a503/0Wft0VIq2yVyU/cmoQEDiB4gGjetdCihDfA1bPMo5vB4x3A4b7ku5Bm0lSPnItlGHoJFjo3glWz65wdNMjjAKI41gbzFUzrQ1jvCdetNW9iPWzWwy3T0CnWxEa3hePjnpQYZmTS9QlCxEuHtKscMrfjLGb97oUSfepqOJtoz7ZkC2fZ2uO9gSPJSoGKzgpTUdzQ6AZj75apaxeZ70X9XqkJToMvYc5JGi261fpnjADHJ2R61RHiVsD39yD/L5pDFaBYh2GNYx0NLl7RXPdV5VIDG41wLOTiiJ8Grwq1ABxWDkwMKiC36YaKQAx8eV9YPUc4/gjE8bntvD3t3CnG/E6q2LPuXkGkQEVr/I2RYq3LOmeo3a4BGhKv7VTgSANq1I6cQagGsXQKFRKH/Vn0qHeBTlIjNKowqforT8r44rkYNdHxSDMrqmaMTqEyHA+lDRNzIGxXi45Tg39SMC6rpPIQBxlew2KUfNOumZrDLSp03pbsgxJhkXpgFsUKdudW4PE8kojJ1pnV3mO81ey24xtpE4+UllgjIYMloGyZrEa4Gkc6kADgOjkGiNiudcGHJfnME9LvVrElX60vNjyZTa+0/YAh5MwYqBieNOGMNwnrJ5jHN2OWD87Ybyzgbt/Jkb3FOZGN1B4Ux27dhsR+GhVGtdo6jQh1fwTAA91o5f1do0Br/NMRbyx2Yqhjjw3iYxu1tTNiSSjI2V1RGIER+m5U3GIAjlCHLT3QNaTaIxFvUYUQKyAz+rgbEyXfVsnXfVq9AgDJVqs/Jguks0xerihmy4d223lO+ukmm1D+13hVXvt1XWZjC5xYFGO/JG5d/Wgka+zzixp7aL6Hl9FciSOqSU7VmnEhG0cshNLdeao2VURcBsBxOtnI44/PGF1+wz+uRPQ/RPwdguEACYH8k4mg08dTR2BBy+NrwgIk8c2eIyDpEsPJIB4zE3BIhy5vGSgJ4YbI8JRxHSNEO4R4mDmHpEEepwW89N8MqqsboIKmvWRjwOgSrVv51NLdl5Xnxf2V0CY+DP6YorlQxoe5aRzlzKrzqVK181/WHQd9ce+67PKiPTWOoizjDH3PQPlbIvKDgQyDgkUZlYez3xnA0BJ/yogNkGhy3BWXSoofqHpwx/+MI6Pjx/694SSDpaFSVLw9hWAMcAnSaFmwkkYMfqQm7L4DUSQ3I0Y7wSMd0XB08kZsJ2AEOYKHsjAnpjh757i6MMiVOKKEFYOMaVQq6Gl891vpSZyvB+x+v1T+Pti5MuXHvBO6pGVMWcnhiiQfP7yh+Z9NgLVMAQMYxkmg2mUk6+vVuyzznIm6iOMYN5bo7dl2sZo0ZQ5rS5ScCzGeX3v8iEU1HYEqUYLKuZWY1c9XmLxFs91GmDbOEcBsb1X+fj5fhdFXINkzMCwTW3RZwegNDYytxyEuTAqQ71yREAFiHs86ZPlFCC1xMq/kQmbOGDtEx+kaNRwAqzuR4z3Jgx3z+DungBnG/A0gYOJqFpF31sCLkojn+E0Yrwn+4UVECfpGl/5RwCwZ8RRUiPhOaf7aXracFJKLfxp6rY7lWNQSv8H0tqLTu9QHg7y0m3MwIgcCSNiDCkCljt9AgjRzaNSNqXJsQBidTClfSMYLoW6IqGAYmsw2rmnkbAGVOjpVAbk9Cr9vhfVaQxtqhxJZGRVU6OYfksduatjW3S2tUaBlYuRwJFNhDj1gTCAozosYSYrFBznXbJgvbq0ix9zH4DElyNPFV9eH85wZzgSEBqk3EejxKu7QQDxcw9AD07BiTcz5bIfB+2iR3oTnSuGsXdg5/IySTSl7Ul/MpzwCYCJCc7HyqbOIMrLHw8RcUWIuU647JtBZCujJyk30vp/0T/SeCsEec6BHIiCBGSjM5Fql8E5G11BM35FcTqpTlbeM7zYRornESlzzJmeTQfTDBggG7Fddqr4peh2/W62qkRlX5jsMKAA4gyMC19be1qeLct+Oi4FxxEp6pieQeZNK6Br+yJnphlHPNnruKKktmwLiEcKlR2rFGmS2v+0/SSMWPtJeCHbsqmc4c4W/vZ94M49xAcnQAigYQBWIwCXbU0j1EDbCHcGhAcDNj5gNZS0bTuWqOncYKxcwNFqi9PNiODrCaalCDymyI53EmQCgMGXpSnyD1DSbHVVhyAOZvEaJ/st7duPYDbURjObqLE5debPSp4rgGwOnUuNCAkUc8nsWOJT0vG0B2veN3bzXkHnZp/Kcaynbo6vvKqlRlVWaco+4eRgI5s63Rlr2+DOZkeWJRXNeR+Rriwo/umf/unq8/vf//7ZNqVpmvBrv/ZreMtb3oJP/uRPfviTEmaAWIXISFPV7Mc7qZPass8etpO4wrPDcU7jcVvKtUYAUKV6hJA8bI1rQ9vkJuXu7p1iDYDXI8LaI1wbBBivKEePswDIQpxTHSCBtMNPMgzsK9DIdvN+FlU5j6zyA0NBHlkwSvV+VVqVqQ2klN5WLVGjClEFWzO+AoRRGvtERhxKlDsDUl13ORtWzX1ohYcqxFCUK6fXDI4ZyMt8IAlIm/JiTmDXsAUjL4UF+5evt268RM02cGoSZCL5i6llSul6L/yMX0BaUuzyPlZp1ACw4eL5PgkrrIcpeb3T+qfB8KWmSYcgf9METnxJJLWA2fPdGOHkHTgyhvsBR885uMkhHAHTsYDj2vhC8nKzNKsDQFsBAqu7EiFb3Y0YTqSmnz2qCKMkLWhNcHp1lKJcRQYUYBwlEkYuG98Tab1w3dSnXZqGgLxfXofIJ/EFTkswQVJAU+p0y5s2kqM060CdxjxLr+LUFEmNkx5ZpWm7T0ZUfFsB2XRxTAl2dwyNfEZz3xfPrXJO35uoIcfmQDqEJA/JIRkEnO+33jRqfncVSUdnAbHVk2KQx2odXtGXMmPP4oAjv818Wcl6AIgRNCU9ud2A1ZGcQC95n8Bx0mWOpK7AxeJcYA8ePaJP9f6pFlay/1NmRWQRAYMA0lxXn7rfes9wLiASY3ISY4tbjzhKtkZMje/aG2Odqi4APBFo0IZzqUEe1TXNTLJ+LHNaui2SOFBVR6rONOdiJJYxhneEsfOtva/6KhvcSGCaKzmViZNyy48wHTAaQ3bJEp1F0MjwDc2isNR8rsBy5usmotzcdqb0e0KqWUR2VFEyxCl9l+8ZzLVYw9pEi0mvIzvt+5d8ZSjZsqo3RwqVvrQ8qtTqzGdVZ7LUFFMoARMwA9NUAPF6DVqNyEA4FsFLzBjunOLo9hH8cx7bYcRmFSQTgglTlEyNCFlCcYoeUyqFesnRCe6drkEbh/VtwtHtiPFElhGNowMwgla+6skDShkZ3omcz9mYqZeMSb11E5JFr3YrlRU6Mq9wY0AZSrcjz+c2aGOeR56TIuyR17dv7Fh1WoE427Ml7Z/7+qg6QEfxprH2gLvGRhYB5QXUkM2cKvqxAGEtJ8pOK9DiiWdlksFGiFF3nDbne1RgfKmgeAm0LtFnfdZnLX73ute9rvKav+Utb8Fb3vKWxf11jeJ/8A/+wYXGYIlgvGsNIFagXIRKiRif8ggPxpY9fn+8htUw4f46YrrGCEeEOCahq6nRkcFaA8ExG+B5HJrKwWIsuRjB4wBar+A2I9z1ERN7SHOdMqlc6hyty8YAAGvKdAuKkQxue/FJoOWmJKo8jSKd33ijNK0SZqC0WufGMjbK0kSHwSit1mMz8W0NbSNsMugzgDgmAeeCNtZCFuic0qh3Nf0BCoNlY1cN3cSgla2dIwZJgKqxosCjuWfy6GUnbsGwGgY2cl4ZBjAGRXntCWPV+bkuEuZ3ZLouXmlK8zsZ3tb4XtEEh4hVUvqaFhZAOKURjiK27PHs9hirYQLWAdOxz3zJ6oSKUTI0En9q0afcL5cdTfAeGdH49DlGDPc2AAB/5rG54SUF+iiBYHXCEFKDHgLuQ/oN3GOs77BErE+C8C4AHiQrRKJRZNbXBjKTpUhx9okZfpapJM30ohrpxJgcAxPgXKxqF9UQn3ekVmM7dZ71osgipEO9GuTkOCut7B3uzauFWsZcD6jfOc3vKMqbDeNXtYizBioNPyyRNUAYJWoPTnKPatnQkRE6/gzC1YFAXAzwCpUkIyHdT+3wLfdRfqciVDvpXmVyJlK8iyet8S18yYkvr+FonODWAeFoQFgTgvJlRHEgh/TKDPJeDHEFwTKQYi9UxecAr73wzyR4WkqbU7bGAGm8FSgvd0hOosKeArxneC9ppNPk89JMAhLSaRzJag9pHuQ5o/pDdYbqjRSd0iZftukWTHQ4d72unKhGdyrpHNZlGo2cn/Ga1ecGEGeje+E55xRqPYiehNKYOjydX3sRtXMAsQXDBRS3+3bGCXP/MwBGclin7a6MWYc/Rybopm6TGdtVJmvLtoB4pICRJnji7KDSssCuzlxFhGTLhpGE1yJLRlWMwDhIx+ecqaE6NenRaYK7S7j2geu4/t417tOI01XE/dUW3kU8cEEcVWkSOUjq9Afu3cDv/+4tXHvPgKc+KA5jv5F5Jw4ph7B26Xno2uVRMqMY2Y5VvajOqbzM6ARx5ioqnIT/dc7qvJhFMu37ap7X4KzdX80GqcBReWEbfHHez+omdXZV21tdZFRMDwzL4Y3ONGPeST350Z7ajGU2rnRZs145nLSiOsNbsvexaXDXCxZZufCodKmguAWy51GwaYoNveENb8jH+p7v+R58/Md/PD790z+9u+9qtcKrX/1qfMEXfAE+9VM/9WKDrkg8a63xrUJkRcGA46kywK+5MwDAnfURPnL9Ok43I062Dpt7A8a7hPVQjG9V9CI0kuAwFiTrfjlyFUCrUWodAfDgQCsHF0SZZgWcmmS5IJ40qbVABsNxcMgR0h5lD1sNjO0kV36zERJV1pIuyMYKTzs2nljrMc5g2KY+tl4gu7acZa5ssMs1RmbNnIJLhnsBxMhMpqAYhNT8h2bMnK8rG9pcGC/a1OPa2AVzMnRlgD0AACAB4l4tdZM6zu11l+ux6VxZYOgt19PpMM3z0vdo//Zn3eedfDa8QzLExfjOCj7x6ooCXLoRW+dxFLeI7PDc+hgvT3z5YOOweTBidYcQfXq2yegGx9KXIBf5xQKOAdFsHqn+kEAhwt0/wxAYNI3JgPLYRkJccSp3KPPEb2WZmaPbAavbG/g7Z9KkxBF4NSCuB0QMcI5z35jCQ9Ix0ykg1prfPH+pGLyEDIyZGAFejERP8FYZAyZN04gi5V9zfFnDERkYa42mGteZT42DByhz0ip2vR8ZSDtIKlsycjSLJBsnHTliM0hsU7qZMY5yXmucVN9HfeyU/Xj5PqoDjZZlhZUZIImslBUvVWCh8B9pyjUXY4PKsMl+uJLEWU9anlRAbPWmM1Gpa3SGI7cFANxdH+Hlx9fx4OYKz248ticjpjviTCJmSYlMESkAoGGQiNQwyP3RDI4eSXoE4iARI7eFyNxBxo5IqQEWJ3DswSlF2ua+C0D12JwOiPdGDHc8hgeSUkoREi0GFaerdaakU+myfnkZNYe0tnhADA4TVJ5w4cUoKdQ5StzwlJwrXT7pOMSIV6dUBeDsdMrp01wb2b0pp7oTLTBO32Vva/s7azikYxhAXNsB5XNl5GYdWHSiBcQV+FAdptsq50S6j7bxoSs8V9koKMcg8/6qA+Gaii1b7Nk4s2UFHMe8ssrWeVyP4uCd6cz7A1bPOYnQcrJdvQeGoaohLjX+SCm0EXR6htWH7+OJ9w6Yrnk8OB7xLF3DyWaEcxExOjhXskruP1gjvu8YL/1Vws33bjHcnzBd8wjHTlZYaXheMgQ4N77LzWd94/xOc8el1VpoKrYivByIVJcRSqaW5YteKFJ1keU3M/8ZRudU84ntIdLxkfWB1btdMAw0DitzDHOeXkM7BeWL81qPoedMDkW7uQqY9f6qcZbx5B54MAczN4vsWE0gyDrHqlLDaH73iHSpoNgCWUsxRrz3ve/Fz//8z+POnTv4y3/5L+PWrVs7j/Xd3/3d+f33fM/34DM+4zPwnd/5nZc53J2kwkQbb1khckTb9LkA45vuNHvbRgo4Hrb4TbwMZyc3sLrrwEMS6lOQ2qiUrskJ+GZDPIqFKMbSBJ608U8EOQeKUR5+YnoXZIkLXUbJTSzpoAB4cMUo8AQo2FXPWZUWBQhIFKDAg7xvwbGCsLyWIaGkCxJSuinnaMmMM1qvsWmkZb3plbFru8s1OjkzKwNIEWJKDQrq9ArOwsAKn+xNzLVVVIxbGINd11zr1Z+Y61GQKwukY1GAVqnj5rXUTyvj14ZDJXibPyt0yrnM69JvrriyJxR+BKRDvCyHJq/KiyNCly9XFDJfHvkJv0kvw4PTm6LgVynEH6SJD4eYo8SZNPcOEP50EVB/ntZMISULOOE7bagT9Nkmb43foDTBu7sBnU7iNR0H6Qo/SrontzVReSyq1Bk8ITmw2HjFkXiRcidInggxrV88wYs90zjGSmMhIHuvM68xygXmCn3k1KeIHBXNilPyrM9VvFUWBpCAMQpPkDFOdDLofWiUfDGgUc97fasyLANiAbgOyeCw9ZhmfwuK2xr96jq4ThMrxk0xmHJUWr93yN21swMiHfBK4+FEPZ5sAfERbUu2VXogT/ApRpI1i8cnA46GLX6dGLfPnsTqOYkYA5BSBl3mxXvQ8RE0XdrWLAIoQlu/817qC0nKmMb7hLCG1PozSdaDV94hWW7ME+IxgDGm0ztMmwG4M2K87TDek5UdFJTlZjgeAEpabW6Qk0EZsrNIlk/ktDSUQyRx48qwGTG4Eh2OEPC8AIplDEm3JZCX+RXo9wqAkRNVmijyPFxy5s7aZmbLuEOLRjkqYzenRbdRnyYi1JZmzCJDSS2rLynrejbfMYmtlbNDzFCtbXHFdeI+pI5kANmWtYD4yG0qnZkbbTmf6v4d1m7CtWGDX6dX4CTpzLAuHkVarUwtP6VMxJw2Jw4aAIgRdLrF+vYWxx9yiKsBmzOH++tVkaXrCPIRfDLgqbd7PPnbW7htRBwdNk+OCEeEaU05+6q24+RNLleYALfl6nvN2MoAKxR94yDzgn2x4excgis8lZ3EwGz+dW0wHYOajdTZhZp987m44U19X59gBoy5bM+fd9l8fTO1jFd1owH2+SeNjmSa/+Xj5bFkC2J+fh17U0Zhy6PawNCu67goXSootkC2R7dv38ZXfMVX4J3vfCd+9md/du/jPq6u1j1SQaKeNVX0LkWHVxSyoj+iCWsK2bv1BJ3hlr+PV4+38YrVXVwbNngHvQon957Ajd9V41vSSXizLaA4pWZS8jDzloEYslembchFLKkXbhKF7lN7erfhvC6bGuWygLmrIsCZuKzdC0AiVY5k+SdfwGLZv/xRRB3dSVqHkVK4yPzWMmhHMWZjwUQ8bTpk5SG2fG/HhqQINTIcpW6zTcsq97Aco02j7kXDEY3Bq9fLEmWgZFxnY9ceZ0dqSAYLtpY6RwXMPYBh/iVhtiSMzfWyea1u2kLToatI1lEl6V8ShRoRcOS2iS8DRlPL+ASd4aY7wavH23jZeC/z5em9JzH9rkSRoM4qm7WR6vpplhLGUFTMFEEkUV5sCXTm4VYBfuVSRMqloFMyzE+idKG/lzrQA8Kfg8uNQ3jQlGnKDeEsPwngTOuGT2rUm47WLkW/EjDmhFZFikYAHtEVmZrTstUQB3LaZtkJZSI6A4wJ0HW/K3CsBmcEkDpiZ4BsiVNtr52/CiQSoFTjBObnlfGh9oo1pq2sMMYTij2Xo2yR0vi58LzunxW6WW+5anpiKMsLBbxZTui9NbJRDQ11HiZZUS8NgittnOvltzzpUtpmMbYnHNEkfGkM9Wtui5vuFE+Pz+Fl411c9xu8HcDdu0/h+u/K0VmjxOMoEWLvMWuolXmzGaB30pdjG7C+E8AOmK4RpiMBpnEAtASBHcQRPAKAA08jJh7hTh1WD1Lzu5NiaEvKNDIgzvNSgRo1f0CtNzVanCJr2gcAQF1Ww5LaXZfSGF1mZYPVPVZWGGqjUWlYJj3TGv/N/cwYwxjgvLyfnN+MtdH7xUCfN7dSfVgB4hY062tLylvNvc+R4cRY2i2XHbJTrh1/e9zsWOuo9atK1pZV/lQncqszV+mGXqctbrkHSWfexZGf8Et4NU7uPYEn3mNA8XoFjKM0tNMUatOQkimVNSTHlr+/xfHvj2DvMDxIOi/N13DEGB4Qbvwu44l3n8Lf2yBcWyFeI0zXHKYjcWqFUYI2NhujXWJMgLH2KSj6RUuRbIDH/CrNEy5p9zqHNBW/5RFLeZ7Ll139Y3fP27n6nnv7U2d/e07ovO6Np7zSUpClOXRSU2Ucej96dqbhi8qWzvdv6X4tKLhWHgCwsqPCEOa7y4gSA89zo62XvOQl+N7v/V58/Md/PL7qq74K3/Ed3/F8nv5C1Cp6rYuySv6am3BEjCMijCAEN+Fl/BweDHfwMcNtvGq8jaeP7uA/Tp+E5567gRvvJvC9+1nR5y63LjUN8V4iwZHB0XbAJamdSp00AUABmNvKrMmRYk2x9i6tbSzpLqxpwjalKNfvlNkkyp7QdtZUBZSVVErhjOA0i9QApKxgNa0rK8JGoVXeYXvsmRd5zrzKtDa9MaeMtZ7nHCmujensSVZmbmtHdJ9k5FIwTMyU6k8kukaaKpQFhzF2e2QBQgSqRg054tUIACsQcHlCoBrTlSTuOqq0UYg6qlYIWCHiiMK5fPmqo+fw/54+Gc89exM3fxXg+/eLpWPBcG7mQzK54iSRhhjzo2VAsjjSshBuinCbCOcJA6LUKoLhttKQy5+Kk0s7Z7JPxsHgikMq/cncrNMxOVlweR3xCcLfU1FIbqvZCgQiaboFSGMT5ihrCqM27mw68WwJGAAlkskCjNPxwdwHxxE5YqO8mR1x1nBgSlkYQGuUF0Mkb+pNj1qJWl7JY0c2/oFaPonsoOIwan6n+1ddQS04bsaRyy52pIOrvGijAJXceBEY3sqT7TaXeHTMUWPhyzUBR0TwIDyFiJe7ezj19/Dq4TaeHp7DK9d38L/HT8ad516Cl7yTwffui15cr0DjKCewXeAtbzoqDl4A2h/DPdhg5R0oAJuNg7vuME3IjbJydGMQoOvP5Dn5M2C8D/gTllpEjwScZb9qicRsPDeGdgPMsiFua4vhUukBZwO824QSKCmD5vgyn3Qt11pndEV6Y3RXkaeG38oOXHQ5GgN8SW80RuvM2GW5tmwXmH0tAM73zdoDxlFenc/YHAp2lfdzRluWD+aaqLq8+pDUvCddAeBqU8l2NLYsSo2/p1jpzGvEWCWd+ZQLeCXfyTrz1eOzojPDJ+P2szdx8xcd4tkZ/EueBLwXQJw6TrPhT4pRgDGSjZqixRQHrJ8rgFiCOMC1D29x7Td+H7waEZ5YY7o+YDoWQDwdA9MRIa6QV2Cx8ryAN3mKuVFroLoZqZn3eY7pWtRqB6YUapXV1hkysxPtsXZQN/qLMu5qH5h9e9TonWrytjyRDnyujjSmraoiqzcJ6MdPjMwozxPFrrYBJzv29toqmwCVTKDmr3utl0TPe/fpa9eu4U/+yT+JH//xH98bFL/xjW/c+/hEhDe/+c0PO7wqTVNJje9SZyxKfoQY3tfI45hW8OQQOCKC8Ro/4Y+M78ZnHr8Lf+7Jd+J/fepzEX/mFvj2bdB6Lc1CVitZ7sXWRTGnWmCStDHvQeMg+1XChiWFks3nTQRSYykeHOJAspTTmICugwitLAyKgWo9ROzEAMgK1xjg5EoACAAc27QT9X7XKY8ZpKqxCDT1Qa3nuKPwOsSWaWF+q+fpCIB6mzmYNQaaCHQWpB1jQdJJSvpqzoRrjYtW2OVxGCOm8ozTzFDoXT+Z46tsnJERwDOh+yIl9Xir8a182/LlmkakSmBMCHi132S+/Nwn34H/x1OfC/znm4gPHsDdvCkNfLyDdpm2Te+gS8KkaDKHIEf2rkSYmYEpwm0jvCMQO7jUvMNtIvxWnF65oZ0v2RxxSFkdKYLEqYeQAuOKrPGovDkxnCuGvqMCsGLqRo2YUjIdAFpI8We9ZswnTP4os409C68ZcAw9r0ZCA0r6VUy/ZHNa+17NbTNnyaZ87qAZ2DZjzk4zoGq4w0lOzOovO9ecgXEjC2pgLPchX2eOllNJoyfk9LzKeWgMi2Lc90z1q0fWUQWUJj9qhI+IGAmJL0esaaj05Ss54A8Nv4s/c/xefN6Tv4T/9SWfh+1P3EI8PcXw9CtFR/Yo6jzjYrE1tY10NsHTWdpnTCU5DmHFBRQPxQnstrI2uN8ilQilqLAC4lHAcAbJA3LNX9ZnSQfJAMwcSd9z4tn8eJ3JErAGq4JhLr+d6QMq00Qb2MzRnZmkljmos0ur5/IOqI3vXdQarV2jvOwz08uqry34NXrdbmvTJ9kVGyM7qc39n1HLxw3gsNUzJfvt6vNkS87yJkovgFpnznnzVT7gj4zvxWcevxtfcOsX8K0v+zzwf7wJPjsDr1fAOJQmrglQZkfVpL0BSBzJJxuMtx3c6ZiXB9WMqPHOGdzd01QqIboxDtLcK6wFEIdjyJKHyru9Z2Z1lAm2uImkuVbrUOEyX0SXpTmk/SMMQM72oZX/zel7Y7ER5grAW/27ZCvqSXbREkjsAc32tfc7HZ/Rm+wXTYVyLQ71PTNRY7b77RvRMePuXt9joBdkSaZ79+7h9u3be+9/Xlo2kCZw6kD9KKC4JZc1W/psALNP/D+Sh091Tp4cfNp2DSu8zANP+dv4mZf9Nv7b0afBA/Ave6k5oLq60tMOATSO4NWIeO9+OpE0M8i1GpFBU5RmqWRazpta4rhyZukmSktH0BzURZ4ZgyX6ajVmEiYa3EbS+ZUCZ8Bj3q1PlZiNgFagWHaz47AgXTYsvzenqX/fvG9TtLpGsBVaejwqY5QIMcTw1SyiSMWbaLxiMKDEHr8Mtty/WVpYK8TQOYYVXPZ+2f1tqic1v/0/GEmEiiu+HMmb7x3WNOIGgJd54JZ7Dn/ipe/GT33Cn8HN/3lTmtmtVqnDdLqJqXRD8Im5adqd2rk6RTHKshUUoiz9lBwmYMBtY26WFwcB3XFMzqtRSxyQveY2ijGzaRtDkGJqHpKWmWAPYIsyD8FgdlI3yQ66rnY28lrF3BKb/RSsaU+ClE4NVkMiWZGsx6XM+4w0xzVNY8FI1siNnFPe7TaAOmPVj+lY7FGM3PQKj1o+zK63Pk5t5DSyQi83ErTpGOvwdZ8mDa/XzKUCyYsX+eKhXNcIwIPgiRb15UsAXKP7+OO33ov/+Mf/AF5+5xk5yFSXEGViLkuqaZmVS1aYzu0YQZsJHsip1sRA2KaIr0/OHYh+81vOa1/maPCAxKcJEOdIcQHW5XxcgJvVbcrPKX06R7l0DfAqbQNGf1H1udLVZp7kTAfM99vLmmznet5uT2iuY4kqPioO9xmvW6DcfN8Dvm30eCY39Boa3p3dF91o+Ld6tdfMdQZJzi7T+/AiptaW3Yc3R9zBH731Pvzkn/i/4GXTJ4CPRsS12KbEXOtIAA4TaJt0xRRA+vdgwMx5dfcBECP4eC027Jjs1xVJV/ojSPr0EecGlnm9bMDMozKGHCCJQEyA2E3I3eOrlHzzfHOWE5J95QxAJhQnGDDLZspDqXQFZ1utAoZVBtgyU1W1wb3X3nU3+/X4jtpj5APU16/HmPORvR5kZ3vVoJLa/Rh93mHUgueFoecdFP/ET/wEfvqnfxqf9EmftPdvfvInf7K7XRt4/ef//J/xQz/0Q/jKr/xKfMEXfMFlDVXOAYfSVQeI2Q0pujgSEJgRECvv2pYDHvAWD5jxjs3L8P/7/Wek/veVr0B41VOyrtpmkloLAFBgC0kRo7gGnZ6ldRnrDpvaZZo45t9m43lMgHjtRJAYUJw9a0mo9yKo5STp0E0KtQsmSox0zJj+HAGhUSzcrwuyILkySI2yUSFkhcnMI9UaqubU+XiVQEAB4Z0Ure5xkseZQtmvSrGpBEAByJTAwcyYb42K5v6TjRK3ZAVM+pzrX8wx87WY+5TTBKto1x7G0ouEAmRZh5Dm0BJfnvGEuxzx82dP4+dvfywevMLh+if/Afg7p+CtNrZLRnZMng/9G837tteBKnlO/ElRokKk80gfMMQLnnhVjG3KXapnnWubeUlmDldOFlbZkDzilJQ/ybrCMc1l8Rqokk4TjZpJP5uzdnLpwOpzZ52mc5KBUn9I2QvfdZi1PGBtHb3u6vyNIdKRAbu2V4307DV0LrcdRzUY6pwTiYezF0D+yIyZAJENKPekkhk6B/4PwJ4pnwIRQADv5Mv7HPH/Ofk4/H8//Afx7CcCw9mr8cRv3oO7eyod2jUjw0aGtWml1jlqaC/pVHYAQgRtA9zpFroQhNtKJ9sMaln6dBDL55hKGeIodYwVIB4TIB5SxNhzShk0Ok9XUWDkjIT87OVmyAZbV660YOxW1EzStsdG/eXS9h1G6JJu2DUnH8Ewb6PE5x2j69Q29kP/mmCMc1R61AKdchlcnds2O3uxs2ZrywZa5k21Zf/T/T+Mn/nAH8SzfwSg8HI88Z7TfDwGinGYeJDZAydbAbtb6aODMyeZj7b+OC27RqsxN+vSDMe4SmB4DYRjRlgz4jpK+VoCYdbBWr3X+nyG9JgJkAwwx7I0YoCUAhoHTOpbl2Q0KiCb68+rXh+c38PuY+eiPY7u71CyQ3bNWU77JX06n/Py4x6v5O1c9u0GiewxKa2aoEGf3kRv9R/xPFJcXXePt6pTZkGQG1PuQ3rv7DN7RLpUULwrzfnevXv49V//dbzjHe8AM19oPeHP/uzP3vn9G97wBnz+538+vvRLvxRf+IVfuPdx96UAh8AOgUgMb3bYwmFLEafMALY4YwG3pxzxgIEPhWP8+ubV+MX7z+B//61PxvjfbuJj7twFv/IpnL3sGDRFrG6fwt99AD5KKShATkGhGEHjIHXHXIxv0vTMKqdH3seVR0zCJKyloUhW5s16qXIszJgjn6OdlNZIN97vyDBrr9XHR5rcuRY5eeaq+mE9pnoZ7TFSBDR6Y7wCVcMb65UCaobrA+MC0rkF5WY8mZSXNYVavf8aKndk0m1qgNwzeuuBNdSkmM3uvwXZmtZiAa75HVe/KwJ9ZhTAvL6IKDBhJCAnULO8BiJsQTO+3IJxPzI+FNf4n5uPwdsffBx+/Df/KNzP38RL3zfh5OkjnP2h63jJr9yFe/Y++OhI+CBGMainIGsxbkSJ82ksdcdae6zvk0Z0U5wJaq0fVseVZnLEoZQ4lCY5mBt/yru6DrnhGdlQeMuFtD3V/jsGOCQ54HTO6nxio7DNoLMyawz36pxsjBHRbkwsDgHoWsMiILL32d4XHTOX97rdXPJs7upx9DsbZW3n9xLv5U+NMc/dnc4hI1c5DS6fro3E6772egjQxmLF2LM34OpSgIOHQwBjRBB9CYdADgEk+pIjTiF8uUVAjFzx5bu2r8Iv3P84/MivfQrGX7wBPwJ3nyFsj2/i+geOZfmy+2egbVqmUJ1XUyjLFwJgciAKWT+Slg5MAJ05+NSgKwQGRXFKASjrDhvnlK0dFnAMcALE0QM8poiV59TcDgBSYznxmKeoFOXjp10kWsxNd/Ul6s3lZvve86TSb7z83eLvl0/UzbbgzncL++wcy0VQqBliDrJR+VMd3aZ69u4jmzeaAXJpFvjzSBrgWbJlHzAjJp0ZwNgyz2zZH3vnp+Dmzx9huAmcvBwYzta49r5TuCkiHA3gUQFa0k+pwzqFCGy20k8HKDrT9gFwBGAUGyeVFYXkkNKU6TgmQLyKoDHm5ewE+FIqDyLp5WDS51UXAUkXmtccFVadaUFid67Uc0hAttpYqQGldWwTm/3ZBHq42iefD2jmeploZZG/ep8246K2fanep4iprv2fz6VTfCZzOH/f6uSlqPBOezPrSzMuqr+3tyLr+fYWXUQ+7KDntfs0ADzzzDP4J//kn+ANb3jDZZ4aX/IlX4Jv/dZvxdd93dfhrW9960MfR4xrTn8RAQ5jWtJFFf2GvKRVxwGBArYp1HE3jng23sBHwg38z83L8fbnnsEvfeDV4F+7gVu/FeDun0l3WQLgCZuXHoOePMLqw/dBD87kSY8EDA5xHEGveRXo9Ax0ugHGodRsxFilZsFBjuukhng6So0J1qkpQY5CoY6wdgExoMCxBcCW1PvtgLKkSkehFI+5GutcrztsiFM6SS7O9yRY1JX5ruBOvjcg1DBjPp59kxmODTBvADKhD0T0szXoEyNTMOdvUmyqNBJrsOuB0NyvBQPBng8udbu2v4ko9R4dMF0BB1vjoTUfV165lwEGOEmRTkA4gBGIsGEvdcXZgRRwltyc93nAs/EIvx9u4F2bl+EX734sfv79r0H4zRt4yW9HjPcCpmsecQDufPwNHH9ojdUH7wuvjR4YPZhWMpIpAh++DfKT8CRRrkPmwZcmI0HOLdMgOXwGJ5GnlUM4Stkcq+K4khIHc7kWLKpTJt+K+UOza24TIzedI7vkhENar7OkaOuSTtAUUGMoVtqmMsCtRgYyINbNmkKczqvfE5va+3SYbA802SQVP7SgIM1llTtaQlDSwc3+th6s4YdC3H270/ue96fZ/rPfpZO1j0+jwxUwzvw+N36uGgUQHBycyaYKIOFPOGzZ57riU3gExMSXAafs8ZF4Dc+Ga3j35uX4hbsfi1/40KtBv3UdN98bcefjHKZjYHuTcB/ScGf97AD/YII7nUAhSMbV6SY7r2Czp0wmhyxZAlAIwNaBBgfnCUAEBQftryHLEaYIcU6XLlHiDIg1dXqQP3ieRa50fWGeSIDxVJbcyzopNPPCkj5+G8F0hd1QzWmuD9I7YAewztIyW+NyYZ6X+3r+Oar91L7o6arz5nl7fbz8XXYCWwd6T+9ZQGz09uL94yQnXwQ1xT1bNpCDQ5zZso49AkecpgfzIA6JN6/jN89eiV+88xr80gdejaNfP8KT757w+584YHsDOHkpwZ+tsH52C7cJpcFrWlKQvAMGJyuunJ1VZUfViipEgEsp1YPP6wvHUW1YyOuaBRCvIvwQ4XwU+clk1vWWju0cnESCcyq0lvkQok8R4YCsj1TPKjC2PFFlA7r53CrlE+kcKsthjmH5NUeXufAxUBil4ks1Ns2YlJpASjcqDPM9ms8NH6ruscB3pi/ba4F5n2zU1h7PfNVSuq582YA0DYypRzxj5uhu++hYc/oyuPJSQfFSmjMArFYrvOpVr8JrX/vayzxlRX/oD/0h/Kf/9J8u5VhF2XNW7Fu9XRGI5LClCZuUJ7Bljw+FJ/DezUvxO5uX4NfuvBK/+ZGX4eQ9N3Hzg4TxfgCdnAFhhN9IsdnmyQFnTzg8GSLG0y3ogfjReT0iXB+xfeIa/Ol1rD6otcXp0QcuUSwADA84h7jykjK9FkAcjoxAMXVPtkYAaBVWERAzIzXW85rEtskzkszMtFEfCtK9k6Z03NQmv+0ECNL6LvHOAyy1HHamW0Cs6eBqwJO5NqAWIjom092Z0xh0PWMVoPY+VA6DaA6rjNgwbPW6UIdSORCs4OyRNYY42XwKNvT69HVmiNdjqoX7XHD1LbOrQcKPVPVAE4AcseUBIMAngziyw2mqJY7s8MFwE+/dvhS/t7mFX7/3Cvzah1+Bu7/zBG5+kDCcBlBg+JOA8YHD/acdpuMVbp1M8CntC84hXBsR1x5gYDVJ3T+8E0PcO/AqfQbEwG5Tq72XTvArj3DkpKNmKm9Qw3u2vItV0gYUV3U6QJ7brfMjf6cRqmiWn3Fs0vxNhFqjyJzmmAJj68kmNopJFTabxlxpXwXGTPVSRUA914yssV1CZ4az4QUmVHX8GRBrqQMXhW49/JnfWmeQFWzGs642SeUXYNSNuXLaLmDXJLbPRt+3REmI1EC/GOkzr/kVIr0cMb5j5keNGG+kijfXFAcQfLpXW/b4SLyO925eit/b3sJv3HsFfvUjr8Dt9z2Jm79PoFBuFjsBxnEUZ/HqrsPwwEuH97MJTvtqABItJgKGoUSh9PnEspInhQiaRMdzjMi1/14b4ElUeGaUj2xSpw0gHiPIs0Su7D2KBN5qMz2C2ziJWKeu5HautPZwls1J2ch6xLq9TEh1JmdaykTSY+l7IKecy1iaiWZ1S3sobvbrvd+13+L46s/ZSLfbYC6l5Q2j46r3Ru5l559xrAu/FYDCVt6Z8auz8SrzZUtLtqynWNmyI4XKln3X5mX43bOX4DfuvgK/8eGX4fS9N/HkRxik/SZHxvYm4cErhM+PPngGtw2I7EDk5b4OVFZZSJkc2ryy6gHgSMoEEyDm0RVnlEaJVwxOgHgYA/wQ4S0oZiAEhxgJ0UlH90hOosYKfo1Tg4lKZhRQ2atVMy5r1znkLJKsr115lStK+tA6aJVnja2KFhjrvgpKM9pMg1sCxjr2rI86SxqhfAYw01HVoVodbW3I5nM3Gtxs38knyZEukXrKwyFKMXF9NMlu1mzJSjYYmXAZdKmg+Lw058dJMUb80i/9EpxdruEhKLCTBgTZyybKXhW80hYenkcxyuFxGld4//Qkfuv05fjV516J996+hQcfuo7jDzusn2P4syD1w95B101b3ZngNw53P3aNa+MtHP3ie0CrEfF4wNlLVykN2iGONzCcBrizANoGEIcERtNMGUp9Yli7DIjDGqV9/QDE5MluDWqlDHxNBFXraCtjtakBJMuQ6ZgKerWxgZtYGhzYaHEWTEgCh0ADIygzGAFQCyXTNdQbL69rmNBeo1FmJVJNaa1lGRtIhGfSDSrb5FDWIWAFjTlP9k434IUd6lb/KhAzKDHHMIfNBpw5PgjJ82mWtlEwYJ8jmt9Ax9REzcx4ryrVxrfw5GZBdG15wGnqFr/lAac84v3bJ/Ges5fiV+48jXfdfgnufvg61h/xGO8y/Kk0reOjEXEEjn6fEY6AD/3x63jJb25w9Dt3gM0ZcG3EdCyA9vSlL8X62Qnr37uL7MrUVE1mYDIGPYmhjcEhrgsg3h47qZFamSiUN88jXTgxELXsAOX7KqJsbtISkNSMhtJdk8zz56LgWZsOmW64jSIuykk3iDxL/bzA9gepy7IYCVTqilEbvNYJV2RN3QQwp5VTMUxyiYUO04ppKkawOhvU+O0qcB1UOmEP3HKsDQ7rQGNzmPwbKyvNc2opl2DE9GwYQAJ6VzkoFdnBU6gyODad8W7YixEO0bGnPOL90y285+yl+OU7r8J7nruF2x+5gdVHPPwJKoMyjrI8UhwIZ08CYRywWjuM90L2EzsAGDxoSinU147ki7NNbm4nKZk+rwsOQAzgoMaqAFdJ10xgeKXdbhtAPBpAPES4lMrpbOoDADAhOBZwsHVp7W/KOrXurUHFuaXZAyaCmdfXrYxTLoB4XyMUMPOw7DyrW1wwwJeyJ2bfo/P9UlqSPVcyfFvHczaE067UcRrNIsTZZkBxpDe2A6tdNLMf5hdf1VheYZ0J7GHLxhUCTTNb9n5c4wPbW3jX6cvwK88+jd959slsyw4njJhSpN0k8vzsFoHJg8Ia69sb+NMJbhMQV8JrYe3hj4/gTo/Am21RAICUIHkHDANokKWdePSIo8t8GLSWfxWBUSLEfogYhoDBxbw6QYgOzjFCcAhB08UjmFyZqoxkLxUbUx2nyroUAZpMxFjJ2p8ZFKcsTEkcLcd05be1YzbNsR4wNucpE51RdaAntf1opptE36juQHbgzvRPh19rBzEqm3YJ8M7L8Qz/qGxCOVZFWe+X8XIq5tayQNJVOhjVsyIgO75bUXUZLPmCdJ++THrw4AF+/dd/Hd/0Td+E3/iN38Bf+kt/6RGOJo16YrJOXPKw2UkUUkqY7dx3Gkfcjcf44PYJfPjsBj50/zoePHeM8VmP1R1gfBBBmyidpUMEbSN4cKAg65auHclSLbduYvvymzh5+ggnTzmAALdJUVMiDBHwoQh2pJb2cXQIx0NZ4Fy79GVQzHmxc2sUzry4rDXAYmVSAJypzcgdbs1rtgGMEWvrh7Wbp4BizlHi3I2WOK/HGtN6x5rOmY1BI2iyMCKr5BaUGtrrQ4kohbIsBpAEWpAaEwAFRBDm9Y6N3ZNPkUFGM16bXhOR02xk+a2ybzVuq+jtZhVA2SDnsk5ykmzV0EwaDIBZgzJuznVVyfIkeMCICcGERyJLahggS06EKIb3/bjGh6eb+ODZTXzw/g3cu3MMf3tMfMlw2wi3CQAPYEfwZzIfBbA6hCeOQGGNza0Vzp6UTAzJuhjgT6/BbcRRhRjFuNbsjVGUu64/HNce0zWP7bUUJT6CHEujUAPyXLaR4typ3cxHmfuonm3e14DLGUA285bUc54ApuxXGE47SEvpQh+VUaPIWScmIdWHcVJ2SflFGbP1ALdj63rqdczWMZBSsjMgNoYNkh1ROdJUXlgHmvKeBfjZkkk3Vi8xyvVR5BL1zuu8J4Vsr88aKr1Xe+nKj7o9Rew1cnd12ZNyBgdStHiDASuaMjCW5nfCl44jIhxOY+LL7U18aHMTHz65jjt3r8E9O2K8S/Ab4UHS56jOIg9ERwhrxjSlqGv0gJd+Gm4zCi8SYXvrCHHlhL9PQ67vZy9RKdaGeDGtsU3iWA652y1S1lWJVIUVMhjmgSEKmeFGiVg5H+GaSHFMBm2AA8dUdxxQ1rCORcfmTCQCmEqvCknNFn2bPU8t9aJOPcrG8Zznyy7aB8B8lY3Y9jjN9vY8u0gN7zTk7CBm897pdct7xQk9414vqwLECoJNRLgLiH1z/7pApfnb6yJfKLqYLeshwQi1ZT883cAHT2/iww+uFVv2OcBvpHTAJgSxB7Y3JGLsphGrEKWsIa2IQpERbx5LH5x793OZA4coUWPvQeu1lCOtRsTVIAEh45iKKwbGxGtDwDAEjD7AO856yDvGFByIZFsghiwWF2XFBZ3zNhDQ2otc7Fw3cWXvFQdL6TfAg3yR8Fvur5MzCvLjaOYVIQVGZCey881mXkGVGpVBNIctc7LoowoMt3qn45gi62zTXayNaII5NvtRo98zPdqeok2DybzPaWzpRFFsf80qy3IA5b3U9ZeVM7JDGpfDkY8FFH/gAx/Ad37nd+Jtb3sbfvd3fxcA8DEf8zH4rM/6LHz5l385XvnKV17oeH5pjUJDzIyXv/zl+Bf/4l881JgBuaGBxeMNQDrvAVmpBzh4ligUGLku40Fc4V44wkc2N3Bne4TNNAAbB/+A4E8ZbitLtMA5IEb4s4BpkJQqN0Vce+89IEZML7+J+x9zhAev8NjelIc9PAAoOvgNw20caHKCrVYe0/VBJtGQok/XZIHzHCVeo6zFOGh01Uxie+EAENkY4ckg9gJkXeosHRNIjISSlqmvjFw/7IIYt25KoHgjoFgaEGmnbREw0mBIUmNFhs+7zxWBpEqsKDvodamgyYxpGDEJhuwpJFQpqZgoP3Nn9q94OxvDgG1GprIqM6+NYlkg38g09oTKc28FykyopN1a7ueynRZCSrN0PP2ZAVlXndTrXZS8KHhtgucpYmPChBolvheO8OHtDdzdrnG2HcBnHv4U8KdIfMlwmwA3cVZ0/owxnEiJwubWGtOxw9mTDtvr8lzdlhHWhLOXrLC6u4V/ANBZlIeQolIYPeLRiM2To8zxURrfTUeE6bh01IwDcp1ijmCo3mBAa+AzIGyVlT679PxLtDVlQXSWnVDS+Ziy6Kq5QMl5M0sVzO50/VyOl9tqOS4GvB2v8khvvjVKfFa6ATNPs9HBiAqwnWGlaqxWdiA5E7nIQbNfOy6OhmHTmFiBemqiBJWXKTLQOhurbJoW5Ot+eu5GLmW7+4ryp9gwEoUqPCnAOK9XDCflDYm27JPhfYTb0zXcndY4mwaEM4/xlOBP03w0lgmTfHYM0LbwgkSsPOI6RX0n0bXsgLOnRmyvyY0b70cMp1ycLVOEC2XJLHYkDrDMn2icyylCvGLwGFN0mCVdehAj3XsWYOySU4wpOYmAGLn03yOGLguV57vhU6UMiIEyP8ySYmVHmPnbGN6zB0ZFd6gnx4LjHJpFAcb6oNsH387h3n698y9RHpfaAIIyrMxQ47zwf/N7vRzjaK6BcLEhuoB4R/QudxO2eveK8iVwcVsWADY8VLbsvWkttuyZ2LLDqfCMRopBck/Vwbq9QdjecHDbEW6KiKmciDyBnzyGHz08EXB6Bt5uQSpQnQdWI/hohXgsZUrTsUM4AqYjIK4ZvGJQcj4NQ8TgIrxjeBMpVn7TNFzdxkjLRTEXD+qS3aPy2tqxKeuRmzlFTAiA3GOi3NdF5qYx0rL+S59TYAp5bpv98iCAXAOtxcm7UB83KdPRvk/3hZvfU/XzaqyVA97Jj7ND2fBIN7uiYxtUN7iyXdOz4IQ9HDIwlm9FEtmVK9QGmkWP9RY9Il9eOij+0R/9UbzxjW/EvXv3Sr0KgHe84x14y1vegm/+5m/Gm9/8ZnzRF33R3sf82I/92FKH0JDWKn/2Z3823vSmN+EVr3jFww+eId41lagAtEudfu+MEInscMoDHoQ17kxHuDOtcTKNwhDEGYjmyTEOwCQNt3B9RFgJMKbjEW4bwKPD5obD5glpPa91R/4MmDZOjPjoQcyYrg+496oRLsgkCysxtsMRsjLXtdx45BRVTYZgz5ucFGSOnmpkM72PqQaRXFnuRXU2t0zIyHXEbkqAeBvT+Ll4EYmSVyg1NiGXU7etl7qqC7KpTz557FXIVK3xS91jafSTBhtSDZ+CYmWpiUokWY1gZUBzjTk13AohPQyM0k3Ni2IyZrReM5Nl8t621lNtnxVE8FrPPZvvur8zhoN87syDK0nCk9s4SC4+u6zgJT5FyePNiEzZA/4grPFcOMb9aY0H0wqRSTydKSoLrUXcTKAg3WTDirC6yzj6yBYAsL054OQph82TwlsA4M8ILsir33jQJsJvUxoAJwfYg4j41DXcfY2IWGKZB7LuIuoaxeRxzk4encMJfOVmcB3gBqAyEnUJmOik662eW+1gO6+JkaMqGvmkmAxFq9TLYyhvySj1MowCjKkeL2d+pPS51qP5ACZCnLuBmtPruLM/K4EMtsdIO1eplLpkTpaDXBknVl7k60n338pGuUcpkq6CISltTeWu8rrszbEypDVOrFb3sKsALhtCV4RCEtItT6rhXfZzOIsjTnnAc9M13JmOEl9CHClNfZ6CQnUoYisOVr8R3cJOHMDRu5RNBWg5zva6lCWIEe8wnUqUaziL8KcOzDHVKAsgjgOkQeU1YDoWYBwzIObUZCsCAwsgHiKcZzgfMKTaRkeMwcuDi9FhinX6TzVH01ygSMb4lu1Z3+XnXpcyzIxuACViw7WhbSnrDRglYNEd14x5zrybR433VyZsWEfHVNn+eq02uGn0bWazzqmr9GmbMk32MxdneiMLpKNx0Y0KugjIwOuqg+JLtWWd2FnRa1ZTkuHpHvsNMDxg+FO5x5snB+HNFO1lD4z3GUe3PdaBpQeAc9KJepqgyxjG62tMN1eSUXXsxHmsgZ0xwqW0ae8iBi+v3sXCKnlCJF0M5FpjscVSBmJ63otd35ONVwI7XJzSVjal38cks1unpwVwlbOKzDzLkeLa1lP+zr1jbJS4sQVzVpJmbmaHcqcJl/2pHZfx5uYMq6w/m7p7B8zKNhRXwByzR5UMlOeu4Fh7JhAIqJxiSTikMdnaYlYZERuR+Qh0qaD4537u5/AlX/IliDHi9a9/Pf7m3/ybeO1rXwsiwrve9S583/d9H37sx34Mf+2v/TX8zM/8DD7t0z5tr+O+613vusxh7qTsXdPEdgh7SUdNhhathWSkn/GAB2GFe0EM723wonQ8I65EwW6uOwy31qBwE+7eGTAFjLdP4M5WiEcecZ3qnIhwfDtge3PA2VMQb3YQ77XbAG5yWRhvbnqcvaTMPlaBNYoQESUuCh05xdgogB6HJKPPKhVyEK9ZMnSJRKhhKpnArJESo0wLME7RuK0AY6knllRTJkhnQufKcezibkao1FFiNXBRlJmfK7QsaDLzGeM5h8bSvWGS+wTkiLmN/irZWukqxRNl2FWKFgOOCdEcw9ab5DwkajaZKNeygOGZcdCVCtZgoP72q6zgGcKXoIhtHBBTOpguqbCFl/SvdHFb9jiLIx6EFe5Pa9yfVthGafdDXnhC+JIw3BxBW1ki7foHA05vebAHphsew4OY1y2djsVR5bZixOZ6p5WDW3tQiHAxgjidZwpgR9jeSMY5q1GG0rl2NKUNg1nSxaZgRuo3dlH9k5w9nJQgiMWRBaDq9hzM79hgMJ2YhBIFZTW858/CRnpb4zt3RddJmfc1wKDDU0sPvURZrcFAuZ6oSlPjco/zeZ0q9iTzFBDnTsHSGCkv69FeKyfjhFGW+Wh40i431TUGjNEykxf6DM2Yc12xGllXnEKVwyaDD+wzON6iNLzbshdnVRR9eRJGbIIX556PkqJ8RAinBL+VDCVorX3ygmgEB6mTek6zTEu3aJlQHNOwAhAiJZkOxEA5xXl73ePsCQHCnCI9uexoXdKlJULMpX54kKZa3sf8NxhDHQC2SHI/R7GQJiMVg9BmQxhQrLxOVNSU8nZ22HKZRrWzCoX3UHSgOuo18AS2Y+JSt6jAGGL4lu7Uu7vcAnOTwny1H1m8qXwbKQNjy+t5x/Y82ZCHcU6r7F0AxClYoLaDyoOqmWA+PF/wol4YyjoTgDM3apctu2WPe2HdtWXDCpiuEYbTFOgIEiXVJBC3BYYzRlgRzo5F703HyLpv9SwBGODP1hhilODKNi1xyPJgw/GIs1sjpiPC9kbSuUcSJcZYeE3BsAJioLAAkUSPI0shnHMM5yQzKOTAiZHVHZmdQWbKvHITFy8sE4gYcRA7gLzK9WZeZIDIM51UAlMl9Xs2huRcbm3LxYet6tYCYqtvynCqQE/mF3sjVURZQGxLFBUML2RWzPjG3JfiGFS9md5HY+Co7kaSP0bn9qLFWV6cc5v2pUsFxd/0Td+EEAJ+5Ed+BK9//eur7/7YH/tj+MIv/EL82I/9GL7oi74I3/zN34wf+ZEf2eu4P/7jP45xHPEX/sJfuMzhzogBRBYjO0JXN5Tb7JInHBAPXEhK/iwOOEnG92kYsY2pmYYTcDpdI5zdciAeEP01rNYD/J0zuOfug+6fIt66jnB9RByl/una7zxAWN3AySulgD+sGeGYME0ARQcQEDSd84YIJWv4RfWKau2TMQDhrcA3hqAaf6nxFEyjqWLUcjYKFYyoXOWUBaM1inpMAcZIQJILIJ6i1Jp4YQYOSVD1AHE3/QmJWa1Smxu4ZSxcXiOVa4MqW019YbCmjSeHgHqg7CSxBm4WiACqJVQqxV1SQ7Ihr8dr0k2qVJVKAHQsDjlpkZsLuzS7v/iIUTzeyfgO7BATenAUJUqVtitfPogrnIQRp2HANqTUaidG7nQN2DxJoOgRxyMc/f4Gx++7DwrXcHbL4+wJnxw5jPE+w03JCDBzMaykoR0Fyd6AI1Bqhgc3ydIUI8To9mmO2Lk8mIY9Zi5X0ddsuM7viTh5OKfwSgM2UdpuolSHmMaVsyLKq40g2znUzcJv501vHiWNq91Aq+1qiNjfJ63M7VfG6G5LAsg6t3bMd858g6zUrbygRma4DvPkKIOKJQI4d9tP8s8sN1WaimEO/Ln+q0CFTm0AefmQF4XtXSJRyo/akyE2RrcFxfemdeLLUZxVLDI3rCK2NwjDCcGfSQQqjsInkc2yggDUOaLLJoW1ZGAoKFa/dtVBVsta0tzY3HA4eQVh82RqtBjTuXTZpRGA6lDtLj2U+mGfaogVEA8+wJt5xEwI0aQGGYNQM41yHbHNkNApZXWQOgVUV5vynfQoCuO0+h3ps94HG4XKCNzo3nP0SAHHVD5bsmrcfNfO56Vocb4eoIoeWZ6n5vJbUJxXo6gyy9AY95xBikbtiDg5+NNyegbc5BM5m2pzVUmWJ5KLi9iy39uWPQkjNnGobNm4YkzXCeEeMJxIWV9Zsxs5Eh9WhM2ThNOXMaYnItgz3KkoveGEMN4fQROnNOotyHtpQOscpmsem5tpGbYbhHDMVZTYZUBswGRDjsQ57gjwTuLizolzitRmJDvRmrtWdWNXfWPldeKvKHaj6qPm1le6R4BxPiBKNgfmtioa/at83MvgsA42q1ssILYZjeaQeYyov9Pxw9ih1smUAX0vy6rjjNMTcCsrVK/GhC3yetVpxQqjS8+LFgPGNMSj06WC4v/yX/4L/syf+TMzQGzp9a9/PT790z8db3vb2/Y+7utf/3r8+T//5x87KAYk5Sute5NW6JkzjwqRKUo6mAgRj23wCCpISIzdsBZgvN2I8QxaYfQOfu1BZwHuwQbuwQZxLV2nw/URRx/Z4pX/3eMj/6cBm1uMzRPF8GLvEFbA5hZhe7NElzKAJNQpgtYLaoxAe1XZMNaUhJIXgdxkJzf4IGAotbcRyLV2slA7wzI7YIWLChyp16xGIRpIPPakRkF5X8BxqW0okW9zXSYKTvbYAHJUVv8nYZEjT7oIOwsTMlHxCbQ3LBtdJbWmcHw9Z2xkq0d1ik2/dqNzWDOYdB39w7/oiVEixWDhS08RUWuI1fhmhwhpFiIKfswKfkp8KV5eRlxLtNhtCcQOxCOG0WG8P2E4CZiOPLY3hA/8hnHjdyLuv8rh5OkIYoewlUzubUi84gb4wcGNXmoWT700vruWvN3qyEmGWsWjQwPSWuOx1i9pG5UocqDs0BKPaVkbWCOOGSioeFOyyrGldt61+3UMk9a3NeMdVWrtOewlKrAEhAcVAJwDEi0QzpkWWVbYP7nXzqsRXBoklZILZFAMltIOSZl2WXaI3CzG+qwbro5lH8bsiY4rztAMycpw4FSb6HJ0KppO063hnXVmGApoJNFVcQS21wFEwuo5yZQ6fRnAK0acpESIovAkgLzUYMYo2rk8y2dj6BJymrQbBERvbwCbp7fAxsGduTRnTFlOig6T55wu7T3DuRS1Is6AeHSxcq4Ep01/6vtWgco0TvHIlxubf6O1dFH0k+jO3VOjV9qgz0tug+peA4yrDldqNXceuDHIrYFbvc4GVK57ERibQ+Smefaw2pmWzbaGZ9R5PKspVkCsejVn5CDLXCt7tVGTGvutga+v54ijF5z2tWUjU8WXp2GUOv/Em5T4IawYmyeE/44+IkuanTwtEWFZgxt5jkjjSM4Plwcpddhed3CTpHG4wYG2A+hMVmXZ3vDY3Cj9NsIKKUrMOTPDmejqotrK+1B2bJBLGX4WsNpXqP5IfNDRizv1pPlrj9t+L9vMdZht4lRWNdI4l3un5qzq5hmMWf7Zi0BmbWqvSe1uvRcKiD2jymLT9PM2K1P5vDdk42yonHKJr5Gc9xkYE0OWiixN/6rocPY1cqkhvySGvFRQ/Nxzz+GZZ545d79nnnkG//2///e9j/vyl78cL3nJSx5laHtTZALIIXDqW1et8SGCJjIlUOyz4X2agLEVJPCazgxsryWhAQ92hGHl4E8muJNJllkKAW4jIHN8MGG8A0xH13H/aYftdY02EeJ9YLoObJ5khOsxTWSeMVwW+E1EhACQq/PySKONuWOs7TdrgLF6lDUKlQzvmBgQA3LTBa2p1SWApKYjGQEpVY21C6hPYNhGhbMC08+cGRXO1Ef7OSBWQZjBsaaD2WsEcmpk/ksGkXa2a715M7K/hRU+rOhkluJpbutMgFrA3+2Oe1GmP8+obsdzZal4vWeAOJEqd41GbeKQ/pKzSqV/MoYEGCeFHgCw8CXuTPDbiOE0pPkgdbZuSk14rrkUaSbpGps6t2kzLX8qGR/xSKLNYS0APKf+2/o1E7XMAM3M2xnpPGbhSV0eiMlVGR42msRMiLE0j9NOr3Ig1POw3O5aoVevXBn6XQyndgU123bNsdZwMPuLc4rze26+n++PDJQ0oyRHCMz9di4to+M4N0iag2KRb1In66BFI2qUa3MVRKqVNl0CS11pngTAc2cVUPgzA2QQttEbUCy8OSWejUwS4fGSORGOAQqSqulPGavnJJ0yrJEyj+Rea11x1gtpTG4hLTnPCy96dnuDsL0Zsbq5QZg8wplHpeoa54mNDpcUTs4RYp9AcWTC4CKm9Nmpo6t9nibSUQUkueyb9YcCfatLGv2j464AsZEllKzgbHBbYGx5qQeG7eHYjJPLz6qf9EQYleHMbH39bO5/vg0qZtvouD2fkQE2G6Bdh7hqyNk61ZNxTy4acAwDXpqTX2H+ZIgtK6uG8162rDqSN0F40wZ4si17JPX6wyljfADEjwCbJ5H0KElW1VYaWcZjKWeQwIM0p9xeJ1B0YDdiWDlZZvTaCuFoyKUMcp6kN8co9fvmmdhr7OqfRBZ0Zr2qzlIFXUDhw8oWU/tUZUtRnJx64VT7qP3a6i+T8SeDqe3KHp/u+4C7GRrGpl1ssJnGsSQ7in2Cmmd8zS/I/FLGv8gSmb8p87GVbRkQ2zzoxkbWaHHWrfY7XJLOxSWD4qeffhpvf/vbz93vF37hF/D000/vfdzXve51+G//7b9Jh7K9CtIejrIgSUo6NmsTaxOfyISJPbZJkGyiRI1DdFK/BEABFg+MuJKGAdOkVqKTdYNHB3c0SPfbTQBtI/z9jTz40eOJX7uL4w8d4c4zKzx4FWWhtHmSsX0yAOtYGKGKKJZ0BgWLS95PNbDLnJVjESyQS8BYz5VqcFm7YQaUNOqBwKE0NFDgy46kfljb46eu2exdESye5M+RAcOovLxVTYYxNtprBIyBi8KwrF8ko0dr1XKmUS7uL9v1rzfzFmXZTELDCNX6nFaRW+BURd2z1YT6ddc5d313WRLkeSLpMr3sqAIgPAiHTRxwFuRvih4TuwxwKAl3HqS8wWkKdNT62wH+lOFPA1bPbcWJufYIK4fj2xEuONx7jSwLE9b6EGWeR+/AjuE2hLAmbJ4gxKMo6yvqnF3I3HDKq53IUiHOxmaMMknFiRdT8ziZQLZuhyMqB1YufzXGd56HlVKvl2i4NNK5bDJCKG9H5oUqus1JLrUg3vDmkiFieSw3IsppkgJYvI/oGb4CiAlElNbhFWCsy0iok6/0X+AMjjXTZG78pGMDNUBo/h7Lvb9kUn2pziqgA4iTzpyijRSLvpyiK84qQO7jIPV6cQVsniCMdxlHHxH+mq4VYAwm5HWfzLyRk6IqbZlFSyD7TteAeC2tdzoEhNEhBl1LOB066ROdJy7xatXshySF2hHnv8iUgbPTDrmqc5s5vFOWG6N2V/pwV/bTPCNMtjXAWCfjjklH5tyV4b1w7szTQMkcMShm8XTJZs66m8x5sPyb/J3LJlZ2MrNH7UhXMJxsAAt+W0CsYAyoZYM57ZWlLfvcBb5ny+o+xZb12KS/bfCIermE3NQ0jmLLnj3psLrDuP5+KazVwI2bCG5irO4Q4tohHIuNKuVGUpcMuLTsocPwQN6fvsRjc4sQjlPPjVTPj0EdmMZpbKidepEJS9HVPCdd0j9G59nIKHsgerEJYgRoQHVMWTElNc7sNAdke0zL349jwnD9l3G/Kctob5LybK13uBozGzs0Z8wsZGUSDG8sGMSUngt35M9stYqsRxPeI866NtvmKO9z7wHKcOWR6FJB8ed+7ufi3/7bf4t//I//Mb7+679+tpQSM+NrvuZr8Ku/+qv4iq/4ir2P+/Vf//X4E3/iT+Arv/Ir8c3f/M04Ojq6zGGX8aEY2KHzbAUwu+z5PksG95QixEEfvP7WcWqAJQ0IyrILBPYOcWDpZLtycBsvwDgw3BShKcbjc2e49ZsR1z8w4OyWx4NXOGyfDFi99BTMQJg8ONX6th3sFBi7DhjWNEdNM+E048gwCBJAzgagV4CZJijrNYrxbQVD9IBTYeFlLWWiCEcOUU/uFUiIgyAOVGqiGzBcUqe5BouuAOEWEJf7Qen5lsJ9UDIIOsaoRnosOF76y0Z9DwTrvKL5dm4EUanf4DrFK82jLjDel+zY8mCMVbULTF8BKsb3XLkDc2fVWRiys2oTfXZ0AYA6U6TePqVqBUjX5qRIJMLgZcm0tGzTeG/CeA9YPesw3h/w4BVe0jqTtxgoIMgNhGlN2NwE4o0pO5GKk6p2VM0Msx1e41ybQ5AIJjMYrmReei68qQ2KVCbp9qahDxv+ykZl1/icj8vYucvUMQoYhbc4ZfnliB+XTpSVN9uMt4ybuoZIVvgZIBuFbu6zAhZNe9XXmJ6Xc0hRY0ZgNZyRlXYtM6hck5UdMPuY21DqY8tv8tjb768kUeWsApAdVqpHlfcUEGsGxxR9zu6QQ6Wav2x8S30iXZPnsL7NGB6UiHGyxOA3XCLBKhrUQIzNZzuXiOAm5HXqJX2+pNEXPuP8PSn4NcvBKCDWOZSbGiW94JPjhVyUjrvJsBSgVqJLucQGyNnL+S43gLgCpxcQ3nneGcO0AsRZx+yYcOY+Zr13zhCqkopdwNh8X9UX45xLVf5J73MdZ3aicy0Hklwga0dQLYNdI5PlOtqU6aurOLPOTFmPLfVs2cyX0WVwmW1ZMrbsSKC1gGCQw/GHI8a7hO1NybxyW8JwHxiP5EbHMXWuXqWMxxT08KO8Tkckdu3NVGrkpZeORont88jXx3Xz0mp7BxhbmV85fnMwJtmbA8CTAHMyxyDDe2KvSmZYWRoUZaUZnWM79Hg+VhqbZYRSZUiz/Rc/W/nWk3e1KTwfitXRs4zF8kcp+zRnnRpsodQ+Jzl94h31yBMk0w2cgxVqB+fBWFtbf6oOdZUPedyMvL7xI9KlguKv+ZqvwX/4D/8B3/It34If/MEfxF/9q38Vr33tawEA7373u/HDP/zDeNe73oWXvvSl+Oqv/uq9j/uDP/iD+It/8S/i277t2/BDP/RD+JzP+Rw888wzXXBMRPiar/mah7wCYzwbiiYNLDBhih5blojUJojhPVkFD3l4nDzfPJB01gzy5FUJRk+IXpaY8F4YzW0ZvE2Ln6fUTX9vA/9gg/H+ChTWskzM0QpPvfwOtsFjux3KsTte7hYM774FabaRKA1ttIAgDKI1dJSiwGp4c0zGo3rZvOnQp51AyZXUiyRcNDqsQiYOqaGKAmTr8c1RYv3rg8Q2zWa58U+51gKyrUGbGLAyWDvGcBqD8nNbC10DDxiBAwP4UQuibMjrOOpr3jdhoq5HTZbFIxpXLwRZr7clBcNWwW/Z1c6qWKI/lP7lLI4RoEnW9c5p9lSyHPwmwp1J4qzbRviTCdfeH+G3I/zGI6xlnoa1ZjsAbiuG+3SNsbq5ARGL8wqYKZIeGN79bMtzkmXPCXDSFlCUoSo0MqBYIlfaOJAYOR0TUD5smmqocsyu593zY/HbVq9bsKhgoOEPlQ16UDanZ/O7EgXq8I/KDbL8hCpKTGksGt0DynNQz7ZGQCkB5Mil1klSvgArP3Y50nIE3N4WlRNYkAdXnPZxVqm+nKJEpKao/JkyOGDkrZMlymgA3CjLfhMTxnuM4VTuXFzJPYsrAKDkSJbPcdBnilwPLiUxyLjPRoXAwHbrMQyaPm/nAcx7hk9OlB4gHlyEgzHcuZNCrcsIes0sQbWOPYAq1btyoAJoeek8yj9r9Z/dh4xRag3nJYZmQqU/dogG1YtIarYHjPWQjf9atptt1HxXnUO/yzqXS9S4l3WlpRQWCAPVZ7k3Rh6k09ia1qtNSScyZOmlREu27BR9ZctqgAdABpIyd0maawVgSuVDq7vAeMIgljRqJrFbx3uSvTTdQAa6WvqQdax32NyUxlxxXZqh8ci5lpgSj7WPvzenrQ3enfPZruPslNIyvegh3aSHwgxarjMDxclOlT+T2ahLfxn+rQdt9Jnyt5qxlgetbWZ5DslOaQBxe47u9uaQMx2ltmq6R7PgU5PZ1towC2fTUSN793LEycgI9bJle1xuUE5zN3o1v0ct0wkJkzwiXSoofs1rXoO3vvWt+Ot//a/jne98J/7Fv/gX0HRnXbP4j/7RP4rv//7vx2te85rF4/zBP/gH8Vf+yl/Bt3zLtwAAvu7rvk5uDDM++MEP4gd+4AcWf/tooBiYeK7cASCo4c2UhYgo99rwLp5v5JSdODBopLIsigwUZd00gL2sQyyecgJNrl7TlwH/YMIT/3PCcHqMD2OF+FKHm0dnOPUBZ9sRMUq63wwYY25oW29U7nDbo2yswHRXTZNPvduepckWJcEySBSrKvqn5MXZAvDpXBrp8WmJm9TJUIWNrierhu8s6mMYsii13c+3MhCygEwfMsMxbMOvrJCzok3X7VDqktNN7dVGV9EsY7jnGpS2fkO922Re9dryeOvn21IFAgHksIACP/vMuT7mVSNGqY9qScFwq+DV8I7J0RXNbSKTVhc9QCPS0i1AyddL88E5eEeIE0tGxzaCJsbRB85w9EHg9OVrnDzlMV0XfohJouoSabeunwIAziaPafILvLm/o6PO8NDfpHIPlxpseSD3BUiZKVBATFzWPda5kA1H/WPDa7sejCg6Np93dYXWtYo1opp5TT28Bhxwch5KWrteR1Hm2aHmTAqbBcmkvFb4qKqDMn/9Z5Fe0zVSUs7i0NPraOWinIc1lSuldVVGB5DBhL2Nuk/0Zl81UnY8gheSlC9bqqPErgBi46yaWn2Jwpda3hBHgII0xMJ1gj9ljPdkn3Akjqw4Ao4pdYovhqrOW+UPQNpHciTRyV7WHWfPmM4GxCgRYF3CpQbHAoglGowqTbqNEKtzRUq9TO2xjwiOwUMEb504ywPl15iaAFEw06RyADd/F6RdwHgvasDv7EjtJFUbuLtz5/BWpylgoHJcBupzUP1aDHlk+aB2S+7JYdOmq/vZguHm+adTOWplxvnX9UKSNtay5UZartDasgKGd9uymsEWB4A8gUYgBsne8KfA+EBWatD1vse7DJrkJk/XEt+uDBokwnQEbG4B26cCclQhrZjixpBLFjIISjpmKSDI+fo6X2YQZ/Rc0iE8iNzmILZrDpokPZMTQBTTeeTgDau9asv8qMzJJWIuvTJAqHRnXgqwBb8zANyZhJY3lIcaftGfWoDMMLpfZY9GiAklwy3dCGds8Hxq87442wwjo2SlaikHrGMu27iN4kvb1GaAiRYzzOslaMtLBcWAgN5f+qVfwk/91E/hbW97G973vvcBAF796lfjMz/zM/G6173u3GO8613vwoc+9KH8+bu+67sue5hdYkZd4wTjWWOqjG+r3IvhXbzeZAXJwIiBQCuZDGXemBlLChAZvGXQIGmbNBBcEO3CXn67em7CE//T4fbqJXjuYze4cesBRh8QnSwB0QJjbpgrG8PGG6Ue+5l2Ir2gtGsbLdalhmzE2IuwiGm9X7OEZarVQBEaQJWOImu4luU3qkZbChr11j2kx1btpOrXyRtK6pY2f/MobwIfLgWKkrBS9TmrL2mFZTdKbIUR18Z8FhQqENKQdyhlSUsxG7KwzZdbhO4VV+5IXu+WlB9nzioLjKNLAVQVosm6I43aUMnmyMuiFL5UcOUmAm8TgPMRzkuEanVnwnASEQdCOHLZgzytCS4Aq2HCtXGLs2nAyXbEFGovfM9QtZ7jc++MKlP13OZIq1gOuo5kvqaQ+NV05c1RFWrm4w5DPKcvVW70PUh5ilAvfZbArbK39tzIyk/TqZOcVABpI8XW2dQdd+M0yynUxgBWR7MaVbrER1H+VDzTRoln/s6AGFLbqhFvRo78qsPc3hMLjCuZt/+dfd6JUQAwUAPkXc6qCJoDYgNclC/FYcWgkNb6Tst3uC0wPGAMJ8iRGZA05QJTbtbDDiiBgzT/WeZPXEkqqE44jgSGA1M0/FeihAJwDcg1wNjOH3sfXPqtplA7HxEDCTCODhzELsAo88pN6d7pkJUnlS/1WrJ9ud/seCQwDPQNbzuEh5ykS4etTJDqZJ399B4oDzmzvXLwWXmWZKV1qOspjG61Br4FxJcQjHrs9Ci2rPbHqe2jJI+8gEAeBTzGAHH8pa7BfgMMpxHDKQAiDCdS9rB5krC9KdlTPDK8OjTXwOZWBF2bkpxMYEnriN08dToy4NrJgBoIaw+R7tRU+8pRzkxBpP8/e/8eY11y1QfDv1X7nO5+LuOxx2N7fIkJl3xgeInN5SVfRDAGhUvAiSCAAsGBKDEOiBAEeaUEBY0IigE5IL2EWChODIm5JMQCKX6xLUUKAQLoI4TYxoYXiMHGEDMYj+f2XLr7nF3r+6PWWrWqdu199unuZ6Yfz15S9zlnX6v2rnX5rbVqVVoFojd0BV27HFqbQMc6JTtWAzZmq9b6Z/BSkPuYjG2zGZvRXmN+9x31NUZId1fj25zFhX3Lpf6p9b7IZXMghVgA4lak2DvutUFe55F4F7SN3gFWMmTZrla02J/D9flnoAsFxX/9r/91PP/5z8frX/96vOIVr5gFgOfQ13/911/IdeaQN75zalhpfGvql4LhbSwNXQAo50ghKcCYLFhNfyB7g+L5cJFj6lPBApvsHxl0EABhzoObEdf/qMONcIAnTgO66xusVn2RglED4/xjaJAPALEnUyTywwxBGkaLNVrGSAaioC6LGvfDyyso7g/SJ0uUWMv6exDZMtCLazEGDDo4xneNqm5LlNindFqKm//NSBE5ed7K/6aY1dBfOeFpc0/KKHGR9qnRJ9lXryttANm9mlGqpKEJKhX62u7zGk1PAtXLSbQ83mqIa5TYqgfX/ZN3pJ7vlL7PabxK+mJ+n4RCMHdA6FKhPNpGhC2ju7VFB2B1O6S58WvC6jDg5OEOf/yhZ+LZ993A4WqLTiscRyqMDj93a4xnBwVGKkCRvM6wcZO84HJsZwcmp1bfSJdU/dvl8cfO4Jyk2smG9Az9fLTCuabyA+QMV3GeaaQUkCkbCiK10ra0TXls5fkqg6Q85YLz/ZHbs0+UpzSa1UAjNKdfyL3zuuRsz8cq86PEM/YqZXyxjsuQt19OSkZ1TS1nVayixDrdqBzHcHzGNtcvrpENStGX3WmapoCtk8sRKWLcp7mNUaLN+d0kfcSc5jH2hwwcRIRVGQFMbcmA2AOieptGiWtArKTHrUJE30X0XQCtOBWjXKUCMwxK6zqL3qHK/5cdq9l49WOmPBhZvo/sLn43HOR33BPTGs8jAH+YNOuOVUO4NuhFZxog1mMLHeq2yTXrLBE9rQWIL38K9TzebNmyjAQwS3sWpV3TMahLzipbC1cOXJ0kPkx8yljfJqxvE05uETbPSBkeKdsDOH12D3rmKQ4PtymYY4Vq2bI2FBTnLAzhlwZ5Z/NgXrRc12S2zu2PlCPFK+l7AEIHcA+reK92gQHLMNQ9ZZS4bhzkZJbkPGXSRl+03f4PmORNc9SKI1bVlHem+UyKwq6uotvs+KK2N4eO5fJ3PhIowbFgHQ+QTanrvbQjsA4UBbfGosVyykXoygsFxW9729vwZV/2ZRd5ySeZqADCQGl8qyLXtOkEhnOqifdUBZLIZsepMqwqQCbxrikgSfdlAZnKcCQVnVMBIDFkmcGUDPLtYUA4Ba78CaE7XuPkWR1Orvegwz7Nw6jAU0EjIGgwnwEYGs+cjGWy+XRSYMhHi1kiPRHoked0KegovMskgkXmZkRNofbCxgNiYHzgu6jVmHd8YARYR8u/LGAySLa5J6yeymxsW3l5i7jlZzJdPAwZxMg9BmXvXbTYHoF/tyNC1WShPhfK+5JQFuNBradLqudrr3fL452N7mAKXxW9gmMlUt706VM6Bg0UuwfiHFZhC/lkkILjGEDiwOpu9+huMVargOsHhM31I3z4xQFXn3U7VTnWPgGIMcAv/dNcxgTKg2Rtz8+F7Hzrl5xg9QCE19j1JaUrDYdNduhwmbUANHmu6YCqjSm7cPlT+QlAdjR1eX/Q4xg5ddpfjhxvGZ9xwVvZu+3/hg85MqEzUNPo53BT6UzzckPAmT7LnPepgsL91f2pot2Fg+CS0lxn1bbiSc2qKkgdyeIk0TRnrGQuIuv7kTEcEjAOG7YCKysG+FZag3xznbC5lqc0ALCX1l8B4tWI9ZUNuk51Blz0Axn0hjhImwZyqnSLiMqUai0WFEKUeZkp2yjKWAggRGIEIltH3Bxz4iQpdEbL6PbdVGNR2wM35LzB7Z7JPvLfVAZVzfBD3fNFfb7xzo6bFnqudT4KY947puz4Qg4kwTdMl87f7XYjbfMA7bJSEptD3lTducuW9eCysCVNNgmA7AGsRV86Q7ELwpdboDuJ6G4Dh48C/VHA7WcFbJ5BOL0XwPUtnnnvTay7iJPNyqZVKNVzulN7xqcC5PRpsgyxtL06UMFxQJquEdUBJ9Nk1CHbIS/tpjxDmQc1w8mcVj5ToX4hamwxEg8KV1CDkcvpbQ0GqqmyW61gprfpnZ4pdA2pzVrry/Kmta6f4pVmrYLigAyGdXzNzmhxjyVPJyu7eh66UFD8sR/7sbh58+ZFXvJJJS9IauXulbltc3+erJBOQI4WRxEkPcwrFSOAtZ0FTeHlLSEETdUEQo+0BrC2ScCjrgEXToH1EwH9ltBfSdX+dF7GvnNRgYZRK83LSoWy4tG1hxmWXhPFprZlxzoXgdM0FH3gKljc3AybT7zSghkCYnYBQWv/kIEn500P+ghYxNgZ2bHLjuc07SRXu6OYRJymduZIMXI0ayWGu48G2TIRgBUAmQDElv6LBiAp+uINvSSACAKkSOdyIINj7f8lJQ+EgZJPC6NbvN99VIBc8acznLy3WOca8qoyvtVx4OaYB3m3oUfi8R5WFI+2nJxXQdOrgfjHa9y+uQIfRtBRnypqBvc+x6h6z3vNC5Sx49RWeu8yxQFxqGgtyqLAWB9Ba7wp73K1bUebjLe0EpJEVGPHOSUuCn9JRkbhRJPrqPMwe+kdX9VzopV/Zsg8Mr6Z+5xVrrqCTuIQAwN5GrzT3K4/3rj3bTfDRZ/bJaR9nVUaJW45ki2NVZ4nd5wcVupo7bLDyiIuztFDPdI0o5g+D24Aq+O0NMz2SqpkzbLUC0jk8lGPK0cbS5HPy7YN5xFr2jQhg9zpZ5PljkUZQ0TXBXBkcIwZWIj3Rwu4DbNVYA7Wot7ErnHhncR+W3HMyHZPPkIDmFj0fh47FBgA1mIn+f3z9Q7X13GfBSAOABcyXreLPq3aVFx2pn2Uz73cwHiKNxUQqy2r+tKD0jqLw5xVPlqs+jJCHFdsutM7RWgLUM9Y3Yq4fhIRHyacXg/48D1rdM9hfMp9D+GPbz8Djxxfwbbv0FdTAOfQOCBu2eeJ16BL/6kTTvk/ACFQylaSaTB+SBheNR3U0Dl2cPWdKRvHBHBrHDmH9nCf74wzdvUdIf8eXEP5b+D81vOrtrdur6pMntUYtewVD5JH9xvfUpYzTnaQdTH3nbHDHt6DLhQUf83XfA2+//u/Hw899NBe6xC36J3vfCe++7u/+0znPvjgg2e+r/emeQPcDO7YFREo83qrAgTMK8yRLeqnTKcGeBTvdwTyoCUZZJQMqxCQwFagwjCMKy1MRRZdCRsZ0BwQD9K8DV4x8nw3VRRSJAZZYTaZQJi37eVxnwEAy9ziDildELlcPknkxNZLY2qCYp9inIAxl5HiQskNG8WAAT+NhJUHUPt7o2/mbTPjmy290wNjKMAAkCsXuz4FVOmdJSC2FF6f4hnyvevlY+RGTa92+i3d43KbrkUt3TPJkh7/ZVftANDO4KgdVur11m06p6idQu35EqnAxiqN05bxHSABS/IGbALI1InSjzBwHGW9beqB1a005vvDDv1JSOsWq9OqTpFP3S0zA9SwJcwS/OZ5VZ5RgCbAP40tlNEiuW8a81lWtGSDKUOnfw3kmTJ3FnPWYi4VyrVNjlPZYfu0Em+zk6icS47nzGuvfMWZpxp9AbFFi2tDanLdSzWuoM+KYAMlSHp4j5zGTjovjfLzMuNK5T5gc0m79vO/TDRnupH9OT06WiWWAF1HNDtokr4MrJkR6S86p1VaMzONyyBTj7oToDtNBbj6w7ROagLE6flTx7h6eIqOOK2j3FijWAFxM22acjS4jmD5KF2Q6xCQos5dGlN9TBY5U0QMyQFL25xN5TO0GCizCCbm/Oe2JPmersE22FpTNdKGGS+c0rimIGBB712N5wIwu21m8Prt/rzmPdu/CzA8kF2yL/hjVBa433CfH0XEGHcke0Ds06dVX47KPHm+5LLgVHfmLCvyqMfZsizTHRjhJGJ1i9HdDrjnfQf402fdi9Vz/gj3Hd5CZMKN00Ob1xzHxurItlrPj2VfDaa+SEAH4FR3A0DUwFZPydZTfenHc6j+MOQBeyHkn0/FNAPFhHwx90m1rNR2MJLtCCRbj5CcFHotd47yjelMynKl4KeqD149l/JOLMkdfLTTqe8eSd6Wrt1MoQZgU5W0fRdAFwqKv+M7vgO/+qu/is/93M/F933f9+GVr3wl1uv17hMb9K53vQvvete79jonVXykM4NiFSQtMOyXfbEIFNrCIwEZiMdJ08FKAxwC/sRZZaRpVDqPNfRkxVpIqxvLPCsPGtU2IYZU/JMOCRiHVHfNTIFsfJvh6h/GtDVmax0645YYAtIFGOv1gWHaNDs9LVHYZLBA1pDVfa6IzaB9miKqbUkXHGt5UXhhhIF8hVzrU4AAflgUS/wPuR/egHF9KqNZzog3AyeDYQNIwaV3mRIfguHxdJaWhBXBATdLi13U+BJTeuypjWMZHEXaNLeNbyXlz+zwgM0tih0jRHKGN6DSOjtKkpInXR9cK8e6NKu4IvQHZHMaKcqax0yIm5C2y5qstnapKCWSlCabK6NAXN2kLeUzAP0w/maCZI1ABq8UijObkFDMH64V4tTwcE2ZrfC8DAoiBIJ2I4NmVu/8QFF6HnPvz/FW7QGfY/jW7W+m+FobnHVE5R8HlUPpkyOkIrj+VbEB9zy0X2akXGoq+UvBMJD5M2dw5DnE3pHcSpU0sBNyoRtmSISVXMpxuidTAp5MKbqj+jDNBUxLOa2Oc/Gu7RFSRsg2VW1/xuFxWqt1u8LGVd71AJiAInW6RR4Qt2SPLs0UAqdU6VWUKLF7/w0ncno42WmSHScjcsA5rIqCeHB6qtWNllEq280hR+lkA8YOKGhv67Ft/dN+6HbXPb+t2S7XvcF17B4VIK4+fZR4qEtzqy8q4vRUUwsM17ZszZP+93AurgASya4i0Zck2YHQWjK1sAdbplXoAO46xD5NN3rmezfYXj3A//vCB/Diex7BMw9vo+eQeJE4V8LGDkC1D9VjzmQunIxGMa4o0lAXUZbTdeCm2dQKC48ynPEolb/h9aO+i7TfAiIKjBnZCesvXegptYF821HaAl5euHYxNPDkuX7/9zMmcqw9I7rfB5HNpzDHXplBFwqKP/ETPxExRvzhH/4hvvIrvxJEhOc+97mj6wn/3u/93ui1Pv7jPx6f/dmffZHNm0VqaNv3hhDxggPI703nHcUKyIwZ4LzK8/54lTIJkyGbcvHTMitI849taZUKZOm8s3ogcLpHstClcZqyEbLAmjWvoWWYanPM4yZzi6t0QTVsVXm2jNxijq2U/PfgMV2bh/1UA8D9VmDcItZjHKMX86V9vwKA6PrE4kmUNlgkXK5ht3UGwCC1s3ZiFOlwbJ/ek01yE3WyAEOFPngtbrvNCULrnbtndsmpNraB2mmV+bN34Djxqeu9N6pcdM/Pa2VmOy8YOM7PMRlXea4VRV3qKBnSjJTFoRVwNXJpBllMqdXqjtD0LYuM6bg2ZZW88za2ue2VbaWJMUm/ovK9WMrO4B6kb40Zl9W96nEmFxuSb5d//jL1wowRVeh6T5U9rcsRlwChyL7gKv27cQ0GinncxMMog+ubn/tdkI84IL1n8tdViyWi7Esld9S+YGs/Ln/6NNrOqvRJbt5il53JrjMth5WNtUCmL0mixZpKDc7yVx9RhCxLJvrWR41BkLocjK5P0x5AwPrDa3z4nuu45zknOOy2CGAcgrDpuwLU+uWX/G+7L/J37VcNNqx7ch2StcWJY9IxepXAyTaQqBs5ZJKdBdmWGMvmsBdEwCCCMlfce96pjfAo7lVVwVxdVse1P7+5vXHPurmFbm7wtRryA5nV6IO7xyVlqwui7DAGUHy2gjt9DIW+LC/lAI/YRqKGci0IXXVE9SUTvJDLxQlF5VI6J2wYRx9m/OHvPQfdn4t44bXH0FGaqtCLbZKCEENgvPdUl/LxFONE9b9GctkZeaqT6joc3pGVq5437sUoHc/Vs9FjUOzP5xbNbspM4U397YM1/hqe99RO9fpmtP2UL8SUg0J2cT2pbGw9n3iqbkrpR2nY8OSOUZ2rP0MjM/QcdKGg+P3vf3/xm5nx0EMPnelaf+kv/SX8yI/8yAW0ah8aCpJRQIyhwgOc0jPPJOcUajXAVYgAiDGlhelA008QUkpVL/PUHPBKZeCzR9x7egZjQxnSp2w0mLI5r2H6URV/yRbilHoiUV6K2vbsZWsOXp/CURWkakaJq/6pQjZvWdEz90zcu2qnB2UD1wSGXB8dEFGlfrJ7L/4WTlD6SJZP9UTn0ztRpE2r4ki23VDQtLzbu8k/DRFOCrovygN7h4gxnBNl37mc0lBPZ2iSBzLEBkpTRkUuvDXb+O6lOIcsNQaGVVPnYrkGZ0w4fjD+jO4dBZK5TKKgfTYEYO+sOQZIjjV9xSUwZpjyH3d2AaMGtxnbI89YlZ/ur5VcpZQJzggRYyk9Ry6Vup6LLPP0Gj77YjBHX/rRigAV3u4JR8NonQU9T+WFrkus7w3SP4IzLpqPLI9Fkx8TgOeSUAsMDzKsxAAvKsJW16lrJXDlsLKihaIvwXBFDxMVAJUAm+LQszmiQg/QlrE6Bg4eCbh57xH+5Oge3HN0gnXXIxBj3fXYxiC+0Oz8GYsSe3mkn60pG1bbgVK0GMxAx+IvkXQTA8QwvV9eRJ6Nd5iMjNuxKQ66X383i04qj5OrP+FTFQMSYDdzYkSf+mv6w+pP3/Z6W+M6HuyOA2K2T5s+YcA4X/OskWG+xMypwHQIiktA3HOuvcHAKH+WzzTzpfGkjFvvuPLZVgpq1VkF1ZcxrW989Q9X+JPn3oNnHd7KS5w1+tWeh5q3hYZzs+6G2YeqP/QvALpagOkkPUmnNNTPWc+T44rr1eQN08IG962rNns92ri3Za953tS+1dfSNuqt5Dwu3u1I26EyQ2wLwIEVtSmpsE1Hp2lMkbcVdKyZySP2t/Zd26X9QVMU7k0XCopjHFtS++6gliCpAXEtZFoktjJ0HpKlhPlUYJlbXM/DVWBs6ZgqPPzLVpDVZSYceHmmxqGNIs7HcjWq9LeCwh0GXWbO1AFyqRm6DIbdjstzPbBW0O/nQI8xajHhH3mObL521Rc5ZxL/ewGhxYDUMNbGE4p53iZ8nML2aTXZqGNkz5wzpIu5j+20aV8RFXDKHUOlXs4pZhNWZTGhCa/dJaQ6Oqzb6hTqutjGGEDWCtQGjrWwnSp6nml8I/No6DlHztaU1j4ezIkHCs9sixSweuVp9i0BxDbcdqUsZ+WuAMurEqqsBH/utIJst3vHfh13qtzUw03I4N8Urbuev67KCvleRFatQi8Xx44ZvXOKa3nv9s76Cioyg+UAWDQtydCGVaX38fKTqn5cYpqqv+HTpltguRV5LwCxc1hRqOpW6HvpyiGTMjoS+E0XBKJzXFlKPoDVbWD9SIdHV/fg9r1rXLtygqP1FmuZQ5zaMwKEG2PFMsd8H9EeV+YwJ85ri0t71QgvTmvxqHea1MeqXmxY8kV7xuSHGqcko1iNUZ0awKh0+vhYLW7RaG+zCS0gXJ1vYLi+rrcb4J617C8yrc5gRaegyOWn0l7NWRrbWE5laGU0AI1xa7Ym5wyO6IqRCi+C89QGgJ1NS2LPpHFFPYADIGwZh48yHnnsCB95xjUcrTaQyzSpJa/HZHgdrdRtSYfSUG47eU9iYDIw1EnumZSAeEzA5/vkbU75ej3s71Pb4TVRBogD3mwRoWhr4Vxu8aHYIhb8Uce62iYx2/+WDQAnezBto4xyX2GXuIdHeZs64wo80XrOe9KFguKPBmoJksF8C/fiPQ3X7FLBK0pdC7F4kMRaLCt9V0AcCKlICyFFjJQpxHAapOLqIAHGFUqLaoOzUJgzHpg7tzBuDUxX16p1NJXnD9IHx9pvqCAbnzkxWARfDYb1/grwRz1wYkCpoKgr+hFMUAD5cbPrSwvkF1UKCzCsglr/sg96ChCPGft+u1afzkKKbBtQ+EMvNdXR4fw9DHhzl+NK5S2RKBJdUzbk3zqn3+aSjxnfjk91GwArGmfzQ92QY/eeB8adJyYbXAPHjwPGc8mMAY1mKkhrGqX+e0MQ+PMKZT6jRW6sJ5mBIipuSt1e1PBc9s+vBsTKs0WkqOxDqbTLDnsHUp023TI2yLdHosUFMJYXb/iklrko+wMdl6E++HIRY/68RU9TDuUyiwP2LrWiN3HFl/J4fIYVepKsnmR4J9lJqTo1JXaP6yTfuxNCf6PDCR9hc7rCweEWRwcbrFd9qjhNbn3UCaDMXPZfn09vFfDbBrtNkdK2e/ngdWj9yCoZMmyQXGvsWY8azVzycIsHTd/m/d6+H7Sz8X3QrPqZtvrrPpvTqXwU2D8fOa9wJDeauot0bms4y8lPASkPAkNnVZ3tyMhyrjlNBICBE2ffkHzGLjmRKepvnXokz0zbhORQNpAMAAysbgHh8RUeuXUFD9yztXn8nnQGoDVnRKYH6TuKQIDTf9o364/yEGXdwZSzHyugWQx1Gn4ajq06QOwsVNOdLSXaOLkm3wjyLFpNa2hcpgbEA1tkjNQeEX3ma/g4N33VyFJnmpO56ShUO9Xp/7qfJJJHszipSp2eY3/soDsGin/lV34F733ve5v7PvMzPxOf/MmffKdufS5qCZKx4/wnOWXSmlecvGuMXAIeics7Zyh17vpAjhZX6dMgFFFiFVADJaHX9du4GmU6yMeUmlny7juqYwuvMnKOP1cGbn0e3HYVJo10jjmgAcjAoXUb3TCsuDliAOj9Q75ikZKqN+DqXvo+gDzPpALERdq09dNFiYFRL/auIltTlXK9ghgU0bjUND03qt5ezPevFLyv8Gyf5ApbabQ4nZwUmRZJwrTxnbYnY1uXTDO+DPleQMm7uS1cfo6QVZWlGZMeCCiixQXPTCiQqk023vz59c0ngGMtXyxaLBFAW34JTsmNKTiTCyjmVw7mWbrn3aJhoRDljdyP2alfBZhLQsKAcbI4h4DYznWfhAzs67F6SWmfGhxT6ehe9rF/nuKg8tFiaI2HwuAqrjZ4floXgEOqRK1F8MIpgUOHGAkn24DtpsP6YJuBcWCrQN0y1j1pE+o+T40j0n8qh1RvsP9rnN8ChkBpvDb1pjtutEHuOFJTuzAkLFIzZYDXzRq0v3Xf1m81O/w7LfZXz0KeZxElBga/J9srzzEyJbFy6fVkJgYG+rEFiL2uVOdNi4iqyKqXVc6JrLqSGC7DilLmlVzLMq1E1lJkdBvG6ibh9u0DbK+nI63QHZLeZaZRh0Qql9MuxjXYrrLFf1f1qNHikNOEiUVHQfpcqU+79L7BqIKdJk5QGTDoWMmV+ZLOxqj7rX3w73Bgh7TakGXKYDqXA8a5hk1uB1Dq1HpbkwxT6LuS3wFpVR8CSHFJcZnz8+i5QHGMEX/+z/95vO9978Mv/dIv4dM+7dNs37/+1/8ab3rTm5rnveQlL8Fv/MZvIITQ3P9UUgsQj0WiWhQoz0M0qr3fLt2EpKgPXNXm8lxkhnXboosSFwvV70tegY7tnyI3XgfMSTMMXDlOrzVI56gVn28zHEDwQnakP0UxIPVYTfVL2mEgiZICKIQUV+cgn2cAvxXJkv0gVdT5/IFtQOMKeTjnuATHNQAeTaOuIwSXiLT9U1kcY57vfI38PRf9KA3vOoND54QH409pB/w09zwWbW1dSpGo6OcTy6FNI3ZH330qLsHxeuUUqsm/ezNqnBrdGWu+aCNQ2HSgfEM2Oqy4FKOZksnu+flU45ZB3OItu8hIlKGltH2hLb8dkOfqjQ+vxAUYp7442dN4LgNjfwzwXCqaV4MDwIA30/GtK8qT02fiZbBb/5l0/p8DxtyNXK0ab1qTI66BuJJxEgFsCXzcYbsl9NuA7bpH6CJWq5jWGKa01nAQeTxViToDDh0/pVNAHaAZWKZxow7ltJyKyilgWlk1aKZen9aBpWIvTHB9UWMG+Nj1it+tY9rfC/4YHOd4peVAV/05k5fUWTaeOp+A3uWmYe2Nlp5sZVVN1uSgPCbVtrEq5C6jQ1alc5lWw4ixFa6UJZC624Tbt9Y43q5wtNpaQTs/rbBFHixHGY8aLa6z5KpH5LJ8ct8yIJZPzWISu7E9brOsmlapwte1Lhwjb7spCBy9eOuSFd+gBYjn8YZOV9TLpnuVwLiM3NLg/NyA8T4MAIUdnu2ydL0R+XZO1jwXKH7rW9+K3/qt38K3fdu3FYDY02te85ri92//9m/jF3/xF/HWt74Vf/Wv/tXmOU/V3GRT1iOAeBcFYvTCgL7YFkGNJy7T61gUvZu3WgxrQs7Z98aaDmo14qkc6EVnfOeo+q33GDOuCxBZ/fYkA7nwWjmmJwVdI8R+8JuwHRozzf4wuTuLgp7iil22hQpGShV/gTKSldNH6sa7PjqFYX2pUzuLOdNVYTa51hgYnlMYpBUZnowW+/ZfQto1rUGPqfl03PPtFULmN59OTfKeuZPBll9NFWnPY0/ldl6OK4O2omljimgPw62YIjAQENU1Pb9LI1MNi93vfFYhmvqeU0aVGuTkJEaVXYLW+JT2F4qcUDqaBgZyu385SiyqfSTKMDdSTP79eiWuBiTn8dHq08DIV8B/iWmsBofSWJS4NX+xIM+X3oCTaLE5NPVPwHDprNJrucEv74g75AJ4vjI8y0V6Ap8GbCOBVhGxj6DA6LooSyoluBEo6/n28yH7nJ5f7NIGgWSOe/njdN34MxPd5w3XZqMaO3dddwwYAyhly4iR6o/dc9skGNZ7jvD+PlHhOVTXILjsVNuwfnvBl4A5bmpHculQz7JXHVWIeZqZn3KkkWLoZ7pCAYxBEjXmdL31LeD4ZofjzQrrEAcyouWEUuCr7W1RYf8QErikaqiqvFFec7aoX3qMJoDYpKpw+rdIo55DOw419izNFLtfq60tQFzO0ff2hLuOGvYtMcJOMlQO5qKx2K1Xs21CaBYH1U7PtJf2oXOB4p/5mZ8BEeHbv/3bR4/54R/+4eL3ww8/jBe84AV485vfPAqKnzpqe76VxpZkmryiE+qW/hXy6LXlSPTP5pG5l14V2lIhVJRRn2IGU6r6SXnQTyncs8r+mfZxfXw2Kp3BO6WAPLPqBXYpZjmuCQgLgCsGgKZ4OoPdz08e3KwlcIoIcUtxl/3YNyo8RnPSiZoe1EtIc+dH5WN382dOCeNsdAsgBiuvYp7xLQymBmwx5193a1SxZfTZBky+DpsiYIreLjTZV+tvoUFRGrhnpcKQmnnOqJE9zyOv1xgA4lAdg3lG7FTRrTyvGO3nbLJV5XZhRZR9mXrcuyJel5BagNjz4q55/v53diST4xnYe07zFWXgOz61CArLXMZBK0kCDGy8GVcCjL0eVWJKzugtAAT0DFdUiBFCSMCYXJvlVG+4+7nF+ixQfTeD3R2nz6Kd2eHaCGAS9O2QCTszpXzj3Taekh11R1rX3LG9kIk0cpwHy6N6NW0j+5R90G3jjueaIlP1bnee8pRTy1ns6+EM9aXIueo6A/OQqj9dRkzqpKT0Y5jOLBxYXAFjAc1MhLABulsBt44Pse7Ssky7dLgtjSbHpUzN0r6ZnFJm/aA8juCKQbosJmluFvGOhg5Rv9NtNxWhEdYd5+nusefg7VbTQ+1D8zmVfUozzqmbxmWNExa+ypmaZ1BeBPipXv4Oclc9KAuvJh+ejznPBYr/+3//7/jUT/1UvPCFL5x9zrOf/Wy89KUvxf/4H//jPLe+Y9RKKZnyamgJeB8lVnXh50hZ4SaNRAESjYTzgHiBxCWz1kxYp06r8VAP8Ckm8WB5jEyjzxjkpsgru3Dq8rWiazHo1HVESg0U9VTk2//epcCLU8pUyaZgrJR102gv0qZdpMEZVxdNY1UY75YK1C1AbPsqo7vu0kCxWgSRqvQpwJZl8IB4hvGdjG4yxKyA2K7pxsFOVvJOq2I7BvphV2SoKFrBzkgwBdowtKdo1BqYQXZoCRQNGHtZNGaoOr5sL8WSwaQ5nMbarq1R9qMhGE6fM5+LN078y/LGT2ssVv26O1KnE/nsDWDosCqPKXlzek4ZKqONcg6l8FS6iPCryuQe4CEqBknbKHKROs2du5fyq29jTDdLa5cHpPmFnJZLpLS0kq8FEeV91s6VyXnqFo11y50UxnKp27jmW3+pmWNmVtp067fbPAmOR6890p66PzTyXduj273OvQPE9l7cb2AWkH4qSVtXA+JBZhXafNjO0nHKprY3NbNB9WfItlVrWkOdSq0POGyA4xsHWK16XDnYDJpQR4uHTrZahu8zNqV/qlt1mSMPjEVHNd9+02Z05O1tAsq1i6eaReUxI6Zt7Ytttg2VnTq42Y62jxE3gPHYoZWzECht0dohmNPN3UFTuOScevNcoPgP//AP8QVf8AXNfcmb2p4z/KIXvQj/5b/8l/Pc+o7RGCCOM560X4cwb4MZ4STKXeeZJc7zSt0pRSPHqE5Rek+PYTvZ1hwnXFW+Uy4qlG952/ydyu1NgYlsZDPNiA6PKMGW0dsiVivf/ZYoU115enBq3f7BM8hGgLbBAyKfqjar/YXR5Yx3d3xhzOzhwd6Xpjynl5VMwaMCw17hu+8AmulgAzIeyko5e4iBYlrDDuObkMGnRaKkGJ4aDoXDqv4+1mm46QHO0PZjY2fKZNFIlMDY3+tOGnpj3mN7vM7AVlkyduxUlAhu2w6q5w5OAYVWlHg4X1/74R9s1edWu8jta/XhkrPrrgwOYGio7iqyYrrS3jHMUPVOZHNcmSU7cVkATOTWjIetdJCmuvBwPBVOIyBFuoAQtRlkoLgslFj2zztY6rTUdLzqTVfgBw0HFtM8Xp+g2dVai2HcBsZpd9mZXSB5NPurPq11mTFA7H4PosQ7qGXEt+YV+2jxpdehPA6I6ygxkMflrKmCha6E6E8GO8eVLjMGxjAbUi7i54RqxWpiAKcBJ8drAAkE5yJ3eV10AKgdT3uR0/t5br/bp7LEyWYL+Mx4NkY7HNyjEeDW8bsO8bdqXJZdX+wYs00mbO3WDbiArCaT9JGNOY+KehzarVa02/pQZcqQtkNvVoHkC6BzgeLT01McHh42973xjW/EG9/4xua+o6MjnJycnOfWd4TM+K4A8XnJgr0tI7xaGw1cAWOCuL90vwogFIN6eNMZDasG+egxrcvvMGomaaq93vAdu0VtaxonyrOpDFWgBYRnPCB3SBHNarVhzGAHnJGVP4sosbvOMEV6dzMnuzACguvtXhZdRppb+G7OlAbAC2RURjCdz/hWI4BQrktdj4ez0g7M1aICvEnHC4Oi5qWLpoGikxtNRJ8m+9WSef492rZ2Z2zu04iTwR+XPsttaRiMyEVqAWNgskMjMmMQ6b6ENCeDY2w6UpMKA6nSleqwUkOuyORwn2j8RlZ3OrVBq1rDZ/MAw7HUcEDpGCqXIiEbS+x4LJ03tCnmgI8mMNbOnIF2Zga1FIG/t79vqwk8AXpb95qzDSh5pD5uF58QMlA+A7WixXVRvstIU4C4LHg3XnV6QLWu9Nkb+qfRYh9IqHiRGGUV6gCbzoBI2G4SQl6tInqZrtDJ+7N5/BUPjM3hbzmgmtkadVYmObvPnOQepo3TgD1LMZG3AdNj1x83Ru5Z7BQL53S0+pUvhjvF/naX3wdD+aw2v+aLBu8s2KW8p7/P0Z8WnQsU33ffffjgBz+493kf/OAHcd99953n1neGuA2I62Vf5lCxLBPUm0wZGKuQcEW3wGRroxVpVARXes9LlmyAJ29P/r6rn3nU7jGaVMCNUUuh6vZd27xhTDx+XKtNXth4gwojRsAsQCyCpm7XlCBrKmxRIgPDa2jA3wn7d45QuuypYP5BtQrftbzf8+b7w7ycnnfUUbWX8Y3826+xrWsUW8XEmkdnvvRaGeW5O3IfVRpTfa2AcdruwHGrPXso5J00iDa1gfH0Narrtc51EbuCLBLnNjmQM0lj+xW46EMdBQ0TD7IeCz7adYmJ0daNrayNYaGfHRev5aQzwtXgJk3TlMYwxMGcG1dUjddhH1dIS6Z5Pq11jg5L+V7MS62fA+erT42ltpOl1fdy+b/CQNS+FRHsO6A5vP4rdGyD372Rf5am7GvIT+lQamzf41aAk63Vd2A4t/iyU8tZBQgfcJlNNTdCXG8bdSD7Pxi2SZ/yiiyDwhxUSJXXtwF96MAxIHQRXUeINlVheg6/9s/3a+e84toR5wazypX8DKppgnPJ85Fdy/322+rtrW3FtWbo4RYfXYTo0Peqz7ECxrNI2l9M90JD9snveprkRTqozgWKP/VTPxW/9Eu/hBs3buD69euzznn88cfxq7/6q/icz/mc89z6jtGgeu3Eq9X5xFOkTKwej2FaGBfKnophIOXg1WivX7wa7XDXKvaXyqEoB78v7WLQFtHI95FtOytNDu5PTtKiDfanPOtTAL42AHYq7vq3N+bK736u+ZihNYd2zd2YQ3fLvOJW8azW8mhcnLP7uoP1F4HMVwSZKzVhfANAj3KOY0BhcFsVcqDg0dkRFR3nvpMjxvlewFivBYynou1S0qM3GzGqgXIbKv6cywt1dNXz2FxyXuex57YzpXqqfXX/R4915wB3BSBOlBo+lcFRG6qeikwVyg/JhkptvBGKaLE5q4xPUawNzUCzKp7W4kiZHDys+2CN4uL3nPfix9JZMs0KNvEGIqOc9lAYxxM6rmrbfo2ZAMat+12EgV3fv76255VifAwdYWPLMO2a7ziaNSJgLDI1irldPqp5kFs6tALECiZbEVYjx4+D38Vftm1VLxKqccjJFrYpR8rTfQLGsUuzjzkSglR/99MVxqpP1+33c/nbmXPOxi5sQNfHYhtb289MLb1wHrE/R2c0bOvZdkiDpmzQ8wDjdG0Usi9d09n1XjwQsp10Tjl0Lt7+0i/9Uty+fRuvfe1rZ5/z2te+Fqenp/hrf+2vnefWd5QiyP72pbS2WvpOlZFDgChwzgrXKXsryOOLaPkll8STpkaAB8TKnPXnKO3DB1x+TqdOV5+t706gMrH9jZ6fbrpfW+03tR/GXEA/cDSM/Pl27gLEF8C4Shc5t+mibZqLpFgpvEGF20r5+2N3jhzi6g+OT2HVaVkN8QGf5n325+YTM6ExLmZ0mtEez65vdtxMGoC/qi1+ObnhydjZ7p0Onsmozxyl3niOLX7aU9Eno6n8nqe05HE1ZyyR7xPQfucDw7IBiC8zQwrNyc4Y400gG+E1ZcehbnCfhHJ5O6r4r+DT4R/ECGevT4vrj4x9f4gbr/WYP6sjpeC5+tqVTdHkxR08NNv52jquev5z7ncm8nLY329w35G2NtpzdqezfjqZe7ZLPSU00Jmc04rLehzD42sa40e127yuY1Q8R2jrSK8rtRq88iMDHAncB8RtQIwB/bbDdhvQ9+2/GKn4YybEGOz76OoBRUfhxl5+20V9GH/cvuN/oM8b2+aeq+2YQ3Xb63Pn2iTWFirb09CXsnmye4NbVk7IYnUWquyTWjb4ZVzPQecCxd/wDd+ABx54AK973evwvd/7veAJic/M+J7v+R7883/+z/HAAw/g1a9+9XlufcfoLEAYaMjmSqn5TyvIYQrZAWIzojMwzileMsjc587B3qIK5E4eN/dYTzWzNb4XQFj3zW1/iyoGnWzvbECsnxPCzytxM9RQGuvy3Svn0WUiZlDNZrvS9e520u62ioCMLfEyML5Z5/tlHhym3yErewPEDePb8Sa88a3GuOPpsrha/ptV2KLoQOW5Hxkqc6JBpmyKjRi0ZxIcF78neMMfTxPba14b/UP1V8sQLgy3sWhRdijU46Q+sD2e8v72Zqr7U7TRH8jW5hoQX/5pDYkG0SiUcxj9cXpMiwreRMWjI++fCx6F8WyRqeGNcReR4lDxYfWeioyeHTQorjmTWseOnt5qT+vgfYz1sWu1xu+YEV3z6L7UOrdp11Qy222nqm2Dd7a3k2z4YH00dZ+pdE8FaUStnlrkqaVPZ9kMxfuA409kvWd8x44vxwFy1CUMV5K5kTqRqr9HQuwV7CZw3PdUAeLyLwFisghxETUGSrlf98dv0+9eZ+9jH7aodeg+4Limhu4e3Vcdt3eUuJFBUAYh8nHFMdije9XzLOwV1x8PkCed+XvSudKnr1y5gje/+c34y3/5L+M7v/M78YY3vAFf9VVfhU/7tE/D/fffDwD48Ic/jHe84x1485vfjA984AM4PDzEm9/8ZhwdHZ278RdNjCw89pk3Ui/LpGTvkXK6B6cNmQEDMsrV3zJnIa3LCFBkcEhr5DYNvMqY2ou0m1T9bh0DYE55+Ca5dk3OGR5T8mOkKRPaFn/+vvxBPPQk+ucyavzXn+5dtADE1Dua6OtkqsolV9LnpakCPrp/p6+DRipvi9DNTiYZSJXxrWswIrihxUipm8hDxK97ahke7l71vZvkx/XEvnpu8T7ULELXkAPN1GrCfvxlDwjuQVHFX3tcC5jms32o9ayn+Gkmr5Xp6uMPqxlZvkuoBYhbx7D7rsdOEnF+MPpdxo4Vp3Rz/znApjFQugFAWqMDpksBZGeVGewzx1HDeXneQohFfwe6J20bK5Q3qANQD7HGNXdOl/F8XXxv8Ku/N6pjz0JTsnGXg6113z3fTWsaRVFY7S5xUik1a280tu+sBi+Ul8pBU0cWuhLIUxoof1deNZXF+djYceHIyu1DmmcMmL7lGIwXjQ1atrEDabNtJK+rUPKQVocH3DH1uC/05JgOR3t87tDFO9s9d//Y9ylqtdlv0/erfMR+rORDZlP1PAdp1a32XQCdCxQDwGd/9mfjl3/5l/GqV70Kv/3bv40f+IEfaB7HzHjJS16CH/uxH8Onf/qnn/e2d4wU3J4FHCsV86PMi5kML5uL6A1x9YxFKQQTEqcxyAkPHvXCKNA6Fy4a6+YUID7LbXZ5pp9sGutLbfRPGkv+e8PAojJteix6ZZeY8SxmL8Pjjr/bacx7PzdaPIvUAGfY/MWB8e2WnEhebeF1pOecl3iBvXNr7xjwmXT85OOL9z7mJNtzbDQN5QboHTgVWkZzfb0xR5O3iLyxPavBlQyp+WwHmS3jDd2JseIjRNPtQu5X61nUh08Y/XeDAe5bWBvfrQjV2fjR2BEth5XOQSRiIKQaHN657AtWqp2mf0UWh7/+HL1UAOOLA8nKY8ZaO4Ax4J5rg2dnAeP6mIKv/fcRfm0B5HrfoKMj21v7dgDiOkpcnEqju0YpV5duLdVEObhxySmnR1PTaZz40/227RMXNf4gGxu2jJjwJBUOLe/Ekk2ynKHpS3KRYuNJHWvpIoy0ZnDqklyfUMz1ZrTl5kB+a7STZV+rv4bg9Xf1kGodXPPTRdBFDbIBP8nlR4M8je1NQEx27GThzykH/xwaAcfWjCn5cwY6NygGgE//9E/Hb/7mb+Jtb3sb3v72t+Nd73oXHn74YQDAs5/9bLz0pS/FX/krfwVf8iVfgnr9vstI56kw6Ncq9uDap8eRRIpzZEqVvCp2XStVFg0PMCYmM7r0huljjr2xV6pEbRC3bnAepp1jeKQbzztOacyLNJe8gTBX8bfaWBvqjWdfzDW/g3TXA2LX/lZxreLQPQ1vfQdNXrTvyApdI1AMFyH2qBVNQNx0Bu374ousiHGFlLbtZ6DvEzU+MzCuDQn7Xg3QZjS/Fkj1J48fO0Fzsy+8QZX2zb5F8Wyb72TUOJl/j6eKWmuhjh2Xvw+37STPk2qIa8ZV0G3yfDWTQ/GzblODrUtFtgbpkMX9ynfSTHOeAGD7UC6olW2HucA4nb8janwRwNhfs3YkDYxlf92xXld0Br0KuGc+4qTYRXMiwfUxd1PUuJlRNcORvFclatOdDqz6zA1GWQBPHMvmvCLkZdJ0GcOx27NzfCn/Ot0y+VbOILvTdbm6R1WNugWM59B5bdVd1OQpufWYo2km7e2cPy8wBkbthIuGlBcCigGAiPClX/ql+NIv/dKLuuRTQirwfMT4PCX4dSkmjRjbulsiPHLaZlb45l2LlIGxts8u3LrZyPZ9aQoQjz2KszL41Dn7AuJ927K3cKy3zVTaTgCdpSLmGM0BPnPnH192qlMzW2suntvwBobK3Rvflo6ZK8N7YGzRZDMSpO27ok9j0eN0q8H2OQrprDQnajyahj77Ju56Y0b81Ln1910RowKEp3dZbDLl2u7XRZm/OwGx2ll3icFdO6vse4M37ZQ544b8kmgNhxX0NzK/BYDEeDX+CA2HlRrsapDrfGSurnuHyPPXFB+dCxhX+6DnAwXw3QsY62+4bX6c1uedlcacX/77GCCekrEzaQwAt7Zfdqorvw+BMGanTjdJdaXxKowffbR4UCVeGmTTGRxPshWhHd6uTMuVVG6GvR8DyChl7bBOhG4/+zu0NGoPiGt+uRN01ib753Fe/XJW5/wMYDzVvcGZd0hP3g2V5Z80UsHh0048eXA8ZbhoBep2kRqdl6SCwwkBQrGerS/yYwW3/JyL1h8cyD4LzQXEre88PP/MNAWI5wiG87TDv5ex7V4Re0NNjwPagFgPab2jGe9sWBij7flsba/nEd2NNAfkzu0bVT/aoCX/8Y7vtiaxV+ojPJqvP3Ogtg5rvU9vp56RB0YLcRXHjPBnPcb99vqc2oid81efOxExGmu70sBW2gWI60jDlHE1571OAeK7hD29s2rX+uDnTqVWEv7KkV797XRmwaNep6I9ls7DmxiRHTOOrQtyNjOKqvbsKjxTnLijTwNe38WnflvrvDHdOUWj+rbxfZdRfbc4lO4w6VNoOaWaBbaQeXKUN+Wdt3SDr0Jd6Ew9z01VYOVDOxemP/O5M8aQ2Ju2hFSkvC3mP7NLq+Pztonlp8aeQ/29pZsuks563eq82Rlr+96r1oVjdsg55P4uU+qi6MIixR8VJC9P16GbI2CLFOnGfoIqK0jEGNBIxSBaHBiIBJvPMLhoXlN1rGl3DOvsIzRc8weetDl0XkDs21Gft6/OHHvQLcHojq8BcfPY4c+8fWLstec6jR7+UUGtSFTzuLMwgI5PAGXadBq0rWgxKS/K/GJ7/MxmDNQR4+F9d4+PAbW8rcJbF5FGXTSPqnHlnxMwTNv0z9B57HdGo3w/mg1pbRsB33PIe7dHLj9oyplS77gtkKeM/7uUxpZ/0X27KuSPOhZ2ZFR5AExmXGPIl5YCmQ3z8j7IG2lYzXiMxuS03z7bSae8YlHhzF/GXmO85fjvwqLG/pgxPq271rrGPjSl71s8P8eJNLMdU1Hh1vbLzrittOldx3kqx1BDbnterLap7rOpI4Q8z18iy8qnqSI8p/TpwKDOc+2EoWtj1G3e9U7qyxVBnxnv0/ESk0ujrvYNeO48dJZh1jhnssDtGWinbTFmh8yIGM+lO8GBS6S4orHS9btIo8j6qV7bQOVi4xodJqCIFpN5ycrP0num27koGOL/CqoB2Fym30U88n0GzWrDfhecd5x6Bc99P7RBjPNstgCxT5uuo8RznC/njeyORYnvJjDdmgc1VlET2PHMmhFF9858tLdYl9gZ1cqjdg7G50ONRVLGjO8dY+Ipe2+Txqf/Xhqwk9Eof37rrziGB9ce3NPz3Azixl/emQVra0msYoztut2OaNjdGOWqnVU1tXo0xZejz8D4BqV+bESLW3zplzfMx3AywnV87hvhnNmH1lIhrWhxsd3ZEbYP5b76OvVYOnfUWI9pjdlR/pz4q2knr7fbOgaI6yyLnc6yMzi6WmsXX0oa4kUAfmoDmqnTZ9Yr7h2yfz81Hxovwviy+f7VLnZjcvA+W++gJcyLv9Jgtoy6RoSz7N+43J78PldfnueY+n6txzIGiHfIhOGFWtvKZzeLNy4x/yyR4orUwAaSfRtRRoPnkBbbau/LCphtg9yZ5LdGjMXTwoHT7ijHsrZ0z449mePwrPe7qCjxRdKYQrfvDgy73y3jvDCGWped2ce5xT4uvfLek5609SG98S2eba/YSRU6yvnFhacYjd9T97Pv+1hpJG2Utt3paPFg/8T8ukoOjkajlOrrTDyHJhgGJp/z3t7qMefRPqL3HNGyiy4gcqeoFSU+L+UIHZKu9BHLOdFiyocgABSlfZURnuYei35tDJ59HRVTx9e8snN+8a6IMYDmPGPAxmgzauz2j0WNgQleHbSz6ugosBjZvuuYKUB8BtpVXG8qWnw3kbZ2Kkpsx1bH7ATHyoPKj3AZVcCQJ+H5M53LwpfsjtXrUdBxyzbGpzswX+aMrUWff++4AOVjLFrsthXf9fe+NPecHccN5g9PAeI7QVN2yMyI8ZPNd0uk+A6SzitOWLf23NbR4qzQ7U+XalKhMYgaY3xgj9qpOkL37Mye9ymo6V26oPvfSWo933rbXEC8C/ScgfGnimSM7ftoAMlz+jB7/nQVkRlGNPW7i0rp/P5KmVuK2Kj3u3X/+pgJJbYveTv2IvVKbRNPOrJmRKP8sXUkvXHuHEA8S5E2Iw2U/3TTCCDeK0rcon3bewnJp0jX2xktwJyP2avHg/cO48+xaHHBoz465Xh6cD37zcOxfAE0J2LcGt/NiHGxv/F83HUH46vFpyO8Oho9HuPVlo0y92+iTU1AXOvZCZo6Yo58zKn+u693Wahdebrcv5ePb042xa6sDa8zA3Ll6cApcyOoPez5euTP33OENBo8qLPi5TyjfKFnyarcpevn0q5zd9n+SDJxb0Bc26pn6YPyxohu3NcOOZNenDNGJ2iJFFc0WKcYOVq8i3y1aiZGz3lpJgbgq1AnrpftgYCYUqIpIBUMEO9bnmec7iGrF2PgjToLOS9OQe7ag3kT1f4Lud9Z6U4ZkqNGe/veZ0nnslP26MOYt3ou0L2wVKmngFpLS4wv/zJ9rZ3VQ32Ek9xvQq4K773dypXRGUwthUkTDNB0lIy0TzysRTXOVrS4Pq321M6kZrS4kgGj84uB3LdGNOpMtMPAHwPpzXtOjIOxqqVp38UB4lnbLyHp/D2/nEszhfqM0WMbRvrFjGTKukQ/ncGtc4kpCo/K7myce2dXBozsB+6Z+GTeQKjXF25FjItorYsY63naPOsPUETUrBqvHTS8b9FHbXrdB9fGmiazPqrzZ9OIM6y5f8x2mUE5o4YG9xyfQ3x3Uov/djnUZ5EBVmrzYfWdgcEyhsRwBSrzX75krjJ9Fto7KnyG+xQ2std9Ff/tpDlgeEc7Zp13ETpmzAbxh8zhm5nR4ieTiPluMo3vHN1zzz24eXIbR89/Zt5I88YPN374Cf/5CVOR+Zy+z2XSkZbs+/bOyxDnHS077z+TsS8bnbV9YxGAJ5k2D30EWHWIt0+ewlYMSfnyygueWWz3fJS+TgF+5w3n4mM3/9m2iePGeEKVPHDnBf9l5w+lsz6Gu6V/F0ybP3kYdBfzZfo5gzcLXtYvLSTW+k7DfWPHkvvUzKt9SaOzO49rtOMM1Dz9qcj4eaotxYvucguA79GOzR9/BNeOruCJJ5640Gadl2pbtlV8amj1D/nQfs7iwxEn4ch38r8FOPsK1Wemix6jlax6ytpxx9l92tE8i+5EG89gN20e+si5dOYSKRa6du0aAODF15/3FLdkoYWefPrAo7eNBy4TGV9eW/hyoacffeCxWwtfLrTQJaQPPHLJdeZiyy70NKTz2rJLpHihhRZaaKGFFlpooYUWWmihpy0thbYWWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrSAooXWmihhRZaaKGFFlpooYUWetrS6qluwGWhBx54ADdv3sSLX/zip7opCy30pNMHPvABXLt2DQ899NBT3ZSCFr5c6OlMC18utNDlpIU3F1ro8tF5+XIBxUI3b97EzZPbeN+NPwGDmscw11sIDABue/rdOJ/8QdX++rqcrj26n+R6BIQQEYhB5O8PMMjay6B5bWzda/b+kes92dRq315N4/nnXJIuXwRtjm/j5vb0qW7GgDxfjlHNryWf7sGj5UUbvyd4sjXuqm3U2kXu0767E88yxnbx8Fmoec2PIgaYRRMvdBed8VFddr58/82SL2teSz+n+BOYzaP78OQYf86V607HErH87T512Lf6wu3m7eLZYvcu2XUWuhMy4zLTBTzCzfHt81/kDtCUzjwzLwLT/FgrtDFe3GFejepF4UWQ6wHpYXMGL1U8NHLffe2CXXSn+epuU8EX1V4af7Dbc+rMBRQLvfjFL8b7bvwJXvqv/y4iE1iYQ79HBti+Jwaz39F/AhxDE8cqqcLnCHAkcCTA/tI+MED6O8rZxOAVA0cR66unuHblFNcOT3FlvUEA4zR22PQdTvsO2z6gj+mPGYgxDNrHMd2H5X5gAdL2WxvsQHUh4GaO8CnBMFNo0Jx7TV2rludUSecakNTCGO43kA2k+jpIRtSdIr4TBhGAD/7j//uOXPe85PmyRVGeh/JlL7yov6PjUeVTdsewjHMuxrhsF/4w3qx4kuRcijD+0e8EGA+R5x0StglA7ABeMXgtfN2lPwoMBM7jiNz5+lXHwQg/DoydWQBjx7G7eH8KlGDIw7wPnzzZyn/sfi25MSFLxuTE4N0CJeiS/X/0f/2LfVv+pNCLX/xi/MHNh/B//sjXD3gQgOnI6HhxTI9G0VFelxY8GlVXqa5E5kkAiJkv8yeMH2v+06+FIwoABwavgHgYgaMe66MtDg63OFxvsO4iuhDt2LpfaVvmS28/2P0w3G+O64ntxsv1Mai3u35W96u3520Xx1jTDoE7e28Ak4Zy06FRHz+mw41ny/P+6P/6F3jxvffv3847TC9+8Yvxvpt/gk//13+nGH+77NqeS70YzXZMvBeV/7hhtzp9WehI5cXoeFG2KY8CSLat6EWWv7hm8CGDj3p0Rz1W6y26LiIERiCWYND4Oy/6ChR9G36H6H11ClDBTwMbWY4Z6MYxftuHN87CFk+Gfmw9axr7no8d6MDq2EldqPY2Gsc32kQEfODbf6jV+tn0UQWK3/nOd+Lxxx/Hy1/+8nNfi4gLhRIIiDKyA4B+FkhzRmoVKWZjNEIBQncB4sOI9ZUNrl89wb1XjrEKEQGMLScAvI0BfST0MYjg80bHCCCOFRhG2Rb7XfWp3efdj2XfY88NiHX/HMHBNGT+uefq4Ux3FBhP33zGMXebd7Eiwng3AwH9jGfA7ktpONaOoZonkIGuA8QUMw8PALGer6weEhiOa4DXMYHhFYM6B4brd1QZz0UnxsDwLuDa/L1Dqe8Jhqd4l8bkY4v25MGx9kySvz43tgEj8kG2nbWNaAPiu4UCsRnf/rv9RtKZEZgFhHKGUzme1YFV8yRVvEry3Yxwx4ssQJhEiLC8s8STQDwQQHxlg6OjDQ5XPVZdj07eya43U8t9Ldpiz8TtT3oitaG2N8afzQUB4gsGpE85IPbXbPBPesbnvLxeoyUD7gJSXhwbZ1N6lQsdM6EDGjqy+F4BYjI/k/KC8JnwKXcMWkes1lus1z1WIVrmRmg0Izo9OZenJumsr/msgLg+/jLbajPa1nZG+f0XC4gvgj6qQPE3fdM34dd+7dew3W7PdZ2BksdQEHgBMsV83qtkKc7eUAYmje/cKAAHEetrKUJ8/fAUh13qZy+AeCOR4ajAt/D6JYt8JyDeFwzfARC8N829rjNaiSkZ4rsM2VoBjinEcxjEc2lSwJ/1PVxmoVtR7ZRkDI3wfYgbPNgExGZsV7/riHFtBOh1pcHqAU+AOEWIsWJgFUFdBsOFseWmfgABAABJREFUnHDXGESH54LhfYBwvX8uyC501f7vw/jxIugiDBly21rd0e3n4fumwXB3Gdue/7we1O11b9S53JJlY4Z34TwenISS51rfNZMDsl0vpYiVhCcPInAlAeIrRxtcOdgkp7O8k5acUfsAADrK7Y5Vz4Ocb0NGQbYDxvUzLPs5vm0vQLyHU+Ipo33u3+TNNjgeAOOBbs/XKxzbT4Juv2jS5iofTgHeM9FYMGfEQaXfyR1vDmXOlySIHlhBgkA91odbHB5scbDqi2wNT2avI0W/LwQQa1d38WOtj+cAYn/+lMyfO/bOOkbrW1/EI2tGlIfbWoGjZlS5dfwdAsTARxkoBmCeprNSYWxjGojUjFf/rsEvuy+ajpG930iMoilgZkxzSilZR3RXely/eoLrh6e4strIPQhbB4j7mNJgNF1a09EG6S+7AHELDLce7d2kQPX4KSN37mVUwZ7Fa1zfZ8bpo+PwvM//qX5/M2nM4dhq/iwnlf3OSnzIC+4GjHZKmGwn5OPH0qU5AFHTpdcMrAUMd7EAw9bOMTAMFHxZp1fmHXXnWw9kzHgeOWbi2AEYnjO2CttgBzCe4t2ZNAXYuTaQtX31fVuR4TlyQG31mQr9brLDp6LFZybvnLVt+jfuqLIUag+Ix4w/Ep48YOBKj4OrG1w9OsXheotViFiJEW7AH9k+gPTTosgyBtK29NuDYx81roExMN+Q3zXcm/ICaPLxUwKAL1KXeT5t3eccwHj6vpefO5UPa34kYsvcCKAis2pyDO7qs9OZYw6qGhwXDiu5BqnzeM1YHfa4enSKq4eng0QeP22j7uPYVMc6dXo2nWds2u8Zz/XJDLjsbTtP6LhG+3ZFiettreNNTD9JgBj4KATF5yLKHyZrKwFiSq5SZANh0vJ6sxM6BoLJfTqjTfd3DF5HhGtbXL12jOuHp7i6PkUgRh+DzSPe9J2lTQ+YP8pcLwXiGjV2QHwWGL5LABSAcSNI99EZjPCLEE77oLtdNHXOlAK7y6JRc4gsN3I3WeSp2IYKEHsezY6qgbJXQCwO7MK+CjBQzB0MDPMqAusEhilwAYh3RoeB3YB4XzA8uP7EcX5/CwzvrWixPzDek+ZGrpvp3Nq+MWA81sazyAl3vctvcicKSOPXjG9gFrAb49ex1Myx1GnjRT9HkUsnlXdU1UOVuwSIWSLEV49OcXSwwdpFiK2vreiFu5YHyQqQSY1zsOl+jRpDztEreSPdR4+bZIDAN2C3vCjOuUx03jb582s+BQre2gmM7bjhNKiLSMN+MqnI5EDbYbVXVFX4qcmPKLdZlFgdVMarqlNLUAz3lVcMOupx/dox7jk6wbrrAUDqhoQB2K/nSM+l5nzi0YMndObktj0GTGO82nUvctyNdXSf+5yjTa206byTR3fdaUAMXFJQ/HEf93FnOu+DH/zgue891+MdiGfNK+ZKaGSllaO2LSWfJFiaR0xXely5eop7jk5wZbWxdm05YNN3No9Y06ZjzJFidpHiomAJIxdIqMEAqvYInSUt0i51J4DYXKHkt3srpvUdkGfAeFIAsd93EY9ozjva5Zm8bERDg3Qwb1GUpPLkLJBcj/kWIOYcjSqVOZURYr2kuTbhAHEq4DMGiIGhcZu2Tbd/lnF7kYB4DhjeZzgViCL/vqhU6lF5NXVp1wYA5RSLMRkwJUt23cfGywQgvgt4tE6j9lFRP694bi0OBsyxO5mq6TOr2Bnfccdjo9SguAZY6nRcOdoYIK7TNLuRi3XIfKppqqkLIpOAATgGqrnG5Bkgfd8r9XMmIL6UYBjYrbOnaBc/2rYS+E4C4+b5I/e6xNSazjB17Jmj354fUTmO6ywq51z26dM6t1j9WvFKxNG1U9x75RhHYvP2MeCUu/LWPCziV2yHAt92ga2x/gymONr9Jp5B8Xtk+1xqOWqerDF40feZAsB6SEMP5n3c3HennFOXEhS///3vBxGdKRWazvGk9Mx6PtRYuonZSWNe3SnlVESiKm+bGtQdA4c9Do42uH50gqvrDboQEZmwkQhxzzk6rGnTmemdENgHEDuBcKYoUOMVFEbmnaK5IKHAhGcwwEc8y5M011BuCuLGyfVx5xG+dyGNzZWqlfscL3h7HrHulL9CmVeAuMW7QEqZ7hhxBWAlgHiV06XLRgzbVbT9opwmU3QWQNwCw3ON2QoMe948LzA+Uyp3fRy5drSAcct5dk7ylyJDeJeXiBiBgYjzGd+zQKB3MAvw9VEpK045cmpqQP5LadMR4WiLw6MNrh6eFhFi74izbW6AaJ/NGcCEUAFkD44jdN4xEDlHjWc5Cs4CWgwgjO/bec+ngva5bS176+1jwBcNYNy6PN/d0WKzXZnKdGoMi9+pU9nrnclU6paeVPBb6VIFvgaArUAlymhxB/AaCNc2uO+em3jm4W0Eithyhz6GfHvp01RVe23/FCDeFSWePZ+42N9+ZHvTnQTGu+yJOwjAJ6PEKHeNFay9k/x3KUHx/fffj4cffhi/9Vu/hWc961mzzmFmvPKVr8Q73vGOc917brpJuumMCnfGdBgyU0OJs0aPCMA6YnXY49qVExyttghI3jKNEBfziKu06RQlDhkQ8wggjo12ccPorb8XD6TR59Z2nM3YZfG0N+8x97dvT9PArY4pG3A+A2EfBp4DfmYC4imf0kCo3EEheF5SPgTaEeKaZlegFp5oAmLhjcH8xNqBpQ307EJIc6I6BndIgFiWW0Lg4v47ErYm5cuoM24McNr+MxjY7hrlFI/q+rMN/Kqtc5szx5mwr6wYu4e0axIYF9fdLSe8kp9dZfMuIJ9GDWRjHGgXqGrRoFicjK8iamMg2INhNB3L9poqmWosv2LgIOLgaIuD1RYdpWVeOg+MoZVuS6AcmdDpJ4nOpbwMXCibYjosRYvLqVhUjJuaeVMvWnxeVuaunVQNQHwWUL3HONyZ8t28x8h334bJm/qHoNuqa84Fxn6fO8+A8SXWkS2an/U4ri+HdXKoCQrruf0GeOFBMJVg2POvPvYO2F6NuH7PMZ595Raur09wGjucbleIyEtHaRr1GCDW36nNJSDOfYEB4ryxESXeaY81bGW//Tx0XtvzXPdGQ99efHvG9ODYPOI77ZC6lKD4sz7rs/D2t78df/RHf4RP+qRPmn3eer2+kPt7xWfAGOOeNQBSJl4qTA8ECUqDW69RrNMGNxqSAR0OehwcbnC03lo6lwJiXVPO1mWFguFQVppmFWR1O6jN+M7gGOwbozFAOaJELrTSrL9//X3sOG/YMmAVD6eO34NaaxzeMWoI3jmGSa526jdeTJPuJLXAsedR/zzGpjgoXww3ouCNOm3aPODulMyz+dMcWwGpJoCsOzwZYRwbJ+wMExu3DVBbb6udKzU49sdX/NBqQ76Nkw21PMM8fck5HFzedxdAbm0fa3Oj7c3f9bYWJoGTES0jOx80j4r3zsNNdwsgpmFByrFKzZ4X1Qhv8WczrXGgOzE0sutH5uxUaoxtLeQTDnus11usu1RUqwsRK4oGhO2vGjhRBKeC4AjxdzkdriBYj6vtCM06M8DigPGZUp0rXjwXIPbn7XT0tL+fq5DR3PYWMs8BWmDg3Jp9vQYwLtp5FvD/JJM6Wz1/et6s9aXVxkFlTmkwBfV4yucWtqM5kMnxaQa/g88+g2bugP6IQfed4nn33MCzD28CAI77VZouKEuO1oA46vKjrs3DiPB4hNi6MADNJVguaOz9Vzw4ur+mqfFZ82BrXN4pO7PJAw2ZsA+POZoFcJ9EQAygcGheGvqsz/osMDN+7dd+7Um/txokqgxbFCgfR+6cSWLkhc57GkZoSQznwEAAaMXo1j0O11usBRCfVinTWTC4OcTsgbAzJorf1XbXxkG6dG0At/788TPoSQHE1l/3Vx83ZSDvK9QukiYF5MQu3l9Zn+Wcp4IG6382Uhz977nAYlAwpAbCmjY94Fck6al/JIY2ue8+6wP5PoPnTUnY+78zUd1nQnl/VL/34cMx2SC8pV7/Qi5E9+e252Mro2qyb/ObOtb+UVnWOq7e7/vfOm+KGs95tOK0pZbxfu/nKaAayHvgGKiMsOox+xCP6CxyPFmMI+U99du434P3GRjoGN2qtyrTRIwVJWB80PU4CD0OwhYHYYtV6O0vUBz01fqLMqrswTVV28j96X7/rNLf2ZwkRQG+Jt9O/A0u1h6su2TVTlk2dq+az+a2d0zPD74PHTG7aK853peE6nE4dozZsvvoTKBtS3o5Dwd+ZdUGHym2+hyphhbiGtjcw3jg/sfwomuP4kq3wSZ2OI0rbGJKny6mC2rtnEZQqIwO+98YBcS5g2h+b2Z7tr6PPrgd+55Mcb/PvXa1ew6piDb9Vu/nYnNrHvGTNWXhUkaKX/GKV+ClL30pHnvssb3Oe/WrX40v/uIvPvf9rUpkw7Pm5wDNK+ZTgdPYOD44CYJ0E+oiVquILogXWT1kDhBHhlXiG6RNAxh4xoCzMe8lsM2aKdTFAcXBYxdJn3WEChIJUkl+FqqZ3m2zn2PNOuvzdf0cRj5ndOSSG9011UuYnGnplzHniFPqHhDbnCd/uufV+pr1vZjL64MlmwSgoN9nXMu319EgZbGZ8UDlWNSxX1yUBjwx2gbXHwPC7lLNYdUQlfI0Mj/qxn1prM27tk0965Eo9mhWyZw2tu7hdo0WFNn/bk8aFVlVxBYtHZvm0Jq3WJPqLrjPMWAMACBGzj7Ij4+9WmUHoAOnV79irFYRBwKMD0KPdddjRVHA7/A9t+SNRovPQrpuc2qwn7/aqEatvXRRsaGuppHvezSqkA/np92VtPXzDICj5n2S67SivcV3KvhsThp10Z7LzJSOdhXAG5vPnp0x1f6GHVlMZfC8WadN+4rTEQi9AGIGEIDTZzK65xzj+dcex0HY4qRf4bhf4VRWV/HTBVnBMTL4BWqbl5wccfw0AoibyyC6/YNnUO9rjeP6+Hrb3LHVis4qXaTOHKO6XVPtucvpUoLil7/85WeaG/x3/+7fPfe9rYAPDSv3eYVeFNwiTZ2ekJZMbi4vzIuNQWolAGJQALouWmEt9YYpCNa0ES8UZqVL7csMUzTw9kz/njQmW8JhjGrB3BBGU7di/7Ddfc+8TmqL/HV3nDN7LtbI+z1zmpx3ElxyqpU7gKbjSvlzt7NKP6n4XQPiQnnpff1ja+AYVa7ETtEywU+k0ijQjoFq/Sy376kFB/dwfTbQJz/G9G4VBSgAMZfPYjyyxHY/H9wzYKxU81nre6tLY49yTznB5I/x1h8yMM7eND1hp2yw/lfNtn1Vg4h2XvJS0Nh8f6AsIjVrxYZBlLAcd77StJHnI07jSR91jkiRObcYAHcArSJWAojXXQmIV1X1aUuTZkLkgAgqtqW5wlQ8h1YK+dw06rLAUyu7JDNRLR+aU0Na32sqjF5MDr4Lj9pUcni286rBn/D8651brXuOyd8GMG4V3brMFMCIoCZ/Kqmu9FMa1KYcUEtnjvxZhFg//V+fALFGjTkA2yvA5r4tHnjWE7h3fYzIATf7A9zaHuB4u8ZJ3xkgjhIxru3eGhznbWW7i6JaU4CY6/0znDaTAHr4SJvgeB8788mkO9WuOxAlPg+XXkpQ/FQRoUz3MsXljSjxthk4rhQ9qdfaA+TCYHTgi9jSpY2MSXJbGH4dtjyPOHKdGkIDpszrKCMZcly1rbJQU+upMphnPbzyU6++DxBu7Zs7uhUw7RJC5OwJNWb9Pb2Q4mpDqy8F4zpD2bbNa/6ZipQA04B4tgF0GSVwJj8/Sql2XNmxcwCxkhncwjcKgmMGfMXlCHmMNIz0jC/Tt3L4pAMosPylbcUw36Wg3TFln0f6NxKB5mKQ+wb4Ta7jNU9xdhhkYEz5dmPjjkgi7dxmtV00BxyPUfX8puREaZ9UN9ppn08Y2np9D+IwNALulsq2QKOYD1BUo/bVb5V2VqBufRbg2I1lL2vdYySGRaeCTFfS2zJBUqcjDlc9DldbHHaaJh2LOcQe/G5jNwqGW0CYq207q3IDhW3hwXBb1jn5Xw+5KZA5RrUMGNH9zfE56l1qtLV1T/99QtZN3WMHI++0Z85ajfqykq8Mb8AYGBTAm8reMHu2poonybKqKmepy7byANn0WwD6KylKfOXZt/G8qzcAADe3B7ixOcRtAcTbvssFZSEBIYYDwVl3DrMjq2NQb3fdaum8MRoDya1tu643k/dmkzl0zngR394xwK5YouatlrOp0Z87oec0Me88tIDiBrU8usAZolFKTkgAEECM/KekcxhDCQByinSutOe3Fd4wbRcxrLYtpUak1D/XqMKiwJAR5jDmHBB8J408j2kHSnX8tCx7yo6fKT1ypH8F0095pN3x+T1ivP0NYb53qlwDF11mqr3dtTEO1FEpjKfcjzgPbN1TMaiNxSkpbyU1un1lagOIBPGkUZpTjLyNuhIQu1sDhUdbPmYA4oLqMdYaf2r4sYt2thxkLfLgl9W4qYygolN1++QzJDlEgbN88h6EFvgdBf4ox/IAHPjvFSCeYbTkpjXkxBygPEHFaRUgvjsMbwFyjjc9MNYO9pyXg5mrN8toDczALvis1p3OCIdFpCilaCqfdkhLpa0Yq3UJiEuHeLq4FvbZcmfFfjwQVh2s/W9RAZR39ly6VUWLB45tf7CTD4NiSCj3T984y4jZY3rS6T1hmNd86du6j3MXKI10PcGeS8NAn0veuK+fyWVnTydHWsBYn9Xe9qx3TgGNDCKYbqCYeE+Ladl3faQrIK6A02cwts/Z4HnXb+FotcET20Pc2h7g5uYAx9sVTredRYc9GG5Fhf3vViaF17flsSN99ce0jttlgxX26fjz5Tm81wKbLSIeft8Hq4xtawH2Ghj709TWOCfNvcZF1cZZQHFFVkCDhnOJARQCxBveY6nTNYPqtS2/C0gDyircijSXSHF0jO0BMQMlGHak7WMBxjbnipEtimJgu3YBZuzRDs04GwDvyxj+smPgsBJGhaFrArt9ntm3pJfXZ15de49211HiqcXIyxNnKqMpGvNuTt26JeAuMbVSwerKtxlzDbM36k4a7/i/agmmAhDLBvN29874dp5vooKF7Rq6HJMHxLkxQ0C8FxVK0Pe5daw+L67AcWNAOF4yY8eek3tW9X5/nm+XOQykHaAEjNWG9TZFo0/j/W/cz5MztKnuk16iMnwKcW0is7rRqPEy3Kep07WC92sR312AWF/n/BRNT4HK1Qjb8wCRi1O691bfoii45QHxlnIhH3cuBwDriPV6i8PVFgcyf7juQwLEaQnEbQzoOVe+9fOI931bg/nWKJdosrHqosXeYVpE9MaM+YJvG8a6p9rAnaBZjt7BSSI7XR+a5Nta8WgLUAzsjwIc87Bfypf76LwGML4bosUElNFhzo4eoHQkt+zZAY05NvSdyaePBpNLka6jw9wB/TpVm97eG3HlGce4st7geLvGcb9Kn9sVNn3Atu+kmOywcBbQtrGbQHhwTHnATp4q+r2Dp9z2yVo4yMcMgPGccVrvH9X7vLvNu4b0iJkwesyTSBdZLHYBxRVZkS0RqnX5ehU2TMP5UbXxPUgHI7dbP60oQWklBIkyKRjW7375pfLegI7IQUEOY7ARAFZvl+NHlc6ubeelGpyOkRPEXokOI8alsvd+Ab1dchqIceqjxXO9c67dY4B4tFvu+e9MMxtTBNw4dorKzt8V5FMam/PzeLp4SJM4odh6ruIAEMtH8nZT4fn2ThlfcToqCOwY1EVQaDzoEcfWbBo4Y+rf1e04SYgCHKMCxjXbO6NHDRwDxFVkfcCPdhF5NvqyunSO3T1gyGteXu58Do171oeYEed+N/qrl6t3mZyQ50fqUFBEP+GIqBtCmAbEd0sKdaAIyBzbwdQjP6Qcv6runIxOeWMblWHpZbnTnz4iFbZURqZYeRmIq7Tc4dE6RYmDTDb2ac46b3grxX22LJ+avsl5ChPQBkpTlbenossq20xEu6jxXlWQWyCz/u75xo/jXcbtXKfVFE8WgKpqK7t3Pmrn09BWqYHxrvZ9FNNAR7p3WuvM2p6d5UgGzN5SMOydy34esenVLkWH4wHQX2FsrzBwbYvD9RYn2xW2MS05etp32Pbpe4x1hFjv3QbBwMiQmQOI61Om7KpiXw2a09ddY9hI9cl5nC3nOXfQt+p5eMAOlKC9JTMKZ9J8G3qs2OSTSQso9kRuvVNgUEmz9q5psZxmFdwBIG4oEVHm4GRoq6TyaQdTC5OX1SlthMIDY5Y2NL3LLWVUt7H+XjyvCSNw7pieUvIF4+nxU9fyhi+VTVTjhfLBA3ugxfCovushJBdvbXc33uVHsO7sETEeBcRjQrpFtVfyklNRXAtcAGMlnwpmhawaNFyGCSUfACUgZqfgtx4Ql9WpmVQJMljTNDsGVnG00nRreaa0LxvDo/zUAsQ0HIPlc8z39VLCgLEpuFqeZcOnTlG1384wqm/NAUAgUABYO63AeI68GJM1u8a5vNcaqJeOtMY1OB20y4E2kFFn4CUPiMs1X586w2AfUmAMoOi/j1C16m/UZPPBmryJwfXVkUx9BsRh634rSFb+FH7kdUqdXnf9IDo8BYb9cjCql1O7azCRPntQXr6RS6fBHCpTp11tkDFWGDy3EmS2T9KbYWjkAsWYHsiVge7LN7FnYted0G+NthZpub6dNREMUICQQMWuhUZH5OOoI6rxPO6GJZrmTmvwq6nMcsa1HMmRSv2gvKe6gGCAuD9i9IdAPIzggzSl6HTb4fZmjS5Eiw73sryS/oGrqtFjbdvV/DlsODVW699zAXFTh7t9HhhP6ZKmUXkOXTHHbqydkrXOG5EZdQr1vlkWc8bjhazH7mgBxY4ImPR214W3koeNUjagcP5oRVlCOZh1Pp4WAZFP7mCDNDIlJmkAYgCmIMtB5oCxt79FkPlUlyYgrpmx+M7j+1r9bdHg0dTWc61pG+c4pe+jP7Z0Tm0Ee2OY8hcWg8XsOZ0Hykgggbndj4EybYOR+tR6SaGx7hVdLQRu43vdxwaYKRtRHacC7jITlVXhAeFL2QegyOTwVAPn8nmWf+SvqY/HnFYoIsQaibIIqT+PkmLzgBgNQAwMhf7knPKWYdkCxJRLo7QiVEw5dRrM4KhQj4YA1RvYEYMoeZ1GTvWz1MvIGs7cAejcTTokcCPjkPcxBmpj21iCyyV7qnO84yw7zRr3Yq3BMOJA80bMGBXRQti70ShxCxDfLWAY8PoyInKwDCslP5/Y87Dpy5HrWuq06il/oBrhcwCxfKqMjyuA14yDgx7roBHiID3QglopVVqjVnkZxHIpmNTOsgfkeE8jcMlx7gtojVNdcGs2DeSaG/+14d6+QGnkjjZQLf6yvYPDvK6bUnINWVOArdq5XZ+uctVEgNPbXHHtxLPfaXzX+vL8tvcdJhlHI8DYHFXIRSu1j6Wu3T2u/DJLlj1Vp0sTENdAPGT0R4x4yOAVS2MIm9MVbhNstZW+z4BYlxhtRnobNPUuLyTN1j+DYjtsO9XPCdV3avxu6ZR99OEuGnF25+8zL8h141Hym7FdxXP1cOKW/fPUT01YQHGDdqadUEo2rNcrHjCjvts6bVKUPfUEqGEpERdmRi9rGTNggNgX9PBU3jNzWIv5iwiZzl+uGRnJqBwFw964n8uUvi3GPCPHmTDYffEBIK5Bcuv+ukkZkjIjWwqnKVWUwmtOfytA3GLwGhxnGdIQWo125x/uszaKRi/gGyLnXXIjnDBeebqe5gDo48gOKwANBU/23AoFRqX9U0eifPEenavo2UGBn0akoMW16tc6ZkxKG3cq7wJs8QAQt1Jz1YGmjjarORAyMAa5E5Rsjhhlw2dLg2icpqoWS1npM5V5ZMl5kTZaVMfxbPUwcl+p2la8zmm+KWSCk4E0dl93/TRshg40kxN1W8bkxARbtwBxq5L9ZSSvK2tg7Ncunj2tQfVcy/BUQckoHTMNQBzcPv9OuAOwTksd6jPeykvVIloaHc7roobJyrdFE+VdktgIxOTAcVrKUY8bPkvYVCnf3ez8zkOuwJmmB2rA4rYXz9jdAP4YHo43lSlUbcOMMSryZjSqOnDQo0yHr/izZRqoDmdCtrNa/aupko2zqQUILiERyvo4QDm9yGc92jJMlc70NKh54e2uOkrsHMXmDF0B/SGjv8KIhzHJfeJUkHJL6LuAU+rQdYm3DAyzS9nGkOcGfOR5pPFuxzIt9p6aYM+A3He5VmVXj+oX12aTUeewOYvrte4z1b99+67n+KBKDYxbx/p2XZBuO+vKLWO0gOKCuJni5IHxLI93IbW9dYU8dzgiA2I1MJXJYi4k0AMj6dItxZpVZapU6RhWC5a4dVhNCQHFwCamPDfSX1r7Q9XvXVRHNZuM5I/XY2YwMefnZiBGr8Ht5rECCIixgdRf0gJAKtB2Gbf6DipAAlTvZhA2y4bRmKNjAH4L0FsbP9XznSMgCkF8yS1vYJQvi7XEgUFfPI8asb7j8liLOshYas0fbqZm+qatxBBYQeYSD5dfmiIe8+YOtpVKRsdfEDDckg9pXOWkaYLWvErXao5FdeCZQwCgLSUQskWxPRfgcs9EbhQlAyZwitahBwIRYtClqwoz3zXAyaGWPNo11gdyAqiX0dp1HQMkgUAxAWPSMQSRlzl0nK/XMsqgMiO/ozJafLmNbU86daikaJHX2vCOMj4ZQI+W/hKqwBCQ+EKNTUvPlKkMBohlPKYx6sYikJ0yawYJKAYSEAYSX/i06Y0Dw35d1LFiP7D+EELQd+syW+zpcCpoNFPmzp1PXIAWDzb9M/Wf+t3zVsGDlRELFLxIni8xBCCW8cHSB/1R6yrXlgEgdpkn6RiypnpPJBPStIxIqZghz5vrvw8gHgCtsWjhJaJAw+wN76gCIfGk2w4MdeZwqbTyL0eJyRzFyUmRLsHBAeIrMRWdNJsUwDYg6rHiFWImcJR7t/QfkHVW0xYep1mrfMwIUDSv7QFxNW7HL+ttxXydM80vPosp1+rnrlt7PvAnDPSy2BtuO6OKBs8MzIzVZUj7VOacnynPDIp/8Rd/8Vw3fvnLX37mc09OTvCRj3wEh4eHuO+++87VDk+Jj6uXK6TA2KLHzrvWYshCiBLnbQrgIhUl69WzzV1S9qp8ARTf0zW5+V0bXufYG6COBPRiWOgcZgWT+XAx4FvAmM3ILbzHUwOR1eCGU7z63Q5C3lhtal4zf9KIEtXfzeaR+wsAR+T+6nfitrHrn4V+rcbKzmIBzuVtRs+OLgMNIOd/V0bkpEBXp4QHxpeaxLA8o8PKrtIEm3DPQIwCxhAAV2C4iES56/U+Smyp0+PpzEVzapDuDILaE9qM3EjjW2ArX7P802LQ6SRRLtXzsTRVey4JdBj4MPnFJSgWg5UDEMTRl2SniB65OUm0OI/vxjNycjR3htzrnTBiPCDwUSnfx8YtTVTJKSkNl0DMWWZ0nK89cvsxeVDL8butyBbAg3TpRJKvrIY45WixFvQJlObclpejPAb8Z75dLqhVOKscIN6i0Kla6RxrgCV1Oqyiyd2+jhK7ucMeEGt0OMo8x1GnmpAC4hBy/cwaGI9RnUI9BYiH00EqEOH0QruqMFAUqZphoHpA3LQBOGfNsf1rNT6319pW6/Lo7BN/HY0OK9yWJhUObc+TY7ZLo+1FE2uRc36b+0kjzd4AUPAjUNqzuwpsFVTbrzpv2OvCoHZk+osrB4gPYrrGNk8dTHUlCJFCIU/ZT5/wRPmTZLpbDbSamVkViAKAgfNGdQrn43a+c9MhFSBWJ041foc+eso2Wd3Hfah1Tkudtvhpzr6pe4451Dj9Tm6xoWw5z7JNZ4ruz6Azg+JXvOIVoHNo777v9z7nDW94A374h38Y7373u8HM+Pqv/3r8yI/8CADgZ37mZ/DjP/7jeN3rXodP+IRPOHO7tBJl8p41BIm8eK2mmc6BecKVbGkWPzhiKCLFqtA1+mIG5yaljsQYc3THRRf1089fShu9UZX2FGBY0x+3VFSPLR9A6pAOYgZDXNtAPaiL7yMPVJjd5jAqQG6exG1D1/ObFyzeoFXhHPP3IkXSN8m/G4YrzJFuxIRinuOkgHJKlzA0gCeLPYmgLph7jofSC93a4J9DtXfvkhPBOat0g6Mxh1VLwjAwTM/016uL92xdurSLPtWVbX3b4gpgjRLXwLQ2yICBgV0uFTVigNdKpgBVHhi33nG2GBkSKVBgqg9D718X1epTlFgBsUaMw5aL4ir6TDjAChyleWwQY0afpTieuLILnOFTAOLiMezgFS4eDzTibdvd5xgOrx1oVjFblpIyOeFZqgEsinFQOCzK9zRIox7v3aWg4F9a0dgMjHOFeE4RYjs3H13Wv0D5XglZX7Xm9leAOAPj5KThTozudZrHmMATWZQYSA61DIbd/GHnVDZArNFiuHZSXpoxRl09IjtVrfq2PZ0SGNt0EGqnUOsxqrsGVXi9Qe6zv2pjvSZC1vP+hi1QQTp+nV6rxim7bQqOTdLo7zG143RZAYgn+DNHoP2z4PFIm5e/I/v1nV50AZ8nm0oncumoki2paCXxIMgz6C07vvS2l9mRlMVxgNRmSU7DeADEqz3oqE/bNqHQs0wAkSwz2nEeg7V943WCBmyYUnbAyLgsqOFUzRFG6c8+ttiUk722PevmuP7YON7hjCr7UvXprMOzdqq5z8mlpBgoCoLpuyiUAQ/bJccoupjb7qnaBc2K5Ofg13OnT7/0pS/F8573vPNeZpL6vsdXfuVX4i1veQvW6zVe8pKX4Dd/8zcH7fjKr/xKfMZnfAb+yT/5J2e+1y5BoqJEBQm5v5qKuaNMlracIsRUKXdY6knYEGKfosVEOU0rG7ty/aq9fhkHvS9HAgsgpp4ATX1UgAzYwGYkY5UDA50DxsRJiIXKAFLjj8YHbbq8FzJoAGQqjt4NCskUp19XNq9JSRikcfrmyTNM6ZBA7PyCNLlPLAYFe6WLoeHaAsStKrKj6R4z+tusLOr71hJuLSoetRPELUPoElHw3puxSrfOYaXRqKaCB0aVFbUAcRENdX8RoJjHBndJwccDTlFibzA6oAqgMg5d5Wd5r+ol52qpKHdB46ei/QR4oNXKYmBmREXB6sVlck484QRV7DpnrJ5bvUlg2IBxn5+HDmsOZHOJAzEQCNEAsbDasBtVo53y9NZ3LbzGSA0492mywbZTy2ZKMkrlBZJ8VGCcgJCTE2OF+eru2PsBakB8V6VPQ/lS+NHJkECMraQD2Fx/lnm1rs8pYiyn11FOJYZzVDne3ObxGLYoo8TipAEjp06vcvsU8MItsaSVpRUQ27JLEjFWQBwdX1phGMm0YHkaibfL1OddRam8QW7H2m8MDT97bhjqhIjRyFV5c9HfwaUc++fu7Q0PPBpOG1+sKTWz0m3eZm6R49FStw3ZqpxbLdkbXgWqzLDPurHuAnqf0XbtkC+XkFpTGwL1qT4NArbQaQNsGRz1CirDGjnleCqcpSqGu/weiBPPba8nQEwdI56GDKI16wOq7wK49pjUz92/UyZAawNMjMsWsTZwDBjP0Snue8lrVW0bbpwn97JnBbWTvaHpzrkI22zK1nT8RvV4b70DyHEElA4134fye5FG7S/PMJyxbzebhWjP6cA6Myh+5jOfiUcffRTvec978LznPQ+vetWr8OVf/uW4evXquRrUon/5L/8l/tN/+k/4ki/5ErzxjW/E8573PIRQ1t3/+I//eHzCJ3wC3v72t18gKAaAKAGCtiDxSr0Ax8RJ0Qhj5GqayBFa7/l2xnbYANttQFyFHJFIF4UOstq4AHLNGiDPe9IoMW0DaEOgDRVzrrwEY4IsJZM5NnnWJU0wUjZEG9GQsRFNzurlSgsVXuqWFKiZs1aczsgtquF6wxdlU41nQvoLTIiuFUmjcGlQKMN7bYyG4nBAZDinM/+uveZqUBTdbSljb/zUhg5Xn1Nkj9oJrkus+AfOKgC1w4o5RSOBHTqkenY2X1GUtILfAhBXRrelCjsDLqVOI6VOyxwpjeASwdYeL4FxdngwYA4wA8TKo777CtZAIJ2fVZEHXY29CCEixiCRLQF45Maf3rOOjKvskOhwAsaNSLFeIsjyWRDxIQ43OFBa/BXNrKxhNXpEGQ+eyUBWkJMP1MwmqdenpsFzFj61ND1YunexnFQxptqMNDUmS4fJlEVy+Sg7rALAGhnOxbdWALbOkax6s0WDZQMB50SueNMAcM5YSPvYnDRgIB7AshX0BUcmbPsOLNVu/TJLdXHLAhDHkOY6RsqOK0rF9BBE56eOmB6YShFs6YgAsmixRfBahp4fczIe1fneLFjlzwNsfLPo9GSviLKrHTxe3znjdUrH2bOBPhPA0NMAcDWeTalq51EtM6p9BpwGervdhoHzWbddehqb2gDUPLlCRKTsRNbMR59p5fmS2AV2dKwh8Rd3dgvwihGPGHRti7BKU068PrMiXTGNq6hj2IoZohqrIoeDvBOVO1SOy1mORaf70yXIblkAY7iMyRZQludRAOIqG6k5XoQXzJkQYHeDvLdibvwUNfg0dwbtsd0c61Vf6uPU5q+uS+oQNL7aAYxl277R4kFz9R2q/XRBfHlmUPzQQw/hrW99K37sx34Mb3/72/Gf//N/xtWrV/FlX/ZleNWrXoUv+IIvGADXs9K//bf/Fs973vPwUz/1U7h27drocZ/8yZ+MX//1Xz/zfaihrPOSLpVyR0o7ITmmLqxEXiGIcoKPEPdaJMQZ3pv01x0TcBoQDwICktImAAhRXvy0IgLEuI7IUeINIZxI6uNGCiI4o54DJZumS3NAGJSK4yBtI4hR0ZMILRnU/rtrxyBFVLfLNw+O7RmphChO4KFQcYZuAYjd+ngqdAeeZ72DzCVmBcZIwNgOiBCDgceNXcofdfGc0eegt3BRgbE+lr8r5eyFrdtepLzUBr5sK+aQ6bUvMbUL+gCtuYstBV+QRWPzDlJD0k1jGPClgWMuI8X6LgjoDxOv8Cob3wSAAkvxnQyQrXBx7ekUWcE65cE7rhx7WPVOHZctJ5U9v7w9R6x8YRUMosR6PzJey3+hR5GqatFi5yiw6Kq0KxIV1yA/ln1bVefWit7a5z7LQV2+T9cH/SMgA+LG2srFpYv7Il3fZJ3ulmeucsLfs6aq7XU0vw2ILzcRgK5yVqX03wSOVyFKinJEEJBcO5E9qUFaOCnUqTvGm40Ufs+rAMAhJGNd2UgAbx8JkYMzroZLH9o6qbJEDPeeNzNSTNlVYtV3Ogbzu95FfukcA8bYUblZP9W+8IDYA2NvoOs5pM9G+NQZ46MAsWqK6ryx9pmjVz7znE0VEKi+735OTSKJTrbAgd5D5NFYZls9l7TIzAKyvi1Awhnb+yRRUDuVyRxVmRJPKo+uxLYc2LJw3dRnoODWRYk5MOI6HUbC4L2kTa8Pt4h9h7gNOTCk49Jl9AXNagxltBlyWwQAHUpZ696rt8OAku8GNTlsh/C+jVEnh/YheTalTmlP38uNcA4pZ8qY6NjFDzXv1ceP8bG12dkVajt6+avt9310Di0TTcZTaR9rkRcG8tI9WWuORYwHbZvQhS1AzEWjzk5nBsUHBwf48i//cnz5l385HnvsMfzUT/0UfuInfgI/+ZM/iZ/8yZ/Ec5/7XHz1V381vvZrvxaf+Zmfea5G/s7v/A6+8Au/cBIQA8C1a9fwp3/6p+e614pisQ5xLUhWgM0ti5SESkrVdHLYCfuogkQKXMGlIAaXlqnKvTtldCcEOu5S6foDLqoq1qN84KkFcqTJol9k8//CCSUjXwx7UwICiFnWDY2ciqMk4yAr5yJizFx6wWX8D4pYcFV4A6jAsQPG/rymZ65kZHgjt6oKXAio8uZQ7xwHlNVwiQUwk0WLzWPXImfslinTI4ebYZZ/TxbzYPdcvGIeE2i+n8VFYQO0jM7n7ZeXOPElHF+qouf0fYvOFLyPRrUcXY3Ly1xZAW5ufn+OhAJk4K+RKhwADmneovJACXwyMAbSvhjzg7dqtm66g827qowxUzpiB4PSHNeaitRcyBBwzyKENNbSp7cgymfjFX52QGXngAJieybaQVP4JM+KCgOd3PcmOSO2NnTmFLzJ11fggAIQl/UH8jnF/f3DM6Mgtamc+13JidZ19OcO58WlZ0cjHpnrL+EezsA4SHZVwNSUBirlmze8t672RuWsMt70BeD6xKsm56X6ecrAAPo+WDtMbDpw7OcQGyDeBvA286ZFyIiBQGCWflNM9zTZnZ+RyQKRDWNOeAWURHmucj0yiuVqZHybE8FPH1Jj3TfFK+SQdXFykHFlnTuqwMdozQzksWxZUbKhKOZXn+fsKB+YGuOJ2qdYOLJMduh3lc1tWTnugIAbl/XNLicRqgwOYPAgV+ixRZf0JWe+9NMCjYpx5oI6PaXpZ7Lqgi+y2F/v0V3bZhtnYLPIp2T4gVh4lQaPlpWPxe60fnrn8wggbv0ejE9gAIw1rlnYpzVLFPIf2d70ANkfqzeVbpDob/ZTE+cMfOtY9dna32p3fZgf33V2SUM3Gp9q+x2/2ZRLTQ+rgbGTLXOjxXUFfj+VpFidZ4ZdsIsuJJR777334jWveQ1+4Rd+Ae9///vxz/7ZP8Ozn/1s/OAP/iD+wl/4C3jJS16C7//+7z/z9dfrNY6Pj3ce94EPfAD33HPPme+jgmQVevNqBzHIVyHKtmj7VpTmM3Te+NTv5uKCpEH6OcSq2MlSES0lcQOEE6C7nQoScJ+903kZiPE+MGCDxBfYoi0hbBIg7k6A7jj9rW5z+jxO2y1afZqOTe3ynnpvYKoRM6LlfHSkiJDAlJXOB5lMbfKdAyxlh9h994BYDfVt7k/xdwrr2zAtlgpgPdo3300nLfw8Tg+IWvPOm8ZxC5x4Q9ErFzPwKaej2ieVf34fV0IwtWa6k08xKS/aH5V/K+oHfOl7NPAa29Ck7KiqI09qdG+AsOHMGxtG2DC6U3VipX02bzE4/qdy7mg9h1Tbwyx83oeCZ2lLNu2BNpR5MKKIJNvyFRPk9WcdpRwAlUopeoVf/rFFjz1QTtt5YDSM+SfmjL6B02mXrPBthpMVPh28Ef0uxoKTKYWMcOnXhZxoKWYdCgM50ZhXPOM5XCYqeTAiIOnDtepQMFYh69QuxOKcut6CN56L2hsKjDcYdVb5VP5uo5FjNuenEkdC3wdstx36GFKFaQG++tf3AX0vn9uAuAng0wBsAug0IJwE0AmBTgjhNE1NgoBm7vNUCKWpDIBaNihQVuDsaWAAOhlfRNV1nKozIZbjnYpxXWZYFTpmpL3ps91+vw8YGdPKv60DPN50OEo/uXWM+15kQhkQHrnHFLb1z0Kftdo7dwF1YpsmmzUaj3p7dkU9VjIv1/PkYLw6O8+PIQAJEGsmBudtdHWL9cG26Tz0DlKrCXBC6I7zXziRP7HXrKaHe/5mE8v3ImOoYX+Vchein53+8+O35r8xHtYxYjqRLIJOYncNeM/vL/QICkA6WezK2uXaV//5/WNUMRf5d2VtLu3J4VKVsHniPlsFgMsOUGYeFg8tp5BV2+17qSM4BpviYlNa+tDWwXvQxeQ3O/ozf+bP4Du+4zvwnve8B//zf/5PfNEXfRF+53d+B6973evOfM1P+ZRPwa//+q/jiSeeGD3mQx/6EN75znfiZS972ZnvA2RBkpS6A8im3GNTkGSBkq/FgJsXiGzomsIqo8SahtidMFa3CXQaELcB3AcDxX6dRB0QSn2l3LUYiDGkA4bdCaM7VkCs39PvToXQqQDpJjAm8+Tb3KpdANIxa64SiAyMi2PrU8kuUXrGG4ZsAYYVwDC6Tf5TkFMAY28Uu/kuY8ZubaTXgLj5CBpGQ4tKAeD77ACxewfeMCIXKSAnqMFZaBmgLt7Z5VT2hOysUn5UA3xVOKn6IjpcG96AM7r9GHKpmRqJKscRCxhWQOyBcQLF3Snn+cROSem4CEHaIv0p2qTzFPsAbCktV6Hz/0/LPw+O9b37arjeacaVfNBnmZ8pI4SYDQTd4ZSXpVD5SNMAHJfg17zl+THkvu4a9yNGalFVdAJg5DZS+enbW4Fhz/eh6ShrnCvTT9CUE+PG8xTf6y4/di8zEcH0pP6tQm+8uVZ+RcmfyrNDwCdf9Lk2dKSfZlQ7qxIYFtm+lT813DWTImZQnIBxsO/F37ZLKZ+bkKrlngoYPtY/QneS/oIY8AaMRV+r8af9qsFuS1b5bWTHl/KLAXhn+xAQZzvDoufm4PM6vdQPWedNOHjs5aseGx5Q6DgzzEcuZKKmsb8y6ptXIJc6vYtfxmyNFhUyEFnvqiyMI+ddEiLAHMhrioVN6+3ZwralaE4roPFua6ciI0WJZRlCtTUh6xKvDnp0XZTlzCo9xP5aic+7UwnU3MpBm+5YshtPydXBQSXjBRABg/ukfpR/vm9Fca4KGBcPc8yeMwees7PUYdpXf1tv/9e2JrKu9X1rvVjn7CkAMYb9LNrd6kcFiIeOjxEA3Lt93nFpADo/CwAuMFMDZIzjBmcD25/DGlpIOGrQUAKI56VzV59u0R//8R/jJ3/yJ/ETP/ETeNe73gUAeNGLXnTm6/2tv/W38M3f/M34xm/8Rvzoj/4oDg4Oiv193+Obv/mbcevWLXz913/9me+jgkRJ06c76tNahZyKba1CROzzPIyewsALBUC8GWSVnwvDa1N/sin51TFhdQs4PSXwgRT30nlrIVelps6nE0hxkBgQ+xRh1rXgdBkV88htGOE0GfZqvKY0YkIfGVQZeWkpFZYnlDzv1JOkWiMpJrVVCYPCIn6Y+rE/SB2mRhq1J8e4ZIzrmTE/X9pyacTqucqLUiKUpX9BtiWhThYBG4BSSP8afcv9GjcY6jSQSfJReC84CkBMpaMAbfnNKigJKJMGy6+XlfzcReVHnb+o84i3MWBFMWVuVnxpZEogOxCCRFPUWBw6VbzTil16JltUFAiIK4kUAzYw6giKnzsIZCPX5im6rI5BBIfSGOVISdfIb0TO85BJeJRpMP68ca37ercszV7zWT02ZYBm5DPXQ37AAq3fcwzrql12Ors/l9LWAsd1GnVKAxO+CUDsxAgE0lpfRKCeVSRC60ZQAIqpCVzx2kcZKeAdzFcU3gRCQmYRxVz/GvgBcEZTGR2mDbKzygNijRD7+cS9fG5SlDgeQBU7gCQ31XiKCCizupxzqac0B3IbzEkVTmWKxQYImqUBpAwR+R4JqQp9T4iBRiM9oZIH9b4o7Qn5NllnqF3hHJww3ZcN2MHc+dxNADJWORdHYkp6j7WQnAKOGTiyzsTxOm62vjNjn3IGKY3cW31OVJ/vthUAonzOU9MwyulKGDqi/f5LS6VTrZhbTGz2rPJFsimz47aoxeEjewJ6wlZ+HgBxJfYOJ77o14x4rcfBKjbmZlcOF5+pc5p4GUmdImrhygDwCgBR4mdmyYIEmAM4sK1XbOsLhgig1IH5uxno9tunU4PLAnEEX/+leMT5kx2vDYIRMP5T3gOl/easG1nVwK4/xT4ec/jNhjvVeHDdL/RktjGzrsxtr+3L8iaubZwMeg6wqUSkz5aQU6nlU6tOK2/6KtQ6daQ2EvzcYcuOU9tHg0MMTD+wabowUPzEE0/gp3/6p/HjP/7j+IVf+AX0fY9nP/vZ+MZv/Ea86lWvwl/8i3/xzNd+zWtegze/+c349//+3+NXfuVX8EVf9EUAgHe961341m/9Vvzsz/4s3ve+9+ELv/AL8bVf+7Xn6EVjjk8lTBAhwFgUfSB0HBGkkiugzFcW2IIa3xJ1bRnenXi4iYH1E8lDFq+YdQ2mkNYTJQZRSIM+RBmAsJQvnf9klaf7zLDqadeIV+iTMFFASDEB42JQycCPlAxy6oGi0pyCrag/lQ3zgPeXAtCevzGmOI0pSyYtBFCR+jox99NAMWVjFlIIqE8GMOSTxBBmERZJwM/ThFOR4mwsjFyuFkAeGHtB20q5GXmG6iHP4JhMIM9K0XkKKdm0FV8quJxQ8F1IfAlU70OtzMqLW6fYG4+Y8S38aXNoGWETQZERO0rGZKeW57AfCgJUsPuMDk2bNm+yLZ0G2JQFIHvlQclWC8mYTYoogW2yCNWYsixBeqzHqjnApsmGDYlB7axnnWNdGK+1wXqnyNvATqEPDRaUwNiMFwbLnGjl0cDp2YvtIvsIiLJkU4Q4Y8p75jYNZSGQ34U+jsseHS6Jbd6irb8rSzAlkCw1OLTKbYiI3CMGwibmPpM4VW3Kjxne4qyqeLM79enSWlyrclZJ6jSCOpW1gQBkmkKkmOS8N7QYeRrDlkCbANJMDcuecmOGxGESZax3AK/S+dyxm1vc0IVqLzSerNZF6BuepAxQEnO1lng0h0KtHyBjmuRZdGS6nGQbq3PHzuFxo3hsZGg75fuZKCEUMa1RgANWsCvHDR1s040drQjuIlijjugJPXuZKEiEGEDhRE4RZMIGsBo5ypfMhI2TST7AA4aNMSCN9bhOTpWwhUVHOUDmEuvSfxgOchmTFKmYOtidpKkPTHp9IHZkFeR1XJu9GQRgdTwsdNcExP47mQPH7HWVxR4Ye76ph5X2QXWLOKPUaVbzn5rMphO7GqHC2aUYB8SmT920w+oa+We2yO2aY2S6UtoP5H60zjXFhWyTaqV/fb5ABv+FXhbgzEg87vqg8rhuWpZ/yCsAeAfhwFO2P50LFG+3W7ztbW/DT/zET+Bnf/Zncfv2bVy5cgVf8RVfgVe96lX44i/+YqxW58fdXdfhbW97G/7hP/yH+Df/5t/gDW94AwDgHe94B97xjneg6zp8wzd8A37wB38wGSrnIC9IgFKYgCVdjCP00UUQ+pjO6VwhHe/NtUhtQ8H7qK1Vud1EHD4ecPs4oN+IAEAAU4qIAR2AHswBIZAJn74nS/kqUrVFVqgXSBVnJ9506sXg64HYwxlwyWPLQRRsUAZMBq8V5ZDrq1s7VbScoUEbnqBdh1tfRqLEWmAlg2LOBgw8KBZggSTsKIiXMgB9UKHAEol1y2Jp5IeHitVXkdXfSnOwdI25yyIq6hAogXHh1YM7vnhw6Z+9F32nUYDxJU8FAzS1sGyoV/DqsPIKvucgc6rclST6bkakj0Dpp8wVzimZanyzRaDChhH6CNqkNlmBKSALZ5/mw6TNQ885fTPG4AprOTCgVeIVGCurbIG4TvzJQYB4EHDWB1CISVko+OZ6TOZCPwDMqTZKlAFi+l3+afETIgXB6V5MKjvIALIlPvj5nVPs73luJlhsFQwp5hJ7MOz/JGSvQ8zmumqxkM7dg2COM46QtYsJbGH//KcAxpx+DUeFAqbLb2aXRBiC+CATDSMTgoBhG/jiRN5ySqHeVLxpkSO/FNomzynsToFwmvVk4azqS2dVyhSSirjOAE+oV9LsLJcSpaGl0eFtmjfcnZLMd8xywvMkSdVdXZOb15S+r0oZYM/N86M9t/I5KhhWsWLFv8SuYOc8KOcRw1Xpzn33jiImeR/Cw6EvC0yavrM/BYfy7KB2d/qmTo0muej2QC+1tiHLk1EDvHH59g7XYQE8kG7YO9duyTFFZFPluE8F5WqqxCUlImDt9KV3IgMyviKMP2MgRI7YUihSqAF5Jt7eEuBrhVk1wCF8wR3j4HADIkbfB7MlfYBWQaTWbVBn1+qYsTrJNml/QGmt4ytAPEi2MwcC90gZGQHAisGRURe6q2VtOY2KCjBcAOPBw0QJNLU/Nkbk2bDyoMvWUP3jx4vXgzreoHpTXp4Kl6IwAQ8+69oaprc8AK7AvfXJ/3Zywhwg0PeudiYN+qFttgwTW06LLEDAkKBSx7mvUT51eS21qQF1gYELgeVkdCs6bGnrbZmyD50ZsX7TN30T3vzmN+ORRx4BEeHzP//z8bVf+7X4iq/4Cly/fv18rWrQ0dERXv/61+O7vuu78PM///N4//vfjxgjXvSiF+HzPu/z8IIXvODc96gFCTAUJpvYIYBE46wQucc2ZEFifK+eXL8k0qkrGqCGtxbrEYDcncak0LdAdzsgnFBOb5J4WUQEc4cY2MuZnPK1kbmJYvibEhDmJkb2qp+Kp0aEEEUGUxAjlk3RJy94AsYJ6EuExCrPAZqOrIxjA7wVIUFj7PqNtUL2hi5gaWNjRm5Op4OlQvvnYIa5GvzSV+oB6pCMXfnjWglys/Xj3me5zWSBNKfdrWCERQPkGlURA6qUNPnnVj9XMeQh4ITAJTBWS+eS0lonBzrqxAAvIsWFgo9W3Cc7q5DHjoDPzqJAyVOdeFIBsaRMbyRVehuT0b2JAo5TG8J2VSiVNM83GZkcMihOUxwoFfnppWbANgymWGjaqDl4Isx7nt6VvLcAiVIL+IxIgNQiNWUqtQfERMmhQECxP0d22fFH+tOiRQqGVT5EyHQDVYAiL3wKHCpwnG6I6XHnDFhqHdiSEarU3TafIj2QFT0Xhq45IAiW4mbpwZSNwjyHjO33WJRtTDbUae6alXS3UOc8an5qQEdAT5JlFRhBBG5kwoqSzizSp53MswJRrihip7zpi925KHFy7sq2yM5ZFdycPZF34uzUFDxz5LiMDdPZmwyIV8dAOMm6JXUa6DVKHFJki7Yk0WJCXKVIbgj6XPKyRD6Fup5W4YdKnmpBeax7wOYzwXyGiTfM/ZASnGLVfHWcR9FT+rws+qMqzxixaF9rSpAVw+Fc6yDt8LzRoArLSs8xcBnN4RG9jzabRT6pI9+1P8sNZ2hXgNjPF73MgDjR0IkMZMwSENB1jE3sxJFMiKHHigM2kQfA2J6FOFz6AyAeZGGpzlwgjasQsqOEAFBgyUjIRpjZberYUmB8OyJsGIiMuA7ojwKYAsLVtFwp9UCU4l7cIaVUrwENHJmNM2KnAbDxWoPhlLnoosXNRyvt59wPA7/OcRBsCgMGYFJtUO7S2Iwy8K0IrfAeAyhWNXC62ANik6NOt+exrxhANtTBKMeb5P5K+7rSqfYghWVJ9F6Q6RhBGyOyVbQ3KxCGGgk5jTo5mGXcqLxxbTTHVSs6rG2M7pwz0plB8b/6V/8KRIRP+7RPw9d8zdfg+c9/PgDgLW95y6zz/+bf/Jtnuu9znvMcfNVXfdWZzt1NLh2sErq2TFNgbDiI0tgmJc+pAJcXJAyYJ8PmPZ2q4S1pIgqIT7XwEyOcRnQnEdxFrG+usLmHUgpJbqEY2mwM4AGjRqYtNdR1gxgptdjuJemfOj7F+9IFrdhJKQVsmwxfBYwGyDyginADuXx2s/HWiKLx0Z/MrGTCJkeAHBD2KXWyHZyEEKmgUGAoDF0U1KlSXwZpkcrQc/vW6q4JI8qfcv2Bp14NFQeIayXtQUB+eO5Tcz9JhZTOH7vEaBjpfWn6dFvR54hUcEsTbTkYIC56yGRVWcuK7Jw+nZMqR4ZjjkD1EbSN6XPTAzIXz1KdA/K8xZAMbOZgjpG0zEuXCkRIVMoiZFpcSABxd4pcYISQ1g5XZacpyiukNKyYlm/jTtNRYWCsZi2dP9Z7EKYeZ31YCnxJlJ1FfSuFHpEchTqM5fTY5TZaBWAXofIvpWhf3dgGkw0KpnG+ucqEwlCp+Fr/dA7qIM1N+q16Pa1LL3KVJKuGkKPFoqyJOYGKzreLSwPH3ktbTvolAS8zEUpAp2Rgj5MzoddoFEX0YniHyvDWoimD5QMb+tLqYtRgWL4nUNwDgWBrZ1uUWBqp70B/esDJTra6GiAqH1L6tLQ7KOIS59CGEDcArfPcZXNS6X0mEFUNjpVaxWbMSdxyDvvvtU5g2JqoJHohTRHKTu1yypD+sY1ps1u9pY9SpxVrh7J/xo5vx6h+TLUhX20etFXPt2ibN7oJhe2k7bX5n97eqIGxjqUd7X+KSXkTKB1XSi2HFQBsY5dWb4CTT2pz9ZSD7SsG61xiB24V7GlBWMh1ko0l9kZlt9qUPokUd8cR3e0taBvBXcD2njX6A8L2GMnmXAFxlSLI8TANgCidTrom2aWaoTF3KhvQmMKnUdbWBby+YMdvaoN651Q1Nk2HMixbUWvZDKbhDBoOZPQKW45xkIHkv7SixSN98ra215+qT8uLa3sAnY4BRp5GVgNjQgbGUQSw4AgFxs2ImcodN3VQl7klmV9erMJyDjpXbjMzWwrzvnRWUHwnSQWJCpFC2VNSVD0xAkuKdb9CDD0iE06ps6WZVMFbCrNEiTtR8CtvfJ9mcJqM8IjueAsAWN84xOomYXuVoV7t2BPQcRpE7AYDUAxm+63Nj8nLfXCDcfh4At5hE+0Y9RAzA3zKCJ2kVdVphr0MYPO4I0eL1evOOpdAQCMN7dqxcVsAxUIhu3kbBcN6A1e/c/5tRi/bs2FKz5AoAaMc9eHKyPCpZGoktFs+FSUu+jW2v/hBg/77dOkCEKvANcGbFZdeChL90+gAuaIOhbi/tEpel5VoK3mv4DcuInUQtimLg1aZl53HO5wmnlBAnJYlY+PL5ECqwHDkBIi3EdhG0OkGWHV5HvtGjMMuAd5ISPP2IpuBGMWjWax56tdG1vRHjZRtc0E8svlS6R5xle4bO0r31LQiUvDVTqGuyVfjTMaLDGiL8KIAwykCxnkdduJSYTrQbuDYA03lFcofOZqDgu9NpqAa2LWc85+1I40zn2Tjlgv5Yfwlc4pJ+qD9SYW1qMgeUV7kyAaQvfPJlHnRNzeH1klGotLJVgOjy0ij+hIS/SBgwx26kHk2csA2bHFCq+Fcf51i1NKXJ7m6NFnKdJrGAAXDUeYSbyPQkdXMUH+P0T6PlpErYOuc5j61O3aAZm2QpHeGHohbAmRucexY6gcEdF2fbEEmn5Gf0x4HYNiDaeSxbfqp0gXFuHTbalIsz3BOHUiWVCuFGjaOzZvAOXej1m9FQRwd6+yMfTuQyt91G4GcAVXcgLKhowcJAE6OJ9mo9VFkupRGwwtR4uWFjz6pXh1zRF9y6hCLbARPtcMKYYueCQfdFlsOWPWxHJOcnFVg5LRpkXPmOJIIMoix3XT5IYldbJHEwPY+SHlL+eo0ojvu0d3agE634BDABwGrk4CDJ3Ixy/6A0B9JloZ4MfsAcQ6TBY68YxjInzky3Oa72gmTZHM1Vge2GRWAOFd45+yoBVyUWHiDkGvZkLOvQzXIHBgmCYrlKY0NnY6s+63tNGKotnRNrUdrx7E+Iq/P9TyPbB3DMUkfjT8BLb6lwNja6dqV6yigiBJn56VOpXRy8ox0ZlB8nirPu+hNb3rTuc7/uq/7ujOfq4KkZYD3JJVumRCcFohMOOh6nPQRnQxkBcVhI8rdys2LN8wB4u40ImzT/ETaRtDpFmDG4WMRm2tdSuuNAGtqbydGlBNIFCUtcZXmUcWVFErogYPHCUcPM648HLF+fIvuJIrySO1PA5t0qrLM1SLxvstckVW+n08vLqLF8mcp1KYxkwIbjFNTspVQYndewZBl6rQqLSigLYwBNZCy8Zsiu+I5JKqOLT3u/r5pHzvlWQFlIDtDOH8H2vMHfcVwdn33IMYUNBN8+lbhuSsMnwoEKMm7TQY+2+M1YFwZCJeRCNn4bil55cnEl8k5FUGIIJzGaMunATI2ZY5/OKEEhG8zVreB9W1OziLhSeoFAPeMsI1ATN8RFRT3oM0WzCmNWqO7zOKtlvh237M4ndqGV5qDRIVDRg0FWzrMgWIgRW3jSu63opQaH7NBEEOSUVp0rC70E8SRUDxnA6pJ4Wp6tinwLsmgKLIgqheeYDKqdsj4uWc6B6wAyC1yRnhypWejdnCMi5rZOolstoMzbJH52W8reIgz/xiKSsBOI8RcHA8DFP57EWWLagjktDAfLc6doaJrNGDiy0iMteQRd5phVXhiEzAOzNhwB2ADII2b09Cho7w0EwPmHNLo8Oq28KbMM0zp05LdpLzpgXCMAlhSpJhXwWSbjTUz4jjXgND3k7qU0i87BlZu3Ovc+SgF9rZZ53EAwsqlLevcSjXOoy6lCCuEB7ClU3si4qIiPOB0hn0CHrTZeHdj3495tIZSLfO58Vn9FVOjNGUcw9GZh3WeQpLbTLavGCoe9O8gM8ZVxwI2t5+jbkvTvywixSJDiLLN7hvsje4iOtwAxMrzu5v6lJHqzJ1BHoSkV7lD5IDIAaeUsh6tRo7qzE2Sa70UvdLr2D6ZUkA9YXO8QnfYI4SIEBgREcRdE0CRTFNaHUesbvUItzagm8egbQ+sOnS31livAsKG0R+EFDU+kvFN4gzuGLxNzlruyOmF0sBRgLxrOtskNXjDT9GwKQ1uGl8NJFOWlTrzkVLYBRxTzLw2yCyRtqvMUkBs4s2BfF9Be5aN5+WKa+/QaSx9hVORXp/bvaTtdpDwn7ZLK1EDGRiTP7d+3hV/akDBMmOqOc9npDOD4h/90R89350n6G//7b+NsxTMStVW6cygmICUBl0JEVX4a+gcxoDAYqSDxfjucBCc51sVvMxJWt1KgPjgZmL+cNIAw70DxZFx+MgGm2uE/igg9ikaFFawSrPkPVKuMAGuMGibCoSsHweufijiyp9ucfiRk2QsEAGrkAZgkBGt3EohKX4BxKEHooBGi6r2BOpkEGv+h6bh1krUmGLqvVVK0zNdDYydEeojxiWI9UJIjRdxAkSZO+zmGes9/LXI9SMb4PpJ0t/K0IXOo6ECGBf9tO/6pUwxy3OZKuGkQMo+Uc4l88+gNoL0zwwRdsD4LkDFANbUF46qQWqpKPnAbA6rngkHocO6W2UFLyma4ZSS4X2Tsb7FWN1Oc5kSKE58GDQaHMWJ1Mug7iPQ96A+AqcbUExp1GHD6E5S9JYDyStM1gMDMnYrZnDjyrrEWaHq/El9v9whpWN2QFiniJQVy4tIkWeNGMscK1+kpzS33eMrAHE2IIsoccdpriQnYAyGFTlTZe77keSLO1+jzrVhZM9CLBXhSStcBYjFwKZn8/HuOXoeNiVOhUHi5UI5/YJLpW9tFEXeyiaR49n1m9WBZjJR/3KUKrFgclgETV01kCbdkW2XufwWoQTDTWAMIFJaoWEjsdEIwklc4aDrMygUmWf68nbSl2vRl90Jozvp81x+cVIlkCJWpOqMGIHNFoS1ayybioGMS4Q0bk33iXOXrUBM0n19RJIXax0HCZwrmU70xplmVekamjEgRkYMjOAco2Nkw7rQGU4nyEG1nvJjXbpdBr1qo1H3u03m0DE+1IeRnp2lIQOjqaWFs9vGv9dxyI3yPFw9hNy/MgNKp5OAyZxOYJgdwsygINklWhfB83UVibJ2AY3osPvtbITLrjYLnUlxwJfqtNqgM50ZmbBdBRz3q5zdwZSCJRvIHF59dukafroPxTQlKZ4G8CoJPA0g1JkHPrIaNoxwkrIkw/Ep6PgU2G5BB2uEW6dYAwgnHbrDDv1RAHEnxeySLoprAeV9kgPJGQP4+hploa0dD6+y1bhuvz5CHaNubATtk1sFRTOQ9JnFSIicIvaQ6UUU3HgTHjRelPdl96Usuwiub8LsupwRu+OzI2k3FU5le19Ox8f6hLJ9xQ4F6oozJHJMEOej8p3nS09cyo06OmzAWNs4q4fjdEfWKT4vPfjgg2cCxRdBanB7IVIr+0iENffYUFbym9jhuOttDiOLgu+OCetbyfg+fIKxvtFjdbtPhvdGlHyMkv4VgT6CNpI+/egxjq51OL1OYJ1DsYIZW9TLnENdVmlFsi0Z/IePMq598BQHjxwj3N4k7gohAeKI9IwZaTQpOI5uXlZ0wLgqGkARRfW8pJPYGMhHixM4Hr7PWsjk3woMYQqqTAsrgXIBju3iTnlBBZcqykyFEVEbFnV/ndGOqEyeDV3SPtivIfnocE4rI1tzrVQcOUpctKcGxH2jr9ZBeQfkWlTZIs389ktEyXfDk7wJJGfVGj02sUOHiL4jbGOH4753Cj4p8e4EWN9kHNxgHDyRPNTd7S3CaZ/40oxup5UkvEe97Nv24JMTUFyDeknxPAaoUyOMwNtsQAzBotvg35kq120CxN1pMsSBpEw7AahhQwKMAVolJxzLfGYtNsKR0nJjCgoUIMt3XzR7WGxL5oB1ZIX4WOYt23kEUJA5+T7Sql0JwicuQtwExt4A4CSHzJEDdzPOx5usqKI6mlFSguB8zsCwdb8Lj77KWWg6m28j0r26LJNYgDYiBBznflq0OEKiVwEI0SL5+jC88XbmpWyeLKIMhj0/6rz/Doxe+qX6Uo30TdeZ4U1IBqxGiVfHwFr48uCJiNXtLeg0ImwSb6LnZGAqfwIDK5c2W/Cqgy4Lpu2FpG5SYISOEYJaoJSLXIU+pW2SLHuGAOqB1bHIe61RgSQ6i4wjv7a4VZVPhrnOs4zCdxrN8cSuHb7AVoxOb1Vgktz3mv9a76zgu3qIOX1c8J7q9UhlIbk6ZGqvw7XRA+JK5yvw9vdsRXuoOqfof0IFkpAmdUKQpyxY1ktdRd/anNualzv0dkcJiG3bpSYudGVtw+rvngPWXY8Nd5I9FLDhYA4rs2UlGtwr//RkAQGty2FZiz1SHY0oY1nra0gRWFt2sEo1DlsGnW5Bx6fg01Og71NWFhFCjKDNGn2/BrBCXBFWq4C4BsJBytKIYhNpISZ2gQq1tepK6XVl+OFjrI0l5N8+YOM/zW6FObd9oCYzrKx+0ovcUFuuUzuTBnItK7b0aYC48BhxbnfhEWsOkwHZ0dV5A+dydAePgWKCW6pVNpizl/N55vSuLqLPGaicVdnxWDqv2n3ahy4cFG+3W6tI/axnPQtd1+0+qaLv+q7vuuhmzaShILHPStFHDlhzn/b1LKB4hbUa3714vG8AB48yrjzSY/1Ej9XNDcLtNF8C2z4Z2bXh3Utk6sZtHDx6gKN7OvRr9YjBUleMiXQQnDLWN5LX7eBGxOGjG6weuQ063iQDopOFNgEz6ABkT7GmKppSAOp5tvKYCmHAug1uv35lKejUftwuLQwoK8qVhq6P+Ph5xaNEsOgORC5QoGldVhsWJvjSBfRZcBEBytFh6DMswln5hvkVa1pZ0EvAqpXrp48I+7RpU8wuMlEJg0L4uj+Tx+QEku/3JaYaELd4E0BS6s74jpy83imFGokvTwmrm8DhY4yjh7dYP75Bd+sUdLxJDilxThXk146RSDFve+B0A+5SxamDGxHbxwL6o5QiST0jrqoBJ+Awrtjm6wKiJDbIUbKbnKZanLhUTcCcUT5dM2wJ3LMs7YTkHZfq8ZHSWCIKUhGUEFmWseJshJvRALmVKigBEixzDblLOESnzSZQLH8+fdMN/wIM63dPXp5oNIrEwAHDlm0o0LYzZL3Ryo4X6ohO43NKhmg/CvuiMgzMox/zuzG5GFHML2ZyDKfAmLSKf7YHCofwJeZNAgZ82IHtE4DFantxJKtRvuEOt7s1DqSqPEcCnRJWtwgHjzGOHhH99cRpcuiebpIzyuvJQYPkITIn3UqE/lAqSrEYXQGpnkQXEboenUSFYwSCvD8GQF2fHNEnAJ+EFCk+lhTuk5TCnXRKSLzOwyk4mgbJPRn/JCdIaYinDJdcEIgB9DFkAB1ztG3USHcvxTtAle/gf3ud4C5pL7UGuZUuZNXNatzWbTH+8u3216i2+fu479k57cBHq++m2ABz8JqQys6s3GduGt9+HeKBM1rvo063OlJ2yWjAmxWPAkCgmFZtQOLHAAZWKchz3K+x8rbsaQYfFrHrk87SIqYAksP5mBAPAnpaoV/HLAO3sub3SYAuJtEfALxKNmt3vAXdPgWOT4DTTQLFYSuin4HICJIuHQ4CwqGCaeSiVh4YO54pp6vAZfIlKqPBCqizvE8HZYYhc96Q24esG7TejvyFPl1MMSoRpedNyeGstrwWaLRoMTAc727oKiA+Vzo4Sn1WkO8/vF1c6UfPUp61FMgqkFceIpgcyXOnG7JE2jBwVo0AYptTfA66EFD87ne/Gz/0Qz+E//pf/yt+//d/v9j35/7cn8Pnf/7n4+///b+PT/7kT76I290x8oJkTX1T0asBHjmgB2HN25RCzYTb/Rrrrk8DtU9ziVe3gMMnItaP91g/cYpw8wR0+wTYbBPTN0ayFnMiZnRPHOPowx3iQUA8IPQHqdiARWCcUus2SWmvb0YcfOQY3c3TdB8gAeIupPkWWkBncGMI4+r9HaNU31VBWYoH8vZS4ck8XjfaR73IPtLj05eKwU9FGwom8vKJYFVvCVl5Z+O8fHZ2CQW1JtxKA8fmM5uCzcABGBq62kA/bxiAAWL/rOz69ryzIChBcvlnYMI9DxNuvtqv7ibA5lzVBtClpOysWlM/aYSDkPhS+LdHwO1+jcPV1tKnuxPC6rZEoh47Rff4ceLJ45MEdLXinKGUAIRkzIIIHBMoRh/BLIqaGQeP94gd4fQ6oGna5sTSebQyV5EiUtVppO/dCWF1g3DweIpgr24zVie6NAUschmhhgBJIbCUQUIbIAQpNkIEbIPMaohgBHDoESOhp6TQI9La5tGUf8kIRfVlbX+XpwREkNqcDhQjj8X02grju3DS5FeblavIA4piLJjkUGHjrX29F2XF6w0255kfRIutk64ZNDQIxhxoqQhRaQR5sJzmdac+WLQ45mYDMrz0ucnNDXyfX68/ScQDXkwpm7E5xSFy5svIhNvdAdZdSvHkPmB1mhxC65uMg8e3WD1+gvD4bdDtE/Bmk56pkvIjIPosyJ9s6xMojofCY2KEc2BQl6LEq1V01eoTv3CfHEMxEuJpB7qxwuEjAUcPp8yrgxs9upM0l9kqrVaGYpHNoynUfUAMQIwx8WkM6GOKxHXENrVBayNEJvRRHVaVYV+PU+Qxo3rHHOdArugqG4rpDKnrA740na43MOcwkOuIUDntogIZBYDX37HcXqwr7qLETUDsP/W62kn9JG2KnEe+zek3+Yhx/SDVvvBGdmX/tCLZl44oZ3FknuTqM4q+TAGegjdXaxx22+xI1noZUmARkPG9Tc9yexUAA+ubwMHjQNgEbE7T1D9ep3fgK8vrkmvrJ4DDRyMOP3KC7rHboFvH4NNT8HZrPExA+gwBtF4hbLtUAHMbrCil2UKRkkMkQqYtJMdwqIMXKG2yFiBW26yo9t5679z+nsaKFnOUZ6ZRU/dZ2HG1LTcyzsaG8LBt2kftQwN47jmW66wNr5J9BJmB7EhRmRS18Vm3E9QWzzZctmPdc/fBucH0Bli0/by8eW5Q/J3f+Z343u/9XgBAqzLv7/7u7+J3f/d38YY3vAEPPvggHnzwwXPd7/T0FO94xzvwwQ9+EADwghe8AC972ctweHh4rusCMEHiAfGaelH226JoQRcieg7YcGfFRm7HAzy6upIESZS0EhflMa0mRjVvNuMRKVH04cYxDgHw4Rr9YYf+6ioB4wOy6DE6p2SUAUPyqJEW7QgCiN0nUBl+lVLca3BZH2VES1e1mpwZxe64nCqJHB1VRSgGRVHS3hhi2L4MhJELA0WWKrnIoBbI6y7bfOrqOVSGjkWhZLkdaETIg2OGpOaRCIfS0C0NBnJCWIU3uQgx5fv66IO933IesV8Pz96d7w5Vhrb0965Q7oA5qxQQr8PWFHviz1jwZo+AI9oYX57GFT7SXU3XimReZajxBCSe1IlI221Oy1QKlCLCSpHTvGIByrSNWD9+mg7tOxAHbHtCfyjecL92H6V5hepVX98Ajh5hHD62xepmn0FlpfW0wB4HkvnGZJ5y3qT5OSEAUebAAkESDyKoDxZI6wErtMUAosgIm8LrDV3ljQ5ATJWkdZZ0AsTCo248NRWTiqixOcVqbEYYFAaL0vRguALFJTB2ssIb2RNkvKF8nF+R9Z0nUKpFiq0d4hBTQyCicgmKgaLGOmsb1FBwtn4VzbiMVOtJz5PJwRyLYlJJXyZH7Ulc4ZHuijirYEuPmW3Uy1SF7Tb99X16vpyADXdd0pehSzUugFLOrjv0B8mTFKRyLgAgMEIX0XXR+CCEiBiTay1uA/jmCgcf7nD1IcKVhyMOHhcwLMs+WbFLGSf2XY1brYQqc96SjAdiH9AT0v3EGNdAm/JjAsxU6AlzwljncncTaIDNS7QMBarGtz4e1ZPFJxsPFI+xvqfq90hZ73lA7Mer48PiOwCrr2DPzIFRz9dOLhTypb6X8g7lvicWI6t6nBxUlKdvNMiDE203+b7cJVTozIbDSm1cILmDIgJOeWU68ySucLi6ZnO1wzYFeVhUoGXEELC9yuivRPCacfBbK1z904h+Tbj9HMLpvYR4mFe/0PcYToGjjzCe/Ru3sH7fQ+DjY4AkUCBp0+lGnHi+T9MMqe9TTQG//JpOJetJCu7JwBe+SzyReqnF9XyxU71NDYiL6W21TahjcUTPGTV41mcYlXrM6U53/YEjTLfJgE8cWcq/QaRbzxm0ZUK/+Gwxf2q9SdpC/h6c+TXZy+rsRgGavdO7OWW21vGM0QjxRQBi4Jyg+HWvex2+53u+B13X4Wu+5mvw1V/91XjZy16G+++/H8yMD3/4w3jHO96B//Af/gN+6qd+Cv/0n/5TXL9+Hd/+7d++971u3LiBBx98EG984xtx48aNYt/169fxd/7O38F3f/d345577jlzf1SQtACxCpFshOeI8TGv0SFV2PzI+ioOVlvcPIxJWBwR4lpGkaZGR07RJjHCuQLGOjiYk6APMYLXK9DhAcLpGuHaGlvuwBQE2KWRoJP7actm1LOmTNegGJWxR4BazRphzUZh/j4g70E2RpW/KOnKlRe58CC76DB0wPv5Ff67gkE/8L3id4A4irUZei2sBYuAs8639B7zhqFepEjGdA9WUN5nQ5cBF3nPgiTZC5SPcf1Prz4dxDUYNiFAhcFQCM0qQlyCgfK1msEkr8nOI/X4N97rZSJKzir1fHsFv6YeB7Q149tXiz8KCRhvYodnHFzF4XqL2wcR/dWU4hwPHF+KsV18B5xyDuZs8vupSxPs6PgUHRE0dTl2mqpPFuGlHqBTpCJ4J8DB44zDx3scPrpBd3ODcJoyRzgE8DqA1zInUsZWlLWOc3V4pOXcVmTjXg3CnD2WmCNSSHMxSdI3kcFwlLTOgi/ludsnJYPIoqRCTBIpd0VCLEpVK/OWDDHjkw1IFsDYvMhwF4XxRGlQZD4pDBb/3ckyjaiZc87zgogsm5NayEGyptRGgM1j1JSx3ke8c3t1bVg9wdoj/UzpcBMGyyUgAszgrgHxmrY4cAa5n8N4RBsEUn15DYfrLcJhj/7KCv0hoV8nh646kNkZxinPWQYYR8nMURSI9OC6AD46QDzoQH3KuuiPCOEaLL3OpyqnObshAdaTDt3Da1z5UMDVhxhHH9lifXObdKpmj3jdWDl5TGfEXMxRC+BxSMszUZT7Eae6eCGi51ycsZf9PZPxprazGenRMSxrieu0KEbWi0pel2tV7WI9cmDAo4MljoIoeWeYD8hfiKvfHhDL9iYgjvJYC6c4NfWcygnT0YElrUZ2x/zexFtvp9XtHmSWXHb92KSkL2tA7PWl508gZVhtwgpr2hpvHq23uHEYsT1iHDyWbTGLdjLQX4vgwOhuBstoCltGd0xYrYG+J/RXkozrtsCVPyHc80dbXHv/E6CHHkZ84gZABFqvYFlZfsEydX5FsWtjFFvRgSIXPLE5zbJmceyB0KHI4suPSW3tEgwnECn2WTGWSx2ZnU7O7vM8prwCZNu4Io0om9GoMgT+3lyORdnOYltrlwzka+MYpR6p+dJ/7iDtlzkCazvB38PulftYOgHSlBNzGuszHNzQ876TC+zefTXV4bx0ZlD8oQ99CA8++CCuXbuGn/3Zn8Xnfu7nDo554QtfiBe+8IV45StfiVe/+tV45Stfie/8zu/E133d1+H++++ffa/HHnsMr3jFK/Abv/EbAICXvvSl+LN/9s8CAP7gD/4A73znO/Ev/sW/wM/93M/hF3/xF3HvvfeesVelIPGAWJV8BsfbQphcDScAgMcPj/DwtWs4Pl3j9ibg9MYK6ycIhzq3MEaLFJdMzq4VyMf0fVr65WCdvOYAeBVABwGhTxVMdYDq0hShj2kghSBpjwSEgLgKsAhpi2S+Rlo6hZpg0Yw2ZwDmtEckJtW8fhvolK9hRnD53ac/FmDYC7zKi2YCSIEws9OFCRgXS8Voe3VuMUHWUM2/7VFov0wRc2a66FOPs4AxIzew9bsJAgBLyRnOpa5Sx7nud+5PNsCy4NC22+20me59ZUE/fJ6XkQils0r/VMF7/gwSoerAOOUOR7RBD8Lj2yv402u3cPzMNY43V7C6scLmMcLRWhGn40klz5cxiqIJ5fYugLdb0MlpaucqrasY15T4LQCxy17M7jitFX70SI/DD59g9egt0I3b6VrrFXi9AtZOLK+COZcCIkABHNI8424DxJV48J1zJy07pt9ztBgUsJUlo0LQqtQk2MOnaXpG8H8aIZOxjWTDROLMF8YjGFe6DvwB1ZhMzUwRNgONcEZsqdAVgNZOIZ/2CDiFbjKDzOno5/pbW3w7BfwUBcKqPnhwPpUmVtQjkO5ZmN3C7RjKjUtMyo8dYgGIlS87ilijL4Fx2CAy4YnDIzx89Rpu3XOAx087nN5a4+Bx5Ln4vdODAEgNZDGeEwjuYCnUqy4V2LqSQHF3wljfZvRHwPaYsN2kgj+xD6loEIC+D+i3HfqbK6weXeHq/yZc/2CPKx/eIJzInOdAqeCcOL1ASQ8XhbyUVBY7x65lL/XpGn0fEEJMAFm8SGb3GyAO5qziajynhwEbh+YU7pwg92PMnwMnLySKavUNWsapu1YSJjpWdXvbmC2NeLV/MEyJdLrZ8y7p8d74rfWhJ30PIR2rlcK1n0X7DMi4TYUxfxcx4AhZJLihLzVa7PUmAETJsuoRcOPwEB++eg23n7nGzdOA7WOrFOXdkvEOAPCKEW4FHH04eX+3h0keh56xui0VgpE+jx5m3Pc7xzj83Yew/d8fRDg6Al27CqwqKKJ6WKdJyPQ/zaQkmeZXZNDpnOI+1dhAR6nQnZhWoYOBRW+OQrbVYDhvy7ZZeVImH2Sx6XmBYUsSsrsjOz3iLlvoNAs2CXh0uo3N5ndLjymor/rTXNnFj++Gjlbdp/oS1Z8FWEJ5Htx55cNBwd8AsuM7cF47vBUpVpu2AYgL55m3Y89JZwbF/+7f/Tucnp7iB37gB5qAuKZXvOIV+L7v+z78g3/wD/CmN71pr2jxgw8+iHe96134/M//fPzQD/0QXvKSlxT7f/u3fxvf8i3fgp/7uZ/Dgw8+iB/8wR/cuz81ZeM7ebm9kj+ijfzOwPiecGxFuNbU48pqg/fifpzcvo6DJ0JaSzQCtO3TfAnmlEItCj9HphjgCI4MCttkcPfJ3UwhgMxLlpgr9Gl+ny6jFLacytIjKW1QMs65E6UeyEU6uBxElAz42FEqdd8AxzogmdM9mZBTBQnQxcctUlJzSKUw6zmBNjdADWT97UEx3GXVGGAAEiEmEUQFsDYB44QQwfqX106lIgJkUeJe+tdX/dJHWBj2SVCZB7GmlrBVQNy75yHX8sC1YP7qr1DqqL5PnXMBguROk1XNFGdVNsCHPLmmHgeyfNppdwtr6hGvBByGDa6tT/Feuh/Hx9dx8HjA1YdCKgak8/uVF22ZF5HKGp1SnoWM9c1WbMWQ+HPTp0q5pxGrE3EwUSpUFbZpvuTRR3oc/ukthBsnqUru4TophFWXMjtWoZgSAQVUMRl5oWfwhhE6oFtRMko0ShzUYUPmm2IiMInZ0xHAETGQi3K6VE3hsXomDIeUxqwLsaTBQzkVSnlMnUjy+HYpK+Mv85ILQymPigHg50z6c20cA6UHecRoVicaMZLcpLRolka6jZf98c4YaNUiKB1NVZqYB8Qsz1DmY9oxYhBYASByF77UvMkFP6qu7IgrR/LWpjOovnwGH5shvr63x9XVKX6HnotHT56B08dXKYsDsNRpTZmGS5kuDOYQkoNq1QEHa/C6AzHQHfeI67QKRKoOT4iHAduuy5kSmwDcXOHoQx2uf4Bx5SNbrG/0AAPxoJP37d67RKC4A3iFQqeqTCWvu3oksKrRYgFrfZ/ub1iOWOYSBxE9QZZuoTzFpmWEhmH2BoWKB22f3kz0nV+L3DfGG+qO5Q0Yo3XRYmiU+0zftPXZwMgFhoA4+uOGt7RHEh0/a5G+Wq4YzwEgbqrpfMH8ac61MHH8JaJaXwb5TFlUW6zR4yhscIDesh/vCbdlbnHAKkRcXZ3id/FcHN+8B+vHArrbsuxgBwAJEB88FnDwaFpCEBD7KwLdMae6Oo8B1/64x/V3/zHin/wp+j6ie9azgIM1aLUCVl0bFLm6AdyFxOf+OG8nGr+xZByK7ksPIvlyzHHszgfK6QnePrOxSgbQctuAFHlOKdq5iGZukzmBxFAktS/rLMX60o4/WPhiMGVPD1TZVNl9g+XQ1NZs2Ym567k5Tl/acwi5TYXN6c73OnMAkp1etr7pJs+f7hiTC6rn620jbTkrnRkU/7f/9t9w9epVvPrVr559zjd8wzfgH//jf4yf//mf3wsU//RP/zQeeOABvOUtb8HVq1cH+z/pkz4Jb3nLW/DxH//x+Omf/ulzgWKNMtWCJFD2gB9QjyPa4Ii2OKS81uIz6ATP7G7iBetH8NyDJ3B1dYp30/Nx+8YzcP1/q1Edk5KX6nqs0SlR8BwA3jAQezEWMSjIlbxkKUWFA6GTpVDCaUqdpshijCcwzAKKNQJsxHntXgBZ2a8EGCvT2vFwA1KM2YDkjZMR7ecA2rk2wEuFaFFPjRC7iOeoMvS6uFJMTDBjgCKDukrZunMtCzNgIKBa0XBEZ+xqfznN47T0D2m7T69rCnovaOXa3iAYFBGQtjQN/VrAjQgGta8HdrZ6JC81pfb5KHEgFqdUrHgy8eWaItai5K/RKZ7Z3cSLDh7Gs9c3cXV1it/AC3D7iWfgGR9IaVq83QKbbeJHD4aBDIiB7MRSngXAIYA6mQe17RE2PbqTDnEdckEaTkXwDh7vcfCYVNSNMSn6VWfTGrjrsvOqqwe4XKtPfJ5SqNPc4k7ns4dkCOg6wwmXpdXUmdNaqbyCOYn8pcFwRUXGDHBkYExiUEeyguZSLUhAMgqnztj4JcC8xZaqKYCxKPiFBjvV13Z8VdzPAdsEiGHe6ShMoYa2yQZ3X32uWo+g8Jw7eWEyoGin8JimcDonY5mNI8/U/77k5Cu/q67U6LAHxEe0xRH1WLt0zathg2d2t/DA+jHcv34CV7oN3gngxuPPwvYP09jnbZ8cT12XMihCl6YsaGRYJ8q3DGZxFHcnyUG1ukXoDwgcOvSR0HdpIHQ3Oxx9mHDlQ4wrH+mxui1Rs4NgMtw7UhUkpzVSSbKNHDvpmOwJtOIyWhwIUSPdgGRtsGVmezCs31mWdcp8SW78KB+r/pVLR60SrQanH6R5bBc6r0oF95QdYrJf5cOI07f8Lc+jof9Lm8IZviM2gC2F5fh1cOv8OIp7M4u8kmdkzzyUz8ZfS9+JyiFS+RcbD+mSUa0vvcMqIBogTvzZY42IAwPGp3hmuIUXrB/B/esncHW1wTv4hTh53z248qGA7RVCPEyC7uhPAw4eTUuppay+0skQNqn465U/egL9Qx8Cb7YIV45AV6/k7ChxaoGcgymg5GfmpCfVCcV5HOjYSMXAAN5qMEcFeLLVOFbBChmrZYo08mcFlps6UfgodgzqkmOZV0jLUemUPQHDpAEr1dUqO3zGidNpxsMCsJOOyCLA+Lh++dL2EtxTAYzJb2/0SeVLcuRWzwUos8HcI/KrTBRyc6SNAOfdPNxfgF7n8B4EiC6IzgyK3/3ud+PTP/3T9ypwdXh4iM/4jM/Ae97znr3u9fDDD+PLvuzLmoBY6cqVK3j5y1+Ot7zlLXtde4xqQaLzolIkaosj2uJq2OKIGEdEWIPQhy3u58dwa/U4Xrh6BM9fP4IHjh7H27efjMceu47rf0DgGzetsp5GnBAoKf2uS5HgyODY58YQJc94F8A2nwpATAIHhBwp1hTrLsjaxiEZ55omrEaYV0I+dTsQ4koBtHsgXvhEpMXcSeburpAvymTK1VIv6sEd3bYGENbt/tjaoDahoEpdPcNcXiMzEufrIF/TGwdWSRrVMWLkkoF/aUDHJnhIvHhZeDgDt0VeGKk3sXIOUBUlLowItO2Rc9FFX+8CqeWs6ihNdQjOGF9Tj0PqcS1EHFGq6Hpf2OB5fGp8+YKDxJdv234yHn3kOq79fgDfuJkUs8xhtKIPGoUCcqGfyMlpxVTwrE6NoE2PcNqjk3VNU4VMxupmj/WNDcKt08QcB+s05sRxZcBY00KFsmIhF40Vft8AoasUrBnysvQSAUAAM4M5gWMKjZfdUqJKhBSBAmVgTM4wJkj2SDrWCtJJFIZiTk8bgGPdpsqeteKoyhHerVyh16Xh9cmxZPCAWOVGmR1Sn2vX0GdrUbbKnvB8GitFr4BYwbHKRg+K1YjwwKQVhbskpC2rdSUAx5OaYRVxRD0OCTgiQgfCfYh4oLuJm90NvGD1CB5YPYbnHz6G/yf+H3jssWfi3v8X4Js3Ew+uV6D1OqVZElka5cBoFocWbSMC9UAghG1Ad8JY3WTELj3ksAngkKq+HzwGXPlQxOHj0ZZR44Ng79yPOTPYzRCmPDfXGbXF1B8pRqdplZa1IU2uHT3si2xF/Y2hEerGcL4xmRomuf5Ax1N1vvZHwMJgyCl/wQFjPX9qfBa6dqjLSuOW8nef8VEB4kFkuQVSvE3Q56ZoSSL1UXnxNeiGOg9Clg0GpAEMVm64ZNRqWjC9mR3JB+hxROnvqtiyypvPCY9nnbl+FM87fBxvi5+C0+PrKfPplNDdIlx9KK3kYAUgNWMRSI+7Zxx+5ATh8Vvgw0Pg6lXQ0WHSf0cHqXbGuks2axdkXJLpMeuTTjcsAKQshaZr/UpF7NAxsE3p4GBOmRqs1xVl48y5dC2yNudt1T7IWNZNOt6AFI1eta7Jpg9JplJx53TJWMRY7U+1BUWfWgaS9AealehPre3FChBPgkmni5LTSPS+PEKTL/Xzc8/E67FCT2bxmXlv8CLyxWrgOxkVviD79cyg+JFHHsFnfdZn7X3eAw88gHe96117nfNxH/dxeOSRR3Ye99hjj+FjP/Zj926TJ/WseVJBkucZJyW/RhIiV6nDFTpARwE9R0QwXtRt8YnrP8DnXHk/vuDe9+D77/sixF9+JviRR0CHh6CuAx0cJK9351JHxBuGkFIz0XWg9Sod5yJWlkbJ7vdpBKSwFK9C8mLb/MbsOUuGZ7pXYUgiG3tRKzSTKigROsH4Oz0v8cDqvInE4LJumqZpR3ePKjVKwXkNfqk2ABpUe8mmPUo0ZKracK6FnD1rFIarb0BSlGwOBxpEivP1y8ZrO5yQqkvOq94dEV4mmLT9jdsUfQOGyv8uJZ0vpc6qAyuKl7zdypeHtMaauoov34fPv/r7+OJ7341/fv8Xgf/rNcTjY9D6oEjJVEcVAkl0uApNSAEgT6labkTYRHQn0sYTSktIHPegk1SqmVcZCKe5xxodpmqM1Qat8FSv9QOSIcIdgTdczo8nQg8H8BlgDgnYKyiu7iU3yb9rHkEGxpC5TjlTQgasZjxoVDXqzckiV/W4VsOU3L0AmBwh3bZr/I7xN5AdVk5ZF9kgzogvyN23KKzUao/JH02bdscpjzsAotlB3ggZvfZdQsqTnc0zZqwRsSYIX65xSCvTl88KjOdxjz+3+t/4S1f+EF/4jPfg+5/1Rejfei/irVtYPfA8YL22SFIZDY4p+4oZ6AJoK+Nlm9IMKPQIpwGr2yKfOaRlzG4lA3p1i3HwBKPbJB0WV8EZqVTK8ErAmmPEMjTSds3qMSDXwdqlbWeENFOqoxGDFsO6Ey0nlRTyMQDhCkwVc+THjF+7ljbc7fZg0cRFBYynyHi7NsQb84hrw1cNeO8sh7cZ3LFVnxQrAMg6meCAAud3afIg992/RxCXAEPlWiNKfVlJnchAmdmRawGws2VL3oxgPL/r8QnrD+BzrvwBPvHqQ/j3z/w/8f4/eA6u/t4B7n1fxOp2TOt3n8ZUz0YLvepz3EbQyQYIIUWHiYDDg1QM7+gA8WgFPgjo10Hm6UPGZImg1MY1ewwonU/yF7by3qFLMaVxlLN8zihYzUbWZb046W0dRAzwKk1nTMfJ8YHAW7Ghpb3qyCrkh3eQen6IJI54WJFM1aeFM7XV3hoY13YnMg+pAxosGCF4VSh9ND2GzFM1aXsKXclFkG1wWqMDhUyo+wXtR3nfiwDGZwbFTzzxBK5du7b3eVevXh1Uj95Fr3nNa/CP/tE/wjvf+U687GUvax7zzne+Ez/3cz+H7/u+79u7TVMUKulXpIuJbbimDp2kQ3UU0Mm2qzjA/R1wX/cIfvn+9+G/H30mOgDd/c92F1TukLfZ96D1GnywRrxxU27UAatVTqeMLJ5wMQA4pUz7ucTxILilm5I3Ow4MbsqpLm4w5eirtwCy8EnPJdu6WWEw0AGDdQBVifkIaAGK02G+HVV2S8n41Xd3m/L86nvBZBGDfhfXrgwhe+1MssA6m+cYWvZfBYEJNxoYGsV13fNresB9u9G4RmXc2/Pyx48Z8XepwT1FtgYjMl+uKaVH13wJAPfQI/gLz34/fvnF/19c/Z0j0D33gA7WFjEGAM2f4+0WpC+cIwaVgT2vaLSYAOqTZgnbBJaJU3VpaAbHOiB2Yoi76Q3mtOrZPNODscpIwHgLlwmS5jjpew/izmWmhN/F4WJLsOxDZjRyoVj1typpXf6kLLgHcSCUSye0eL7mfWtmi+939YEqnlCQEMr7+wySndea+K6ZJSlzRKwG6b9PBU9RKiq2EzE8EGsWMrnk1E2ghQCgA6EjGtWXzwJwjW7gM571Afzn/+NzcN/jL0Z8hmSIRaSsDF9/o+/TENhsgW2fLBqZxgBKDq5w0mMlYyD0yUmVak5AoloACFb1OlZZVeZEVqrHqTP26nROCpSmNIHSnGGkqQyIko3V5cHn/eKmU/V+VZaQPlCdamBz1SMsumlOq3psF6hPG+52FfpPEYnrtx0svN+gYqmXlp6t26PiyPFjoaO9bqw+ffv9O1FwXRS38/eV8wbRLd1etF1knIWX7w7W7Bqt1CwO3Z9WddjNmwDwxdd+F//r2c/DR372hXjur98S/SR6apOmEFmKcJeEG21j4s8YU6ZHF8DrFfhwjXhllarOHwX0h8GmI7RkPUWgO0lZH2Gr4z7V1Qmy7rFmbZjeQ9Z71Oc55KN6o7pnsXYuUI63oHfQehBAJBI5DlvDOUjtAdIistH1DajSqF1TWO1LGeu6koE6yoJrS6s/KjeK31lvD/bLtZL+zlMxMn9w1muaNVHzdiVHkgzlcppGfUtuNGNKXtgNGrL5AujMoLi1JvGdOvdbv/Vb8d73vhef93mfh2/5lm/B3/gbfwMf8zEfAyBVn/6P//E/4od+6Ifw9/7e38O3fdu3nbldLYoIAHIqc+RgL1WXROuZ0SMW3rUN97jFG9xixrtP78evf+TFaf7v856L/vn3Je/ZaZrHCCAZwJGBVPYHFA9BxycpZTOURQi0yjRxtHNNUK8FEB+GtLyFA8WWsqF6zinb0cFdpVCH3kWJIdeM8hdIihvoNdJoz9HPrOg8SB4YpZ6xXCpU4RWrwR5Kxiqu5/un90ZD6fLIdUSx6tq2qVsiGIJjeEnBVkFSGLnumQ48WtXzL+ZW1eT6zPKbGga0Nw68gOLqWV64RHkKKXJAL3wSAWy4xwrdgC9PeIsnOOJ/njyAX/vIx+D4WR2ufuLHOvuHZb1DiULFCOoFLHNMGRzoU7ZHlcGRinUJKGYGTknSqpHGS9cJj3byF2S6AgbzijRFWhlODd2avKdcveSsWd8bAEjTHAJnOQBdyq02ggE0UwMbY9jkuClaiViZBzuNf0jqqEZeigrSNuYrGeSb4O/Z4veR3612F0+P3W9tx57s0PLQGzAmJKPQHWep4PqqSWWFyBT7LvLDycO7gXoErEVf9k5XAmkY9+BRfal8+f87fiF+9eE/i8c/JmB1+/lYP7GVNYKj6T4zvrcRON2kbIrTDbAFKIQkh2NM03zS8uFYR0boO3S3yQzKuCLLpIp+jrBLifZLF/pVCGpQVhixfTIoaQsEZAM9AdUg8xsh1XEFRMh18g9HYyk+pgtkrLjsB3MAuUywAuC1rjV2Sx2H1XnFGuKojq+/i70xlZWR9XE23Mn/1RllPLxMER1vta3Sn1CeLNI83RW9U1Ij8XruXUg64QhIK6dEEHoGehry5hY9NtzjmHs8ERn/a/MsvPvRF+D5v/IE+H+8B93/5+OzQzjKQ5c/Ur0YE++iF6EYArBeIR506K+ssLneYXslYHtIiGvHe0K+MGzYEFa3GetbYi9z1nsp2yOPR+K0Igl1kBo7zvYBivdX6A7TMxIRFvDrz/Fr65pTmJJjimQZReokg0sccKanLcCS71kWe83tsqh4VOYjV+fGt7V6yZ5XVT/rPSd439hcaxWw2yiRMF3Gk0S2pGddP0eRaTUYLviuOqemVjsLRvcNHrnGGehc6xS/973vxZve9Ka9z9mXuk6K4TDjta99LV772tcOjmFmvP71r8frX//6YjsRYbvd7n1PTz0CejG4e6QlFDYI2FDEMTOADU443eOYI24x8Kf9Ffzu6Qvwrpsvxlt/71Ow/u/34IWPPwF+3n04uf8KaBtx8MgxuidugY8OUsEBIM0rFIVO65UU/sned+JkCAQ/GUm+x4MOsUvp0v0hYXuUAHFcwwxv74FrRVDtHvUgK4z1fL5W9LO6PQVT09Bz7sGxEw7EbEahB77EKZWbfJOKeRhcCLrdwDiDdI7VM6iFlbYNMAEEab+FygMZKCUqATIk1YXq5zJmeXuDofX8PciWtLBmyo0/3d174FhogYi7hHoOWFOPHlTxJuEYAV2yOLHhY/RgbJiNL39v83z8zxsfg//ndz8VR792Dc/53yfY3HcFJ89a49of3EA43qK/dpAM8G0CxUyU1lHc9gDfTANe5huTzvkPiRFomypY00YRjry3w1WKEB+uklf8ULI51lQoRR0DoU9VPhNgzFrHjHGnaApHk3jOWbJNk32RUrA4ErhvjAVznmhqmO7jUvl4cuOHFSwQpfRs2UlIgoGVZ/RyzpYmx38GjoGhAkQpYzxfWWSoUrq1sWPXqLtS803Nfy3jfYK84V/gBp8KrvuIy/7Ie7NZyReo8J8MUp5M/BnS+qcI2HDEMdr68uF4iN8/fSHecetj8J/+16eie8c9uPIhxuYqoT9Y4//P3r9H25ZU9QHwb9Zae59z7qsv3XQ32NCKMBKIRPEVQhyQYAYiGhg+0EC6lTjy6YBo1Ay/mBgxmoBJBolDzafiIxGRBoIMiQKCmjCCKFETeWhEAio0L+kH0M977zln71Xz+6NqzppVq9baa+9zbve59p5j7HP2Xo9atdaq+fjNOWvW7l1LUBecvWF8x+kDCw930MJdbEBLWbopOJbVueUYbhF5csmxkGRoS2podHNCNw9zAlmiVYYnEyX94ZaIhS2NHvFhSoOnxHth6MuSgZH/xFB3CEArNJ39z6JUtg9l9AowxiElgCzGMLNiYQWcWD2GU9tUKOByf9EX2VZ+LxivzAwZNIKL/T1Humlj0MAGjA6FftSpHR3cdl/qA6d/jBSJvwL0ZgeCg4MDYwYJ6gSnlecAjjsiLEDYZ4aPvCk68z6moDMPr8ts2Uct7kbziOvD65m3YSqQZHJ0DFosQRIdlmlGYrMSgZ0Dzxp0uw6LUw6L04RuN/Agt4V9IhTto+V+0IvzCz7W0QF4Gd5L45IS8DE67NvIb/p+KR8nBVhjh7BUkGSLQKa5mAGnCZ6c+mlsQ+8QskQcp5VQJMW7khlZAkdVksLLHtA58ZGHe/p6iGq8CCizqM1h1Q0Fm6Ocm6y6TB2Chjfs80zN957vSjBs2xlKPCrDy1QXQ5vQkUDxO9/5Trzzne9c65ysiM1EevSjH732OZtSEBQcPz54vq3xDYdDakL6iW/RUYdFtFLv8zPc7c/g090ZfOjwWrznnhvxR7d/FvgDZ3D+zzu4CwehoAABaAiH1+yBrtrF/FMXQBcPgsCYUUytnIEe9UjQ/gFo/zBW3gyAGd6rAQwgCPRZExT83GG567DcpeB5myN6wpGEvwFRfUCMzPDOGNiQREMcoFGRamqEiWIFY4LzdYcNMXEGeLkJ1XPt3AYxgMP+SlqGuX5m4IrsYjbAvADIBpD0olaR49SgFwHRmeu7BFhFYNXmC0raZHhA9gGUHU/3rDLAybqn5lgfhH4v2g/TN/kuzgQT5V4pnE4AdexiUa2k5DsmNHDw5LDgFg04Gt0APLBPoShX4Mu9Hl+6D57G+Q8t0d53iO70DL4l7F9/CrN7F2jvP9TK7aAmeKD3ZqDTu2jaBv7e+wAgzDuez0LEGIgpwh2oS9klcA48n4GbBt1Og26vQbcTeNTPTCaHGb9aTVN4pzQoDe/Y+Ug2ouLi2PQIdrd4rZVvXHLaJKcOpfHrjDFQM8rzHkHAsSjvBOpiCrh4mgsdXjrKevMFxc6R8yjdr71vdkkxDnn+x7JLsrspebGQj6zf0/7ssViDvabY5T3HG8rlhFlb9QQDYula0JlBV4ZiPpEn0aDhNK94Hw06eBxEdHGBW9ztT+Ez3Rncevhw/OF9j8Z7b78B/s/O4PxHw0MLDl4A1GJ2v0d7qQuG9K4DdUBz6EE7DdzpGZqdGdzFsMxZqMsR9SVzMNTho3HuNJrjZwEQL3cBPxcHciyYY+WlIeKk05rDkLYpSySKPHYpASwYk1HfcAf4GEFKBduEcUvDmALjUjTobT+c6Uz5UvTFmPm/BUgW29qCZHt//ZdNaeeUMVkeY4F4TU9tMM7VmDfdUydZCTAo38dIskMBsfJgIe+Kfmok/gRTrXseLmZqOBwGLg06NQZdOg71ODoAF32LT/tTuLs7jQ8dXos/vPfReO9tN4A/eAbnPxRXWtjdSbxFIajBzsV5EmGc0aHPAbEU02pDIdjlrsPiFGFxhrDcQ7BX22KsF3rA7UUAfY/D7H5Gs4BOhRB+F9vOt2Ffr0aAlf+qR8y6wo5iIdVor0kV5nJsaPV3aARV7TGzbrLavfG32tYVMFnahClaHDpMMVprs4vK89a16Sz/KE8pnxrZJsxDOQ+Ul8vGX03fjnnk2NQ9IvSfUfHbguHjYMuNQfELXvCCY7j8NLr11lsfsGsJWQ/bghs08FjI4/IISp+WOIw1/hfc4M7uHD52eA0+fvgwfODe6/Fnn344Ln30LM7eQZhd6ECXDoBuhubQAwwcXtXi4JzDVZ3HbH8BuhhMet6ZoTs9w+LcKTT7pzG/Q+YWx1cf53HIvEdGiFL5eRNSpncCIO52BRRDl42AVfLW0JPfkQmzyJN4wn0+linY/4WBh2QgSltd8ObR0hgUsehAKZykmqdvQ0Nk11NF6j83XFTwE+PBHGsZSPpkqjuzFD6I6xmjQ/KAWaElz8mbZo2Bbo2Z7H8BkqWPmQOBVjCyPB9Ji4sIJ1sGSv6XhjzyPuVgog8QjsXN9gCQGOGegpI/5Cab+9+BsM+tfhe+/OjB1fjT+67Dn37q4dj/6FmcuwNoL3rQwsMddGgOPfYf1sR1TZchSgyOxT9cmPv0sB3sAmjmM/D+AQCENLGYzYKYyZGtbzwPc6j8bovuVIvlqei42klGuEaN4rsUB5JbUsZ31SyPSKrQ5T0KsEbcHscPd5ScIso/QcGSMRAzY0C9SpHsmBGEyGGDVqsUYCxjU9KoPRthYe/XGBISebb3p7yVz+HXitKI91IeL84fGx0HsrGfPVcYFpLnLD996luaU0XKm1WgPEFTJ8dE/h5OOkt6dmhi5KmDQ2MMbweXdCYCLzZRmC+4wR3dWXxscQ0+eXgef3bhWnzgU9fh7k+cw9lPEWaXPJY7QcZ1c6DbCQ9ofs8C3TxUaQ/A1YFmjKVr4PZazO5t0X76QljmpS3QLMtYDkZvAMTAchcapfKz8OG4DmtWWE3bCe/VLQKobg4Bd0gBCMfxwRx+exaHVOS/OM84zSEUvUWZLsmiVU10Tpn56VnEE/G3jSz19AJBnFYKjiH7GZZpRg3qoZ0iA0aOnxyZtlTIHHkXVSOY8g/bj5EX6cPpHfQixZzaRH4xtUdOOHPWAjwOPjirKPzXyGZ0Otds2T+971p88FPX4eLHzuLcHYTmkk8BGe9jRDg4oaDLfzZANws8RxFEE4V1xNsm8q8LGRp7hOUpYHma0e1wXPs7F/x5HQrG8nTIhNzZIczvCYXyqAtzpIkTCHVFdfjSTrP8pmuPN4CfRX5qK3YlkGd3iGEYAaOkHnPDeYTYUai5YwpuZUuF2nFl9BEDCuy1EGNcwUBs0BJsZuq1tO8KnWfPy7bbAwxA7hempGEVlwGGoYMMqS1RObiwd61T7DhpY1D8ile84jj7cWKoU+HgMmFyiCY7LnjBZypk9v0cty2vwp/vX4v/d8/1+Nhd53HxztPY+5TDzj2M5qAL84cbp3Mh5vcu0Rw63PfoHZyancfuH34UNA/FBw6umUcvuYOfnUG738EddKBFB+IugtGIsGLRHplLLIC42xHPG8K6aQ3nkWIg0yophZEyIxUco061SE783zMGDeO7ZSpokkWLWbyLUMOAWkYHSsxvwYAKL2OwNAPpTyjuMRqxUFAe7jMUxZFiKwREAaZ2hAHE1nmQsawRMpnh7WAMnGDs2iicfCfTZ8vjKiOtECPEaFuqHK4ROPseUZwD6VMOhrP06xNLYd6TKHmQh4PDIefiy8dUzYZD+mQHwgW/gzuX5/Dn+9fi/Xc/Ah+/+yrDlx7NpQ7ucBkqYDrC/IJHt+Nwz185g3Mfuoj2jnuDwfqwM+h2w7Ndnt8Bz86juXAIHBzGlOr40O28qjh/infn8KdmWJ5usTjdYLkXpzbsmCwOu6wLp/FJyzT2MoUOw3+lx7mIHOucZJ8b+ZoeZnkKSMY1pa+Z8V0zHMVLFItppWUc4nMg+Z8Oze5B7rkLhVOsQ0qzMiD9TpFuidpImmrJ/wqIrQMt8t9odon8UEMM0IJ6Pp4iffSc7zP9rv3vkX3OQKoR4Ch/9ieOKDqPgwMZnBveQpJlJRXjO3a4yDu4Y3kOHz24Bu+/9xH4yF0Pw72fPo35pxvM7w1rC/u2Ce8upjMfXAUAO9j71AJu4XF4VQvfkqYxAwhTiM7uGqEpgj/+jOM+pExHXblD6HYD+PZzNo4qjvPvRVZHg5Mp6MIlwR0C3SHQ7EdwvEBwZMV37aJoCM4o6FjEMvUlc1aKs7dBqD7dBL7hjO/ixxVrroqliKTr6p/o5NKUTBhdaxVu3DXV8FwFqIdPy3ScGvSWj+N/Mr8HdXDvOSHTfeKgFvsB8l+epTM3Xd6PPKPLZZEfM1n+dGA0cDiMOqEjh46W8N5hPyoJa8veun8N3nfPI/Hxu8/jwp2nsPcpF3jzMAZjoi3LsYYAQWRjTHFpKC07KE7iWRvrajTo5qHuzXIPWJxhdKcYfteHMW+zk3zkBSnQypRWWWkCCJ/dC7T7ERj7YM+FFVcKhyjS0NasqMiTkiHCUZH4GYfiVhIBlpt0pn81/mMEBvSkY4x8si0lCCO2cNLhoWN5xpGk6ud9oOJeEs8YgJrxgdHnss9erNwu9yO3VW6SfvUO2IDMuSS/Sde5iNczZoZlP2M3H5eaPFL69F8+SsY3TKqmfWkdHBbcZFWo9/0M9/k93LE4h08dnMGdF07j4j17mN3dYH4vMLvoQxpJ14ViIQsPbp2uXbrjCM3CA+fPYnHtWVx6xC4uXe0ACkVCgkec0Hqg6ZLSRKzu52chihUiUFHB78CAYvG+ibHFfZkelWUwTjlFmTqCFpqKKZls/isgFrBrjFv53yzS2nUSJZboF1MqjuDjescsHnIriCj1XwzcZEBwHRSjvD9omiW6MMcyrD0saTYci6JA06JBKOaMpXZ6lzDGTdZffe5I85EFMLh0bNbvAUNdo8xq4LCuoagGke1U7KgKQ+sUMcbGSSZGdFaBew6rQyPCPIepDfqdG9zn9/DJw/O4Y/8sPnXxFC7evYfZXcKXYa4hDg7hlqG6Ji0BajlGkhrwzgzoPJZnZlicbaLhGq5BjLDkAxDnM3rokmo7c/BOTJk+u4Pl2RkWZxocnnbodhFSp20Why4XITdj+Mi80NLozDIyKmNT8a2MZ49s7qqO2UYGA8clR4KAYBfHaXZRqJLNOsIIQM4CY6bkjKqlEZuXrA6zIp1aLqkK0GaLxAGsc4qtfqZ0f0FewESHzD2skBnBoRaiDyz3IZW1RVkjGEGZM49Rlxul7DByRmVB2Y8TTMlZBTgwwP3o8IKS127fz3Cv1ZcXT+P++3bR3N1ifh8FfblMldfl3Xa7hP0G2LnHhaVZOBqxjtB6BmJFWr/TAl6yqaApw7pU4TzMZVTn8V6IFvsdDnMaZxwixW00fqORrgCUKc7NJ/glwR048AzgfYI7AJrDIEdcnEFhpyIxAYjVrm30MvEigWeA9xysM4rLsWQZUKY/LqSuJgpR6mBcxr5G/Sw6Xgx2OPQjx8D4eBvbtw5OFGA7dHzpRBOr1yEBfpNplgGe7HnKhzVCXOpkBcSu+E/99V8BEYcnnCmRAjzCn4u4fU7LAIwR+HNhsqqsLXv7wTl8+uJpXLhnF+1dLWaiM5c+2i1B0JFncBTUhMj+zmmGFRGF6UREuiZxt9ui2wtziZenEQDxqQ6008HNwrrnymtM8JHfuHPgJQENwTtgScGg8g2B7wXaSykAE9KpoWNIiRCAOrHqXt8CNCPQLNjMKoej3cuZ1xLqOBEeTMTKZyx8FqdNBDBtCm91NmsRCpCVT2H4gylTUQqGzUGaRUHIbDwAmrVIjvs2X3HsUEX5cCk5yNQpsDQqO/rMVKZI5+CW83PIHBCFByPN79dzj2jPHgkUv//978edd96Jz/mcz8GNN944euxHPvIRfOQjH8F1112Hxz/+8Rtd79Zbb8U73vEOfPKTn8TBwUH1GCLCD/zAD2zUvjW+AaggSZX6QgGfJip4mWN80c9xf7eLTx+ewb2LXRwuW+DQoblIaPYZbsGh+l5c6qU56LCMaSZu6XHqY/cD3mN57VlcuGEXF69rsDgbmLG9CJB3aA4Z7tCBli5gq3mD5emg/Ll1WO6FuRnLPaQo8Q7QzSNw1HQwA8TsjQPBkBBvXFyTOKSAAC5WlvbRePMEXZ5J/zM0VSTMhWStCugOYyVdjuA4ru8qXnt20b/oECJkBXMlBcdRkSEBYltEwXoYbc6pGrfQ+1elSgCWpO/cmeMz/lKDGLDFyNRzpUZ7isCRBfIFj3NjAIeVBjUjPcmiTIgkz13sU4W40i6b35t49x9QYgRnFQgL30LXIALg4OGZ0OkyEj7jy3uWp3D34hTuX+7gYDEDDh3ai4R2P4xJ6hh0sAjLSSAodLdg7ByEgjzL86fADeHStXMsToU1gdtLoWCPmznQLBb4QUwRi8tOdFedxvKqnVAFfjfy5150WAl/SgZHa7Id4i3r9IUKmMz0BMPwbAKS2XQHC85sGzI+2URZbfX4CEayUTU2RuVlkdFeCqApz4oo7iEDkZJhIg407bMdvPnz0KJz+gCNYaDygpMRbJ1o2onyVgzw9cFwUTAhDjUL2m3xQ/s4zHssM2rkZDFk2JlHI8eeUP5kIHMgg50UOwe4hYeDY4/GDKIFN9j3M9zTncJdi1O4b7mDg0ULf9Bgvk9o9gN7SzEtcHh3bhGeTTcnLE47NG0qIhnGvEPbhYJ43BJokQ9cP2t0LdRuL1a7PQUsIyDu9jhEiXciGJ55UOtBDcM5BjkPF41fjqDYewe/pBDRnoUq8k0bllpqDgEscp6UR6Nk3rmANd9GvykTfHTaZDxo0yMjIKbCiUJgBY6S6hgMWAuIZSPFd2njMvHtjgHlqZhw1dil2BiRso/yscgouZw4lBNeyngIQAK7QLbMTZYKrwCZc7shbicXLyDAo5ANhDAGTipfBsoDPOAGM4TFCDwTZtQFu9bc2iG3OPAz3NPt4a7FKdy72MXBsgEOGrSXos5ccFh2RbIUhcx0Pl17Pc4vZkBBtN9p0Z2aYXG2xcFZh8UZYHmK4fc6uL0l2nmHtu3QND75FpnQdS58lk0AwAsHjpOmlvAx6huYpb1IwV62GUfI7SPJUJRpGN2c0PlY+yKOQdcRuqYcaIBEgshxHCvIHGbhcXAEu0FWwFGMOiPOqQh6BF04RsAcRb96AMhG35WXL941gCxFXOpS6JQcn3T9ECDOslEGKKtRkDbmvSkNSgs0ivPCoyWVc/bwLENMdpTAGPn347BlNwbFn/rUp/CUpzwFp06dwrve9a6Vx8/nczzvec/D4eEh/uzP/gznz5+ffK39/X1867d+K17zmtcAwOiSTkcBxdb4FsnqEJYzkf3OeLw9O+xzi4vdDu5d7uLe5Q4uLWdRYLICUX2rsXqtu3AAnJ7p3Cjam4XqmDOHwzMOh+eCkpYJ+c0BsDx0AVz7BmFORYv7HzmDiwU+ujlhqUa3RIk5GN4zjlFVTqlB5eBhIHjA43Ulshm/exeUb1h3EaaqrTCxtBGbj/OI3TIC4oWP/Q8VfWVeITsCeYJvCJ6cpm5nxq2AWKvc4v2wFGWopLSkDLrIXRw7K+vVqac5ctWSUiRZDOHYXg5S8oqjCjZUMYtAis+uicfFiqZKNVBqt1llXNgr4b7ypTbY7KueJ/2zQOBEK/acuqjgLTAO/BlAMAB4H6vdclPhSwAUDU/hS1Hm3oMJ6HaCA6q9FHLoD6+e4+K1LQ7PBYXWRF+c6xzcooVb+DD3eNkF7/jhAlh28KdmuPDIOQ7OR4VFFJ1U8fpzgNvkqZYIZkKt0DEYG+g9jwR48yIe+j2OcXFaZTUBxNiWNgg6JYNiZIrFiK5euPJdOu+i4c1B0aZq1oXpXZFBttiWRo3FqBGPeJTTeh+OlRfYjnExDKLRG7Jr2ESNjEFc4wM29xHniZEsBmCBv+m/9QXU7su+08xnF40XfSdALitOKHVRTwbnMSfDG6Q8mfRliEoFZ9Ue7u92cDFmaKDhfCkkAO0lD/INlrvBUJndz2gvMhanHPbPx3nGAJoDjtN0gm5iT7EwZ5xi4j143uLStfOQNj2TlM0wl7E7FeYy+h0PzBg08yFa1XRoW4+mCZGrxsW0USZ00VBfLht0LaNrHbqmCdGxFuBLBNcUUWOTTVXqN5nPKOPHE+LcY1bdnBgBUb9FQEyVuedibGbzhREN9LjN52NY1kDNmhkwfqvBJMN/qQ+V77VTI7DQ3jgxwCk/3ZsfFdGjkUELhhs2v/N5xJntIIBYou8W7BQ0MovyRBAj8eYMgABjqy8bKbAFF1ZU4UZ5877lLg6WbdABjuFbDmA0s1/EflMBbfSpEWoR/MkKKfvXzLB/3mFxjrA4y+hOe9Buh3beYT5fYtZ0aCPPAUFuLDuHRddg6RhLahBn9QVg7AHaISw76JgmDjznFsGBTYxgd1qZ2wQHWjd3Jn053CfNoM5ZfaYSvY46h8QmJpOtYcYKxywXXfUhAmP4VPCLieK6zpRPcxKQaO0ARi47ChLHqk7VawDNRmwqqtyA4KqDeJVtmMkGMpt55Di5BBm5xNF+NSszKOunaLBsEqAc/vfdeUelI80pvvfee/FjP/ZjeOQjH7ny+Ec+8pH49//+3+Mf/sN/iFe84hVrrSf8z//5P8erX/1qXHfddbjpppvwuZ/7uThz5symXR8ljRRr6CGM1Q4UFkKPEaoOIWp1wC0udnNV8IuuCYOvYfg5sNwjHJ52aM/vgLqzcPcfAMsOs7suwR3M4Xcb+J2oTImwd1cXvGhXI3i6ujD/0B0Cbul0ZByebXDwMEGAiMUBwqeL86J4xmFehEZJkvCvhmLj3DjruSYXDWxQdA5yWBh9aRy30QtlDfoEjGXpjACMw3zisMYkE0IxFOdSO9aVpeAQmSLTuV4CMiXFLQorFVyZBAwaWwWDhMY4PhsOQiQo3hAxt9FfobxIAnoAHkCugDl6/e2jthEtzW8tNsV74PSK+ySpuwOGS+q02V0Byb3vJ4xUwQtPRmDsY4RqIQchOKo6dlW+BBD4cofR7REOzzq0F3dAh+cAAHt3HGJxrg1zDfccWh/nvFOIKEkWQzcHuhmhmTt0Ow2wbOG8B1xYSo2XS7AjLE4R9h9OqtgkY0PnEA+l/5sbT0Yqp3/GyM0yO2Q+7pLC0pFF+qZtxioZ/W2U8EqbTw1z293YIqf9WQokmXPL5lh4P/22xkB5HjnotI6qIyjKDDtnLABjNimx8R4GQTECiOBosIg/VA14o73ZGNCmImjJm7VosX0uyu/FMSeTcgdyaXjbfstShvt+FjOrdnBhuRP1ZVi6xM8Zy13C4RlCc9iivdBhfsFjcU+DbjemODLgXQDEy1PpefqD4BimpQs86OS9BR3ELujhw3MhS4MbxLRpRrfH4B0fosMzj6b1aGcdZrMlWufRNh6NixFvRHnkHRadw6LxWDYeC2rROYanBuxCFKuJ67fKMq6qmsz0ANVtDcNzzJZq4hByyIz1rOCdfjilmgrFVMvQfKyU7jjNy2OkaHEBjGvO1+yNrxiT1dNHAHGKBFlGMPKC4hQOacbyRoXvs/RpYyvkqdQw2WXcB8QmVZ4Q7YiaF2ByrviDQIw8uMNO9aWPykhSq4GUwXHRz3Gh28GF5RyHPvCm2rKngMVph/ZcqNnRtC5kWHV27MX36BG2txQjxlGXtg77D3O4dC3FNhk892hnHrNZh3m7xLzt0BCjjU4oz4SuITRLxoHhQc8ytSA4j7o5AjhehIrwzWHoj+s4TLdY+jglI/alIfDMRVvQxUwNgpO6YLXpPoQs+BIcU15t4+wVRHuTKbYtK5VEvZwcQbkeUWeMXNLqQhgdIg8i9kvGfpqiF3YwcdhmyiLZ9Oo07dDIFr2w+Z3d3Mjv8ruaMEkvZtM2lKfTElBkD5c27H/k37Njj0gbg+Jf+7Vfw1VXXYWbb7558jk33XQTvvu7vxtvfOMb1wLFr3vd6/Dwhz8c733ve/GIRzxik+5OImG0BRp4EBxYIxJOUsMQveDRs3bgW1zq5riw3MF+N8PCu+hdC+B0eYpwcN6BuIVvTmG+06K59wDungugC/vw50+H5WBmDm7hcerjF9HNz+DS9TGtIxrwyyVAPuQSdXsOB1eF1BNZ000Ao3rbZV5UwzonCo1N9zCGIAcGRiw8BVNoKnPddGHkecS5t2Lox9RCcQxKm5pO7Tl9uhhZ6xjUBKOFJR2nBogzBWeUmqQ+2TlfLjdwU184/feU7i2+c+I4z4MZLGnj0SGgRXXMIBHDJiuWAOTpnZnQimnpMX2llw5njeJoqGdzk0VgVQdt8llP0dEnPlW6SiHy65ngiHPe5CbjU8uXF6LhnfFlExxFi9OE/fMO5Gfo5mexe+clzG6/F25xGgdX74QUzQOHZr/D7t2Ew3MNlqdilHcW0612CbRswnN3AB3EucbdLHqhQwERY6FmhloCaYjGGXovMQwfyjdw2lZmdniiqJyDgQ1GynwwQE080RYIy+9eynT+Kvr8hfS7l95fOx+ZfsxJ7E/zX/tcPpiaYYxC4QMqK3TuYFPIwl7BotBImKvPSTZqpf3on5b3IHJFDaXKbXP6pOctBl7uCYd5DyeZGLmzqjOG9wKhEiyQALEY3pe6GS51c+x3LQ594GtqGLzDWJ5mHCwI5B32PKO95HH6DuDCdQ18S1jsAc0iOH8QUyBD0SzRNQ5x+GvxRF6EtGo/Bw6uCYY4ecDPAhDneYgQu3mHpu0wm4VI1c4sRK1mLoDiNlqlHoRF16BxDo1jLGKkaEEtlvpcjFBHHL8+PTitz2FAnmMO/NsB1OR8UONJ9b0UzikQa4BIdF1I0Yy1RGAKYhl9DSBkdqhxHqMwNkolxw4qkmRIa+aGNYyzG0B2U2ofizmgvpYEjK2cqrWXbAYTHQ5qIgUEJFtEQEQJiF0Ohi3gycDKwBM4CVTyJsjDc6N2bBMdWB27MJ4jb15Y7uD+5TzoTAnwiMPqFOHgKgL5sELD7P4G7qCDi2BTitrpd+lLQ2F6WsyIWJwlLK4KmSF+NziiXHQ8zRqf+M0lVLroGqBdxjqWQTYvZJ5xrEETzYEwJUmL5SE4xhYe7rADlh4klbBnDbxnNBEgu1kAxF1NrxjASKIzzLSKfIxwAsQMMHn4zsE1iPN1HSwrBd6moA+Er3zcIQ5XOxXK1hmx/XSG5wAd3/0IcfqfUqaFHxL/9sBxdaCVAsTuK46xWSuI70vAcelOs2BZ5JCRJfrcKGhjMA3bFGvSxqD4fe97H/7m3/ybaNvpTTRNgyc/+cmT0q0t3X///fjKr/zKywqIA8WUr7DuTVyhp/+YxfBeeoeDqOQPfYNF16AT45sCKO12gjBZHBKoawCaY9Y4NDsN6KCDu3gId/EQfidUne5Oz7D76QWu/z8NPv2EFofnGYfnWI0vbhy6OXB4PqSeiKGnyiAafWVEpCb0hdIAi4aGupnMOod2RLZp7q0HdL6dCKiMoSBK3QhKjt667KBwDYnMBaCfvidwnOZfpsg3Z+kswsRk2waMhhawAQUNxOF6Mu9C1t0j7VvxwERQSYqn3Gh+5XC4tD8gW6wRr4DYpH1aIVY5W/+dcBv6SOQ1L2iYN2t8ud+1WHSNRqRArM6m5SnC4WFQ8uR3MZs3cIcddj95Ebutw+LcHH7m0Ox7nPsocPE6h0vXRa3IAODU+93MXDSqHdiHyriLMwS/4zX1NikeTJrLlpFRMOJNRZzjmmV2UJjywRydB2bcGR2bZMY6ZJVjJV0sIW1KF7PjmgoPMPJTpfhJLUNDLjXWZ5UVhJ7c0FRJIw+pScZMLxrEocCLyEabtRl7E3jOFC0iRogmm/5PVtTxtV9RTitO0agOwdAWwxtAz4l84NvgRPZzHPgGh75F58OxRICPEaluN6Q2k28wu+DRLBhnP7HE4rTD4VlCF7OXZvcxFmdCoSwByOHj0BwQ3DI4msEcVnFogOUeY3muA3UxNbmNRnnLCohnTYed2RLzpouguEPr8nTOhjwa3+RqgSlEtbwUB3LRMRwL6siyKhYchwcUxlgcYJqBZLMkLJnxSgVoMwdBNSxTcAz5EJHX+YXe8mn8j/yavWaj7CkzIKyOTUA4aXhrC5eURYvjD22S5JkF4KPOAQtcMiM/ydZUkBM6fYIzQCzytniWQBb9KwGPecQnmMJYtLrSQepEh8gw4vaFb0yAZ4ZD3+Kwa9SxQy7Ysl505iK8FHaEZt/F7CSG60KBPMTgB4AQxSUCNaFw5fJUE5c+i1mMLYPiFIXG+ZiJGKLEDqwAc9Z0YS504+G9h28IXXR02mlHpTrSbZ4DIF50CorBDIcWPPPBmebtQNbHmHSyGTM6TggRFMv4iKcRgzmBY8CHOgQxlMvsqvanOFhr+s/KButc1X7Gn+RyHqk6uXtRYcBGwDNH26h3NlfKmY1rwbD2R5hbOhX53edJ0IqJRTaI7cLozVwKXznJniPSxqD4nnvuwTXXXLP2eddccw3uueeetc554hOfiHvvvXfta21CYnx3DDQISt5SmH9B0fhuotd7hv0IjFXJOwYaiSoBi1MU5/Y1YEdo5w7NpSXcpWVg1K6DOwwgc3Zxidm9wHL3NC48wmFxOqSucEPwF4DlaeDwqjAXI/f2xE5K1Ckafj0PqPHAhcNjtNHF0cZsmMgAY1GeS4pzFMJA9KLAzULpOk/KsQJcWWKESNaOi/MsmgiGbVRYDH2znqOkQGURtqYPiIOwSkaupKBm9wjEOZNIn6hQKQKNWlGgjArBlGRH5NwISLKIXHqsqsStMk8AJ95f7f1OpTFZVu4/wQo+6DTRNk6ztWSbzicu+PKga4OClzQwxHfaMHgm6VuRLzmsnTi7b4nm4iHocInmooOLFd7bfYJvZ+h2glJfnpY1DUNGRztLRXbIMw7PhkI+fu6hIVshw5/CmyDUI5a9hxE90FLVsszs4AiImUJlbDmGQxaJKxVpZYxnioWK/1PIKq2+rW4MjeT0MjZ1DihFJNX6UeNP4SeZaqERo8iIjkFNKKBELhhgVDFqrEHDPnj5M2CsvE0xZc14s8UBcESeqt7zCSKGFJs0gNgY3kACxJ4pguLEl0sftoexy5rF0e2EaUdhZQAHXPCYXQwfIFSaBYVIsJ9B62hkxXNmHIrtLAJPLk87LE8Tur0OtNsFgBjHQdOESJUA4nnbYd502GmXCohb6jJQ7GKVe7GgwjzjTqvk+o6CjFkSaBbWGxd5wZ6TbrEPk5GiRUMiYMVYkGwNyRYRYMxMyZcnViYBWi2eimsWvJuMcMoyOPKQV95FNo2IgZsB6AqVTqR8qpGx7q2Qiu9FdanqTeSA2M4jjrJAHWR2fqgBxCXgsaD4hLKlUofcjnWFXvEcgkBLn7KrDhQQOxPgQUjvj7Uwur04f5cA37pQ6XnBcEsHWvpY4MrladVLgt9pcHjWxYrxCPVg2lz+2j5aR4RjhCkMTHDOg6gJdqxzEEdq3wOTE8VgDDoPNDH64b3O5U0HQscRm/Fk9yUnSn98CJAHQtaWYvC4P6xDzz37Ux1mxi5UQIjEg+J8pQrv6U838BiMzlS7Uhzz8XtmgwhPrwDGal+Z/mq8xvKs8LCNMEcdmgHjXnSYk3AYtC2sobA5bQyKz58/j8985jNrn/eZz3wG586dW+uc7/me78FNN92E97znPfjCL/zCta85lcT4TmmaOSAWIeKZsOQGCx8EyaEP0anOO3SyVIeAnJbh56HIzlLWL4SLKR4ObreFO+zgDjvQwoe1T2Nqx7kP3Ie9O3dx741zXHwkqQFweBVjcVUH7Pg0wIqJ8jonpiwGUHg+QzTEeHQptBUUKVSLMsxgjnNwpTAId0hp1C2BZQ05xwp82VGYPyxeslg1mxsHqdYcFn2Px1cqR8J+xMAV4VHcI2AMXKuYZUcEIWyFkEMA7GKMi2ItDHdLg7JiCAzAKG+SezGC1wDiLOpeCKlqZ8blVvF74IZOKEkGhwBhy59T+ZKjcOVY1MfPQ0E6WoZ0TQAAtfDzkDbdXDgMRXpmDfzuDLufXqK9xLjwyCZEqHaCkGfn4FtG24aocQDFhMVpBmZR4RRAVKLCGSAGhuevCUkEU4CfpxhhJWDpgFaUbQR1Ps1VBFB1zgwr/2LMAeN9s0rJKmliaLGtdBtpCBo+SA4i9Ard2fNyhxLl58p3iNwwxrBxEAogFsPXKn6b/ubhAe96HvhQDUn4ldTwAVkjKO+rGjpAkroVWbORE+wBp+CEskZ3BojjWJCpDwd+lhve3mk0yhGHyE/LYe3uGDGmON/Pt4TZJY+duzr4OaGbE/yMML8XWHSE5ZkAkJeI8wtnhLYF3CKsbnBwzuHgYQze9WhmwQp2LqZtxs+s6TBrfC9CPHdLuBjB0vuKc/SYCZ3z6JoOnSd0jUfXMHwsAhk+FJf8QyhSaRzHxeMEH8GTkqJUxhAFgpzhMLeQIjOJwZlVoxUgHY9XMkatjVD1esqGP9R+jcwbj1dgXL2BcLKYxraYez/biivnIgfE4kAvdSpg5E2uY21keChSnO57TOE+uMQAlt6pnnTEGUa1vLn0DRbs1IEsDqvkSA7P0M/CvF23Q6Boy7ILKzK4GUVgTPCxjgzF6s/EDN8xut2gN7mFkfl51qI34y44cvJnTAh+HAXGJJHiMG4ycBxPyPUEgVwUzPEjS4KqHapZesj0UooSxz6baGqWcYTcvqao/5wLy0iS1FuQObQmu0idqQNiIAPGSN9HTT+jTzL9Ina0ub9UFyPdA8w99tqWQ1RBp+OzDDWW4JoIBoYuayjAmCL3W/CLZCdwEiXpN8xl9c/RaGNQ/LjHPQ6///u/j67r0DTN6hMALJdL/N7v/d7aSzJ9wzd8Az7+8Y/jGc94Br7jO74Dz3jGM3DDDTfAuVKrBFq1PNQQMVLUqas82wCYnaacHPgGS3ZY+qTgU7oE1EMZhAnp8gwAgZtgSDcHBDd3cIchdTMsRRFSvogZs3sOcP7PPE7f3uLgfIOL1zksruowv2YfzEC3bMBxrm+Z2iMDXApxlHNjSo8y2EY64kFi0DuKhajikBQF5Th6v5EBWd8EJ55G02YORB6OHLxcvCH4JhYhiEta2AqkFgyn1GnOwaJ4GSuAOD0Piu/XMFwUotZzJkJDDFpr1A59lDFrIFjGFfW3s3nO+t0qb5n/GMfRIEiZQrZvmYeusv8EEiPyHpK3u4wWhzmLThX8Mir5hW+ULwGk99ZyLEwXq0J3AEUrNThlgnPGLTrQMjirmvsZs7sc5vfMcXh+hv3zDRanYxXb3TDPWNYgPDxH6M6EdReT5zh2QZUO1CioOayqzyIqU2LKDYi4k4GYdhl4MhSSlnnYZqqSfGxmBhl+i88qi1auGncTvLTKU/ow0nWkHzKFgTVzJfU3ZaCY/hX3kBky8htIz9fFXREQuxgZAqwxgxBx965vzBBlPEsKjqFe/FKeZDKjfJSFoZIZZiecdFoD+jpTHMwhGpX4MnyC7rR8IRlA3MaiOcuwMgFiYRzAoXXB2G4vMehimCs8v5+wuD8U0VruAn4eClNyCzT7QY8cXkU4fPgSzZkF2rYLqi3OB5RiWm2cP2wBsUSIHXGaCUgBxDvmGL3yaLxD23gsOoZrPFxL8AsX63pQ+L8IgMDHewKgspfYjN/yUyFdeSBz5PQN1x5Ajv1XK9Jal6OWtfkvqqlyfMq0sJdK1qxcbhJRfk8rAXXkLTv1KMs666VNQ6OUdn623EcJcAQMlRHXk0ppKmAONmWf2LMCiA+6AIbFkayr4cmzbBDW0J5FZ3JEKb4Nha1cE7I3XEdxlRFosVUwdNlQ36bnVwNaNjAl8sFOlcreS6mfjO2mQFeCL7OoCFy4MLcuLNXWUN/2LLITOdPZqe8ydoZIdH9pAySHTG6XVHXGChpzBGTtGjtSnUPaj2SPKJawunpgzGf3blCqYgtO/C92B4tx4QpgDPMsVD5R2p3tw7AsOCJtDIq/8iu/Er//+7+Pn/iJn8B3fdd3TTrnJ37iJ3DPPffgWc961trX+/zP/3xcffXVeMlLXoKXvOQlg8cREZbL5drtx7N7wgOAVugLqWCUe9a6JkSkYopY6gdrigi3BD9ndF0YrcJoviH4JqR5NU0w0N2CwXGZF4rl7pv7D9FcPMTswhzU7WBxtsWl3TmuvvbeMF9y0aa2e8Z3HwyPP4I4EKPCkKJh6AJTEZsCNAKUZU4xB6Him1A4xbfRETCT/riULioGbowO+1n8RK86i5DKUiBRGLx1kNhLc+oJJLnHdK/WgE5CKey3EZww55kz4SU8LoGyci60GMy91PAM8FeUN3Hfmzf1PUbqz/GogOFRa+MkECUeLA3v+PJrfCkKXpQsIHwp0eIYkZKljDwrshH+bA4c3GGHZj9Oc1h0aO+6hGZ/ifbiHIfnWix3w7glDm0iVrbFmSVOnTmI6yu6Pm8Cyp922/i7Dcf7mJUtAW4wdPkWzeCIc459G/UPwjnWg5uBsSbxmhqWQF8x9xThGmPHRKnkGjJVQQCvb0K6nG+CPJcIEbFknojsKI2YBCbz32yixSIT7advAMuNOufD3FDR9w7ZPGJV0JTfWy1KLPdoQb48z2TEoQ/qTygxcgNWyE5rGDO8fSGTSeR8G43vech0tBWS2QHtQXD00AJwSw+3ANp9j+awCWuB70T9MYvZSgdhCabZVQfY2V1oX2UO48xUl87mEIP7gLgg3W8/MpUn1vbwLYPasMxLivSEdYiliBUjFAwrx/Oq95+WTRPDu34cRWZn8ztzFMr/EVbO1G2pQ3rXQx0Yw8gdex+yOzZuZxhae7j2PLQLhfGfdKqAYfR1aYXHMhBsZDMhAeLxdNIHn5Q30VR50wZ3luz0/zIW37KO5CCrORYoC1MTaEmBN0GgJRtbDvBdBMZNWJaTl2HJzcWpMP+fW3lH+TPkeE2RKUu4LDtDajxwOXiyd4qoy4L96GNRSz8PCsM5AjoXU+tdWLt8HgMy0fbU9G7lQWuHrffee31Fhc2o/ERGGNK/SPwjh/ZAMArbuXg+vfEv9ya60NrA9S70icxES4LKmwwcR86WIJxhen0omllmD5GbtQ48+98+0yPqzI1B8Xd8x3fgR37kR/C93/u9uOaaa1ZWoX7Vq16F7/3e78XZs2fx7d/+7Wtd681vfjO+7uu+DsvlEg9/+MPx2Z/92ZdtSaYl16PenUSJmTQitfRRiPg0/8JbReOMUpzJnOJIMQqbUofDOsTBUy5LS3Ba05eB5uIS5z60RLu/h09hDn+Nw9ndA+w3HQ4WM3hPYU5TxfguDe1U88oU7qmRBWcxIhJAQzAKKRrjHNf+9Q1ALbSkvRYNoVjFMpQ+DG1L1KcJS9x0s1Q1MADjZPjmqSysqR6ll3cVWOwZA+ptJBUuMu9Do8V6rPQZ6tnXeSHxodbmRmeGvAG+KU0nGeyDa6jKvVnvqHm/JWVzPABoXlvcnr1zzts8acQMLNjpkihCwpMAsIyKvORLZgr/7YmqOKEGazeHRqUAAlOoLAsXDGyeOdDCh0qbSw86XGJ++wLz2wHem2F5ZobF6RbcAt08RBSp9Th/6hIOli0uHc7QdW7QaJ1KKcMDeeaDC8gxjK8QmZJ5xViG3yDELI04fk1F7Cxt3xiWIZthQqd7Vm7xvMv/wlsxmKERYhfa4iZZ1KkidnIowiF69mv8lvpeTY8ElJ9688K0z+F3Sn+LckHeQVVupOcpMkTGmgB7ffYCintGTGGQZZ06eTSUWWWzqtRhVWZWGWCskRHjsKIZpyJV4riLz9Q1hKZhXYfUHXicutiFAjx7DfbPS7X4AIx9C+zsLnBubx+EkFoqRX0a+e+8iRB7ODLFtZAq3lswb6dzUGzDxY9vnEa+ZZ6zXZ8z3Vv4zQ5puTbDIyqm9cDAFGVk2KabciHnBVCUlFKoK0i1Rpx/t6JBfatjzYzsrwFjg6XTpTOUnP5rdNjwoejWochY7pzsOyjL7/J7VYTwwadxR7LoTguIDwuHVRnZDHxkHDxx7JLaN4FvXReB8RLgZcwYdITlqbQcWg4AobZz5x0a50NtHpemS1mwLBWobd+kf+LM1iVK4zrECrhaB63670IGo59LUMY4ptTu5HyciZw3VOPDkuy2KSaAYr5Cr2imRpwHbbNLqoEXMvszvW6ev7lGLYsNqNiZVhZlHTf3Scm1Fa2qHBhb49Qyv9WLBvTXzJAcNGPaw11BG4Piq6++Gq985Svx3Oc+Fy94wQvw8pe/HM9//vPxRV/0Rbj22msBAHfeeSfe/e5347WvfS1+7/d+D0SEV77ylbj66qvXutYP/uAPgpnxile8At/8zd8cvAiXgZjtUgqBkmChTMGLcl96p4pSiobIdAUVyC3DdwSah5efXq5564QIEBm8YFAb52S0pOkn3IRz5/csce5DDnfNH4Z7Hn2IM+cvhup8LgiVEhjbws/ht1GYQK40C+99GJxkDLciWixLDdmIcYPgqY/r/ZpVAYKxY+fxIhoDGimG/tdokILIStrHBiS2bA6UOAJgKoRGTdiEYkZweTqqiJBe9MrOiSbkQssa8noMZ6C4ltYC9IVzfo9F1EBkWLIBoKksJ1q5BwoOqXJb6Lh4vMOcYuuwctncKADJ8JZUzUZSGoMihwHG4f07yNx4F1Ox3MKDWpeWFlt0aO/1aO9fBMfQvMFyZw+fObWL7pp7MW+X6DxhQY3yZjbNoqBye+09y7QH9c5K5oOjMOcf4T9HS9UjrjMeszTIU6bXUto+snE6aWyU8qRGotgMT5FxrrEzhcCQQIg6oAREGkWvgNj0WXiIbf9Fwct380xXO9HMfRngINFgTaGO8lsBcAT5Nu073phuK59NuKfUdzEej0HPXxZi9NMyy6yqzJEc+XHJSWcKLwAyHoQvg3OY28iXEdyROq3CM2pcSNuEc+C4/F9z4HHqzjA3udsJbe8/PMw/vGbvIlrqcM/hnvZZIsFErFWmM0DMaSm4ZJhTdWUKLc7kGNR4TZ32cxk7YgAiTacyoFidPS2y5dqG8GrAs9HcJPT0/uC7m8KzaxKZWwRK3pnWRgmMw18SUZe1pbeqwDbxvHU255lX6ZlmqdL2Pqy6MM4ycXxcCVRzJIttKzxpI8Vix4ojWUCorNhg6zKwtWk5yDmKdhF1DCzjbyJ9J8tdwuJ0SJ1O49r2l6I8gQJi+DxS3BXyIhvrUZeIrWWXTgzy2AX7eRnfZxyrklGSBWLEZst0SP29p9RoZDdk+SvVpzBGryVK/zMdGe09WzODbJ/Y3IeM+2zqIedObuUNa0Mj4wUAqALioXFfOoyyh0N6LV0vXYAxy7nyHUnRZd85e2YyHHtmq5xzDLbsxqAYAL7ma74Gb3rTm/CCF7wAv/u7v4vf+73fqx7HzLj22mvxC7/wCxulTr///e/H0572NLzgBS84SncnkVfrJTe6rYK3QsQzhTkYPc9aTAdrODBaxzqXSLzFpIzEANnCVAB1oYAB+Vi9zjNo7gAfcvPnFzzOfLzB/W6O+w5dNlfKRoGFaqXSe96rIc2rjBN/qDFojECJFkeBFCRcMmI0atz1mxdQHEr1B0OIRUg1A6nTA1SbV9U7xt5aKaeiEErpnNAIVvabERZDj887c5yZY63nUeesyD1FxZ1F6sgoDEk1JxFMSWDZVzNIdqc4MoxE0X5PiRA8qNSf1mDTpku+XHKKQomitcpUwFNSoCEi5WdAVtUxDqT07h2oC0CaugCKtQbA0oOWy/D7sMOZv2hw8LAd3H79eeyeOQjzUj3lChLDRmk+hvsHZdkg8Q8T4pSHcB+SRq0yJlaipvhQrENEx21UoJo2linO0ZeUGhozxkvlzom/ghxJx6aoNhcGAKkBIM6zNB/MyIt4TyUdxbAlvYf48IxBo3KRKPFz+TxEeQ+B4tKRdqKJcn1peBIAyswqb3hVq07nzSXD2/AmogPHeznIoK44HnzDoeDPEiFyfOjhDoHmIADo3U87fPq2s1hedQ8edeZuOGItKASktNgyVVoBMScZVN6HlU0uymrnOFQ4bzkUnpxxcBiD0EFkCLI1R+0YKCPGPf7jKMDFEQ+Aa4xX2iUAeoddJh2glxlrutxnbODCOql30covfX6cZLzKsByIVeds9iLCI/2+AmiyI9n3HcmlvpXsGHUki00TKytrpDHar24p9VII1ACL02EKA89ExnE2pkUneu/QyaVtpBjIMjL7jm4kuSGAuIsgHRTWCG5Isy5Vl8TVIzqZumeCMD17c2A8DGZoILc7MmC8QkdmwLhwrlLWPlRmqP6ITuLe91rh1uwd93V8P0tipN8KdMNNlFM28oZitNgCYiPawzHmN1WOk7Ejlz0mfj0SKAaAZz3rWbj11lvxyle+Em95y1vw3ve+F5/+9KcBhOWXnvSkJ+Grv/qr8c3f/M04deoUAMB7P1gkq0YPf/jD8fCHP/yoXZ1AlAkNIFfwMm9Y0jMDGE5p01YAOeP1RhcLbfjI+GHhOI3WAZQ8XXFgU6zoLHMdqQsAkylUrl7uOLhDYO92QrM/w8HDGhxIYZ+Ge+ApowEFmCLH5omQ2R4HIxOHCn4xTKpGoESLOQAR8kCHAPYpzg3L1liLbYpn3LcxhWVmASRyQAwMD351M6NvCOg9DoARyj8imEKxBTMHskEsXhQfhhHqEiFSw12OHy0ehpQ2rcKdc0BsosX6COy7HcgrkWPV20tpX8iYDtsywXQCKWC89D5rHm/Ll5rVYdLAsvlR8rykeIhEizsAM0SnVRqgqsdcnPPvQvEQmfMvFaepC6nVQJjqcOr2GQ4+vIP961rg9DIsASNir6aUsh+s/2U5ld5zKZogiShFr33ILjH34RMf9tjDGJQWVOq4rHQyK4IzZexQPIGit9hB1x+VrAvVCgQD4JNhJP1WXip5S4GEOJ6M8SXR4t4zlLGRYMWQ/Kg9MzXA4w1Q/B/wYqGt2Shxcz9yT8mYif0HioFxskgcxtk2w5d5ZlXusArHhnM0HVXeV5wLyG0Yt8GhHI/lIKzE6GZiOJm20lAAok2sfLv0aDrG6ds6LN7f4hOPuAqPO3snzs4OcKnzOOyaDNgDgKO8OFGeLl06w10PGFO8H0cMbny4B2ZzryEjjOLcy2xJGDFsWzYGOvIxUPAaA0ne1waWOabmHD8KaeSmlBFDunpAlvS22TaTWs+uW15PnVXCjwKE9RgDkG3U13y/UiLBq2m6I1n+W0dyL93ePlfNsIqZgtJ+DBgEGRunG8R3szwVl02L5/ccEvGass639WbKlDfZ58txLOfHoJJN8e58sD9DFXrEDClWHtK5x7Ngg2q2nthxJDpELpL0XsrATDZlHxznUWIG0APHGRAM+kKBsQNk6VPtM5lDzW/VH2YutTi5U/ZXAYzlOpT3oWaL1DIo7L1mtkAUCgqMBQSHuzMBilJ4xH5SDB4iM+vT8dZepUKn4mh0ZFAMAKdOncKLXvQivOhFLxo97j3veQ9e9apX4b/+1/+Kv/iLv5jc/nOf+1y89rWvxf7+PnZ3d4/a3UGyxveQ4V3zEve9alHoOqRosY/GdwcVJt4DmOlZkDQpXoby7eyCl811CGsAS58ieOQYkXWHwOw+h25J6PZcWBS9iZ/M2Cj6OPQcasoyYyRKDCZrD3MUSg1F0BiBMUVDJaaJUYx06wOPRoCXVDmbxtKKkR8dDKuAoPYfdeN3lRFgjVyJGBtD1TdJVIdp0qRzO8gHg1qjWBopDveiwF+ElSoXNoI4PsgRQFxbcqp+LyKcoYKJEIV0FFACiFX9nWDj2xre5ZQGMVCFLzszL6or06eF4tjV99QERcocI1JcSF0zNqhDTBGjrCAeubjcAwPdXgsQ0F4E/F0Oy4MZeIfhWx/4MsoGmxaveoKUNVSxVKNAlgxfijNHHW42suaQwHGvDWOEW085MDg2Bo3siqLT/2LzMDRaLKvfxfIDmlmSshnydliVv/3OGbCENQCyPhOo8jzLKqFlVL9Hxj3NUd4jGmHwpPdk02M1XbYCJGzGiDrPTjBPynSjseyqpW+M7ky6lCt6U3QV6zOgtNxfi8zhCpjlWqKjhbo0/oVPyTlgGeYd733K446PncO7dx+NzzpzT3Zp63ST9Zbr+5LOF0BsU00zkB8LblHD4KgfPCJwWAbdwi1nKdQC7pKTh9M4qIxjsMzPSzK+PKYqOVQHU39bjWK/bE0DOceCVz3W/FawWrnk2PVq3a2B7AwMk2wzgLgAArVpFFOptkzQSSRrywK5PQugF+Ap+dIGeLQVcd6baSspGynqLLLPNMhAbgMg9jthTrIteJaDKygg98yQKpIJFCPjtWxaC0V9LtMuZlFOULDJQgGw6CgTB5uMFZem7Kk+KcZs+XADCKMsUl5OX9B7KoCx3VclY39qMUer/0R/xC5y1KfyPwfE9n7My7T2vL002e+8crv9bcHxyjoFwbiBAlwFu8U51gwrSMab4ght92h0LKB4jD72sY/h1a9+NW655Ra8//3vB3OsLLYGvfSlL8Xv/u7v4jnPeQ5e/vKX47GPfexl6m2u5K2C14p4Rsnbyf+2sJGkT7FnjfopwzYIgLgN8209YAY8aQpDmMMIjaRYw1DSPboZabqhW4iB6eDnMV2rDcIiNxCj4WHdr7XXEUFklXEtYzkAHD2GDYJXC6TOb3LJwJU2a6DYphgHYMzIIsWWiSvCioFkFBD3+z1msBf3pl46NVDC+wtzoo0PM86hDpcU49jck0MCxGLgGECc5ugkcASXri2A2BYCstGuodQWe+8iqAUYkXQyRsXq8OBkEQOjPCkGt53WMGgMApoyLxkPmuEg6WCtVWZh7VWJSDERnLwfCkY3yfSGLmV0dLsO3SyMmeYgCP6uI/g5hbWEm2hg6Lyf5AixADfleVE2BobGsIJrojRBNwJjKWoFq2yzk0WxcjIsreK04y1z3yL1xyrwXucK5WzkB5XvK/IQcRzPNVCsUVWkNDHlV3MNFN8h71cUeeSEaHz10t3QN3ZSP+UZUeqzpK53iMA4HsPpuWfyqSdr0r2ddFr6lO9ei0R5mPTMwplcpkGK7FYD1xl96RloKY0vDtk6XrJdlC85pXA6gJqgS8kz2n3Gzp0NPnn+Kjhi7LWLcF0zjoeW28kK/iC/B5k+la8+keQ2NT6OYadrtEo2GHX52r+hE9CMjawAoz4kZM4ileMVuaB3I7qcR8ayfRFmTCbDk1XJKDCuNJUZp3Y/me7V9g+RATDZZm2Diz6zad/KVLPNXFs3l+3bGyHWVPorhVY5kocCPFWZl8nsxJchI4N0oGkdBI4JEBQAcbfH8DNWO0iBcSQ28qADAO+CTpRIo+yzcsOCMOtIaxACQ5xeMDfQ+jY9J5ToEFk/uTaulUcpZQXGw9h8y05Rnkv2iOoyawPLV4rYqNCRmnEkesacr0PU6I8su7Is4mr1ub7bERwwAIBrZMGxzTDtRYunslDxSC1mtlFhC4xPLCi+77778PrXvx633HIL3vGOd4CZwcy44YYb8Pf//t/H85///LXa+3t/7++haRq87W1vw+Mf/3h8zud8zuA6xUSEt73tbRv1W4zvMcNblLz1rPX7YJSis8ZvNMCjsWSXShFyoLBUQzSKXEc6pyCkTwvTIwONYkARIyysLjcUwbjmJhaGaabwsocxPrp0gBvjljgKxThCvbQP9NOmOQ1wKS4Ckshq8nTZObf9/vEkb7meYg3vAcZkcRpE4BAi4IiAH4BPj5L1vRgjl/J7qqd5chLiRdo0Seq0ifDbpbWAJHxKJZ4EVk2iR0UHkxpjBNVJp3JaQw0QWyPVKvgs3UqMbmN4B16L8xIlg8MowVB1FlApTcbolnmBdm4ViuId8TTXATgkHUcByFECxiLtFdBFy1O+G8cb0DduM0Xk5E1zkgMhLSAdV/KANOcKw9Lus2S11ApShS9txecfdgIeDCcOGgrPx3rDy8tmjifjcFJAaRWk6Z6toRZ+6zc9sFTaWUHC8nlQ+YlOzOgFZw+tPQBmA2aSsa335PL/2VrlJ5JoMBrVM77RdyRnLZXPE8idA6aQo3UkCzCW2TygMI+QIo+ST3wKAtp94OCeOW6bncXe7gI7syVmTacVqEWGuuJ/mUqdOcQhBnAB8tUGoMCPbXrXWsvCJV5UQ88aw5mDp6+0sshllOf9gyYOor5drzKII8/IfwE+gzKEzGXF0V97x5Vu9m6B8v3ZQUWbyZGXrmv/9xzKG4DcSVMrHmQSWxYY1p02wFNOA+jrFnG2Jv0XZFTgSdWX8TTfRhupCWsad3OEYnNmLNecKnLdDgAZJ4TWB9FCskUfRZ/LEkyegFnoEBNSxmVph8LoEP2fy10pLGvldzbtBsGuqo4LA4jDA0MC9APjSOQCYto0OWM2k820TAxT6kTrWMtSpqXDpX6/XFSzD2pyptxeHiO/7f9IVqf39PMGdGyguOs6/Pqv/zpe9apX4U1vehP29/dj1BAgIrz97W/HU5/61LWjxADw9re/PbvOn//5n+PP//zPq8cetTK1rSpZA8SlsQ2kF+EoKFFfABmNTNkKrz7OyRBGaaHzLyjOYXXEIYNEvFtitDX5Z9Cz5aPR6mPnJJ+5iCCFb/3npinHNeUn3VHDPaZ7aOAgCU8b7SkFEmCZOBiCqfJ0KviTKTs9kXKlJkbBkLCRYzhtqFbHFKHkzT1x8EJKHzQSHtvQyxpZl94R94FxNPTKtOkEgkPjFC8iBhaAvmIvX0vhgQ3H1965eWYnmvo8mb67nvFdS2esNBkovgsShWjW3PY6Vg0wllRNk6pMDnBLRKUUlfo8TnEoHDrE0GgtiRFnF7B3AUgJqJW3pU4foDe+udymikP4HfGGKBmOHJR9qXjqlSlHXo297pRhREmDZQ41BGAsz1XkRi+qKv106T/X5k+pw8l8in6HdpOGlakGeYHCtK93K8Xj08wDlS/xDQowZvMpowrxOSTjhk98pJix3rQGy5+MfK4uAI2sihM58I44daPBa/VlPE8cyQ5xiFNcsYEAEOm48m0Q3O6AsLg0A3uHw1mLtu0CMHasaxc7Ss7DMjpo9X4O9NHPUBE7QDKqmvTsrPMni+DK9XSMV3QfkPQfW+k+oPtqendENlonFkcZp3JJ7ALqs5Ucn+7dbLNGuT1u6Pxev8zFMgNfzjPPqbQXKn3axFS00eLJEa8HiawtK7/lfz6twWRuII1pIbvSQbDpOAFQn37rqiJRbnnErMYdht/x4JmMa+5FigFoZlZ6QazypV/NeeDlqX0d+ROh3gA6oHPIpg1ZdWrn47IBoWR4CxwNPxIdHp8DoJmCJdlzpaaQ6rSVNnXslwlo5VHmPn+pHikLTg48riPCpY1J9GxKtcb481CvXPhdC+WwPecIdGRQ/H/+z//Bq171Krzuda/Dpz71KTAzZrMZnvOc5+Dmm2/Gy172MvzBH/wBnva0p218jQ9/+MNH7eZESsocsKC4AojN76wFYvNBAjsuGagZ03qGY9Jxr8VmCPCxxL2dWyfeubD+InoDvzeuovHLduSxHYGi4NeU8JR/NMWjo+DVJ4SU0igIBg1cIEt7LAtSVaPExf1pRInSpnRnhVCTrzUhZoVRFC4qhJrcaNdHKe/FXsIIWR9ThfJ5xAiFZAbSphVsQRSS6SKlbevNbbJPIxruYvgNWiEngwJAzfky/M8zNzo2aywCmaLPKDOchI8klToq+ghkNA0MecQ4RfFjRcs4v5wiOJYlxjLw17sxJEwmhqbwaQROJTCWtPeh55Tu0WRyyBxXM88YBHVa9himNCDlWdl+D2kkvY+i3axvUT6YKJQAY0a85gpnnAJgKnjLRokHtaYYJ/bh58ZXOs4aZPIy+/3RyDcjADpj2GUpbzUQoW2YezLZP0dV8peTyvnEfYdyvvxSqS97cjjKPpW/UltDnVYc5jRGmSz8KRFjzdYQfvTCozEbSZDzIlS59Z7QdYSudWgar+sVB2CMBJArBrzcZznfMbudKMdTwZz8ZjmmimXF/dTQrfBfz7kDlREwTQwRK1+Vz10MT2OAGjnAoLTqAgNSrGgYwMo92HbMtvLaU4gq38k8p2J7Do6LIntr9kGyeMj+PtGU27JAnSdlycJa+nTRXPofdYqslBJSk5HJe8mi41mYS8xzBlofXn5WSyO/jJ3OUm7P5+eqijT94iQ3mthWC828JE9m/NZttrTygumCyG0FxLE+SwycJCZHGkeZrRmfheU92S/bKhScUZH3GBGImz6Zd1PqELWb43POpkJVdOOgLSkyYQOymWvTT4LeW6/YlvkvtpGcMxILW5s2BsUvfelL8epXvxof/OAH1bj6W3/rb+Hmm2/GN37jN+paxD/2Yz925E5+9md/9pHbmEI147sXiSoM8xpFnRyAMZBST+xgjXMyynm4AoyJEFMyKRc4QAJZWmm1YniPDRDlIKOE5X5KplZjbgXzGsECj6BA429iVsFgL6GXsUKJgGzR9AEmBgCZ1ySFcxQ4aNvDAmqQrDJ1kauFMaXzBNh53iqcraI2nrrkheT+/A4bKS6cKXm2QRktTjdRnwsFPa4sICSe35Pu6bZU8iSAvqPK/B/jT6X4nii+T/WyRmAMhhYSCcZ3qqiphjcxXBenCnSJDzqz1rYo67otahxWxmgOTuDAoz1gHE5MjYzdq/Xy9zQqZf96502VKVPHkZFVMg9MTXrrDY/5sZpqXF7OyhpKcmZsDmbWV2P8D80H08M5zQsbvqcEfNO8MNasAc3Wkc6XuMbIOR2DUV+cZEAst1FON5JtvWgUVhjfJFNXOI1XlaEco8VQfgSnNE0BxtIr1aEUeBYEXXJFnEPsCegIHRqwd+gaj6bx6JyDcwHeC0AGUrZ/SeWSb1kRIEQZHPsDE4XSse7iOCyHoOqTgherutBUh6iN+XjMOmQLMiY5ZJqsiKJwXnEPVNk3ZmiPdbN4BtUMsjEAYHToFJI0WZ0viTxafFKptGWBuj0rAZ4pDqvEm6S2i8hd34TgjkZiox3nZ3GN7pkPBee4sG9Mf7M53CgiiUg8NuqctBHfqFeF9yh5uKPtRjoOc2CMfMxYG1h0k2hnay/KQ7Ln2WcZ2+jNK7b9tzrSZmd40pUrbDDdnit6RO1NytvUa2xAma19XGNfxHXpkLP7Kt/19tW+t3Ll6N3aGBT/q3/1r0BEeMQjHoF//I//MW666SZ8zud8ztF79CBTDnz7gFiECFATGrk3UkEMxTlFkspoQRJTmofLpMrcEeLECqSlScR2tqBYmZjrCmfVILHjW7m8sm8VKSNHD07J+OY/F+fZ81mN2opwKvut/c2BAxBlUwmG5fpDCEUOiYatChVnpJBsE6APw5uWMeU9ReWQlv9hMwYEDCOLEluP9BggHkp9yeQyIwPGiGBYvyd/24mmkidlWy1zg5Er0P5cP+4pd02j5sRfiDrUcRo/nkkr02qEijgsrxLBZ1gWwvBn8W5HySqHalSoP7ZLIkrziZUrbDUKVTIrDNMxA7Z26titmcsriIzbMwNAlHtkjeplCuNB514S6qmmlUfFsSGRHkOCpiyUMnifcl+OVBqBjZdf76kf6ddXqWOFk4PghFMtOmy3DzmtStIUTd0A1WnitNJIZSyoo2DPVC53CHLbEav+9Ajn6rQck4rIOqUA8F2wOlnmDhoDzBFH3dx/+VnU2Pzu3aNkU8EMIUJKoa698DJaXB6iA8sYrDV2lT5N4VHbley1RLkioqnUe7X2yv3r2Ca1Y7RNTr/L9nvnmKy92iUEGMV30Hcgx2saQDDJ6fogUx8U9+1Z68iSseu5NrUBRmdKNDXatcKbMTpMZgxxA/CM4eZdKvSItL8Ex0K21kPpbNLsHQVQRpcj6ABiBBkBs4+hWYdp6kzeH472QFjtxOxi47hiClPrhBdMV/r8Kf/ttBpK7XDlWLknjrIJSNMW5PySrFNV70O2FTyhvFMf29qVAQA8BozzqUfVQ1aTuXdrg2ROuZqsku9HZM0jpU8zM2677Tb8xm/8Bq677jp8wzd8A86fP3+0Hk2gu+++G/fdd19K/yvoxhtv3LjtWiRq6Dj7XyqsAfV5xWGJgGBlp4gGhUgxEP40pn0gRYuL9GkVNtY4HJo7UNp75WgSJWo3l+crE0PvcRIDczQIbR/KaxhhIoyced9qTG3vpWTs0uiw94GKwZJJPqRnocZparG32HhsN7uWvA8gi/hYQJylTet9migxoGOnpFVFtgYNskzRFwLrhHu9AVR5slTs5b3X5hPrK5ZxhWQUi0dW35Gu9RvakkRRiRiD4hzGzqRT+5hSFkFxesdFJyZQL1oceTV7deW7HCKjXNQAH+L58vg1+jxGmg4lzxvmucd7VUeT8FBFXih+sDKjnD9l5EfWBw4PrCzMN5iUXoyp6rMunyNFwyymrGeysLwnEae2vwTkxV5OKn/WpxuF765nfFsajFqWzioxZIUnmVJ2VQTGOuWIQ4o0Uc6j4Xqor2YQz9NkDVkRAi7KVKeR3tC9pOOFSlCR3Y4Ae3GqxOsSmfuJDvHq4Cr5MHuGRg9I/8fA2phRnV0v2TK9Qowqg0jNh8HL1fpeu/Qq2WL2cymPMrla6tQVbRvncxY1tM9VdhsgUJpUJ5VKWzZty/XlygzI8v3JJwJinRLIcRUBE8RhAGg9mtbDNR7dslHAlT1/yNhNT3dwNYARUBj6FfW2VmBi5Q3rzKnaolb2lpcSBvbRNoip02qvoj9upN+Qe7Z2dGlT234kkzq7dDBZjBFg9QeQO1ZL22OlQ16uXTB2/G35ogaMhwqNTSL76rNLJ5tB7KD0HDa/3BhtDIp///d/H7/4i7+I173udfid3/kdvPOd78R3fud34qu+6qtw00034dnPfjZms9nqhibSbbfdhhe/+MV44xvfiE9/+tODxxERlsvlxtcZM75tRGqItApm1imj6EXZy1wMjmDFVG3Oz0ViErPNmyhxWS1vLRIGGOKXVaNsgIEJUEZa2Y5RdDYlsg8mOO8zcuCggm+Kt9x67obui8RoF6HEAQUNCVajqDOAb1Kns0hW/E7FvZZPykaJe90stg+uGWf2V9OojVPnpJF0f5AnuQKUx5S8UFQe+o6jgieGFkJTp06TosZoAE9hvr9DeGyuixEpClEs31KWyWENYnv9erVY0z+zzQJja+yvogAwxWqWc2sXsSetMGSH+jxRXqjn13RJQII+8+z4vA2r+G22zOAzHes6j1es19uz95ZQUpJHlHc2RCxEXvDwuzJyQ/uvU3WPINsvMw1NNwJyI7w0vpWfi+dhHYLJESqFfKDGrvJn5EXLr6EBaB+IOAHmlnoFflT2AkEnxBvzPiyJmNYhleUSw7ldZZynrJS+gagp1NGiY5njCDbTdFI/0okVQNK7cKHDq8eUfa0cU5Kqy+GyNixGdO/c8uXW2x67bna1mjwqbQPVo/l3MttI/49cv7x2BQysJ2EeeGLkWVVAHxAPVYQfdliZ//ZTOJOTzEvHN22YmgCEefyDYxzpeZdFDu20hOrzl/5w6ofmEBLC8qb25BFwbYGuXtCCRlu0lgGx7wf5ytqL8nxq++29VDiPs/39ey8BcU8Xrhj3pUOoF0EueGGsnbXJqk9r4xR61Pjs6m0ckTYGxV/6pV+KL/3SL8WP/uiP4q1vfStuueUWvOlNb8J/+2//Db/yK7+Chz3sYfj6r/963H777Ufu5Cc/+Ul86Zd+Kf7iL/4CN9xwA6699lrccccdeMpTnoIPfehDuP3220FEeMpTnnIkIL7K+F5FjkK1vLLYFsEoeocwN0pSPIp5q9loIITIMuVyQxnWzB3ogcga09W4S5i8apxTOpaL35YqDGydfurdGiC9dcvYFugPKfnYdzPDI+4aeVermFWAIoXCS0Caz5HAo2mnJtz1Hsy9WECshdfiOTZKrG3kKdNZFycwfi0yPBottv0/cdQvbFebylBLnZZ9RXP6nscUPDh6wuP7JoamaqZ+cVYgj+OyaylV0yooe2qN31DwqBnbxtmROX0q/M7lmJTfVffqind+DEpmuM2YeufNrYsjbZUTzcg8BcRlBNDyE5CBBwEoHKMVZbpklgYWzx0FtfbRWoWu7w/Dj1qOLaNbCgxPLq2a629/M692Vqk6ygw8SvquWBGAmAqeLBuMBbgi73Ihdwf1njp085c6NXWw6EJ03iJFfFAAY7nxMV05dSyMsfRUx6c6e6TJMmJsrqPO6pF+Tt2WdXXAoC/PmxIV3oCsTChTq49tXuVlo+FCW+V0I3vMaAaH6KEgqKPs5RAosM5k0ZdyGgPOeczbJYAWXefALFHg2LyMM3E6FI/X1nYYtcWNbmdnpg/JWLa2G7inHrSN7L7la6z/IbyKeO8q/01jNXlf2tPZRYfup+C8WruqP9DnhfL7GpRZCwYj1DIpsvOKext/XwXCtU7mmvwZ06PAscgBt/qQcWrbFs9+9rPxute9Drfddht+7ud+Dk996lNx11134ed+7ud06aR/8S/+Bd773vdudI2XvvSl+Iu/+Av8m3/zb/Cxj30Mz3rWs0BEeOc734lPfvKTePvb347HP/7xICK89a1vPcLdDKeDAfXCPitbNECJMlCErFCBzj+VQj+VJXyqH2PQZ2MlM67L/1TZR5UPxgfg4E3nn9H+2znWldSP0ajPKqFT+8TjVgJCuXZ8X7aiX1Ydu+H0sXO9xQArAXHVi43sfa0bFR6iKe2U8+BPKg0B4ixFs8KT+sqrXmEU45SVB+28/1RMpHi/DUJUOH7v7Zd2DMjpeaBLGnqlxrvMJf9O4FEyfdB7rzyD3mcKjSopcz3LU4YHuMf/MI4j8zFL9dhzevKCzHVH+qpGFoyIsM4UObx43qPVWct71vlpIkNMX0WuxH3ZerTy+4RT4rs+IK5FoeSc2veMynFi9aM6G6Fy2dZv6K9gQPBNytyQNicZdvrbRKmM063vgBtosHB2huuH90yuWKlijBfHgPwqKvs4JhMr21gc+6tkxmDfK9uQ2i0/1XNKPhtyJFn9uuqxVJ4Dc33/oKP1BFIte4oL3stkXekILIjI2itGlkUZnPiT0/tgAB3BOcY8Ln3Wth2cY/3UUtX7n35/8gy41C+9tk6DQs+Gq9nfPXug9opLQOsp1QSQCLhs5/J35fzBh42e3SCfnm1N8sy56L99QNMN+dIpnTIsKTsmFUfr/+61OXK93nx/+y7lt8r61Z+j0rGq3XPnzuEf/aN/hLe//e249dZb8cM//MN4/OMfD2bGf/gP/wFf/MVfjCc84Ql4yUtesla7v/7rv47HPOYxePGLX1zd/7SnPQ2/+Zu/ife85z1rt11SzcAeE4CynqHMMdI5n0hKNxMmRmDoPOPItBmTKtjqG+LZEj+uZATkimNsjFiwPAgg5TNBCRjmTQ9h/KNMbY2CclSOXVoMW2HIrAPlscU+AzT691L7JMFaCtdUEVwMXDagyhjq8q4pCYPkOLl8Ra9qxsGVAIaFxgBxluIK4eH1DJfkAEGh4BPP6XgtDe+GEkiTKLGpDs/A+Bjudybju96cJCTDYRL1HD6FwXlUOkobwlcDMqHqRMtkXXpv/YIi9UtyyfdGLpTirwckRu8lN8izfth+F+C4dJxU2zjBpAV8aoAYSYfa1Oka5UsZIjNwe7qyNjYaM2Yy/ix4tnBQjkV+bSp0XuinPNYaiPWBJ6tR9IAxpW0p1Xfgk7VXdnii3huiITkBZLJiY3Bszu2B3/I6VjbV5FTp3JNttdsc2j5ANRAcvpfbTrYCLW1Z1ZsYnm40mYzssnLagk2JHqML126cx6zt0LqQSu2cN8B4iAeR6T8teGj7W5OdZvWBBIxhwHGu40sbWnWLdiR8stTwEhwzAkC2Hzb/rS1dAuIxO1TvjfVyWR8rDqRqVfYV1NOLtnsWGBdjpaobN3EelXJ/6P6s3V37fUS6bL7oRz/60fi+7/s+vO9978Mf/MEf4Du/8ztx3XXX4QMf+AB+6Id+aK22PvGJT+BJT3qS/m6akC91cHCg22644QY8/elPxy/90i8dqd9lepfOh5rwtAeXy4kvVhW+AU2Zt1vnndoPFwodxuPNiYmB3MAs+2aZGciZsjqoK8eOHW+ZFznjVj9qGMZPWTXWMnaNaoYtUACI4iO7yv7L74oxmkVxlAk5F66O47vjjEFzhwWn+Wz2GrFbmYFDw6nTR6WTn/bVJwt2raENJGPb8mspiMv3nRvdDCuEMyCm3ys82DO8Q8TYC0i2kWIbAd1QaGf3YHU11yNWNSrHWPq+xmcd6hmyqCtsI7e4VHRWEcr5+jx5vM2hfgiV4GZAZvQq14/e84BCN/dfN/y5cu74pR5sYtSrwdccV7IfwKSxqlTjTzMGMv6sgeTSoWKj8bVrDd1rxcirAeTJkcQBYGzB8ZAjc2hfuDCN/p4816/WfjFmB6O66O/vAeBV8mVM5pSAuHyf8Xe1GOXG8jeXBSc9Uhx4M/FiLbNqqjNZCzsXMhdA7qwqosWSSk1dXPECCJHiuB64BcQ1e6eUzdPkhe3jgH6wMiB+embikCyoAeMxm7OMGJe2tPlPQ/dX6u3SSbapjuaUkl7HAPn4yDPUintZtd201yMymTKl/rM2d805WDZJ5UtZn45UfXoqfdEXfRG+6Iu+CD/yIz+C3/iN38Att9yy1vnnzp3LfkuF60984hP43M/9XN2+u7uLT3ziExv30woH4PgEn1aE15dN+jK1IEAaeTArDobjPOeMV0RWBhXYKopthe8jx9SaH3s2q4DXWH+tsB1U/EUb8luejeUZaa8HhCcKWL2EXbOx0gfbb/ltBWwhrLMosWmnnyK9upujt0BcHcfldsJRxMjlp1rqVzYXCnkqpkamVoDEHh8pfxo+pcCnWQS3nMcoygURGMdzdLNxVq0lVhihA8qn8bt15KxB2Vxy2+bkBnAsA6VX1TZsjX8tQ5TXr/FX+X91B+28wHJeWzqm17X+97Kf1fcy4YFV5cXq0x5sqi3HVNKkucRkBKrKR+rzp/Ihp3HLUT5H/hxUZY1hJ5L/nH4PncfCN8PL9ch9DpEUuyMgGKPZTiBfHI/Nrg0GwSZ2i+Vr+U6xL7a9bJ9cz+i9obZXXXtSHytguNw+JC8mUl5IqP/eZb6rVsc/qWTAu+VR+T+5uFZJmR0D1ZFMgFaLZ6QlmgBQR2EeMYCGGI3zaBtg2TWhFocLBe1kcPX6Uuj5vuNnpK9mrNYLxq1qpDgktintVEuuTbK9JxxT8uTYceb/JlHikpQPxKaW7nAxn35k3JROlyrV7AltcuTmV9lAR7j3yxYprl7MOTzrWc/Cq1/96rXOu/HGG/HRj35Ufz/xiU8EALzlLW/RbRcvXsQ73/lOPPKRj9y8g1wHxKVQmUJOI8PhzfXSwkyxJc6+y2/UPd5xjmMy1s13azysuM/0ncY/5XljI3zouqVhU9tm9lUrTa66l9JbJz95U0Dc98Lp/D+qzGWQiLIoh9LA7UXCC9BPlyd1eoqyO/HRY073UZvXb3lWvN2riCpjzCqTXrTYbqv9Lqc3ZCk9nI97+3/FfWc/7RgfOGb4ho2hXTMcSw/saFsTrkOVbbK9fN52uxpdQ5+8jSD3uN6noe0DANdG/mqAeK1IRe+eRj69yEXRzomlpBfHpjcIyd2MV4Tn/LsdL6Ijy49ObSjmp5cfedax7SmRw7F3PpShsWqclGnUFqBTcc9VHhhseA0eHmtj1bapurxmi6zaP9SnKYB4rL8DlB1ZeYdlZHjl3PETRCUgrulNxvQgUJ5pVH44+59NU+BQcdozwUVQ3Ljw39rJ1Yix6VsmkqMtOlwrRMZFLourc9Vrv21bNdLmKf1e54P8exZkKp/zEJX9R2E763Gr5ZyQTaHuFcwyx4xl+kzNAsptsLLQrP1E/i/rLZTZZOvIlBF6QCLFR6Uv//Ivx4//+I/jzjvvxLXXXovnPOc5OH36NP7ZP/tn+PjHP44bbrgBt9xyC26//Xa86EUvOtK1ypc5ljbtiFcCZWH2sL5WzQMeXTIO4CxKHL/HJSE4Cpe88fBhmLay/Tkz6ALkmwyamhJYpRhWMXexbXQNwmqfwjO1Hjw9R97LWDSs1n8y+4hNOyv60hOmhXFrvudrEaMPUiZSz2u3AU1e5/YE0NByaFax67Z1PN9A4sNoXJOMLZeU3spoVBx/XoCx8K35r9ey1662RTk/i8c2drOa5WHbW/FOB9/7RC/wZFK+rPASYyBivKI983+wYvOgMZOem/JP7fnF/ulXa/xIO9on7j8rK3dq76UmL2T7VMPsBNAYIAbQc1xNIRne4Yd9n5TkqVm1IQO7lrU4GOf6Kipp98A0+VtGDdehLCvHjJVwn+G3jTxaCyB1wDa4irlHdN7kTqPQq5UxLsddDhoDtkNy1NhAR8mwWl1d90qoPl3P4uABXlwFjLOq22TW3EaU4USaLp1Fi+P48d6h8w5ouoBnol3sKEYh43J2K/U2r1hKM+s0qjaz6vFyjNvzBq9v9uvwSyew1SfHRRNtz6FpDNlxY+O2vLdMb0X7o9y84n1NehTm+aflI2XHRi0eia4IUHzTTTfhYx/7GP7kT/4Ef/tv/21cffXV+Jmf+Rl8y7d8C172spcFhmTG533e5+GHf/iHj3y9KfOHh8hRWDLCA5oSpqmyqsANkNP0k7AEkKR4ZMDYDJi4OTECkIxu9P8PUjm6Vx1r/o+nTlfaHvqOimeL6sdN9oDXmHnouDEaMgZWCqjS01UBxGt47lbRcSroE2x799ZbrBnbZbr0yqcS+TP9R/ZRJQ9o0RBdS7ds3/7I5i8WRaSmPOTeGEZCCkPAeNIN5zQ4tUAPGDGua4ZExQBZmVkiwLgEj2PnYIIBUKHM2I3PNOOfgb6u5WApjawx+ZF5ysv/JrPoBFMJiGv77G/N+Kg8634Gg/lvx4p1KosDK/JqqD4aEaZDWO7LRonVEVnMOV1Dhm4qc60jSkEGCmBsxk+2PFgpDyZdcADI9o5DHQDXtgNHA9tjfR3qW/V7BRDLVyqOAVa+r9o77aVLM+Xv5AqgIUBso8Tjaf9GGVl9qVOMAAnq6IMS4EzpcPaEzod2EiBOsj/ZytmAgy6nVBJPfAckB5vxjELn1IDxGJWYzfwubePRaQVYYUuPnlh0aYqjfYxqzmKUOjPaH8PdSM3V2seIrQGo3Ely0Lw3afQBYLsrAhR/wRd8AV772tdm257//Ofjy77sy/CWt7wFd911F/7KX/kreM5znnOkdYqBzQFxT5+bFxx+x3eqoMh41qLnWzxYTPF4BwhDy1qe2cBY9X+Icrkzflzt+yoaVGSmuSme4HWo9HKNtTMZEAMrjYEVhm0PEMsuGyUmjrpl2kNetcC63f6XicbSv4Yrhub7enOsLSAujO60TAqF9cLLaJTY3wKYEX57me4Qf1cB8djYLA3gUR4lTDboB4zkjcHxkCFRA4JcbC+VemxoFTiuFuux1y23TaAxkJMXF1mjUftsxt5PbUyUgO2EktxV5pjCcJqmnjcSlarqSSNDMwM8riHODkCHAIKR9pVPne3YkPbstTd4BhuR2gZ1YAyYoVaC47Kja2LzyZlBNWAs18sccRs8tZWR7pHfq/TtUalwPNaAMSD23dEvdzlpXUAsjqrSmaWZjkDxrMnotqA3rTPZqg32BO/TbM2UNg2NFodrrWm3cLjAsWS7DemzsWvLefa32XZcoHfIpq1ONRzilwGqOYvt9xowLrs1foE1nkENGOt1pzdzFLoiQPEQ3XjjjXjhC194bO0xkuBwawhYSaN2xOisAS7/Kc2VCIYyJQPOIUoNpN8SL46GOHkGO1I51Ou3VfDrDpwxxi6PgWFy7u8bJWtb1hh56He46HC7lklrgGIdqoGGIWOgdkypnGsG+qoo8ci9Tjbe/xLS1BTMIcWeKU2yUh75eyoM8OS4EkMdeTQKSHwKFAZ8+s12bGzyqtRJkxttYR+NjpuptNJgHuIPrnwv9+v/IcAMdUqs7mjxX/pW9nWI5HkZebE6ba84f6xvNQOmYjBVf1tAfBxG/mWmzOheMbCHUjdL6qUbg2CN8DJaTOJU9sh0aFawEsirwI9cewqt64hM6afG2KsBY6AwCqXhvG+TAfJYtHgVP9e2lfuPY4wOvY+a7iz3FbzS452x4bam3MyLcJ1sfWtT74cAsdCqaDGAfKxEXdh3MiGbesR2TgAnHS52smRVStSWAbWTZaCtB5Dj9Va90toYPwqtK+83oardvwIQT7n+AA9kU4uMXaAZatr2ige54v2prM9kTAGMy+tcZt57QAttHTft7+/jtttuw3K5PLY2y/XbNqF8SaaBdWiNkZ0V3SI266nBpGIW66uZT2aAb0pDwmQMEG9ymSFAvMJYuWw0dC81w3XVB8iVsdlm06ZXFXiZOsdtHbpS5g3XqKbgxypNj0WiMqLiWVPOg6r0bYEfWzxrrPBWrwAeDwNiNXyLnSv631tOaAqtUGKjy71MOH9S1KYHYM3/Gk+V+4Dx5zj0u0ZT+GLgOfccLWPXHbsnOT9r4wpgWMFwhYE9VsxHTxUeHWrb8kqZAaDPktP64cqrlgfT/uwYQGYtVV/LUWjK6gElcNNinCi322PzTmZ2BerHpO0jfaqBx9qYrD7/geuN0RiPl8fYPg71w97DhqS4Te0b0R/FduCK0qO1FRssL9b05mgWB2BAq2wweq32iQiDfa6zq6+94Adgmi1UpQfDaTFmQx/juKkub1ajdfmisO97dTRQGf8lGOmBk5Fze/3t971qj+iYG/gckU4kKL7vvvvwv//3/8YHP/jB6v4//dM/xTOf+UycO3cON9xwA86ePYvnPe95+OQnP3ks198UDAM5Y7uCuUWgqGDpCRQxxuO2CIBRGtqV9X2ndHlSFEYPRh0Ql8dsSjUlXD1uAvNbOipPlNcbM87te6sph9heVlXPNhW3X27xfSUp8iGqebPHjO21SN+h+Y20LQDe9G4TADZGuQHRXBrqpeGp7Yw7R7Ibzf4PGGnHBIyBAWU0dP6q48rnOtRGzUge4r+h/mzCTEOP4yjGzBhgqBn98nWqXDxhNFQEr6RgiK/RsB2Hlk8LXlQ9GI9TR5XyauTXsvnCgR2+XB6BWTX2x4BxGf2UA8zvyeB4yj0Njb2aTqxdb8pn6LpVXVs6iir9G3mmx0FXMjBO8/frUxhWzfEfpdJRgaTPrH5UHWiuJbZxzVauAWPUxvgUWnFKdR7uccjcy6FPpIkx3TtqR69ot7QtasCY07Hr8MC6xytV8VPdLhnbty6dSFD8i7/4i3jKU56CN7/5zb19t912G5761Kfif/yP/4HlcglmxsHBAV7/+tfj6U9/Oi5dunSka1tBYv9vShYEZ0o3CguNFhdGeVrep1+oJ1P0lMbxRp7bGpV8Z5/BGMNvQqOMvKGxO7UvaxpnVUOj9GBn77NfZn4oSryJ0J8iaMpjTnra1yoayuAoje0j2y2G3/S7KdhTGt2l4yrr4lTjcB0aeo8VD22VJo63jYBx7RyqHTfQh3WM6qphM4Uxisa48ll1zhRadQ+X2ai/3FSmTY/N+a8V3ipJnMUEVMBgkp2p6njhuMoyPKDLNKUMj8q1NjW6B2gsWjwVGOspQxGTYiwNguPs95DzZQXwLI+x119Hnq3D02NAvMInVTm1AbuW0eLqPlw5wHioGGW+bZpdkAI5dqN8ePg7APiwLJNQCYKlqfx6xe+VPSwbmLjtctDY+NgE35fRYWC1zj0mGqqrUS5hyAP7+g2OXGxEZmWbKf8cJ51IUPxbv/VbcM7h5ptv7u17yUtegjvuuAMPe9jD8Ku/+qu477778O53vxtf8iVfgj/90z/Fy1/+8o2vaxU40FfaeeR3+M06CpX1qscYhV+NFtuIlAXGJp16ldHIVhitS1MBce37MXjCzIXN93LfhPOP0o+hVIzsfRVg2PbLevhLQCyH1N7RhHfWi5YOCJ7a9nXW0jxpNBQlXjVPcXXKTsF/amT3jW79Dgwa3ZzxJ+cOK/N/ZdbGGs6nuuKZ8H5rY7x22FBTk6JPFT5eF8AOtTsWiS6vGWmjyHrl2JXLWa2i4tmvNRfyBNI6042G1rGs6cuqjgQynVc6jRNIhuFRHn7dRVQqXHfSrQzSUYDxqqjxWDbBZQHGto9DMmPMJhkCv/batbZrYHgVIF5Xnki68NghmbF/5TBmuUZ4LavKAmKNHhft1FNYxYZBJrPs1KNMFzJlaxVLdLgKjgd4JWyY+H6P4uR6IF7xxO5VwTDQ54ve/gl6RO12ef/5bwyN+xE7f2VUeMp912TWFFulpic2oBMJiv/oj/4If/2v/3Vcd9112XbvPV772teCiPBv/+2/xbOf/WycPn0aT3rSk/CGN7wBbdviV37lVza/cHzmkwoPRMqAcmV/AMB2YXKr6JELFwXE1ki3H+4Lmxogvhy0jowZAsxT6aiA2F67ZODatlV9qQJk05eKsi4BcXbe8M+0fUQA1MbmkMfuLxNNL7Y1bZCMRodWGN0wRjeI8yix8HGlLcAA4indrCio3j4cARgDkxTOJJAwNM6HgHFpbE+lMaC9Lqhc9YymRt5rfRvaPwSYjmLIPUhUpk2PrYM6lDo9qmuHDD4xwMn+RqrFYfnV6ksAMDKSVozBIRkxJbK8ETAuQEJm3xXnTJ5vXDMyK31aS+8OAdlVVJ43BrCHrr8mn9QLog0fX4sWl8D4pINj6e5Y2rTn/vapROW7K8ei8GS2VnHqiyNGo+A4bZsyr1jsZc26o2KpyzV01aAuPo7Xe0RxPug4XwWIj4MGgHEVHE+9z+NQbzX5sa4MWkEnEhTfcccd+Kt/9a/2tv/RH/0R7r77brRti+c973nZvhtuuAFPfvKT8f73v/9I1x5b2HyMBBxbz5edO5GlUFM/Wkw9QCxCpQTI4XhN3Sw+GZXCZFL0aPUhgxHjCbRxifrhBqcdtw7zjl4PdaFUePNL49ymTZdR4ikG1lGV8PCSRUdq9kEhxsAc42Lb2s/MvKNVRncvImWAMZOJJhsDPvP6lmBOrj+FMv47JmA84fr1FMWKs6j6fcDgLo+Z8inPPapIKYXnoECNu1e9pomKezD162Tb21WqrkmM1Q7msWrNVoYOTTMqwa9kdGRTHZRHy4vkzup07Vp/Bm9hlNYGxrFfvf123+B5I9feFBiX7Q89h3V5t9pGrZ9lH4af51D7U/VA9ewrWFdOqTDd05mwkeN+m2K3pg3WPk26rlfpnQEwoYvLMkmUONnHbNrvj/8jg54xXhja/iDK4UmAeIiGgP6U61ZtiPKYSsM84bMOPYjP/kSC4gsXLmCxWPS2v+td7wIAfP7nfz7OnTvX2/+oRz0K995775GuLYq8TM1cJz1sDOQMRYuz0L+NNEVgnFKpy+MnKp8HWqBver1RRb5pZ45I1ilRbgOMEQMMAmI51BpFtUtNvMfJiv4K8GpPoSH+G4tACQ2th5p9rxlXI0Y3DPBNUWLDwxhwUmXjZrjP9RuZcMhJAMbZvoHjphrbtfaGnuFEY2DQuJ0QFT4uw7haUbN3zMm3wqdEiYfOG7q7fmSIc94qDfCoM20WR+7IQuJdoMdHVMrvYnu/f+u9l6MC46NGjdOPfN8oMF6lh9fh2TEaaqu6bQQQ19qt0UT5mEfErkBgzOlffU5xfo9Da4lnVHGAjjurOOlL5PLBgdG4UI2gnG4ojqrw3VyO1ixKauVFdX+818tlc2547mRAvI7OXH3R9JX720pgK3blcQZrerSJjDkGmXQiQfG1116L//f//l9v++/8zu+AiPA3/sbfqJ63v7+Pq6666nJ3bzIJoxNy5QYA/WixFTBQRR+OBQQcozxmBcP3No+lY47RmtfJaIL3aePrX06aoqyNQWV/9wDxEDgY27aCxoTS0L4rHSBPfUob32dxmo0WW6M7B8lxW1klHnIs18fRUSizYPLGjgUYr3DsjZ8/8ntKJGrsM6XdGk15RmOn8wMLiK8EEhN1KEpcPWeFzLIk+rG/sWaAp+3lNAabuZEBY3O9Uj8ft0NiFTCuAvOB/uipE6PGo/OMh8B1sW/Q1pjCs1P5uda/Wl9wPDxUrcWR7begIAcNVww4jjTGc5ZfJwGdUp+NOausk5gJXZxXLFmUrfM6/jWzEsi2WZAs19sohboGfqVvx+kEWnXsyP4jA+JRB/UGg7aXRVU55HIHXla9j3Xfzwo6kaBY0qDf9KY36bY777wTb3jDGwAAX/EVX1E970/+5E/wWZ/1WUe6tk37mlLIx5IwdFlAoJZCnadO2++FMCmBsW5HPhimKJuSBl315pAqgJvY/tTrbUqXy5gcMwDstdcExLUo8TrG1yoAvMp7VyvSdSVQ2U3Ll9brPVQopCQa+kEj/0uj20SmJD2zXJ+4euFVCnsd3hoBxsdC6wDjMcO7/F2LRE2VXbXjxiLQI7Rq/B/3HP16wZr6c7sSosSWhqpLD81hXIvUAM5/J35MhrAC4XJ+fxYpJrCphGvfS62K85TsndKIHzumdl3Z37tmpmc2jxqPzjMeBddH4NWpNNZmxUF33NVmAWwkP086h4odK7SKD/N1iocyrKzzxrwba7PKb1sYlgnsgWXXaLsOYUw2xBotds5X7OV0LY0WT5GPtk+ljQbkfQX605tW6fB1be8V+wdt7TFdmm0fAfaDF806kL6WXRmJGqdzpkeP1wbSg/JhehOTL8V88kzj//k//yf+7t/9u5jP5/jGb/xGXHvttfjlX/5lfPSjH8WNN96IP/uzP0Pbttk5H/rQh/C4xz0O3/RN34RXvvKVa1/z7NmzuHBwCbuPPJ820rRnzpUfNtEjPeFosLM5tBwYvcFoOrPy4hPoqIPoqKNl5fUnespOGm3av1oE4EGgxW2fAdoG/tLBg9iLPlX5Ejl/ATXgYsCx2bcxzw0eM/A7U8Rl30o6RsfTGG3a5onTEH+JaMU7Wdz+adAJ5su9zzqv26xuS9sm8mnvPNSBCpff1+BROdwYy8fifBh7h0dsfvD0yxWZuRJ5/XIrzoExsrjtMzizu4f77rvvMndgPSp1Zi3puG71Fw7lGk8CE/Vn5aW4EPRpyGcFaj0I4NTPIXtZv46N/aHxm23fYMAchS8eMMPuAbAjTrodjqPrzHb1IQ88Pf3pT8cP/dAP4V//63+NW265BUQEZsbe3h5e8YpX9AAxAPz0T/80AOCZz3zmRtc8ffo0AODGM9dv3vEtbekKpY/efUl54CTRli+39FCmj95z8WTz5ektX27poUlbnbmlLZ08OqrOPJGRYqF3v/vdeMMb3oA777wTj370o3HTTTfhMY95TPXYH/iBH8D999+PH/iBH8DVV1/9APd0S1va0pa2tKUtbWlLW9rSlrZ0JdKJBsVb2tKWtrSlLW1pS1va0pa2tKUtXU46kYW2trSlLW1pS1va0pa2tKUtbWlLW3ogaAuKt7SlLW1pS1va0pa2tKUtbWlLD1naguItbWlLW9rSlra0pS1taUtb2tJDlrageEtb2tKWtrSlLW1pS1va0pa29JClLSje0pa2tKUtbWlLW9rSlra0pS09ZGkLire0pS1taUtb2tKWtrSlLW1pSw9Z2oLiLW1pS1va0pa2tKUtbWlLW9rSQ5a2oHhLW9rSlra0pS1taUtb2tKWtvSQpS0o3tKWtrSlLW1pS1va0pa2tKUtPWRpC4q3tKUtbWlLW9rSlra0pS1taUsPWdqC4i1taUtb2tKWtrSlLW1pS1va0kOWtqB4S1va0pa2tKUtbWlLW9rSlrb0kKUtKN7Slra0pS1taUtb2tKWtrSlLT1kaQuKt7SlLW1pS1va0pa2tKUtbWlLD1naguItbWlLW9rSlra0pS1taUtb2tJDlrageEtb2tKWtrSlLW1pS1va0pa29JClLSje0pa2tKUtbWlLW9rSlra0pS09ZGkLire0pS1taUtb2tKWtrSlLW1pSw9Z2oLiLW1pS1va0pa2tKUtbWlLW9rSQ5a2oHhLW9rSlra0pS1taUtb2tKWtvSQpS0o3tKWtrSlLW1pS1va0pa2tKUtPWRpC4q3tKUtbWlLW9rSlra0pS1taUsPWdqC4i1taUtb2tKWtrSlLW1pS1va0kOW2ge7AyeFHvGIR+DChQu48cYbH+yubGlLDzh99KMfxenTp3Hbbbc92F3JaMuXW3oo05Yvt7Slk0lb3tzSlk4eHZUvt6A40oULF3Dh4BI+fP/tYFD1GOZyC4EBwGwPvyvnkz2o2F+2y6Htwf0U2yPAOQ9HDCJ7fYBB2l8GTetj7VqT9w+090BTrX9rdY2nn3NCbvk4aLF/CReWhw92N3okfHnrhdvTq62845JnmSv7Vo1tDPAG176P8OeE62RNUDyJcPxjampfHuw2a3TS+WuT/lH/4Y01c9L58iMXguFR05l93TjMo6UuTby+hq7clA9TF9L/qF/JMQhBv9JIg0M2A1CzG9IFs11VuSZfNhhsl4NPNxnzD5S8sPQAyI7F/qXLf5ENaJUtO2jHAtPsxJ4+HNCFle9U22d2ZOpV+NAFPnTEgzw4LltCg0P2w2QeGxvHhSz7y0cjN3+U2z3qo6ro06PqzC0ojnTjjTfiw/ffji/4uX8EzwSODCLfPQOs3wOD6W9v/wPs3RDPA0jChj3AnsCeAP2EfWCA5LePZxODWwZ2PWanDnF67xCndw6xN1vAgXHoGyy6Boddg2Xn0PnwYQa8d73+sQ/X4Xg9cATS+ls6bEB1JugmjujJwmSYaMq1xtoqbSthJir22+3GOErbwn6qHS+bKox6XMSbGEcT6C/+xY9dlnaPSjfeeCNuvXA7vvg/fwu84UkgvW5v+dLwahfHuY88IPwq34H0rtiMfc+U8aXwySB/xvMofqd4LFV4hh0Ax+AG4BmDGwZmHtR6UMOq/C2xvV/5bvhTx8QAb/YMhEmgvzhu6Jhae1OoxiO1Zh4M+8L2bUA+ZPwv4jn7XhwPc0xxDRqQHUTArd/9ExvfxuWkG2+8ER+5cBue8opvhgf1eTPykeVVLzw5wqPpP2V6SnWV6Enlx76uJI/Ei3KskLCKHVcU+bFl8IxBe0u0O0vs7i6wO1ti1nRoivFak0Fy3/aYZEcYPq7YEGx42cookUnM1qhPx4Pza2Y629AwMB8mGuO9qTpuhWzYpF+9rgxdYqiPA8f39HbGl3mbBOBj/9//hBuvevjUbj5gJLbsX//Z/8+gHQvkPJqPub4tW+VBqw99tNFKHpTvjHCMfoyNSVEvCh82QDdn+FMe7swCp04f4MzuAXbbpepGkSWeCV2h/ztPgzy2kr8K/dqzjeWYMft4qn41JPYtTx2zD7ReHOGN/HvfHh7VnWY/9X732802ZXo6ff/o9/z/6vcwkbageICIOFM2jgAfR7QD0E0CacYwLSLFapjrB4mhxgDxjsdsb4Ezpw5w1d4+WufhwFhyAMBL79D5JDCsoTEIiH0BhpH3RX8X91S/59WPZd1jjwyIZf8UQcLUFwBTz5XDmS4rMB6/+IRjrlBHpiOGZ9L/hPWGG4AMEIffVgmS4UlE/oDhTeT8Gbfl38MxlClNqOLnRgCxB9oAiF0ExI44H3u2n5D+2Q3mXir8eVnB8FGdM5zkWtZ+2eyavNc7dyrZa1gZINfX/2Efs1Hato9r9ncMEF9JVPKmbAMSYJRtq3RnDvIoH9s63ktdFT5kv1u+1LYBUHqVIE58OWPQbofZ7hK7Owuc2jnELGZijZFnUtDM5p6baEOE7+HaPjbl5Llo29TnV0NEHPh/9MGZ52Tvt3dc8fwH7k/OrY7Fmp58kGiwn0N9PJJMify/4ekPJDnigFnj+yZiOBA8ctvWOoZX0tgxNR6sfhcdily+Ogr8Ex1UtNvh1Olg556eHaJxPoJgN+IYL7o0ERDn5yDZxptQ5NVph1L1dw8cl2P2KGN4E9qU30sAjIHfo21MB8THQSe20Nb+/j5e/OIX47GPfSz29vbwmMc8Bv/0n/7T0Tzxb/mWb0HbHh3nWyUYUpP7D33wBRWUwGgCwDbKEw7CoJJPHQEw95idPsTpUwc4s3OInWaJhjw8AghexMiwF+BrhICP12dgHBAzMg98DgYqXFiChjFa59h1aGpbGR9Rb1v9nBJIDEiiB0BLjgrpdZ7p5XgHl5mEx1zxX74TcY9X5Zia0le+5GRUibe46rASngAMnyTDO0WnVgDilsFzD8w9aKdDM/doWg/nfEjVLIdb4cHWNu39FMawvSfdXp5fyh97bHlM9n1ADmxKx+HwKo/dZGyX52UAbKQfazyLWpS4t+8KJMmLsjw5dj+T7rUEgDKmezopyvLsd/qugHjokoTgpJpHQLy3wO7OAnvzBXaaDo3z+qEoX4g4297GjyNGQyGRszHyqNEpTgxH0DZcPDa1W/uO9Yy+IUBs5VntnJH9g2D9iHJgZZS47NfYPaAi92wbvYPRGxM9/cp234q+nmCSsbb6uIkN1oI4Izyo/MdBX+aZHAB15sOAbwDe89g9c4CHnbqE87uXcHp2oDwmVGZn2GzOjusR8CFALDq2B4jZbLf3vur5ZA924nO1pwyN2bHfDzZtMsZItnPxO29zHUBM2OiRK51IULxcLrLrn+oAAQAASURBVPHMZz4T/+7f/Tt8+MMfxsHBAT7ykY/gP/2n/4QnPvGJeOMb3zh4Lh9ResnDHALD2bHF/vJ3qcRVaKvRXR5DmaEdGmWgYfDMo9nrcObUAc7uHmCvXcRrEJYGEHc+CoSYLi2p3TYtdBQQZ9/ld2Eob/q5HLSJ8XsM7WRCcl2i4jPpeiNg/CjP9nK+mweAak/FraXcC0PLjH8ueQJI/JmlUafjqHyeFgzPGDznAIjnHm7m4ZouA8N2XA2ldIXvw4C4d4/Z73J/8SzKY2r7Szoq71cAf/Uao22sOGadPtrfNWA88KxLp8sqGjJCr6QocU1HTjHAa1STcZmDSjdS8T6gfKgpm7JNjinbjWBTszbmHu3uAqd2D3Fq5xC77VLBrHxaA4AzIGwAshwngFfOpez/NGA8Rv2oaP+5pWc1wrfV7Q8cMB5sc1W7K8Bx9fjqweW5K+TlWFsnkEperI2/YyHhNx74LmnTxbbyOzeA3/WYnTnE1Wcu4uF79+OMAGKwpnvLtAtNofYCelM69dSUaZEvQ4A43WNFTx23U9fQJGD8l4BKQJx2cG/zECAOcvN4dOeJBMU/9VM/hd/+7d/Gox/9aLzmNa/B+973PrzpTW/Cl3/5l+Mzn/kMvu7rvg4/9VM/dfwXpuxf+D6gzOx++18pM5AiA1bm8EIiyBJxKhnSBaXtTi9x6vQ+zuwc4lRMJWEmnUe86BpNm+4JAx/ndgkQl7mS2gcUc0TQN5IfSKB7HDTWT+HBlYp3xe9NqHbJTRl5FATQ8OcKpbFo8Tqk4x5WYY5EiQ0wth5xq9QVEGcdRgTEiIA4GN9u3qXoMBX9AlRh9/qs3+uAuH+jEwHx0LaV7VeOXwU0pxjXxylX1pFTtT4DuRxEsa08dgO6ktOmhWrRYt23Bp9Wo326c4AfizmKPcfUUHPRYYUZo90Nc4h3ZkuNEDtitBSMcQdGQz77OMT9BjhLRFnBMKDgeAowtlRGiyketyoiU3XYDvHmoI7s64oHBBiv29aAThsExhOAxuWq2/GAEtXt2IFDs+PsfwDj8t/+j9+zKHEGfoVX80ix69KQ9i3AZ5Y4f+4iHnH6Xlw138fcLQEgTBGM0wQFHB8VEEP3hf5wKWOQ2wujOnNNHTBlWuDaNuoDRUe57hAIlt2D29Vw7wHi46QTOaf4Na95DXZ3d/G2t70Nj33sYwEAT3jCE/DVX/3V+Omf/ml893d/N/7JP/kn+MxnPoMXv/jFx3rtck6UHxiUU+ZGAYbJ7G8gMKNNUQZyBUUIBXlaBu112Dt1qBFi6deSHRZdo/OIvRYtSZFiNpFiKeylXjG9fl8QZP2JNGlu79BzuBzpgauM+tp2Mr9r34H4DLjYhkEmnkxj5xOOR8BN8lyaY66QtE2dR0xhPpTlTTE6PaD3JseNPdYsdUrOVeWIHm+UxXzUAChJbC/H8C2AlsFtBMSth2sYNAKIdVuvwyse0ipaZ4yNAeIacFzVjlxfth2XIlvF773tIxeWl2llhfSVKd9fyosRPpp6q6VyP/Ep1bG/ypNgeBjdiTR3dt3XPTy33+hTRp6xUeqvop/5No4OZ4bbXWInFtWaR0Dcku854Ury8b9jwKOQScQacShtiPRshuZ3hoG3NjhbBV5Wni+dWO+yo0Q8HeiOHbdKZsi55l2NzjUuji3vPasLEq+d1RG4Qkh1I5d8SeisbUcrxluND+VcG+QRXVk4YAQcW5BswTEI4BboznicfdhFPOrs3bhm5wI8Oyz8DIddi2WsmSPFtSQz0hbsywuFTSxYJ685ky3U18kl+F3XkbuhOCem3H7u6R8cL88O0ZCeq+nICk3hnXUKVE5tc106kZHiP/mTP8GXfdmXKSC29MIXvhD//b//d1x11VX4wR/8QXzP93zPsV1Xnq94bnV74eEtjx98MZnxSPqxlfxslDhr2CEW1uow313gzO4BTs0WWmxgESPEIhx0HkUWKU5CYi1ArMZGYEj5VL3NtU/t2Uobl5M2EEwb9WmTc6acMmTTTPBubxwF3vS8B5BEjZVzhO22od9DpJFhIPElW2O84ItCwWeKHwCIw2GOw6cpAPGMtaBWdZqF9APF+z7Ku6k9Cxr4PpWsYaB6ilZ+ynOqsuK4xmFtCEwZ5/bd23bs+ylkej0iNXINHcPx51D05qQD4khTeLK2ffIUB2CQH3U+/5DuofpmbTZWfm/nHXZmC+y2odK0AGKbCt0WqdRj9wnUZfZgfZKBaLFNp16byjGs2wc+5TFlO2O0qn9T+j+k42oyY8zWqPD5YPbBCr06DhJPus40vIn62BvKepxMhYNKA3jGSaVgWBzJBSAWoMwOWJ5iuPOHuPH83XjE3n3YcUss2eHQNyEj0jcBCItNyzkgLqcMjkaHfQLE0k6SLQOAOBuLQ/xVjIsRe3gduuy284NEg6nTZtMDCYiBEwqKDw4OcO211w7uf+pTn4p3vOMduP766/FjP/Zj+NZv/VYcdS6xUFYsBHXFZ4XJSkGiDAkDhiMDSuTJHh4NalXYOx1O78Vy9OBYUCumTNt5xEXatC5pIYDYMnsGyJFSuLW/WA8IV++5/jg2Ye5qlHlMkds+1PpZGruoHJN3YGJPB2id06ccOxFMlMWkysJSo22eMCoN0dF0sHWMVeNAkjGQecPLJV9KYETm4xhauKdBqAXQMNAyqPEgVzh4h97FcVKRaqR93oQKvqkC3oFP1blm2xy61qo+r7qXoziLbD+myooNaagK9Ukm60QW6i9GWJwz1WkFqC5LGxPvUenU1QsE59RQzQaSxgngluHmHXZ2Fpi3XQaIx0CwXX6KmXRJKru8jey3UeKhrLOSNGU62xbubeOxsWrMrtKnQzS1P+v0ex3+GrRB+s96ckq1Oa6cqnKlFdyqzynmlceMUim/LR+yBcfIlmxSMCz/ZR6xA/wcWF6zwCOuuQeP3LsXc7fEkhscdC32u1kGiLvC7vUaDEq2r4LjaAfL8kw2OpyyKNM9JFugdMTJ/RbbUewbe2byfI8D4D5Y4zCTxxPPWeWcl02Kgtls48q2yweIgROaPn3DDTfggx/84OgxT3ziE/HOd74Tz3jGM/DzP//zuP/++9E0zbFc3yo/AcaaCgbowLAp1EGRkSqvXtGVHiMZIxvIFTgx0ASFPd8JaV2NC+hZUqbFW6bzKSACweWVpsWw4LIfZdQj/aehfUMk+8uBypVtQD8d5Kg0ta+2n5z+Ewb6M3RfKygvBrDeuWvTVOU/cEwmXE64wl+17Es5pUGWMemRGjpFcY1SGUaHlTXAyYwJrj07A5C5CXwMF9Yf3pTWcWJUU7KBXDEx9Xhgcpqj6qgR0DhGZPi/Jh+Y1jOgj0KrgLc+D07PCQP943AAY/pybMmx2t822KcTRmXKMJd8CbP80ADlurJgLNVbSPxpC/RkYzydxCjm+BvdSy5+bRjNrMNO22EnAmJbXAtIIL8GfO02ex9D66mX97qKhpbK0aFYIS7vuewAkD/fsbRMe/zl5MlVz2To0kPyt2zX9H3y8k1V2RS2XSlp1KW+7Kf3p/R9VQO0wn6o6lMDgi04LgBwmT4NAOyAbgc4vMrjzNUhbfp0e4Clb3D/co79rsXBsi2CQA7LzswrNnOKV80dlv6WqdKAue8h3TbqKB12rKwExLXnfQWMr2Mje68mu6F66MCO43Qkn0hQ/OQnPxmvf/3r8fGPfxyPetSjBo97zGMeg9/+7d/GM5/5TPzSL/3SsYBiO2cRqCtzWbNYhMnK+RhANLIrwFgvzAYUA9RGhT1bYhYB8WHFW8YqGFxacF2ZPveC9QAxF33ggmmngk1jO05h5gcEENfeh1w3AwOV9gjDhsDEezwSjVo9w6dt4sW+UjzfMl9xyAgXEiDsCNmcqZIYydi2gFinNWgBPCDjWWDl+2dCQALRQTbZgDLAVBR51mEMGNUDgLZ2XRYAHI7IeQEYHns1xZ7Jsso5I6SOqJoxexRaJQNGDT7zvWdcG/nM+QNjrPGOMU2xXynRYqBwIhPrHNvyGOvIKutx9KLCQK4nLai1ekyIyqHEeh7Fn+RNcw7AzGM+7zCPlaZtgSwLhuXepOqtBcOif+UY222hIdA8lVYClZKG2h9zEJa6sfxe7di6TF+XU3l/Br6vOpaKbSX/Fn2tO4XrwDibX3wFkcxrr9XecEAW0AHTaju21EdseBFI6dJs9pv6G9kHgQd9CyzOMPjhh3jEuftw1ewSAOBSN8P9ix1cXM5x6KVujsOiC0uOpqmCSJmRA2AYKHQ9Uh8GU6Xt/7F9q3TMGCBepYuKw489mLQp1WzjqXbxgI6r6cSxJQyrxx0Tncj06Wc/+9nw3uMnf/InVx77yEc+Eu94xzvw5Cc/Gcvl8liubwts2KUVytSTqestZkrdrFes5Di8Ccfh04R0y7b1aByrMi4BsedUkr6XNo3c0OAaow/2ecXvB4FWCoNVxrBsrwm3QrhvRGJbjESJbdn4Yykhb+5zcH3Gsc8VRrbCbblOcfl7Kg0DYvTHBXGaMyyfzKhKx02h3vvn8arT443xpE92zcIRt7Lf8jzi9/wTxlQwgtJHx1pv3fMRB1zv3lbde62vI8ZKr+8jH9teuW0NGp473N9/JRngQ3znwD2+XIt0nFE2vnqGNQHVVGkDiHUNVA9QF/Vhy2jmHvM2OJ1nrsvWQfVIkWAp8LPwjWZq6SfqZPkv66Nanc2Gry1A9kfSNxP14Zjxnh0/kRdH+1T5rEMlf0q/puiwkmer/Nvv0Mol7PS43G64UpzJQF8/CtkaOWvxae+5V2R7tnQhUpQ4gidugG4OLM8wluc7XHXVRVyzewENMe5Z7OGexS72uxkOulaLyZaA2BaUHUuVZknTzvpJuj+7pxrfbAKIzfir1tPZxA4/SVQ+k3L7EShrYQQ4T1m6bhM6kZHir/7qr8b3f//34/Tp05OOP3/+PN72trfhX/7Lf4m77777SNcuq9zabeLhltQTiUSl1OnI8TUqDUNRGgKE5TRGMF4d0DReC2sJo6dy9NBq0zZ1JLtejQjHx2zlJVb8HgW25bljfewJJ71Aam7kfLYP21x3pSdu5PX2yLa74pzJkYCB9zvpvVfbE4v8JEvfQGWFW5ueKXzaG37RGODa3kJBZoDYF/t7Bnf6L15xjUJJ26oRkf6LEF8RPU5t5NebnHo5epg8jWicyw3KPVkZNjQsCjBM5nlkx5AZWhSO5QJ8U4y0Xv5pBvn/sXldWQQbMLLZCs/KO15FE4DvlQSI5f7LKQyWJwFkEasySlxb4SE5ck112NoYi9e1qdIUeViN8A6AB1yXOzW4ZbSzZcjEaroeKMiWfGGXosQG+G4S+e07vaadOykbbfCiKwCvHd9Tx1953FDXrF0j560CE9KX2v6ybXvclGh35R576dD2mHV0/gkjy4s1HpVnZ8dWKu42ME4zsAjVgVpMS78jT5eO5BsAFCLE3S5jecajOXeIq/b20ZLHpW6G+2KE+NJylgHiZddk6dJj0eFeVWnpu8oWcx96k+X/ifvs9uL7RmC4PP6BGn9jsmHVeZv20Z43oh8fyJUZTiQovuqqq/CSl7xkrXP29vbwoz/6o0e6LiH3qNXmQ4mCV3BM/XmMrNagZUbodwVfxClKjLQ/NJT6wjBFPTjNI5Zttsp0yay6NA1FA5iLvsm28AAQZ2OlgT51wFPxX1pfBwjX9k0d+yLUB4STbVf1cmbkIncY9PYPGAw1Rl4DENvjjpz+vI4ALo2Ak0wyPAtgrLuNoWUdV5mTZOgWRwAxMQ2PUeMJF0McQJg7zMV7EUPDfK/2Y533MHLoqMIgMRISOGbL5GOn9iIClKfK1XhPmtV3GP4wIci+rA9IfLeC17JGV9EQIB64V3UYWHA8dimmJDdXKOt8/rD85+x/edxJpp6TyhjXZRp1VVf2QKL5L0ZsZoAnXRUORBLockwFEFMnx8Zh0zLm8yV222VYc9j036ZGL826qBYMp/8jz2bgHZbnbAx2V9EqXWj3lcB4HUN3qn1Q60MVeAzwZyZTa79lbBR8W/LwhsBY06ivAKBsbVnrpLI8aMExEQe71LZBA8PGytFMH9iP2SenOYAbwM8Y3RzoTnnwmQ67uwvMmg4XlzMAM1xcznHQtTiM2RidpwwQ26mCVTAc+1gF8pgIiCv3uxIQW1NylSNqiB8frHE11J8x/VfyUQErBvltzHbJftQ7tVYh1Q3oRILiB5uywgRAtt7gkNE9SlZYIBpbhPQRkkrQLk9nSSnSQQlLGfoEio0wkH4RR2NTrhF/6/WK/leVDFYz6RQQfDkZPRNExbZxbBAPyW98sOjWGA3cX6Zkh9osgBtbITQoqArhXrQzyZEwxdg/QdRbpxisfRe+BDCJN20kKnxBPUIMw6vxOAXC+j99D74kUrAnTi9yIUJcrk0c+lD8HnkGY9GiWtr+0LUoPjsBxz1grFZgpWPG6MnWapZtY8o+PksmhGJH3j6rkfOAYZBsQdIqwx/GkCvvq3bp6BTpAfbS4s6MaQzfi5xVcaTVim7pMePNPWgk/SrXJwYSOLZ8qedJxsQQIJY/mdFdPAU7VNnwYkcKiEPKNOl3MLQyvNtdYqftMHddFq22YFhToDmlQ1sdHPqc98u+246HDbjyvCnR5o0cp6scpTUjdmVH6gbuynsdBMb2ewlkiu32nCFbowTHUwz6asdHgPEVQrWCd4QcEK+qvyFko69hAwyP1qPEAML8fUKsMs3odhh+l8FzDzfrQMRYdA0u0hwAsL+cYeHDNIVlF9cmLpdb8uuDYb2H3o3Vtq0xDos2Bp2uU+2yKXxIA983oaPYizUn2hTeMrQqCjx1ZYbjci5uQXFBuqQEoQqMrdHtKBjNpIKy/1KqXiljIIZ9yI3yaGlaZV0CYo7bakwu/WNK0QvW6K8xeO31kX6nhNPxQTYZAK87Vm2zExVpBogNJqmdp3YtSfOFcbsBYCyjxLXy8vUTxwHcJNpECG9iDD1IJEpcSFPCzDvToiET20yFNxD5D8m4Fp6zzitOgEoMbZummQFp7TQCIHYCBKbdazh/GuBbZ9yRGIzRuJb4JmrAWL5aQ8gAFLukBtlpITDvoOQjCZe7eCUDjEOUgusvcDTyvYJ/MnlA+b3Y/+U5mbiuRLJLeWGOn2I41xR9ddtoKw8+OfLw7JQXrYPKAxot1mI+616geIyq0ypjsQeIuwSIhUe5BXjGYW3idqnPuQTDzGEucVrlwan+HU2bNvc/JeX5OKPEvVUuhgz77KT43+jEIaO2J79U5qwa6xMLkdr+2t+D59j9RR/sfVhZNiYquHKPQwb+dJv/QaPaVCMb4AHyzCqZalSmTveosLEEDIseJS/6E6o/c0DsgRmDZmGZQu8J+8tW+7TwIVU6AeJUVEtWVvEc/o+CYe1E/DqwfWMq+KoaHR4aJ6WNW+57sAX/UP9qtnHFeZQdf0z38kA5o7aguKAyElXOwRADnalfQbMExolJjXGrBmL8X6ZuRnIxgmJTtDQqbNvWawMyAsXUBZtIMWPYgCy3x+N7oPc4AO8UKsHpEIlRVBju/YhxrtisX0Aux4IUEI1gZfIBpTjS7yFgMnhb5vkPRgPsvQB9ZwtXjh2j0hi6AqjM4Bibt8jEYJIKx2OWEKXPECAGksJXQ5tMpDjud+Z1xFoBEiWeMoZ0qgPM6ynGQzn/K3zJxxyZY3u3Gz9EAZBWgbEak+b52oiA3LOpLCo8WPKi7R9TeEZiuDOCw0AdE6sM19r2MblmT7VgwfZt8LySdyvAmGNnxQmJdatQG5lUAcRDfTlJFAzuPjAujymXhBkkNXYpB3nVY2EiUyOAWMYrENI35x47OwudSywVpZcxEryMTmebjWWnLMVLV4lgZFDJp2X3jxEQD47jbMwPHDMWUa0di3TsyuUHOR2XIsYj/FoDxDXdZk8nezxPAsBrUQGur5RosZ3CUIsYix6tZW2srI+j7wlqw9rosABhEGvadLfD8Kc8MPOxjg6DPbBcNjhYJFAs6dKdiQ6vDYaln4MPx9zzUWygEhDXwPAUO1b6YbdN4scJx0y59tDvcpu1h0pgbB3FtWPGaICf1tWn2/Tp4yYyaSWImX2Ue9WAFC2W6E9V2fcAcUV5WIESjWxEI1EGg/VOS7GtWmGtJMTC/2Tqhj5kA8YyrlVAtcFffs+e1wC3ryNkRgUXcmMZK9q1RrkYJCWYpHRwBj5gwEepVCvMLetRV7ebC9furpQbevxEhl5rCYEhGvLsnUjinmGtGRym/x33C/kAI7cnyl2BHeXPQ/4rGE6AOESmoJ5x4rBMG8VCInAMalKUeIgU9EokbYVgnwKIh4p5BbkSo7JM4eFFcMc+DnqmOv8K6LWAOEbgUsQ4PNMMGMvp8TmwA9DI/jQXVzJuuJSThRHef4CVvhb9rgLiUj70zpOpJskYJlcC4+J/cd1chkoBm/yCY7+p9iBPINWAsVBK0WTlz/D4Gd3AS83mEw8RQ5d7sfxYBcTxP7swnxFzj502AeKhecNldHgVIB7sagVEHS8gLr7Ls8vG/NizNKAPWK0PSkBc0YFctlXqVrlurb9Wr5WgQ/ssTST+TOCYzXWozuSbgtorQl8is2VLYCx8aO1acSAPFiDUdyRyM70v9fnKO3GsKdPhdyiq5fc8sNPFuhsE7oKx23WMw2VaTrVjQtellGlNlVZHGYaB8NgjkVN0LBqbqyfPK/bYgKNmEBCva48N8d8DMeaqLCI2M/ePG9N7csAQj025nxV6cvC0Y3BWbUGxIUI/TdMa3WXhLREm6m0DJbBUa9wOBDEgJeIU/7MajHH+xwAgBpLyyQeCAcZ2LItAU2Fm/gM5Iw8B4hIEjg3soX29R1Naz6WGrZxjlGcCwUhVDkvD3AowSl+YjKGOYGRxLJREIDBz/T5qDFuAE+l67zjkBtFKmz4TxJXvPUFcNx6yC9rjrDA+wdQztgtgXKZopnL9/RfI8U9ezAeD40wB8RLVFE013IjC+uUN67JqNSFtt2kRvAFF3OPh7LxMMwfZVYAvawiE64gBHAygMBU6AGT2piCffW7KX5QDYjt/zMyxVueUvQ8HsKMIiDn8jzKRKbQ56mSz/7OG0/0nK6zYVx4/Ih/sNUOTBhx7JGAsBrhEi9lsW6GY5f2U76hWcOukk3VS1YCxZ5N1VYxvRyk5Khm98g4rPCnC0o5BAcTCm0V0mDrARedVAMWA2+nQNh0A6BJLAojLIlo1QDw0j1i2lpWsL8v7lP4M6gfUdUL5PO25g/zHPbtmcNoG+r/TmsDJ4ddfCgkoZXF1ukPZtTglY3R6w0QajUoV+pLXbfwBJjsWrY4EoFlVQHisOiXQ7Lffva+Mn0wfpO1BzqcOMAE8C4CYdjtQ4+Oc4HAeM8EvHRauiddDig53DhYMa0FMaXjw5jn/bynq23Q7rNurQZgxA40r30fssYHu5F+sk6dUw6UTatT+tobDwIGD7E6jv8Opxck13cf5g5xajPLBpi0ortBYNMrH/SJMACRjvBw78u5dMQhiKgh1BFjPtg9ArJM5GYAqZLsEhKX8mmYA1hjQKp5KUSH1DJUKxYJhqxyn6oWeYTPCpBrBXN14DxCXILl2fdkUQUKcaBkUq6Z2cl8oFQJqvFPmcY2AInVuSBcnRIvzeTHm/5Dh02vAdgSTjPgHmwhh7iLYVSvdAskQZcqzNvoRGvlvtDaM4FfdFHlEIsFidGtEivIoFKVzFRSL5WGithYIiUMrA8Y14r4hnj+gaKIZQFxGJS04DtcJSspBhkQYB6xjwjZv5IQFxJ2p7GuLq3B/SImxxAxwE5wHEP6L8iVLo+7dIyqNmn5ysb14fpkjzaft2mQFfGV2iosbBRh7hj48a9iscIL09+XHZO9s8KyTQZIllVMCxsKrdvmXaSnUxX+zPThfijn9leiws+B4KR0OKZyzuUmbjmDYpkoD/QytWneyZxH/u4znxt77lKJ5dT1eIy7G+KBOqLWXGeYrdLvIFR23sn3M4scwuCj7q/KDMrA1mvpNSOCYhC8ryKbSxOjSeFw5Rp2Kw+edFJoa4En2a8rIEqddBv4zewPKjxIpZodsChEY4DYU1aK9JdzMB2DbmQ8BTA6+abBA0oss63tH4AxTbTqjwrG4OrMof3fZ0oQWGOuxVJw7AhiNLT2YiVTomZ65exz2WHn+KrtSHtlUG5LSsclBDGPbr3gHE6nUjQ8UbUFxRvVFzq1AsSmcNhqVvf+Skezol7nDHgkQL1MqIowAYCZ0SMo5T5euDZY0IEPERyxhuS6Z61MyMgBY/UEcI6ZUNC33Q8XvVcTlNRi5vqoYsSsZObUpzy0GK0LXBoxzOTWLoCHcL0kF4VXGufmeRYkpqZAyilfr+5Bh1ANIPQOHCgVVPN8pMqQnyE4+CTAGkL2HMlpcS9GsRo4Lp1AGsCLPJAA4bICTTHsAQqZHE+YSw0QDUx9gfiMDxhA+j33LUsWsshUHgETHTdtEDOf6UcgyWiPgmCPPsBxMIjsMifFjIsOuFpkr0qnTjSItxxHvyYHgBYQTxVTuyksXWVO7nwlOpCy1zTjN1Hkmz7S4X3lWEskOsqGSSSICww6tIdmButzuVaAevaOTRKG/ebQYUGBs7pM5X75wcJ4t0NN1QlnFdzv27McCYvNBHH8882jbGCWOhbSkqjSQwDBiP8bWUB66h9r7rcv5tF1tChSsUzhQew8LgE1rrWaA1YzeuK8XfRoi1XPJLuhFj8vu6XgeAPc1fcXIAbF1dMuxqmTDfibky7sNZXjZe1lBeYaOOVX05Ql3JAN9vhwL8EgNDpv1WCVOHyvn1ekp6jke4+cMnF6imQVPpKRDS2AIDGABdOTAMwS9CYSU6XicRojtuNZxG3RWVs+hahsbIstPZtyUhoDoGPt77Jnob8qeQe9YuYQdV/mpozpklDYcl9WK2ROayp8bjD1ZudFjUmxDjqxNljSt0cag+B3veMeRLvy0pz1t43MPDg7wmc98Bjs7O7j66quP1A9LhLz6tCURKBo9NsKkWtDG8KwasYaxg5GZFLsocm4AWqbS8wCy76FNrn6XjpdV9tTIEC8dI81hFqWTDg/GPGrAmDMjdVKF5ahAxH5MQg2G6QphZDdV20z/Kd6XAmJr9PqB7pH5OIA90v3Kd5K5l7HjNe+bfC3GSkotG7gJ4x6sFVcavG2rFOQ5VIwfaXuQxClhgfEJJ2twAwjatwTG8QHYaLGjSnTKgmF9FVE5iuGtINga4ikyao1wGW+eEKLEbSywFS83FL3N06HNzVpALMaDOUZdcJXxZa8VfrNuLw0BHQAOcB7wMWobDivGFaPvGFgmueWW6Bcei81IBCFeKrxBQphvLfdpDPeUCpnfX22N39E1lq0hzX0ZMWpwx4uwAQLswvhguRHLQxzAcbWCrTaXy+08zV2Ms0Q1B+1JoyF9qfnKlKJRDgxPOTi2lMm3Gr8WYFjBrziVBwCxWzL8jOAbAC2jaTw6H6z3sNRSArpD0Vuu7M+OJS6GTjl2899lbQDmfJ5nCaTHCjDmUWIAPufdahqyquFinnxJhSPP9mfsnlcVDEwHmvctfdUaBWTuwfTfDhGKLGiXd7O2xggPbbIWeCaDTzR7cm/KEdAHxqIrU40crtsOxtlC0X7V8RZVFLfxgcR9fs7gHY/ZzhIghu+aalCGCcDCBUAuNqeC4nRsL/PAhfssAzbWcaOHF+OPjA3EEcRlUeNVQLhGVqfob3NNzg/tEYlpZsbtkH1WblulKwbfa+V7+b92Tib6AhOunMLAJoVav8nTHudVvdYAzx4XIAaOAIr/zt/5O1hZun2Euq5b+5yf/dmfxctf/nL83//7f8HMeMELXoCf//mfBwC84Q1vwC233IKXvexleNzjHrdxv1zMrQupJWsa3gVQEoAZTgDgXRYpFuPSWcXeAbQgsHfw3qsxWypRFWK281k0xRjSNmXFx2vZOYDZAwg3lA1ZJxKlGLjZ94EHGoWP9bCmAVyeFBmXKr8LRk2GLTJjV+a4UM3olavad8NI6xQIs0ahnIHHITICmWAMg+xd9GmwuNKQ8MpOlk9h7EyN+PbA0cmnWppmCYwlQiCSZbS4TRlRQTIeawW1xtIzwYBvEQqMtBwra2qjVUCc+kfZnK1gfIcvAoizKryUxk7WnDVqTPvlb0nV9sr3acxTjBbknYGmqYq8cBYQLwMgDpFj7s0pThGEcB+eIv9JWroPc/qJk3Gi3ZL/YpiXY6Ac78I7loesjFBZMTLNQi5hZY6L4BicTbHInGYVrTwGkLNuF4D4SgDDQtpX+9yUAo/q1AaJFsfzyvGpVNmkadNl1kbUmyUYDr9ZHTZ+BvAMwWEFGFAMeAOQaxR4Ms/WyvWxkd0TqTeFJvKmAGM2bY8afBIlFj0vx/okz7Jx3Yu0ASQZELqh9gJQzYrqZUQVdkqI5Fb0eHYP5n+p20Sn276L/IvfRQ0kE8VEi+X16KcA+RlSGVLW/e29OZUnjAirM6tAUCcVI+hN0vc60rh9RwiX8C2rx1OGkt/zcKeWaFqP5aKB7yhz8pIPypqQ9Bw38b3ZVVlUdsfrEceCBJxs00p/ezVe1OwhvY3waLKytBlUSzdsvk+xs6y+sdtsl6iyi4rjy0tNMfHKNob6p30p7Uj5PnIxtV/T9aoONpYfxfYNaOVKYcV73ZSOnD79BV/wBbj++uuP2swodV2H5z73uXjjG9+I2WyGJzzhCXjf+97X68dzn/tcfPEXfzG+//u/f+Nr5QZJ3/AWaCzChEaUe6b4xAOqEWLKlHswKgEw4BYE3wVjmSilUifjOrZf9FeUqVCYk0HgCIipI2BJmvqYpRqLze2CcY8mrwwL8cRmRmNUoBWD35JC90GAXHDxSlBIKnAU3EflGZ4h9SNWtntimLtwnG+sCEz3xFEQh/km5nS5HQOAqfxN9vjcAJI2pqaA9oCR/Q7zG+b3EGWP2hhANQF8Qqg+dxEo+VMK+UgKdSogYkiUr31mIrMZCfwuDW/W0oTt72iYcQNwW/AoyacvI8qoVCqGhwSIy9Qx9YLL9prcya+X2YDRAHIyv5dZDf4wbnMZQhphLQqMxbmabpEAsVsWPBf7wk3gMYBCdNiF41hTJCuvtrifdN/ysADNaCllho062d8ifxnrTbOQaRXxauG0OGjE2Na24vvjXCaW8qD2jqbORz0pJIZ3lirdkyMeLm7wUf7XIsVp+gCMnKPkRLaVpQtHlQXEokfJc/rehT75GYPagLCWXQ6Ey6dtzLgMEPenMgUnk3MezgVgIXV07Tt0hWyVZRatbrDO0cDi3NsufZW+pA32mSGP5FWdwwQIPnGcikySaU/QjYxT4Qer74oxXoLFwGMJGI/Npc7OY/NfnolpOuM/O+bK8UfFieUFVpF9xrXtJ5ik+B0A1ZPidFl6p5mPEuCRwrHiuOrXyEnPQutHxIrugr1dlOncMGivw2xnmTIddTymj47TDoB3walMZp/NGoCRyQ1iUdrau7Xf+zoQJOsxhwbDd45yO1y8CoztO88EhHwKZ6vV2zUS+69oTnoweYxmjqlyn2l4FRX97cuMsl1ThFI3l2nonL4inoMULT6KzVkWIS2z7TaljUHx+fPncffdd+OP//iPcf311+Pmm2/G137t1+LUqVMbd2aIfuInfgK/+qu/iq/6qq/Cf/kv/wXXX389nHPZMY997GPxuMc9Dm9961uPERQDQamHv8sYUhSPN1PyfAOF4UscCrLEgaURWzHIimhx5uVeAMulg28dyJWRVdZrOcoNbVs0Rw3dGCWmpQMtCLQgjfBIcSrpL0cDFlJUhikY+aDgwfOULEmuMO3AONRUFYgyg+lpZS6HFUbZQEchbNLvsgCSGsFWuUozcpmY1uk4Vg1OHU4OAPlEIWDyp/TQ/Gb7qavZc5A+cF5cSdKWstu1wDd7BgVQsvvKZzZERkiZl3NCiSelaYa1Qfu8OQVgSNqeHUNuifHUTA9QF41FT5F3kBRdBeSUhfGs0WuNXZ13ZY1beQAEoGEFEMlw7N+nBVuamonUR5EpzjG6muHX47EERJxGiTlFjgtQrMYSAijSiqXSBbGB4jWyLohBawCxgggUvDGk/At5oYDYyoeKjEjXj8PLgoXYaXWayZzigXeQNVlzniK9oysBDFtqrOENQCfXm3HuTCRHMqpKJ4BSKe+B3Ims2Qn99P3Em5yyGCJABgi+hTqFlt4NAjQ5BgAsCPbexf+CJuUEBrMLsscx4DyICY2rV58PzyF994yeHq+lUYd+5fK+V2BLAHEBjLV5w/YCMBhB32URVn0WyHVdAYhrzp6hCtO5voPJpBsBDesSAWmNec629zJO7GU5bi+da7YfVxZr9gI8NvtRpwGCewEeoC+H9F2adOZgL7JGd8NKDBQix3NGM+/QNB6LRVNMjUD6z6JLY1GtZbQ1OTlhM6BGDG7MCgAQW43MO0Q+huV/xQhksmnTgI0a9+bC56ZrTgYQJ72yAlwWwLIHjNfFdeseH/VXZueWDjRGXy+avklWqqxJHRxnReaJOhTMNusMHADHZaZVvXiwkTWCeY7osNoYFN922234tV/7NbzqVa/CW9/6Vvzmb/4mTp06ha/5mq/BzTffjGc84xk94Lop/cIv/AKuv/56vO51r8Pp06cHj/trf+2v4V3vetfG1xGgaSnN8/FoASwlSoxcuZdpRLLmpjKWVs3Mo8Si3AUMuwXQ7BNw6ODnDg5eC3DA+TzF0PRbyQwS9khR4gXBHYQosVsE48LOr2NHkGIkvg2CwUeXNzdxaDccUrDjXA6OkR/9XniNLSV2MEatfqMUNS3BcKmo4r5g1FIOiE1hJBFOGYDWPkDnEst8R4dYEVcOCBUnoOsg1gxeSv+skTD6HNQoWJEyXQoAC5CtEWSPFSFXa8MI9F5xlSvG641MriavNwB2aF0q5lEa3jmPoPo8reEtgFiin9YAl0iULeLT7chY6vOmBcRDaZOSBpmB4Y76oJiKz0BuZW9qBXIjyWdOLclCkW3FGGKkKR9mfrXM19QU6piuaokbwCOmH5vsDYoGfQ8I6w0gKlj5n4/ZUeOl7LuRF71pFn7YcFHDnVkdaBzlgkapxQAXh9mI4dwHEMMH150oJ4sIqMxbDKa2NUwljbN1HtxRHQyjNHCg+hJFRDgDxOZ/OIbN2Ix86sPr8fPQ167TsvA9oFbrkwBiKRLkbVQ7nsee4Z1HE51VzjHgQwTdOa+ZnjWS7RYcKzCOfNkD8CLDBKCbWgiaZm6M8974FvkhhY3EULW6rnd8HxD3Hb/SuXCSwniJFsfCSJMcWmb7xr4iuU/pWw0Qj/UhAwgnmBkLkuyqbCWVaMcKLy695DuHcd5QcCYPyqVoX4hTkxsGz1jTpsWp7OcM3vNwuvySq9gzSDaaLqsWbVAzRjJ9ERQ62EPrUoQ6MOFgjT86GXmJpwcDFDIuAUgekI7a0iZVcDdA1tYsosZAf8hpuj/EHuYcDBsH7CBNGc/yvWZnZh2aHumm8toMnWaUZZ7IASoAxf6BvC2og3mga2VRw57TTR2XK6aaTKSNQfF8PsfXfu3X4mu/9mtxzz334HWvex1e/epX4zWveQ1e85rX4LrrrsPznvc83HTTTfiSL/mSI3XyAx/4AL7iK75iFBADwOnTp3HnnXce6Vot+WwdYp+NtgCMRQh4IrTOx8XQ07hU4csUq62SFrgSBZ8quOZRl+aQ0RwQaL+B3/HAnLWIBK0CxBA7mXSgKBAXw/WAAvgWg15kg6R/NgA8wTMHB1z0HutAtBHjsrCMMLl9ZPE5pMI40k+jjKteudhYT5iahjJjvUhxtQa4zkkyD4mg8x19C6ADHAUwFYxf0mhxVvynJBUMpdd84HDpvjWoiqarRZf0ngmZoFIBZp7VkHJXQFGpGHiCKehCeYku/o1KnhAVPCDzFxvy8DENrAQfmkFhlZVkU9j0aJ1mIAAZ2TxFGz32LZKCtqC4cI70gVAlJVOmOyzFuCVNIZOHwY0wWlA0lj/tfVonXyknGgpL0qSodv+Y0BA0UEuR38oUcmfAiIugWLsT5QH5OK6to0oOjAM8u4WyLxWlnxkvlX6n9pFAA5v+l5G0sp0oJ7JosEvbOT44csEkk7ZWFr+1cgJ9x82VEy2O4ysf0mioQ8cEzyG7SvjTieOUUeVNIOmuLKvKpkrbOcTlfHYFwsK3nAx4B/Aszifu3ICxbBWE9CcA4q6jECm2VXGNDIdjXarLNYSm8UATLk6FUVd7vxxtCADqnHXoryEbDjbywupAAcSqA2l4bMttFvwXpk9w/XjpuwHEg0W49Hka95XYASRV59FnhiHDmPoiITuv1oYKLeQnF7KuLzth9CxyXVv7fyJpdXaVAGNmRuN8r+BWL9hidFGwFUOUWGtxRLnHDeB2l3DOOv5rXUznuUUcv1HG6mkWFLtwTT9DnOYXxjqH2wVKYBxtT7YO4oq9XEaNtT39bWxRY9tDjjM8RnG8qK7UvqE3XqwtKNP5YHmvsKsHiYr/5XY5f0hPlvcw5Ewr5DwE0QMpszLW3GAXn50FxrYukWFoBb3ioJAgICV8US1KKnIQ0Glm2VrWG9KxhHKvuuoqfNu3fRt+67d+C7feeite+tKX4pprrsGP//iP48lPfjKe8IQn4D/+x/+4cfuz2Qz7+/srj/voRz+Ks2fPbnwdMb5b16mXzYHRkkfrfNzmdV9LIT2qMQJEhYl6oqBK1Fa01XVPo8EtH7cA3AHQXCLwwoG7YCSzt/Oahu+BYQx/U2CLlgS3CIC4OQCa/fBpL3H4vx+2a7T6MBxLNoV0SUlwaRqNfGoP1CikzPhGMjiNxV2dO1jeHJLCVwO3BMQWyCwqn0PovSWjKje+EqhezWSlwWMNrkElU5yX7tEaP2YbF/+B5AywwEn/U/6x+xh52kzozfhNPsjURD6buS7yoFf+dMSRPxNvygcYiNDIfdtpDBKBioDYlePnkOEOgeYQaBZAs2A0hzESJctRjDxGLWKC/rtnQHkdy8SzOuUhfkIf4/sWueAp5/vKdfX65tM4r7JL5z6Xz0c7h1zZe2gULucXjtvZGArx+usak2qA57JjcvSUtYkE7C0gtrKiTI3vfYz8FhkuYs2my43JQwzwvNl+5QDiQD2ei8Z4E3Vla/ejz5tCGmSXsWZqbzirf5ZGtut3Try6BNyC0SwYbhn+C6aU5bS8p+yTnFK5jvWe0HUJEPulg1848GH44KABDhrwQfjtFw7d0sVzwidUtw5LPvmRV2v50hnQRmZ//sCQgArbZyWRdMr0oNWFKapuxnLhJBoy4OX7FD3XO27w5lf9jsazYS99DGT+D11AbQ5ONkd2bxN4zozL1ImTrTOtnWrt2PDpwraY4p/rTXNnxOjpAkRALPN/IfI0/mgZzayL2Q3m3CF7J45Bdxjs0PYCMLsAtBeB9lL4NAfRPlW7NGY7RrkAT8DSBZ0YnUNsHFdSM6NHdryaPvbsUj1ggFQXUF7s1TqRff+TrZgS7c0MYGftjzDSAM+s7Le2n/M+FfdB9n/tYxxy1SkcQC5bBMeUDqeyT4DKY1sLhs268oqPOgfujg5pjye/2dCjH/1ofN/3fR/++I//GO9+97vxzGc+Ex/4wAfwspe9bOM2P+/zPg/vete7cN999w0ec8cdd+C9730vnvSkJ218HaBvfCtAjgKkdR4tdQPCJPecqgdDjCa7JrGp4Grn5rkl0Bww2ksEOgyKmDunoNgqcRkUQp2PiliUvXiKhSGNgd8cMJp9AcTyPfxuDgUERGO8CoxJAUWqkrsCQBoL1QoaFUDZseWppE0kBWUEjkmZy8EMByPpMBhI8gnbS+PKtBVBfzbvcE1DofoIjMEwRr1UQquUEe/dvANNz/eF8a4feWfpnOBYsO/sZCp5AtTYdmDMyCuPtq5Tw1t4U/g1i5TaBo2zgbg+nSF3qsiYCWBYxlNwHoUIVWYjZZYaMkNR5QTSWAhTHSK/6nSHUAPAHZLyIVlgbHlQFIUaAJVnGI0d+2lcSO1MwHhV6tzQf05Ks+CTXnOlLVmCI22k7P/4b9vP0KxxBNkxb6dZlI604mMjkhk4VoOHtP3eeu/l99799OfVZvNKaTjd9qQQEXqOKqsvLTAWp1XrPBryGW9mZKPEpvZF5rzsyXcDiAUgL5Oct6H7oEMdfNSp3pMxuCjtj7q0Wzbolg38YROAcPzQgQMdUvyk7byI4LgAxjWHVWk71DIG7NSsLKOEzdgzKeYqxzooeCgdakGnkzoZyBixuYOnIksGAGUfEI8N/vFxJcPA/t+onRVAuS+Lyk6gAAuGxyfg6AeTgmzxVb5UsGyAcUM+zIFHf9wByO/ZIa6yYPZFO4MRAHPb+tQXsYuK563moMjfBdBcAmb3M9r7gdl9QHt/AMntxRDECbwex/gi6UVaJD4YXNtY9XH6SEd6U95Ku1T212xV83xsZDufakSVj9E/hU5NbY4M8rIvxr7OfsM8+6rMza9vM0xI8EP5WRb/VWeae7PA2AaYzP9UcynJNUaSddYTxt7lYNiTVjTnpQMvKQQUVj23FXTk6tM1+uQnP4nXvOY1ePWrX40//MM/BAA86lGP2ri9b/qmb8K3f/u344UvfCFe8YpXYD6fZ/u7rsO3f/u34+LFi3jBC16w8XXE+BaS9OlaOpjv4hwpJnTkCk9pbICToZutr5h5tZN3W5R8u09oLwKHhwSex+JeMr/VparU1Ji05giSVeHHiJMMUmeNi0WMeC3y9DLfEjrPyUsUB6yXtLeYg8EuDP6Qag1omkM8pJwfYIenZcle6jCNzA+Uk+OAT0KnSHtV73gRxZJzRT46QNK/PShkfbhwPByluWglKEVmY9WddiOGQa2a6CDZqJMFrxkgrsxdGbA1RdjnJR3yryeTKnP9kdKnZVrDEk49494RHLssiyO0hPy52hTgBQXHURZV4Z7TSpYeIg80hx5uxyAYNbD7d9GzucTJFdMys6yOJbQonnhrmRBS05iCb0SWOvKS3hv/V8hGn8Lv+N27/jyyMWNSDimVd2W/N2lwQEVPWSYqFbYZrz3DRBorhnHaB2RyIjNSkhwGh/euxoy9F2le1lgu9unQk/dQygmOnRuKUNjHUI7tEw6GLYm+tFONrL50ICwQxqzoTesYysalGEYavYwfiQyVmRvKj/F7nN4gxbXcgqN+clrwTQ3m+IwJllfDl6ywVkfwSwcsnNbmEKcUeehYkPmV7EWnJCJidERoicPUOtWnab9cN80BRb/wnelmr3CnzXIqMp6y8R1vOo1rUuOapF6IR4yqi84x06Qq47kWee3pNxFgmxDJTReIKtsfqF5kKwGDqgO+1mcr26zDS3XsyWfSpngvli89KKxLD+hUQHEsSxG6zPEoYAlhrGfhNCNjpa6G0wKxpDtJhhMhc1rq1AgJ1hwE/lUiwDeAn0d954DmgELtGx/msXIbPrE7wSaNqU8mAbpHaVpfPve9TKMe1zdij5Lyms00tEDZnAJQmE7gEbNZGoSlCq2dLbw+NtxkvA8eswbvsemr3kN696UqY3ttBrTar+g/yPSJ+BbKpbRA5hnLGWmed7neeQakJRgntVe8dmjavQ7QsYHi++67D7/8y7+MW265Bb/1W7+FrutwzTXX4IUvfCFuvvlmPOUpT9m47W/7tm/D61//erz2ta/F//pf/wvPfOYzAQB/+Id/iO/6ru/Cm9/8Znz4wx/GV3zFV+Cmm246wl0MG9+6DrFHBMZdECaO0LCHi4IEgAJIW2ALMQ3MFvApvd2S8kUcvGTugOD3RHsTmBx8rPJGFOdFxUqXDJhUr+A50crTEh2xHjkB4V0cjBEQkg/AOBtYcZx5CgMxRMaECUn3s5efwwtyS6tpiQbDOkOMaw1NYVhR9MYbV6bTpRQx1vPUaegoGRdgeIrPySEAJQdQI0KJknCaOJN/LFKciiwNNGeUb3xY6f5tSoovBK4Ko4H+iDEfBbLM97gSFLyL0WEAupxLkK/B8BbeFGXtQei8R0cui8IA6BveSwOGa1EoqbCsxjfHCAvDHXq4TirSwbwrMa4lQpSu76MDK8vqMMumSdq0pkJG4IYIisMSGBSMk4b0mmUKaJYKps8xj1qH/rgUuY779YwSmFqqbFPbwZynhVP0d/o/CJQ3JfP8lScsMIiyQgCxBQ7WcJE+amp8Y4BOLHwEQgRZZuxxYGqtDD7R43SlpU0HYjPXP9nJskSTJ8bCN5jFYj5BX3ZYsgHGxvgp9aXqySWZaT2RLyOfloA4OH45gOP4/5AaBcVayC4uPySgOKua7KODeemCHl2YzI0FpeiID/otjI+4jOKcVXx7is4C70J1d+/QOI+eZRlJ+RKQOo/9+a7xWaku1Awhqwdzxw8Vl2SXtnsg0wvZMmn2c1SqAc6h30NUe25k9h1BdmRZbjayqNuM3jXbTioRQn0cS9aOFXBs9aVnwpJcrJqeUK8dbyDEtGlrTEFBSYggpwdjp+UogDIvioCU2bAM/N3uy7SkaLM4QjcjLD1p/Q7ygGvCb2456lRzDU9RHhd1b+wzqjhvdG5rccyYrWb1TDa9JgOVSOPFPo+4+kmoE4IAjEV3sNHDhUmeHh7ysV8eo+eZBnr8Z+1q6t+LAE6Ye83uIz4fByBzmIjdY4CxvH+f+pwKbip0jo6B1F1bV0emhmoWrk4TNDx6BDoSKF4ul3jLW96CV7/61Xjzm9+MS5cuYW9vD1//9V+Pm2++GV/5lV+Jtj067m6aBm95y1vwPd/zPfjP//k/42d/9mcBAO95z3vwnve8B03T4Fu/9Vvx4z/+46Ajluu0xjcALaLlOVTQm7kOjj3k0Ynx3RCjcSbiIlFiM9dHFFY+xzVFbXXNz4XHzr0Ol/YdukUYeQwHJh+9ew2ADswOzgUDTYuBdA28eLVFOcogZ2TKs1kEo4G6YPS5DvAdkLzB0QvnENpyKQ2GXWSE6OEJRmEUjFLkYBWt6T0WbyQMs5ZRYlkvNYHiFNWLryX8j6vXi/FBLpwDB3ROBAHHSKyZG6MRIPSE7Vjl6SlYOmN++W4tLIZGiK1X0nryqkYMhT/6XuSd+giMPU40EQEza3wLmEOexaHWpAOWPsyZJV+k9KmCLwzvRWF4H1pHlR1XwjPh0+x3cMsgC2RsBgdReN5ZIa1ojDATlstG+VUAcTb33/RJxi87gDsACEo0nIcwp6ZJ1xNi5ONRQIhE6QCgcT4U3DLPOle2lIFYC2ZFNrAzEWoB6Lqv/9G2EL8jfc/+D9Gg86wwvCNfZFHiyC95JXHkxg3DyDloB2V4pZSwUDAoZJREx5nefOiEvP9V4LissHklEAE9JzIAOOpihWaHmQv8GaJRIbuq9R7LOOUhoyjnyNs5/aQ1ICxfZqnSXXJYaVX46LCS+ewh6mKAtzF+86JLSPPUOlJAHApUSl+MoyrKVW4AmoeiQx2cjn/fMNBx0NMxs8szo4lDte+goiSntE9l2jSlqIhmQ8n3ytQAa5ADgAv6zjfIMqPg4liOfBKMdhnPBixwMU3MjF2buZZkX3q9mR61oHNogE1lCeljtk0+8r6T4T3Uhq18njniTVT+KKmZDxzlDivAOpG550j23ME7QsdBH5SZRcnGQwA+xSMUG0wdn3G/1qtwHsQNpKK/LoXE6Vy35Jgp6dFe8nCL0H/fENxeA24c/H4coxEQ+xngZ0newoVAFYfy7SkiaXi9BpJDcMbwnUSLI4arDRlbl0X1TDk9p0yNlsdJSE6oBukilL4m+4/yk2P/9L+cY7frcTDjlU1bFd5j05zRmVnEuLQvyVyiCc/EZ+OjAMYajIkyLMoX9gjLzwowLlnZBIYy56lE4zsDkIHq+5pKGyPWF73oRXj961+Pu+66C0SEL//yL8dNN92Er//6r8eZM2c279EA7e7u4id/8ifxQz/0Q3j729+OW2+9Fd57POpRj8LTn/50fNZnfdaRr1Ea34BRVvH/wjdwoIigWnjusHTBu2aNzV6hK50fCC321GjhHjZzFX1I/V0CzaWgjFkDUS7KJg/mBt6Z6wF5qpcU65HCWMaoJTUKGe4wRKY5AmPyDCYXDF2SiFQ8vwnAOAD9aBAao1m9cpFxwmUrDA3U5YzdaAWCMVbhow/JRokzUJwErI0Uq2FgjHl96VEKSDVDkjQWASPWe47YpwrXjZWVH/Q06rm5EaRGg/F8lXM0euk59rmVz5UARAMoRPM4B8Yi/E8kFREpitkb8jsuk6ZK2wPzZgkP0gJ5mYK3KVsWEB/Ggh6RL8O8xDLyBNDSx2gxozno4A45GVIxNZNjBJHJwZMPfBIHnfehIE+Y6hAKRGDpkArwGTCgUSmo8Q1Eg7aJHmafrgcnBnQyUvMiPmkuqyPG0ovscurUSUVpSMcOA2DHaem2CIbhOAfjRh8GUBDkh4JnAcZAGpcimyYNBTG6oWM9cx5BDNh8CojNKqmuN22ySfQyou3NNop8JJ5xcohAjoOccKYvBRhQgKzRh/wd6fCMttyVQE30qJUA14PQKZ+miBR8G+Yy+kbHIxCfjRg5OvcVCRALX4rjapH4sQTDFH+7wy60LWMuGk2SGkwopjtFYsS+xMI9FOf0N/tJf6szBYjLGAaZAoS0zWCYE3xLIHLwPqSUekDBuUc/xVWfBzG6ikDOQSXSmC11oAANAe+lkYmkq0TXsRj3PncCy9QMmTekzgXR8CbiVs32YjM/cOiYIUrmS93QLfSWVoq3dgdL1+P7qSk6lSPG3lDHsxjfIltQ17MniGS+P4BsSqDYsT1HchMAszirZI1tElNHmrAATB2AFOUqoUNf78jKrEE/CfLK30EK1ADNvkd7YQm3vwi6bebguhm4aUGdC0C4CYC42yF0u7F9B5CjYL/FVVJYgjVm7MLI3Y3J2Kc2GiyA2FbB131mvKiD2UVHK8vDZeMwHjEaqfz05Vjqqhi+eomB+ynGtgZg4n0APYCvfZVU7zLyDYRIsgBjcTaIzcmkCo891GnS71+/lkIWHS4i80ehjUHxz/zMz4CI8IVf+IV4/vOfj0c+8pEAgDe+8Y2Tzv8H/+AfbHTda6+9Ft/wDd+w0bmrKRnfPSUf35RzjIWMZLeEZ0LLsYCIS95vVazepGUeGsP7gEMV20Mp2hM/hx7NgQc3HrML7f+fvTePti2rysO/ufY+53avq5ZqoGijoAYQI0qUTocCRtBhBGFAaBSNKDYxsUkG1E8FDAMk0SBDE4YD6QJIJAoEMImIRhQUoUClKQqsAgqoelX16nW3OWfvNX9/rDXnmmvtvc8959736t2CM8c495y727X2XnPObzZrLkwPUxACqYUxCiVWENIgNpFpmStpu0GMkFqs92K4qU/zFWNKQiVAN6ZohgXVoQajGmTWoIoRsj6DcW57a4j/+wCApIypMIICI2cMYzWKo3DiSmRNFEAOoLisSl+FQLln75xBHp6rMld3LcCR7z6gr4IARhAY49g+m1JZk/nWvDwkj5wz9z+gJEZcpVwAjbQASODbMZwYnkyoqUVFVTavWL2MYniqg6rLly4C7z5jOIwpD5o0uvSLawHfRCdRS2oQAy57157jPGA1iON7tIVwipoD8t58lNiupjCHsU11C9iFa1OsOdBXcdMaxLagSlYPgTh4bQlxmalgCKsSr6IcaMPvoEVC5ggZJe6rZAR3IsXxu5dKOcAKv9M7zPaXyjzniTJKjILHdY644R1VzmIQIEZaxBi20WKJsFk5bCNs0kakMSjTRiSlMWxPxvGsSsUHhexYKskRw0UgOpXccxeM5SYuByPFKoUksyrpS7NaQocvu1kbISuIgdYYxRQMU66R9JS8i5h6lEfozaBkZPOaRXeLw0yMYl8TaASNYKnOHIVpTN4x2pZ6o8VqPKA77GPilWlP1yEkjlMyYz20W3Q0tJ2dLpqxzByN4dKpIzonygUbLVYQz5QMbBnuBsTqsinmulkUTGVjZxjNRxbsc/G/4UWzYE9xvtG/Mj5EDpgUzYQ9zDkHmJzBs2mbfAdHsuNQmRq+xrhq0LBLBrGcJA4NAlIhxGRkaVAirqgCH6YG1XWbZc9558OyZSL75ROfa8gG8ai3W1RnJ6DNHVDTgkc1qA39qFYq+BHBjwjNiszrD/jUTSmkb0fZrMvoSWYIchm7ZzLjNcNckf/UII6FdG2WptqnYhSLkzsURQEQA08FH2YtzsK5SAaxRo+RndCJeA8ZxtI3i6k5/+7oVxka0Wmfnk26SfgV34F4WcRWEA+wGMbiaMnaZPV74lGJDtvvC2oUAwAzawrzorRXo/h8Ugm+M2VPAcC0UZBUxEBbw7uQKjYx4Fsqo9llVdyEFHjX26ye7xCVCsZpMFY9qu0GADA6s4L6LKFZj0LdA74loOKwDhhH47dIndVm2+Z7wO0A4zOMlVPB8HZTn4PACOx4wnBV8Pz5MqrSBkOYzFw6jRYHNzjEq6PzA5L8VBrkSctUhfJXJZ+B3fTRJSZ8MlJ0XdlsXnF4hkShkFECuYxsfpZNnWaZV9zf8llR4qxfQ/uzf6jT/24RB2Mci7I27bSXAnHKINPoFtQw7m/EwaIKyeHUmfffAd+BfwR8B2dVPDgqSU2b3iGzRBnrfCapXEtqFMsnpmQ3PoDvSRMcS1qNMQLXUI0AgIOvfLQekdbTa8N0DKmWqVMdRKm2KaNEAXhUPiCCqwE/BagK5wYHFmnaNgBI8T1bE6Wcy1mSGMqeEL36lKLBEvWNWSU+Fv1iH3vaRuUnil8M4QoaJbYGsQaP+vgmAmfiNE65s9/yScEzBtxa40CdXdaRVjjAVFjFB0ccag5wBH9iHGt0Tdoq7xYiAznJjfg+ktGQnre8o7zeAGfHHVQa1JeA6kw5xnEFzy5Uo6YWDnXKrpKIk0whEH0pywaKvozOXGqjQ1edodEg9gzi+P+0BTsX0ixrAcoRosX7pkq0Ebj7Yjgq0CV1bNfbUlMg9JHUQA58yXU0lBvDk74bLS4FrtoHBhTKb41qyViXczJgTjlgNZ+sS9mYRV7QR7bZFGqjA7NocabV8/mZpUEsbcsrynYeQe//1lmVA+bkTAj9CO0jH9um675G0G2y2kojPpMj3n5DMUHSv9Rt54EjhiyXVuWulUDUokWo5GuzFRrXhMxHqrMsjlImhmsg4RNJ228ANMEodo5R123UN2EseC8OVxMRZcQ5xWEFFLfVBIN4cxs8nYLqGq5tMWoZ1biCH1fwKxXcegXAxTob0TElGFUmGHukzBBGiFSKg8QMpbnlbMaH0DGjeFQiwxKcEVzAfdmKlDmsfA017jToVbZLnQms32QCZKrXSXhNzovPQ757yNraXfyJHG+aMZEZxlJ7gwExgLMlrfRYw6PWMO4D0bY9goMLQ1j/L+X3HmjPRvF+qjzvRq973ev2df4zn/nMPZ8r4FsEghUoLTnUCIucOxsRYcK4arHTelSxyIAYxW4albso+E0DvKNBXE08XONBUw9qQvQJzFg56THdqJR5WFJ7Y5gszcWIg4wQig6MAF9Hpd8C41OE1dsZa7d7jE41qHYCmstSIIhkqnKMjlE0BmJKZ53uZ9OLs2hx/GgKtQq9wIwduaPeZGQKNVOAlik5T51W8CsGrSotAbsmpc4jKPeY7gWi4lj7P7L7ZillERhkhjISoA3GMRvwVXSZCTbVjE3fszlYKgAINm06i3plQN88K/ug47sN6Z6sj1cN4z7Be8CIANQueopnOKws+AaAqavQuAY7rs7nvHEEuWIQbwXgXW8z6h2ODqMIuhtjCLcMeB++mYNRvDOFa7xWr3ZTpOI10TBmbwtxIQdeEMFO+XuVgniTEBXTdxRBrBtFz7iNFvscgEvBrLLQlxq+8ZnZaLE9RhwqkLRnQoiCxflc5CWSRcmQhrlVNIolhVrTrmcYwpkCVDCc5hrZdwhxPhrQrKnTbHmZkqFgvd6Wf4r0sCwLxyUZYStNy7kc+Y8lJ1Y85jFKJfPGJIUaSCmePj7r0nlx9yBWfVlJhlUhTDwFXVm5MFh8zK5qKoft1qfHzGTm1Meo7FbSl8GRHDM3pkFfSkRYjWEfH7AHyAddijoANS7nQUZDOKR3+kxOa0RLxqm8656VG5gAqqP8jnzpG4JrOTiw49xkrtK6yBItHlw7tXzKgyCWiv/1taTvnstT+SjYjOl4v6yOhkaKjRiKc7TF6s71t9Fv8X/Vc+ZeZYaU9qfsh7lu5vCNDSIy2RoxIqVuNEdx2hCMMUGZQZaeVW4QZ45nNYrjtr72HSAiAKMo1AazOThUjLf7msph4uMSalHnalTO4jm5CbE6cnUq0o5Du1PBOY/RSHjfpeiztb5YjJpYu0Nw8GQK3toCT6YBm06mcNMGtDKGWx2h3VgBV4RqTGhj8btQE4dUVnOcJ28xW0rkBXoQaUZZfQ6rj5hi9iJ1xkYKxkR5IVlmFldGwxCOQ9YVkRaC9xSwWUwwizzD/WMtGqQiy/Sd6G6ZKhD5YQbWy4YHp23WCM77mrdDP0gJiWgRcXZ83600IGVtZIYxUdZ+bYuVFcKXprp+VtRMnvE+aM9G8Wte85r93XkGPfvZz8ZeCmYxB4/UXo1iAd8l8BaFP0IQMi27oOjhI+wlTHyFsQHfGo2aBvBdbwYFPz4bCgm4nR5juDVGsWesnJhiukFoVx18G8Clq6Ge3cR44TdXQDsmYI1BDaGaEEangPVbPdaON1i5Yyd4z4mA2kXGjJylniQH8qwGsWsRALY3UdU2KHZ0gGAOZiVavJvrxoLc5BGK76Q0jH3OrJ20jsKbRSJQxAng49xhM8+YVCkbps+EIFKbFOxCBa31nAvotYZx1k/9LT9yT7oYwvD5s7RpXOoIkKIOpSFfgL+UpiSoho1hfDewipFHiivyHfANAjwIU1TqsPKVC+lgjdeUMHAYv5KWWW8Co7OM0aYPEamJR7XTJp6UdEzmEEaKgDuAbwYmU5DUARDljLhkUjSMMyqAql0n2uJKBQpx/iTsOKs4yJUR4GV97TqAb1TikQ/pmnkF7GFygnsjU5FD8Oi76PSSKDEDHJfC8COjACmmfRVjT+cR67xiJFAg4AgCzMXJxMpvjDC1AegC78x5lM37Q0p3FH6wHm6VIdwjL8x7AtQIzg3g+FuAEHNnXqaAHln+hxjBWQEfooXeRdCZHkArTr9yMBxQIoTCkwDiusTDhnFrKk57EKbsMHatOrsYCE7kCaEq9eWWR7Xtg76cRD1ZOqgAiEEMRB5tPTCqQoXaChnvheI/IXLrXGgXx9ZXFcN7DhlZFYexG9+hi8UbnSxnKHYthdRNW/mZ2jBeZG5jWBc5zt13PuDAIlKXPbddxLIWK9L/C1VrjHp7zMyhZce/6Lx4DXV2M3RcM9AxzvUypdNbzrMRrIFvst8RG2QRY3OMpqKJ/IlpmCJbOdZByZ6JbXLW59IgtviDMjly0DlU+G0Iz7YcIsWt0VEehMY77FR1KrblEQyaWvgsHhwrDZMnxaFuErKv/E4FP/bwvgVTqLzuJVND8JaJuHOM6ruW4SYNsDMBT6bg7Z0wxpoGaBrQ6grg11A5F6LFjTNLs+XGEcmcYjNnFRqBpWSgA8oUWWYDDDaVfpvfFiNmBplgszZhcxuAYUrTioIKiKufxCy+TL9Y8WYNX9Wf0Zktwzt+Ky4Vw3hBiEdln7nAx8bAl/uygToJFyDYctJGSWWnHsOYi5tbueKjnBHdHjMCOlMe2/1z5XlZp3i/dO211+7JKD4XZD3fotxLZe+JMOIWUwoRIA/C1FfYrloF3+xTcY7RJlCfZaycZozOtKi32qDcpxF8e/F6B0VO05g+fec2VjcqTA4RuCZNA5NIBLUhAk2yrFJNcVuIgK3cydj44gTjE9twW9PAKc4Fg9jHwRq0WjKOTSpaiI5RqkptAKSkXVmFpWDWKlCCeuhKyrxv2f9iGEKFW2/6Epv2CKPqxQ3jQoAxhwiAOSwDw8VvKvtrvXYe0HXw5DFKH6y06PQ5ec2T9zyCJgv05bkWYN9GtuwyW52+agfjO7CASQSn/k+zmnwAiDOetPxYmZfessOoajHlKkZCHXZchXHVKvBkH5dGmxDqLWB8mjE+4zE626LabOAmkSfbVoG3olMJ9UUtRZ7B0ynctA3LSUwB3gnzBRGjgJpookrGWIFGiXAE6eySEaUVdqecKSlXp2r2ohjQIoDvNhT5keI+RGE9Sh/HmmdChRBZl/9LSoW2OKVQi3Hgo3Fcp8dChACOXHIuaVejssw+Q6BUfjNSdIqNYWkVfuZEQgayOilehdHbMZJLGVC0xco6ASlJJsRrRYeBFq4DkvPMR0BTASgMY63OGpd5UlzQYeIDSJR40OpKmcdYxW0tQlGfisN2z4SpqzCuGq3DofU3piGjaiT68nSL0WYDt9NGfdkmQ1gcUyWJA4ti+nJt3kkBJqsqn9vcmkvwiEKNgFHMvqpI0wRDdCzwq0OM+JjIYkrti9kbbVhOkXwoPMQodIF530N8Oe87sTK/1wgUAGsdVHa3iDgOQDQ5nwxudZyMh56mJqev6DgkvW75t8/osM71eI9MP/fci8i0JU5bCNgjGscUebAE35mjDUmOeCgGUcxhsMCiRsZdTYQ0taFPdwIpkjzlChVSMGinrTFyLeoqckM0QmQdYH1HIw+qUqTYGsa049CuOExcjamr4OPyg9y4tPxgk2SrH0d1M/HBIJ5OgekU3ATcym003R2BxiNwE5zWMrVIcZCJHrIXrBanvkiKhPAb56i0NIgVy4rT1eJSi9EK3ZJlIGomp5mmE+WFFrFtoNPa5IPazPEfeMF2pYiUohyxCdJUnZk06xiDJ0VnJhzKho8AJpPFIXiToMubojWsFo1kMYizyVEkF0htyNa0Fj7MIsUGC58D3jznRnHTNFqR+qKLLkJVVQtf45d/+ZfPdbPmpC741m+j6EXJj7gN+1qORnGNkaSctDFCfAYY38lYO9FidLpFfXYKtzUN0eCmBdikfQHhuw1oi85sYXznGKuHK7QjaAl6YRQdEDIIJozRmZDiNT7jsXLnFPWJLdD2NICEqkpA3COWgkdKp2JOINMwtp1nGx9TBiRZtsHsl5/cMx/QHKdGoQDczAhM/0vJewtyBxzssVPQlCqIjpSUuCHKGFH6KIYw6bPIi5Gk6DDkGWbu+XTD9IojGPJOLgGtVi7fNiJs06ZVKHW9ZJlRLM2wIElaY4sd2H4fUCJgkCcFeDvyoZomgpJ3YKAODqvtdoRRFYp+wEe+PBucRmu3NxidmqI6O4XbngDTBhT5ciYJzzZNUM7TkO7JAs7ioJPK7ZYkQ4Mdh8IgQDA+p06jZKMzjNFmShklD41YuYbiXOdgHPuoeH0d5xa7aBi3ISrlHSvQFjAuKbvpY543seqmgK6icq7i/OHIE47TkmYgqJdb5YEB5p2q0/ow0remoxJpVW2Ih4AiYBHWEt6M4DUZxEl+ZUaw5em+MWb2abEwiTRJE5hTNLuUgRKZkGiltD0u26RGvmM1jImCjzJVapXnD42Kczl4DhB1+DLyo+VLABjFg5UvEX5vtSNdS5V9SLuszxLGJxmrJzxWTjQYnZ7AbU5CRkbUi928RiB7eESA9+A6LuMSeZDMoc4YxHWVDAUimQMZ20kIac+TKuhe0ZkKxhitK9LzVWazrj4R5hZDo8XOpUwizyEd0xme1AwPpC73ZXsITrcV4+V/nStcGsTFp9dwlovLe/Rxf3TgyrVkiZs+XdJZRqV0ZEn01gLfwsjIClzJ9Y2eU5vctl90tshij1AHhYSfzT5tbA6+NTXWtNve/+5gGItBPKK261C2xnEM8IxcCzTAtK6w3daoaDXpzAmhrRDklzzoqQNPwk9fAzQKu9yUMDoDNH6E6UoVIsqAvguN+BFQbRM2vsg4+o87GB8/Czp1NqRNb22DWxPlYA9uW1DbhsCR4mbLi+gYxqgAWXZSghhgSSfOmYNjG/PsBgKycZHGSZZObPQBUOgdncYX8TRCNhnH9PVQ5JW1crbqQqtf7ItV67uoDTITEA9TdtrQJUpsyek8RtSZhEz+ZBjcplHHdx9GksnqKGWQwQaZDeJzg9jZ+cQ2MLZHOidG8d/93d/hla98Jf70T/8Un/3sZ7N9/+Sf/BN8x3d8B57//Ofj677u687F7c4bWSWvgqRQ9CJMPDu0IIy4CZ5iJmwp+A7KsJqE9MyV0x6jU21Q8Gd3QFs7wLQB2n7wLcWciBnV6W2s3lbBjx38mNCOQ+GQEHGhBDwR0iyrHcborMf4jm1UZwPIDzsroHJhPjJRXjBBb4wgMPT+XVBZemw1xQNpe+7pzecDhv6RuZ+ZF2g8tNl8nmzQ517jjInlsiLHYuqmTSEJBgk0Itf1kkehL/01zCZRIQUIZAStrr0WkIgKhthAO28YgBrE9lnp9fV5G2GcGcn5J1PSVngBZi5VeuQgJKXQJ4QOGhF25clKURMw5VqP9UzYqkc46RJfuilQbwGjsx6jU1PUp7bhzmwDW9vgpgV7mWAqQNsFD7UF3gA0ROE9RlshkkoR1LVMwJhDlCqOOUAArBhKAO24EGXeIozOEMZ3MsZn0hxKqYwMIFbYTnP+yXjnuaJQvdIRQA7sGD5OhfCe0JJD5RLoRmEkA93XTzFSHKJKFKLFYigC8GA4olCFGolfMr5UPkG36qiQyozIoD5KjBDSRhyw+TkSyZHfhkfIhwgA2WN2IQXXHHl61qklMOc0BzNEPqRIESvwZ3uuC/zviNHGISTR4uzZZyceROKOQTyiVvnR1uVo4TDiJuPLnbrGqXo1pmjG1OkYJR6fbjE6tQN3aksL7rD13PTxY9RxIAqO5fEIfiWuIR4jUhHBgVwwil0sxCdUIdixMt+YmTCpK3DMCsuiQDIVx4C3LFpkwa3MK466zfuUwREAMgWZAUQHFrKpD73THwjQtESTkhmqfEfRhBz0lk6qTvZGeRvRP1oKmzUVNVs+ZUiPDBnE2TMjJIPDfJcGsUeu++1tbfvlPpLDKZXgCdruYfyDLOPEFtnKjZ/55MqFI+41iBN/hgcozuQWpE6rFg5b7QgrdRP4IOpMruJSY6P48ONSo+yA6WFGsw6toVNvEkanCL524BHgRyE6KlmObgrUZwkbX2Ic+/QW6r/7LHgyCa1yLgRxHIGqChwz/EIarkv8jgILZXNMoyNZ9IK8c3HaOmMYA/o+M4PYk2awpEgxUsQyGxOmTYU8KOWC7kTIMuEqTk2scrlhMXbmoBp85ZQzu73VPLSorjE8qM0zfVbbIOJlEmOY4vODlOqT+g09eJSNDJDnbt53ZhC3OCe0b6P4BS94Af7jf/yPAIC+yrzXX389rr/+evy3//bfcO211+Laa6/d1/0mkwk+8pGP4Itf/CIA4KqrrsJDH/pQrKys7Ou6AHrB94jaqOybbH5G5TxadphypWkoW36MO+u16F2LRQcaNgogjhTvgbYNKSLWGwZAy+TGMII7s40VALwyQrtSoV2vg2E8Jo0e6/o0asRFxVURyEfp76JBbL6BQrab37OiKr2kfYzcIUxhjVHKj1NmV0AryojiklLGI2QYI1OO5rYCvLVSrudQBdQatUBad1nnUxfPgYuPCKo2KVpd91JABiMo35ieLUVI9LrWI6lAJz4qFb6UPYc8SmzAVpEqomX/vXl3tjuU6ZEkmBZ9xxeICMFZ1Qe+A396k1Lt4THFJBrGALDja6zUGwl8TykYm4yEHL0Hew80wVnFbZSwkU9C9LIK/OliuMgRaDQCWsbKnQ104qzxzngfAIE8ZorjjlpGte0wOkVYO85Yv63F+GQDmsaXWBF85eylQOSylGkpbsLTEFnlKUKVZEJYCoY8QC4WE2K0PqRVS8XfllMKdQm6pRidRJ/gOJuX6RGKg3iK848pH5MA+qNULt+mY9XyUhQUBEqPs2+ciqwovMcK5HnGGCfDF3rf8F2mgWlErY9E8SsAiGlv0cgtglHhmwO285pGJs+b47OPN78b0G486eCzObNBXwZH7Y6vsVpNg/FZynog6co4nxBtC5vSwGIEV1WMAnLYL/pwVKPZqNXpxGsQLArnGBUxKpeiLXkxoiDgt1oH2qkwOk0YnwoGezXhBMD6xofVGxGks2Nw6wKfUogW+5hCD1OICAhd8N7lEeMIIzrGseUph1hQjPL9XBwvMkWyWBxC+wTnF33RStMMaA0KU8kZKPQLzD2tg7znd2fOrjUIrO7NnL+5IyKXkZH3pBYABZ4MzmGO3xQjh+hQ6XDX7AJ0tx1kynQmGCPX9DqtcmdypcbyxNe4o1rXOcVuGvFMFY1iEkYC2hUGH21BKx7Vl8cYnyKs3Rayp0Chzs3kEGF6GGhXg0G8/mXGRZ/axOjmO8CnzwCjGjSK5oiPllTrAe9T5k5VAXWdMHJgCPQVSlXjOBZZC07oVGg1jImCVxh5dkNWx8WMV5+O0XFhqNdRBChT6BiLYzBzJBfj3xrEiQ9FWclyaAUQlltJf8z/6dyIUeegDn4UMno50/WGT2wdAinKa/tFPq1Q0xUi8drK+5TJg5RKXeDjffLnvozil73sZfi1X/s1VFWFpz3taXjqU5+Khz70obj00kvBzLjtttvwkY98BG9+85vxlre8Bb/yK7+CQ4cO4ed+7ucWvteZM2dw7bXX4nd/93dx5syZbN+hQ4fwwz/8w/jVX/1VHD58eM/9KcG3NYjFUBaFbyPG2zxCBcaUK9wxWse4bnB2xaNZZ7SrYU01dfm0PjCnFOthn6eJAOoBZw6AyXkf1mpbGcNNRnAbIzRcgclFwy4q9Vg5mhpW8MCSMl0axYBGRLTzMWSRLZ8iSnQIGGqEB0lBWSYgdNGxamVk0WFwEGS6ELcYADrwqTvoLbg1BrGPwsO1rJEbEa4c06jLtVNLIWYj5eoZF6O8TbFvBoznOWriKHtE8GR8KiAnClcujWErfA0IyIyODCQYYcD5zQRfayodzHlEqXL4gSbWNRdL8D2mBg4e48ID3oKwTSM48pEvN7BStzi90qJZq9CuEtpxdBwJX7YtJE3LOq/gXOAVZlAlcxcIRHVQ0syoz0yNo1aYB8oTvg7f8EC9Rai2CCt3MlbvaLF6e4PRqZ0wpYIIPArLTjiPmNkR76dz/FN1eNcQfKz6KSA3OLUpyAcKEePW5alWkqrZF5US0kiQFKrJgHcwjJPYYLiWNFoqTrGMyHzSqzXKL8mywCMmrQqAnXdpC/Bl6VQyxYD7+aE0hvO1FfNvkRFZVoi9lCr39BEgH4wGTgwol5ZBwqkdYkCLgSzN0DnGBzQqRcCgQTyiJuNJO5cx8GXQl3dO17E6auBWWrSrNdoVQjsKOijI2agf21b1JIX85wSOw8bwqVzg11GNdmOMZs2hmjDqzcAfbRv1TIwEO0rAUubxeiZs7oyweeca6uMjbNxOWDnBGJ0N1enDHH/WOYF9+kMNOU8R5FPU+3FqQ4wWt2F+A5hY0+YlapzmHMMo4v4XofJdHFdAzEjogkQ1oFVnciejSPqgp7K88SgLnGES6uF1PQc5GO/8zrcNAeD02+hIizmkeUTxOXKMEoftAYKoUo4ZZHl/bZuz6N+B1489RCHAIxFi4VEJ7pR6EwhYdtVNMaIWO77GkfE6xnWLzRWPdtWh3grj3a/He8TnzyseGHtwK0XyAq+MzrZwUw9fEapLRhhtBhy2ekeLtVu2UH35BHhzM7yzlZXcKGrbwGOthHsBkAONR0BVqSy2uCgsmZgK3YUaDkjVx2P1Y4ZLc+ItxXeuU/kUn1LvmOw1voxeSRgzBGhIpq31EQd8ase3YGvFoOWpNgDVc71sLn9fX/u+e/oit0q6Cgnn94mlUoZY/Wic3yG4lNKqO/4+8xwyOVB+MjnT048Fac9G8a233oprr70WGxsbeOc734lHP/rRnWOuvvpqXH311fje7/1ePPe5z8X3fu/34gUveAGe+cxn4tJLL537XidPnsRjHvMYfOxjHwMAPOQhD8F97nMfAMBNN92E6667Dv/lv/wXvPe978Wf//mf4+jRo3vsVQ6+rUEsSj4Zx00GwNfdDgDg1Moqbt/YwPZkhK2pw+RMjdFpwkpctiGEjnzyevsIvs2IZzmubcOnaUHjEWQBc64daOzCsg9akAaQZWNc68NAcS6CWAKcg68dNELaR1KYpMoNYzvIZeBm0REZuB5ZymA4N3KOXGNAQXYiPqaSYKekvVGGyUMeChw51YXBME4GMVSRilEMQip40AcIIsCVCrPK1L4H8KoQ4licKDSwIzAES8R0nO5c6iJ1nMt+p/7YlBwF4/LI5XbSTPO+1GApPwcTewOAKnZnHFbjgjdVyccHMXUVNnyY9HRyZQ23rW9g6+gIZycOk80RxicJ3vLlUOGekmw0qnJA61FthqUj2FEoyCPTG4Cg9CXwPAFGZ4HV2z3WbosV4bemIO/BtQsfyWBAUJQc+YeM4nQtp+VrIjAPBXwoOohCXXxPzvAhVOKnJcTyNOq+NM0Q3U7KN1TABnTQCC9F5iunOBg7t5coglf2iJklEbQKf4QHEfYVcsRmkCQZkvaXSlKjSB7QdUyBpOQtwLAAx6XffXwi7eAIzCXCHnC4CKv0yNQ4jsda0JGe+wxD6ACR8KQU67G6ckRN0Jdo1TBepx2suikA4PTKKi5b28Dm4THunFSYbo3QnELI8GGOdTe88iURpTTpWK+EZHK2MYh5pYZfq8EuLLcW6nHEuZGNQ9s6tN5h2rLa1q0n7Exr7GyP4U+MsfalCuu3hqURqx2fpeeJQeyNvsyAnRh3UZehjee0UbdSqkQdvF+p6E+KEMeIsc8zi0onT/BOxOiX8GUcYzZDqjxHosOdpdIyBVLeMzKK4A5rOfdhfsuDhe4nY3hk8qLPIDZpzFkk2egtQsID8KTzqlNVajmeRJBloB+26+W36X5yfh5cIuQBnvThjt60WHbCFdbdDloQzrQrOL5xCFvHRthp1lBv1SH66xHGmTz/sQcmDqPba6zeBqycYtSbLeqzDdxOo7hy5SRhdGqC0ZfuBJ8+A64q0NoaMKrBdQV1bKVJ9Ip5JezPlQNGNVCnLCrFvtlc02BsuYbgbaEnH07I67anWwTnVfFt8WmfQ0f4QLK0NNgSM0Ti/x7Rl2QxaB9ZbNeH1aJhGfxRcSqDywfk4Hx++R3vk33b842qtc7sVPgrMrvhP51KCKDzcIv+WeeTZob1yA4q+k1G11tcnAWF9kl7Nopf+9rXYjKZ4BWveEWvQVzSYx7zGLz0pS/FT//0T+N1r3vdQtHia6+9Fh/96EfxHd/xHXjlK1+JBz3oQdn+T37yk/ipn/opvPe978W1116L3/zN31y4PyVZIVKRz5T8Kk07wuSw29YiXCNqsVZPcQMuxc7WIYxPO3AdBX3TgpuwDrGmabZtSj2PqSNhHkUDbppYYMSDnENYDgZacdq1cbJ+XEbJNQy04Vpch/kXvo7R4SopZABq6ClRUPK+olBdtsc4FkXFkvpAyOcKSPRRoz4Fd1iGtAqwmEOcgV1bat8qYPmOqVKIEWJyCPMzrGEd5ytmQWuC9k89e2QK6QApShyFalivz0qC2CQRdlHJi+e/V3taQVUI4DR/OgEGKxDL9K7OPmkLit+zzjngCh6wwJsVfLsMgDcYocWqm0ZgHitruirOYXRYcQ3W6wmux+XY3DmE8akK/pYo5YUPxRElVFUgSZuOc4sBQOc2xYgyTRq42qHeClMbfO1Sql4cLm4aCmit3umxenso7kXTNozb0SjwZzSKUzSHchYSANBSTJ1muIpiNkjkPQpAgIlCMRQKw6hB4FtfpTUobXqm9y5+J+M4RCsFACMYcJUBoARdj1AMzhARk7Flxq+QgpkoQxzUME6OIYRUKzE00fMc5Jp27qEZ07pfWFWiaQ4B1JFtN+fnIJ2jtRt02gVU3klbrFdfU8ERFL46ohSUyzHxfUEMqlxmHHy2ZHUeA1BdWRF3QPcqTTXzCgCO8DZGFNYsHh1tsVpPcT0xTuwcxfhkiBgD0NRpWW5RDGKqazWKNUJcVWoQ88oIAFBvhYHla0K7CjTbhHbHYToKyye2dUpb3tkeYXpiBWs311i/hbF6okW97YOzI2ZspHdPaZqONSrDY9GoJnFIteYWwZHmg2HsyUU97ZKuiedbI9h7CvUn+qI+ClSjUovLJCIepmsNF+M6Gb/pd/ldvGZo6qbcmKGGgLalT+/I71LvS398v2OrzyC2kSKgR3dJ2z2SQSxtF6zjkOSMpoAX5ex6ZZXp45BeP6BUKZ/6zCAWHBt40xjGCGnUnh1GF7XYGE3waboMzalDsY4FhQKRFN4Ne6A+UePY9cDqiQbjUw3cdhvWEo/G7codIRPKnd4KQZ6VleDAWhkB41HAqiaLEUAcBwaMRWJZQaVyyZkRx4WslEJNcBZ7F36zOiihfzoOYKuvJLBTYLEMgwJJzst4i9iTPbIVGqxjXDFoPKfX0VritPgodbk/g7kHDdA+nFlixE54Fjq+WSq1R77xVfIrSZ9KPJ5j6e7lbXRbMi8ldToTbbbvsb02clwawx2dvw/as1H8//7f/8P6+jqe+9znzn3Oj/7oj+KXfumX8L73vW8ho/gP/uAPcMUVV+Dtb3871tfXO/sf+MAH4u1vfzvuf//74w/+4A/2ZRRX5DMhIuDbUQLgIkhWqcEKpeVejtAOjlVncdXoBC4fn8Z6PcHf0ZXYOnMEh24W8O2Dkp9MEwiPc4BJFO2UAd/GyAk6Bbkogi9ZEqKKVfjcJKROk49zP8jFJSlcFgFWUhAXrx0r13Jtol0O5nhkgzF4qNBdlJsNgJDzYBShGdxJ2ZmIbuERUkVYKnfbNkQgIJFhz6DKnOcNAyNdpyw4YsGujYbDm+p50l8Oczm1UIAAYnudvskYJXMX6TmwDgKfdHCvAdsRct3baV/Md/bQenPfDg7ZJ1g6qjSbIxrEgS9bjMxcxg2a4rDbwlWjE7h0dBrr9RQfpauwffoomi/E1GjhSR8RV1UBzoV06apK71GjyW2YP9r64OhyLlah9qh2GPUo8qBjfa/1FmPllMfKnQ2qreDsCmA7RYjZUTCOda57jzEoa6U2gI/RYlVaEnmMyzIxefBUYucA2IdkBiMHymXCoJFjeQFx3DtAXMg67qN2Y1n32yfjOChxNhkKpJdLNzfONQ48qOlZMRqlj75UmvF5qOK08qMc0sL+rtjmBHDkzrDsGAtgKgOA7GFyrpEXymkRlFOc22iNEn0xCgx42NA4wGR1pcwnlowq0ZWr1GJkpjisuykOu23ly41qgo8AOH36YmzcHOQSNyltGlUFjEcgZ3jSTGfgyqVCWwDQMqodD3aEesRotoD6DMFXFVom7EwdJlWcz3y2wvhOhyN3hPmQ4zMebofjWA9OYjvtBoA6VGWpJo1YyjiQSrgV6bJp4Rppvj/g4X2lhjmRGMWI4yZ+PELtiUIHBEcKpfFInAwAAyiTMZDaqTyRGcScH6M3QuJ32S/6q6NU7HkWb8TrKEgvwKxE5eTYwiCmNh2bZU8ZUmOYzP4MSMe8DZFPMbumtwPRIai608qLgYyRg0Mp69EGeIQ/cxwb+HNEHqPocRAse8/x7bh8fBqr1RTXNfdEc8sa6jMOTQXwagtPwPpnxjj8eY9DN09Qnwkrq1DjNSgDAJhOwzZHYek+FxxYWBnDr9bgUagUHwpTpgdLkgafdS3qnDooBw14tAiZkk2c1tAQKBbUkvXRCUZ29xqixhg241SwajZW5TQy4y4uzedH2gPIoKboJJe1ioXnsshyoeuFH5JBzJoJkUWo+9IXyuiwjXz3GcgJ1ia9a+QdsfqSwvYSj1s9KQ6CnmxT2z+RU3L9zn757nOQzYl9F6U9G8V/93d/h4c97GELFbhaWVnBN33TN+Hv//7vF7rX7bffju///u/vNYiF1tbW8KhHPQpvf/vbF7r2EFnwXRHrvKiQTt1glRqsuwarxFglwgiE1jW4lE9isz6Fq+sTuHJ0AlesnsK7m6/DyZOHcOgmAp85GyLFWTGfUGUPVRUiwZ5TBVwgjBwXq0c70chAKIAQGU4ixZJiHQWMrx38yMW5T5QpDC1sYVO3XUgpFQ942mGMNA+gDQDcg+MoMhzlkqBIyilFTKgQNKUhnAmgQnlqc6JMsGmNyZvWc21JfzYM1PHY9RkgjFQ9T43/2IBY1ESUK0RZCtIw6VkdGhLAxjmQzy9BLuTQI0T2SwcYgPc5qoDkxBpTizFajOGxSm2HL+/BJ7FZn8TV9QlcNboTV66exP9qvx4nTx7B4esBPnPW3KwKRT+qCnCVziMOcxtjwZ8WgU+BEMGqqxAxbsUwJviKARD8JBiw47MeozMtqu3A2zyKc6PEGWUzM4B8ziTScLHrh7sGWuBN6n+liDFC4S0EiOSBkPLJlIoKURrPuk6j3IzR9aabNXi5ioBc04ChSlrBBCW+FCecxGX01hJNteBagIY1NoAOf8p35lm2vBLPKeWFKnuRa4zcIGZzL9OOTgVt0x6NCIvMUZkIbYA6Eq0hAnutXeTGASJCN6OqogjEEVKmR5phFfhyhYBVIlQgXAyPK6qzOFudwRX1SVxRn8Q9Vk7hnf7rcfrOi3DR3wN89myKCo9H4bcYw5JuaR2PElnyHq4J+6qK4HcIozivmJjQTBzacWC0agKs3EFYvSNUva4mHkwEv0IpPdq+r3i7DggEMh2XTf9xCNHiyNPKj06AO9Qwtuul9tae6LyEcMWU0cEa0hFnT7xp91ztB+f/6/Ok7MTMMJZrdMJBBWV8WgD1Dt8iYQHzHG0NDYsNjPjK72eMVlXHksHhEz4Rx0HGh0XjpcK4yocsXHawqdSbNovDYtkVarHhfEdnni6w7J+MvwY7/xjr9uw4jE9UuPTvGqzfeCosl9S0aUnDlXEwfB1CZiMRMB6lIMx4BL9aw6+GIrJ+RHFN8eIlFEabVJaWaTZAwWvx43Q1BoanuJ44SNeUz+S3qMMezNXVLXnTgmNF/wuGo51qEZ1W1EpWFJl9QSeXNToBaCBEl/vz4RlSi1DXo6XE/yTKtnhuBmOW/JbhYduf+Kw5XlsMUy+xgQzXp37IO8qmGgG9UzMUe8ulinZoN8Qhwul59LZ9SMbtgfZsFJ84cQIPf/jDFz7viiuuwEc/+tGFzrnf/e6HEydO7HrcyZMncd/73nfhNlkSJW9JPd+QecZByY8QgPc6VVijMSpyaNnDg3HPqsHXjm7CI9duxHcd/Xv8+sWPg3//MfCJE6CVFVBVgcbj/kiUC2maPG0UoFOcLyVEnkMRKTb/TzwQC0txHVLG/NjBj6KhGz1V6lSSSLFRnOK5krUd5VgB4uRS9hEAuBgF4Soqc4cQHSOox0+NVAWLyKO/vvTCpX2zSEGJPBPLLL74Xz1k+X3SAzWMW0aBRJkWIBhM0ePMasxoGmgBoPq9kgVIyNLEYnvNsX39J3N9i+PzDiQBtBt+OZjUPxAEfEsmh4ue7ll8eWXV4gGjz+GRazfh8Uc/hpdf/Hjgfx+F396GO3w48aMLKdPkIt/FIlxaiAvxWbdOjWG0cU5/4+EmhBEQgDmAasKotlpUO8ZpJYawncdfjrGB7ktapizHRA2HCqEO4GkUFXFwqA+Kg6OMvI9puz33MvfrpGxmBlwYbWJ8JwPWGHXi6IlAlLyMUaMRM+VGuX1DxlAYBK2pvUPRaBu5Fl7qzQbpU7KWv6xhBAy+qzIVPLn65VlQkq3WCKb8PnnH7z5kC2sFMM4YwWNEiHw5wgrVypcXOcY9uMU/qW/Gt699Ho8/+jG87NgT0L7zKPzmJqp7XJ6M4b7Mm1gPgCQKaHYRhXnEdQTa1BKqCaE5m/iy3gSqiUcVC2i1Yxd0YC0p0gnY9jllsu3GcKMWIIlWEakzRPEbu7DMWeRFUr5BckbFMc0ZWKdsrDKFJWtAHB249tj4TGaNbb2O2T407Bhdw3g3Uv7M+zCknxMGiMdnmWPIjGK9ttzLPLZsqAhIZwq8aAZKKVuyjJTQ8FQ3RYyU/BUcSKpKHNvBtRzrdDBWyffqzEsLLPt161/EW49+E2669WKs/+06rnrfybBs2rTRatEy/YiicwqjOrN6WOf+V/ArNdrVKhS/XJGATFfs2fFLHmmqIAfeJI5TCVsKqdPRUUVNkAEU9ZVjM/e+F5MV81iBHt2Q60PNOIh6MdT3IF3FyUWjl9rolBOngMoPSvP6OzImRMJZxr3RGxyd7lpITB+Q7Y9pcwdzDjC56CG7JjWgoF9wbseRXOpIMv2J2zo4NN6ityX2+Q9QX0bYfmnPRvHp06exsbGx8Hnr6+ud6tG70Y/92I/hF3/xF3HdddfhoQ99aO8x1113Hd773vfipS996cJtmkUm8TD8bwSLTOUbUYWKoteZHKq4bR1jXFoBF1cn8P5L/xF/vfrPUAGoLr3EXFDcKfHtti1oNAKPR/ASvYql6FlSxTyHVE0SgRAXMjdzif3YmaWbSIuCdBjOc4fpk6fHItSk6MNzgdQsSAznGagQK6mic26aK0SFURwOo1IQIVdYQ7/NbXoFWccQ5sTUHc3WAaXht752jgKVOQFtT0koZikjBvCa66fGpudXOgMGPWL2GkbwZM/LHl+ma84yLu5GVPVIygpSbRMYgWbyJQAcdWfwLZfciPfe99tx6DOH4Q5tBE82USjwY6muo23DqvxZCoG0LaSAHk1b0MShBtC2DDeNadUt63JL2RSF2mRxVIbndOxy+m2ir2GfAAQoeNfxNw0RXBcP9kxAzWCZWuHEEOOunWHduEDHixsQiAGXLHPoi6ixuONjdJRtH/TiZnwX9wntIrUrw0Z7AHYnq4QNFtGorrnvYEStvI7835EVpA9L5kL3pYIrpoqyQTNUqDhHGztHPw8IVbD6UQzj8ExCdiGhIhrky4sArNJZfNNFn8O7v/FRuHTrfmHOoUaAOU1xEL3nva7qIK+ZogHtKAF0ahzctEK9HVaEEHBNojdjllSIDsN8I5OjTEZ/WHjAyJzH5PJoFaakOlNrT3ixBBOozsBqH7C1JG2STCgKTyAvzkPDhnFJ9taFDs8OU2cPwDNQqy77kuk7dLZlhoj5384ZFHlnHQ8laT990oslj/e21vLyAKZIxjTd7fiyJLtOseXP3bDs4zY+hU9edCVue+c9cdV77wB98TgAgMmFybxmKp48So7pzgDSdyVGcTCIpxsuVp5HnKpQNNi8v4BDCdWE4abQ6TfgMKeYG47ZUjC6ksLSiBynIrTde2Tyfw5nZAcnRtalCmirMH3PNQRuwzbXhr6VS48Jhsum8Zk29U5TFB5xkf8yJdnXWCBzNPXoOs2eADRCrAVlRUdJBopgzh55ZPlIMTHBYI78+JntLeTYIF4oce8+aM9Gcd+axOfr3J/5mZ/BDTfcgMc+9rH4qZ/6KfzQD/0Q7n3vewMI1ad///d/H6985Svxr//1v8a/+Tf/Zs/t6iMfarmn/7WWf7BBPQEtM1r4LCI15RabPMUmM/5ucin+9o5rwvzfe1yO9sqLQU0ozoNpWLNRFTzCZATyK6DtnbgkjIkkQxQvgziBA2WuUTSIV6KQMUaxeuDiAOqLoKabxEsXKdSuNVFiIBUV8AFUaJU/QBW8TYGyaVGdaG68RwZAbSpGD6NZJss8vIUSLg3i8ByL7TxwHVGwZk5TSHsNjG7TRZiSgSxrvXYM+JKBi+dPNkpckhU48X9bVKTsv01dscsEpOucI0lyQMiD0DLQEg/y5Q43OM0eH965An9zx72xeZnD+tffF9xEo3Ya0sA0AixKvYomZtuCvUe2dJoxlt00FM6jhsHUBr5mBEVtpjT4OoBz67Cy8/DD+DSGlhm7Qhl4lCUpQsFPnd7g4mBhj+DQqcTLHC6QpTYRwj9U3kR+m20qP1jTqa3hR14iSqSGsQKHUjH3yaDilvJPLz9hju2GOrrcguVyZ49cLP/PIs/xnMy4Nd/yiDWN3Mi1TGaYsXB3oRYOI7TFttBPD6DF7nz5l1v3wgduuy9OPgCoppdj/ZYp3MTH+fvxu2WgCQ4p2kHgPSl611Lgu8ifjsMawTR1qKYefsssS+gCD0o2la+h32IQ2yJbwisatWw4rBMv49ekS8dVpUBTROdUArQc+UUju5av5iUqBiYBGsG1+kQAO5DzHNDPHCUJw4puLppol03rntvzLU5gbVuh78y2vk9fJM8G7zQ1dqArpf6ErcI9SydKmxx3HYV3M1KeZBeWBUMYq1NuUaPqxbKnPePT04vwiTuvwNV/fBztJz6N+sorwvKiMhVQKsVzmBtMFKs8m6kOsroC1w7tSoVmjTBdD4Xw2jGF+bgOXRxm3j+1QLUDuAlQTcJqDADUSRz0mgjnWLaHI8/ZFUcK6hs2Ok6srC+CHVZ3MKLucwhTjFqE5QoltbvHsdMJXFC6njrfCKaeTTipnI4TrpUG56BTyvBg3wNgIE0TIECLXpoATiflmYt+QPBmelbZfO45RM9Miuyo/SDzHvZB+1qn+IYbbsDrXve6hc9ZlKpYZZKZ8ZKXvAQveclLOscwM171qlfhVa96VbadiNA0zcL3tNTCoY3CowXBs8MUDlPy2GYGMMUOh3tss8cmA8fbNVw/uQofPXsN/tdnvh6jvz6Mq0+dBt/jYuxcugZqPMYntlGd3gSvjkNZegCyJip5DxrVcc3UhITDMhUeznrf4m8/ruCrkC7drhCa1WAQ+xE0LcWCyr4Iqt6jgxrlQSdGpihsJGJaphcCaX0xTSezxrE31+RUfMAavsRxLoNtUpZqwplHcHfDOBnpqUKuETxyPNJvArI0UC2m5RELpCEWCMoNZMT5nFQ+lxlKt3wX2fMvAHNW8IPy8zg7T4RT/n8HsB9Y6jawZcKIAE2gNvw5BQ3y5e1+BZ+e3AvXnb0G77jhG1B/+DAuvqXB1j1WsXO0wtHPbKE6swNeH8d06BbUxIHRhgrwmE4DCB+FlE6JSgEIYH3ahnOrxLdcO3gi+CplcGRAvMo928kohg4cuyyYKtPSiNa5VHKtaBgrEI/nVBTmB5ONGlNS9pniL56//dcyJiMY/iZqrEssgTTNK7Oxhf9KXhxQ2Iq/M35CFmFluz/erDcKVHar4Pvy90x7RS39XO4UmXbZPyq+Y7uClz520CGCyxn3PKDUgoK+hENLLvKkw5Q9tpHz5RSMs55x3K/gs5Or8ZHNe+N/furBGF93CKs7wHQD2Lp0FKYfTHycJhCXHWwYNG3hqiroQ4kg+ygYY3Q5RIJ9iCg1HiRF7UYBlHMFtCNSQC6GMUfDuC+KI8DcTSlMV2jYgN24FAySXyP8jrzAASDndT4sD6ZnmZb+g/nm/H+7DVAgK4OPkfNoBpQF2WbjvUchWMNY7j3v2Mz0sL139xrWWO7wm5ENmVFtvgebRMVvkRXZslSc7ev2wUbgqXvMAaOWna7CYP9X/lQ8S9iGQ8XBbTXlbbRgTJlxmgnH2zV8ZnIVPnz2Pnj3DV+H1b86hHtufQHVkSPgi48Gfps2IYVaVldpZSI9p6yruGxamN0LcBUCN82aQ7NOaNYAPw5FqhTbGayaRVg90KwRqh2g2g4GcjWNx3qAmhANJ04Y1HukavEVsgFmxHcnG0iYWPSK7OvTKXo9jkakj3OYPaelRtskP1CMc2UPe011PCNFjIV3I59bbCnOwHR+fq0SF2tfYZaqirfMMi3kmIIHy9v0Oaf78OaAil+cyDTvHNC+jOL3v//9eP/737/QObq0wgJ0r3vda+Fz9kqeHTw4fnzwfFtBAocJVSGt2tdoqcU0asPTfoQ7/SHc3h7CZyeX4SMnr8HHbrkK/KlDOPaZFu7sTiyuA6AiTC5ZAx1dxfi2s6DNnaAQRwTUDn40At3zStD2Dmh7EgB4NJjhfSo+AQSBPqqC13vs0Kw6NKuEZoWikImeb4c8wmoBqFUuXBS6QpcBJK3DAWmOTY+AyIofeMQodw7shaSyngKQKhYtcDnDpf3GCO0DvfaHYAtmY5gXBjIhV7oZkAjXFqyhGSutuX+2lE54SLZ9CbQbhZoJv7Lhqc/qhXNS9dcc6xELyHTP7RgPAuxMlHueYMFBoRYupEiLIQxOxjBX2ZE7UXqf5Rp3tIdwp1/HZ3cux3Wn74nrbrka/OlDOPKPofjV9FAFXwGnr1nF6okRxndsB0eNq8DjOCfKOQBrcHUFuvM0eHMTtL4OjEb5NIhoTCNWheaqAmrotAa/QmjHDu04gPGw/Bkga52G60ALiqRISNiZza1D4gl7rjieXBPOYx/5xZsxGjNHSApzmbEBIBnWpaEsZIA3ZFkYiRrLOJXKoGIhenudBHKy7JFS5hiNZx1vyk/W2dPxmvcckx7lsLwwv/WxduSkbZ9ZZ9EwVC+4Lw4jE63XKDtHOXGASboVdKaPvOkzZ9WUK51XvI0KLXzGl3f6VdzRHsKNk0vx0dP3wnW3XA26YQOHb/LYvthhuhFA7MqdUV5TMFyJHeCBalLBjStUqzXc1jSua8xAXaVlXqTwG0JGBzHCMoURfItB3K6kSBXXUJ2pjiSTBhhAbVwnXKJV06TbQF3D2KZMc4WwZrHqC8r0BYAEyPUYRqoAbwzjwQGGfIxGQ06NZDGQhb/6GMAqh046xJw0YPjudtwi1AHifdtFJ4tNYZ9tlH9Bthh5V7avMMIPOrUgBDM06M2WKehOcphyHfkydsYD21Gwbfoat/t13N4ewj/uXI6PnLoXPvalq0CfPIRjN8QMx/EoTCOqqugEDTU4xEnMrdflRzP8Ho/lmtCuOEzXgWYDaFYBv8IxS4Mz7KJZGGbaArUR244QCnTtSDp1ymh0UR8JBrVOLgV06I6TFNwIzyaPcHKhV/rHC9s2x5TvMN0DGj222ZLZ+LePK14H8RASXhXHjOeEv4ewpZw86/8AkMN15NrSLkqb5Fzuu0Z5X9LD+/cX7VFVb7FMcW6Gv833zGsvQHs2ip/1rGft/+5z0o033niX3UuoNYJEFPtUHpdHECrUYIJgsU25wvH2CD4/uQRfmFyET526B264/VJsfe4wDt9KGJ1tQVs7QDtCNfEAA5OjNXaOOBxtPUbbU9BmEE+8MkK7McL0yDqq7Q2Mb5W5xfGNtzFdM3rGGWH5GD8OxQralWAQt6uknjdvFXuRlteJqPaAVBVEFhMz4hql8X8L6O212pBiRg3UQ6YVBAvwqvO46nAhcpSnaViDWNLBjZc3S/e2il7aZKo7yzIysp5xqCicP4dMEXpzWREQBqR3vgsjuVuUCAmkD5E8HydtRjKMpX9WeAH5Bct7GWHfcSQcYAyelLvdFkC4KHfZ5tlhm4KB7Nnh1vYwPj+9BDfvXITrz1yO62+/DGc+fwSHjxNGm2E9xXqLMNpy2Lo0eK+r7RGqzWmILsXIkl+p0I4d6tUaIyLQzg6orkKWRx2qw4fIVFpmDZ4Cb8b5ioE3ZWpD5E1NoUamDLIF6oH8XdnsCxbFnSpXK28izjlmBIO4TQCQW1KAIGt7Q2SErHmq6+jmozQVeEtFaMQghjOGMVMyJkVO2AvZMRvBTO+0Chg97dBdeqVKSloxOxmZkE0d4JwvbKNsN+VasX8d8GLbKAp9QKZ2thmAIUvoJGOfk3PigINvzw5VjEa1cKiQwPYEgQcTbxKqOFanXOF2vxH15cW4/szl+PTtl+HOm4/gyHEK6wNziBxNHYVo0JTgGh+AcHRCcU2gFYdmo0a9OUK13YS06pipoyWGY6QF0WAN4yJka6hBvBq+VV/WgK85zdUvQXB0OlU7BL8D1NsENwn6TpxaahiL7ObIdzr/3zpOCRAHcLyf8CVz1IVIxpsaxArYC2Yxxm/YZj5xAOpc5NIzqjInos5sX5+imGOgLuh97QvGZkC4vGuh6+zUK+tM133iFFaHYPEsh4wKju/hAOtLgOBjA1OgJ2DYihgTrrJ6OS0I2xzw7QQVjjdH8Pnpxfj89sX49JnLccPxS7HzuUM4cgtQb8YaGk0DOrMFrK+G1Rfqyhg1BMI0VFzXteh9ch5XFFKnV0mjxM0aw68weMT5uxASrCbR1pbANceMjlCsstoKhrFr4xzeGIjhFnBTpEixjAGUmM2MF5lqRNE9WSXWSXqFk8PK6hMhcRJHXa19sNHjGKCR15FFrBV7Gn6WtjOy7KI888gC9aJJPeO2dCopptADpDuUtXEvlDk6+vYb1spkgJVFJfbdDUcvQHs2il/zmtecoyYcLGrZhWJaRpC0cKrghaaoUPEogHJU2PZjfLk5is9sX4ZPnrwHPn/iGDaPb2DtNoeVk4xqpw3etcrpHMPxqQbVxOH0vVawPjqG1Y9+DjQewa/V2LlkHNOgHfzoEOrtFm4nzHckjkvCiNKXOYpxLrEYxO1KTEepo4KvWJVtHwhM3rju2oAKViWSY8Agmd9yTY1yReAQqgXK+axg3lb1ZEegmtEigURYAaGKjZPHr0oAsjOR3/ZRwS0yQRTmZHCch0KAeBTj+QpyrUOg1IdGGJVRK9lGEg1QgZzehZ17WGDycPlM2IX3wBKZYtJUbotj9BrF8yiN4TKydhCJ0c3gmPSIrhAtrjGlBsFRVWObR/jy9Chu3L4Unzh1BT535zGcPn4Iq7dXGJ8KFdtp6sFrNdoRYeWER7tCuOOBKzjyuQqrt27BbU7QHFnVZSO2DlVoNi7GysYq3E5MpZYCWZ4TCGcKQKEKqZp+JfLnaj5/StLF7PQG6xlXsqBP+M46dcr3DnO+KFACpAiJ8E74RKUslTIR+QkUET2SwtTxxLFZocHqvPLSATGMY4PikhIl2NV+RKMlGcas/bROqDSfH7kHPwIFg13zzIhqIFUS6I5/BQGhP8RslnuLfZS2cf6clYooQG8mB5A5ySjKQZWh/accEAoPTRzI4BQtnhb6csKVFt5q2WGTV3BrcwT/uHMZPnHqCtx04iKcun0D49srjE/HVGmTxrJ1eZiLf+hLHtV2iCaJAzgU3fGYHqnRrFcBtAPQ1RV8qAgfvNlQvelHLhrEQV82qyl9049Y5xWLAxbWeIovxrfh/GonGNj1FlBtk+o3MYyl7gbFrB5uZXxSJodzI03GAgN1LGKXPX4xkGOxvGx/ApCZ06r8bYxju1SMXKK83RDNm9UwE0yL7AM6MiI5AaI+9ZlISqDeyAVWeQd9b0knc0c2ZE4GG4nvdFb2HVzOFPLxYdlosc2o8nDRWRVq2bQgnPUruGV6DJ/dugyfOHkFvnDHMWzftob12xxWTvmAZcUpNZmA6pClCOdCRlSsv4GVUVieadoEI1pWVakr+LURphsVphsIBvE6o13z4DEDdXBqkeP0jJmiUzd8qIm1M5pwP6aIJYlQbzFoBzEai1Tnxrx3q0v126RW+5FJxCSCL1KtxSDmyowXHaO5ImZTc0OWViLpgxMdLtMvqDuNzxjGyhs+4bikF6E6BKDMgJd2a0aT3Yb0fx8OzTdEY3mOob8be+g1jKGrr5sN7kWSCaojYb7Z7DN2815pX+nTX3kUvGulILEjpI0pYbYK9bYf4bRfw63TI7ht5xCOn93A5sk1jO6sMD4FjDY9aOJDUZA2gvDagVpGfbbFiiNUUw8cO4zpZYexdcUqti52AY9OYtSUCLUHqpa1aBYqo9zXajTrBnCvwBjFrBX9lJkJHR0q0ZC+FA9RROJ9Uy+cyC0xdhWop+9qylpCX6LEAhiZWAuZ+LjecRBcJkJslKGms1ECKyKYeqvbZf2L93QA2iScgHBvalO1XkmLBiGf72gdAuUtCiOzMxctGq/BQxmBiQFDuaWQN103i/BTsM26JICCINuo2NAMNFiAUdzrIJNEi8E1RmjQGldymFPsUJHHNo/QssM2j3DWr+C25jBumxzCbZsbOHNyDfWJGqNTQL0VwLebxGJYFMd1E+cVjgjtag0aVZhcNMbkUL7eNzWrGJ1ycDtNSpkWg7iuwpSGqkK7NsJ0vcZ03WG6FrzimsVRRwVcJyAsVGYqlApO+M61KT1MxmjmKPYGaBLSdIc2zTHmmmOwNgwujo6pbD6ipSySkoxjXeoJpEawgt2y/Uh8pe2OAMH+L13Xc6XQjVGmmfMH+RhXg1jAb69RXHRSrh15TMAKe1mWJcqO+A4gQJ1Mn5D6lUWLy+eZtSM9D4hxfID5s43Cy0dPoUxtmHDaP+UaFXk49vBw2PYjnDL68vatdZw5vYrqzhrj04R6K8wXVsdE5Itmg7B1aY3VO4LRK3UyXAONdDoA7YpT5yva6FioKBxThdRpP3bREHZoV0LqZrsS0zejzvQjhIrtFUeDmIHKGKAC1McEXnFasKuuw1xHN6UOT0rlWxmz5ZQmFnAe9ZroRETQH6YS5QCcNAOpHFjcLYxjDWKNPkUedYVhLGOxj6xMAko7YH7qu4c8X1tjBEn3ERIeKUF9qXOtEZyyYIxOrjgZxPKO7bMd6MtBL7TFiAGe+HDFoTw1x7RM8OSwjREc+ZBhxSOcbtdwi/Dm2XVsn1zB6IRg2TCPXx/MZAqMx9Ex7MJ0hapSbIppzJCcTEPF6dUV+MOrmBxbwc4Rh+khQrMRDeIVD4w9XO1BVVgqSvvDBGaCbwncxJoAjkAU+sggLUIfgjqMKsoA15qHQvmYEccUu5QV4kdxwEXDmCuoTGYzNmQ8DY2bMEZEd7BGjINsj8e20PWGWXQfIfGh0SOqQ+Lfjj6lPOCROZIg+lfmHxv9bWSP0qIOnx6mF4O1s9H8JnsQAzqnGcgMY7WMyWwseN/4AfdF+zKKP/GJT+D48eO4z33ug2uuuWbmsTfddBNuuukmXH755XjgAx+4p/vdeOON+PM//3N86Utfws7OTu8xRIQXvvCFe7p+nyCZArECdUwP47BmMRg6x3jTj3GmXcXtk0M4NV3FpKmBiUO1Sai2Oc41ikLDB09bU4cKmK7xWP/8GcB7NJcdxtmrV7F5eYXp4SD0602AvAvl5ycuLCsBwI8rNBt1SE2pHZo1h+l6AtxBwQPtOBqOtURXjSFmOw6EuQmyXFJcVkKr58XK0p5CuzxBl2fSb0ZaOL1FXLM1GsUTWVcuGsexdL8sg8EupMYGZdetjJeiPpwUmxjE0i9RbCXQZUpCzQokSd8mAHE92VCUKB2f8ZgAXBPFktso6EcSspAIsbS3YFquVHImpodpkyW5thxnhWXcTgOamnuuy+b/cyFIzje10Vr08SWIs6pV3qQYjQrzpiRKfLJZx23TQzg5WcXOtAbvVCEVczuMS/JByYdK0WF+YTVhjM4Gvm02avixw+ZlFaYb4UHV2yH6065VcG3wsLtJTCmLRrFfHaPdGAU+Xa/QrAf+1CqbkqY5Yp3bqFkPQozZuimCXK9FPADXUD5n3xhlOgzie/cVNHIlxjABaVyIA4eQwLQqpgTC2WglTesvQK2Cerl+Qdl0C2lvi9yItApSH1CMPIvvUoFLT1TIygoLYlzfQ2Z9vvBJbkj9AZ3Y5RH6HGVJitj1rHfpi/6YfmVTKjjfPWiYXGBi5JEosFPQXSEYwI59WD4t9mHKFbb9CCfbdZyYruN0s4LtaQ0/qTDeJridkFUEQMEsV6GQDlfA9iWEasfBNYxmNchZVwHgwLcAgsN56vO2SkZVHacZrTlM11xM24zp02vBEPZjBo8ZXHugZlAE6eQYzvnMUGIfChX5qUM7quDHDjxy4LOk1XFdA52WIw6qTPZG3SY8GaY6AJ5DSSLvRL7DOIpZx00yivteEqvey4xjmeYggF0MYzKw1Iw7KscsBv4nDBrIg7IsygoFwZT0qU4HiUvoUOxSCh+l++bZZHF/YQTbLK2QPm1wQ9yuEUrB3j0NH5JjB4Y4yHQfH4iLgt4u0eeIMTVFXKdcqc68Y7qRYdk6Ytlqx0cHcux824Y06iYsGcpVBV6ptMaNmzg4ZpD34FENf2QN25evYuuSGjsXEaaHAt/xigeteLhxC+c8qirwmnaHCd6HaROtY7BzYHLB1GeXambUMfuqiXP8GVkwplPHpkoY1NdB/1MciOwAijoyIxlXMk6KcUOy7rhpOzjIirBcDWVjlSjibbm+1deGb+W9dohkPJbXNTUKpM1I6lwbqbxjQQIWHN/c/5N7Dok3z+SZ3jrNaaaod7M6G5T6ax1k9nntl/ZsFN922214xCMegfX1dfzt3/7trsePx2M89alPxWQywQ033IBjx47Nfa/t7W386I/+KP77f//vADBzSaf9GMWlIAEAh1C9VfY7ydsBometxma7glPNKk41K9hqRoEJiNUQ1cE1qoEmFNzCxgjtOBjGtDYKy7iMHCaHHCZHgqCQSES1AzQTF5jcVyAOYP3MlaNQip5DKmazFgG3gO5xTAEbcYyqcp7qUfQ9eL7jfcULFn97x3HtRbPki5xqgLcwscwjdk00iKc+tj+ssSyClR2BfFgb0pPrnUfZq+Bif7hOCm7IyyvFfjTqI0JJjGLRrg2lSHLsk03LsNVFM4DL5jIwIDwuyu7F0yhzNoWsQOrbNjQvRIYjUwZW2OzrPU/ap4KvZxwcSCqVu1NnlYNXBQ8A4KDcp1xhs13ByXYNZ5sVbLejsFZvZdIi4xhI4zEYqmGeYHjH7ZrD9tEKOxeF9Mpw+2AouSnBTatQBZcBNMG0pNaj3Rhh+7IVNGtxLvEYWYpmxp8SjRKDLXR5EIBqcRxGmtLQAtSEFC3XhN+aPoY0Vq1icRyeA5AAKDlA5gPrPTg1pgO8CZCyb5rsS/FAHW+x0IoBux2yyl+MB/nIqxXeLkC3FDk1tlc6Vp1S8fnaqF8PAC7bxD42Wjz9Ig8o9jdqYl2WxoIKpLb3TTuxzzCLpEtGyd2AxFkV+JEx0t+kDqsqplX76Kza9GOcbNZwpg18yRwGo1dHZ9QL0bnjY9GrkJrMmK7HIj0RwPIkZksIH5SoLPJ2u1JjcqxGs+rgK4S5jBvRkbzGypM89sDIg0Yerma4qkVde1SVh6MUwWpj9KptHRrn0FYMX1VoKsBXLrR3S6LGSMDcvv/MmAtzDb3hS+9IndUd3COAnMI47hXlgh4L45iBFCmO91DDWMZzSbOA+cC9d02hNGDXThMK8ijWJIj6WAtKStS94CEAxhEGgxe6060UC1nsIPLAMWQNcZuWfrdQlZEYJsBDHlNfw4vzCjL9Lz1AKVS52a7gRLOOU9PViGURnqNWYo9PoXJAVYHbKTCZhFUZXCi0xR5pqkzt4FdGcNMGvDbGziWrOHNVje2LA1Zt1hl+NUaIxy3qukVVBV4jQHnNc3A+tVFeyxTcYBBzrOZu0p/NEqTkETLCpnEpU5/6rQbxKKwIQR5oiOArBlXUmb6EGI1NzhSE7BFnMjYKJyshFLgkFwtdOgIalwIT2Q2kYSmL0eJqG4jpvHPhG+WfGNiSQBJgnMeJOTOD2Mm1jE7cy8AvZEW+NFSSRZKdCoI6uygeE2wDJMM4OqVBMZPNIUTX7a3OAZPua07xqVOn8Bu/8Ru48sordz3+yiuvxEtf+lI8+9nPxmte85qF1hP+xV/8RbzxjW/E5Zdfjqc//em43/3uh0OHDu216TPJChIxjD1ikRAkbdWCMPU1drjGZjvGmXYFm80Y07YKL7cKaVjNGmGy4VAfWwG1h+HO7ABNi9GJLbidMfxqWMCc61Alc+1Ei+nhGjsXAy6uO9qsUvQ4J1fP5HAA6jIKdB7EKESH/QjgEcOP+sFgbyhWgJ8olAiSA9CgOBWL4YiAJmUCZ2ulATqwg2EcBJGbBsM4zCcO60wyAYgVQvU6GgpFARgMc8scLy0MxICskWpALlk0HQ3jNO9RbhCfTUytC2AhgpAeAG/nSlugK+0FpK2xnQw4pgzjqpKXtkVDIgf0nPW/lziuAmtfZR8IsbK2x0ju/D5gJAq+VO6yBq83UxxEue/4ETbbMc42KzjbjDH1sdyPY/gxo1knTDccpkdqULsKajzWbm+xczSkSLcrBLsEkh+F1Eo3SfOA2xVCOyVQ40C+gvMe1Ib7tOuhiN7OsQg0K6TCWpE//Sg6zsSxUxkDbfCdi6GGAGplvpKsjdpQCAJFQWErw1vDuLx+KvaRplaI00VTqM051KM0Q/kZMlFP6Qt1+2SvZRSoVAe2xf40A0KuI0awD/zOJYCn9GFR9AqEg6ygKoFf6pOHAMRJyEz6jO11A+eSghZ9RjTw+ky/5P9Oe0U2GAB0cCl3IEvageVJRx47cb6iOKtOt6s4067gbLOCnaYO46wKRXbaFcLkEIFah9HZwCftxbHC7E5w8gjv+RGi45jhpxQKylUMxBUYZdyEKvIO7WqFrYsqTA+Fcd2IA3mN0a6kIj8Ye7hRi6r2qGqP0ahB7TzqyqNyPhnF3qH1wSB2rsKUgg9Z6jU2Msk9joYqGnZllfU0n5hjdBi66oIcx+V4iLqJYmQqsBl3xjGxmVsYdXwAlJwbxjpBD/3jLuPR4RHRu2tIlsm9SC5MZipQ4l2KQEMMHBYYZG6WpcRKpNgB3hTktHp5MNLnkoHT90zzIsoHmUGDETlFBQ8KSzNxWFrUU3AuS1aHZ6e8eaYJfLnZjCKWJcAF/mjWCJPDDvXmCtAeRuUcaGs7rFPsPSjW13DNCDyqwaOYRl0RMKrRbqxg++IKW5cSJkdjqvJ6cEC5kVdjuKo8aucj1pQ2At47feYNkIpHegY3lN6xlf1AGFpNqB+iU6UkU7FycLWDHzNaH6LPrg5ONm+xXfwp0w+DHirGS4zO9vEhwxjBBOPgirgzGoK2GrzoGMDo7iIYk71xMRyl73pMF2MCBlsag7hTMEy9up3hlR5KH2Vg1mAIuZwJUqlxbE6Vs7oAXJ6LneIVjx+SXQvSno3i//W//heOHj2KZzzjGXOf8/SnPx0/+7M/i7e//e0LGcVvectbcOmll+K6667DFVdcsZfmzkUMZIIkJGeEl+JMaphHWJ4pgO8aWxF8b7cjTL2LgiQYp806YeeYA3ENX61jvFKjOrUDd/Is6Ow2/LGNkGY5cnBTj/UvbKIdH8LWPWI6xwqjXSM0DUA+5A+1aw47Rx2mhxA8eFGhSlSSK4TosEagDBi084/MKFTgFzwAGQPraItzH8QYER+BFBERhpRrajq15/RpfVj3tQ2eOHgGt6KUDfI2gDabS6wKTyoUpv5Zbx1g28Lp2xuQAFGuFJc04lDEwTgErCcq61dmGEcBaysDZMA3pqX3RLTKlBWOAD2bmyyCq3fQprjIPDq6LwBw4ImRwHfhrHKgTLlbvtz0Y2y1I2y3tSp4qsQoBnaOEcjX8CPCyokpVo9vg90qphuhOrRrQwrWaNOj2gmV3UV5hKq1QLPitKq6NIraNiw1cYgwuSh1Q+b2d+YrVmKo+Yw3S30gwDjxKunceDEYPYITRuZBsU9jzj5P/TYfib4QEsssRApyRbH2WIfi5ZXjkSv/vMNI0xQo/WaixENlOy0vASonWBwO0SCmyqsx7EzKm946Kmov95IUz1YYk01KKqlsKY1m0+2sX9m3eXT6HspzDiAxkrOq5MmUXVXFtVCdpk5vtSNstWNMfIWGQwSZXEhZbjYYO9PA6+u3teBTYVkmKYDVrkDHqwBg8oR2FDMkWoJrYkQmZh1xTCv0I8LkGGFyFKAmObpaSZcehYhVNfao6hajUYtR1WJUtxhXLWqXG8VNNIonrkpTCTjch1sK05dal01nqCRzw8e0ago8Gh8VAA5jzqZu9gDgcJEoJwBQTDUVQzm0JUJHYsC7kLHhjGEsuEHHLaeBawBm7rQaaIs0SQ61Bi8XO5FvL6PFOlUBEUxbZd33be8p+ICQCotG7ABnKonbSF+PQeyiYWOf50Ge299HLSKAgWQ9hn548dJGmnKFqY9YNurMia8Tlo06c7pB2DlKID+CrwnjlQrV6RVgZwLsTMP0oe2wXjGNavA4GMeoAzBs12rsHCFMjzLaw2G8smRkOM4M4soxqmgYA2Est5HXuQoZGmFpMx+mq1VSm8aMl0jEEpiJRvG0TQourtoC1GE6Y2umENrxRQOf0iB2oS96WhzPTD5GiWM8pgooGjCynkn5UTMUxOorMGcfL2bz7OPrTTheGpI/njyjymJRTn2U/4Hy0XYp03ORybWdSSlmVe8ZyIxjTrhbnc/yKMji8hhN5oSNsjbvkfZsFP/DP/wDvvVbvxV1Pf8lqqrCt3zLt8yVbm3pzJkzePzjH39eDeJAlAmS4PHtPmEB3o132IlKfuIrTNsqeJtM+nS7EqNSEwK1FUBjjCqHaqUC7bRwmxO4zQn8Sqg63W6MsHr7FPf4mwq3P6jG5BhjcoQVeHEV1jedHCNMD6ciEaoQCKl4hBqMXaFveyVMqcBPc3zj0gMAdA4dCKjT3FsP6Dy7sMQLdwYmKbgVLcjBAM0OCvcQABMM/fQ7Gcep2nSKfOfeuk66U0dTG0AdwRUxUroJIxYtMOC9fGAqpMw8FZWi+ZjR6w+AieSxC9fIiq9kgqr3bP064Bh6z1SCb8uXTsF4cFR5EKa+UoNYFHzjw3FEHIxS8XwfSgChPuMwPtlgdIbQroZ5+r4OwHr9yx7wDltXxHHRAo1UfY4IjitCDYDaCpNDDtPDIT3MrnUYMhwkOsxhzmLlez3NfSCMPWnRkeCIcmAp1CE6iOOcsejkyVJzgWHFsQvgVbJsq0pul+NLQ3E3g7ivbeWBPaA4ixKYiFECwPF5Vwn4OscZkAn9CemqxMG48voyBMwksCLVReFyTCZtUTyRAYb+btLdiY85OauEJ8NaqC4r6NNxIvsxdnyFSVujVb4MRowfh+hts0HYbivUW4xDN3vsHCNMNwiTI4TRmVCXgiekBSU1IhEsRFSO4atQldoh8KYfEaYbwOSo16kGXMfocM0BnI9D+uZo1GJcNxhHg3ilblBRAOzWKJ76ZFy03qGqHHzFaDVdPzjBnC4Fk3RQWFYx8ZCHVKNNwFzBryXrSEVutBGlIj9kB6PzXcNYUKdeCN3BZ9IeU4QqnWOTsfTAdFfj/EXOw9yzvQewq+EOcU6ltnTwN6DgnkWsG6yghnFPpG/IIHaSSl0856yTB5AYQQeIBeG50nGbVZ/mgHkb79Qg3m5r7ETelDiFr4MDqVknTKYA+RogQl07VFs1aKcFTYJhTHEFBppMQdMmpsEyiDdCgUktbib6j+GqYAAHGMj6cUZ4hudfofVxbr+jsEyZS3hXqrnHU7IIK2TqnjWKyYOIQt2AxmlhPCWjU8QvbzMMLOYUg9g6UgAoP3ogPBfJbBNDUHyKDjEFHalGhW1K1hfDj/alR57JZt+ILsy2CU4X+yH/P/sN8/88pDIjYdMhAzkzjsMDQpYa7ST1HCnrDcgNY9A5ZcU9G8UnT57EJZdcsvB5l1xyCU6ePLnQOd/wDd+AU6dOLXyvvZAIkpZjsRAjQACYuVEVGl8p8N6OhrEqeReUYkhnBqbrsRIlQgGCeuxQbTVwW00o9NO2ITUTwGizwegU0Kxu4OwVLpStX4+K/WxY6HxylNFu+GJAx0YSGwBYGI2AepWhh8doo0uo2rB0MowF4TUUUz6ClvKRSVFDC2LInFpVUI6QqqlK1ds4v6KKxrCNCmvKYxJEkh6TlcI38zlUOAFZCovMZ8j6CGgBBP1EBUzRo6eGxBDH2XNhZQYr92YFUgphawWuRPtT6jormB9cA2832k2Gle05sBRSwcRRVVGXLwFg6iu0cNjxNSb6Cc6rVgR1VBDBMCa0a0DTAsShouXoVAPXMKq4TqrMoRpPOSzfEqtHN+swgDXIjNCkGtRyAPGHQ1XN9K4TX9oUXldJGm+uVMv0PObAL8wIRUd0PYfoyGIEXor8yAzN5NB4gYzHofE0NA52GR8WiDOntKbe65TXsqCDSMd7wOwEO0eUraegjz8FRBdgpgQxEh0OBnEqnpRF2Tik7DEx0IZ5qHGnidpH+eKgETgoKEoNywzkjsWA/Li7CTGk2GTiSVd0Sp1VUWdutWPstDlvAvF5VWG6T7sSph1JfYnRpsfoTNAt7Qqps1QisFxH/RhrOLALwLuasDoX/TjU62jWGX7NJwOsYqAOFW9dxVmEeGXUYKWKv6sGNXnUroWjkOZcE2VzHsd1G9KpiZFlKOgSaEhpwOWDhAG5pa4YIoIZtyIz0v/24oEnA+OLyJLzNRNpaPCx+ea8joU2RZ4nm+q2aVN63rP6ZbJIsnmEHKByZpAX15E+2OBAwhCsGKI7jzgIRHl21lFm5XAeMZa+zWkkXCCSebg+jtOW+/e3cJj4YAhbJ3IrFZCVN0l50zUA2IHdCDxycNst3KQKWYBNSKdGK3n/AHyr41rHj0NyCJvn7/Q7D964+C4qF+uIuFCELuEkZOnTQjIFRwMztl1EIO9ju2Rb+CqdrMonmV4J25yOEWQFwjTzAYh1dsO78I7UIBRcnDmPC1bsGMQ9adTCwha7Dk7H6fSh2K7BLRnztiG7UDwkFdGKD0GxUtwpGSoI/E2yLKQYuvJYKP1vb5FSp43ePQcsuWej+NixY7jjjjsWPu+OO+7AkSNHFjrn3/7bf4unP/3p+MhHPoJv/MZvXPie8xIjCQpHDF+stSgCxDOhMSknCrwzQRKNnJrhxyGVqmkEKbqQRjlycKs13KSNaR0e1dlJALmjCkc+dRprx1dx6poxNq8Mc6ja1WAQT4+2wIpPiqJIfZD0i6EIVCfFSp4BhWvJuJWBnCmlOAdXUzTbBL65JnDLySCOhi87Cmk0sVqgVM3mSsrrA7IAe0iHQSdtGvYjIFeUe9FHIDGyGPWqk2NaZ/BCIQFoh2Cwi1AywnAoojXIhOV2I3jKaJYKL1HoMnfaRt3VY4r8e9Y9Z+2bO0R3MKjFsKNK9gvwFgW/09ZofOBTia5SBMJch+kNLq5zmub31ai3PNyOx+h0mJwY1gp3WL2zDeuK3ztUrfVjRGNbxrlToy0YxW0o2iPPeWDumjPGsBhoJQADoH3wumxKiFqKBzrofA6KxSNElSvWOcg+NiGL6pp0w6SgcO7Gho55AewU/0/KP+Mxo6QVEFsL2/KOPJdCuaf/o2GiYJgTADMGsUSDbJdZjXsfn7cPhrEFM2W6tPAzF30pn0efbDC/FfcfeP4UZxUgKZptcYSNREmkeMfXmEhWFRLwgejLUUiXbhtgcojgK4fxWUa97eFHhO1jIerrpoxqJ6RVNqvQIl2+Yl2uiSuHigjNusP2RQS/EuYwivzXrIFY8baugxE8rluMnFeDeOzivGKzRljDDkAT8EAV+lg5H6JelUty3OgyX0Hrb0gEDcBM2c3F+OiOqfxkq9uTs0oMS1L0nC3hImB16E3bW/QYxdmxQASpgU9I+iDAf6CPUTIUgBhasyTgEdZbZ3Z8wftqHPcuxcaqa0nGQcQPCR+F/8tIsY72c4G+zyMxEJcODcZwZapMC1ksu9Mmvpy0VZpPDGi03tfQIpE6nQ8ACKhcKKpFjQ9rgkcDlFoOBnLEXFqJ3RABmc7zHLJ/BYfbISOGsTqAKH+fvfrBmQsEyxuQKXuV07Yp7lQclj65oYgkPyTrsmyX3k4Gfeibc+HWCaNHJzDItJ+1TSW/aHc1i4SVrySiKkJVecQ+aPOdeIXz/hmDOD1j259hkixZaavIG0mNzoxjZ34DHcM4efjS/5kIMXglL/a5P9qzUfyABzwAH/zgB9G2LaqqC1L7qGkafOADH1h4SaYnP/nJ+MIXvoDv+q7vwvOf/3x813d9F66++mo453qP3215qCFimCVeet59MJhTiuZOnBPVxAixVKNU0BlTdvwoRJnEsw0QuHLwdVDqbuzgJlUwjFtWoULMGJ3cwbEbPDZuqbFzrMLm5Q7Toy3Gl2wHp1dTafpkNmAVlA3Pj7EpVqIw5RwWSSUD11EsRCUcGPWTC3M5Qkn8XPk7AQRVqO5H5OHIhVREZqAKgIddcBD4mtKc6MIYTqnTnBuLorR6DOL0PAzTifal5F0qAbUF6lTs7z1eBo8lK5RLUCPb4nPW39YglrUT4zjqNYznpQzQUNq4C7g5KMSAgm+PKgMkul2yN6Kzasou8GaMUil4N+Cbqwi+W6Q1ZwEwOdRRybuph2sZ1bQBNoHRaYd6p8bmpQ7blxCm6wgAvHjfzTqD18J8KfvedL6w4yxaaQFYaaApUVKs2n9JWnWKJIKzSgqQeILnWAOggTqytK2Z48nwlblf7wuRcWx01zyU81Sh+ISnrGI3Y5Q4BymSjSJ82PHsW2NfFTz0GYtBbCsKW4NCEmCcS8peC3NxfF6xjSRt8ZgpMxiAFg/qgBPTf4LYmYvz+11IFnj3kc2qsjzZcJpPrBQjq1wz2jFCBfVQfgJTjlWcW2Dtdg+uCO2YwvreMTrZrsWaGgJuK8BXBCaPSZzf364HnlS+M8u/yHxGSZkeVS1Gro0R4mAQh7ESUX1Mv6g57o9zjqvKo3HJGMucvFJdu2J4htbm0Pdux6z8D7OtjwwQ1U0DHpUsk8OeQuixNLv3IcuP5e4cfiTDeJfLznIUKW9FeWC7qU0hc47lfXkHNvtKnyurLkjyoYwO5zKBkIyyg08Bq4oF2g3wuJjFQWhscIcrtBycVXYqoGASX8d6GisU15MPA5QdwdUEN3XgNtaM0ToyQc43qxXalfi428ADQsGGplRoLn4HnCZtzgdQSrdGSiIo9Ihs8xXBVWG1F4wqUPR8cEUanFEManCoYkWRz8qP/Zi6z5ltDWPhPdL2igGcMLd1CGXUh9dEL0Jv0Y/nDI/0R7258611Nky/knHcvUWyJxDhJWnjSGwMbUj/71ADIf6W083zkr4KRrdXCM3bP2/u2Sh+/OMfjw9+8IP4rd/6LfzMz/zMXOf81m/9Fk6ePIknPOEJC9/vwQ9+MC6++GK86EUvwote9KLB44gITdMsfP14dofxAEThgkyITDmknEzaKisYktoRBXLNYe20MaNtSRV4MBxTmlcVFw13UwZPQzEqip7k6swE1eYEo7NjULuC6eEaW6tjXHzZKUzbCtNpna5dtKGPcWc/AmFSpMquDqH4lgtGZVBUcf6GLbTFCYhQ9NZTC9BI2uPSHB4BuDE67EfxE9eLYxFMagz3gIYBI7E7p4NzkGAEUeaRi0IvAfew3wJum96pBnRsgzBwORc6AXgUShroeCSzCDGnqHjR53kNkQz4iLu+FK7qxj+4NOUKlSh48y7FidX4KnNWBd6sNYNDvd7xj2ZxjABqQlqYptlTyHIQvnTTULmSGo+qabF63KPaqVHt1GjWY2GdGrpuKghoNhjVxjSkUhm+VD7sGMIGjKE/EuGtF5aSseaIk4HmODqwpNhQPBexUnd81aq7CHlWRpG5wHMCwFQuYMbANKBVlJzykL1/9CgTB0hHYiDru+tpc5Zpke6V8w+nyBAlOWGBrpUbYpvLducAz0FplwDM8qdGuhxn0WQxhtleXOQETNthAN0BJkYXqArZrKpQZMtp1kbjQ1TVW30VQVjQmQCPYlTKA1JlnYlQ7zDqbQANa1GZaic4l6fTtAZ4KGgXgTfFondHPGitRT1uIv8kx0jtPJzzGEXDWA1il1KmxSCWtdAdhZqyDqzzjSvNQGCdOymrJQQAHjJJqY0Z94Yfk74jff8pkhuf+Rz8aHmwnOsv+/ZUSE8vYpqU0GiybY1aZtnah4XLyyrIzecJquONBtptdLDyU4YZ8mwRkQc25TzohVIWG3mNPEoJzK+DLxR5UGdKg9TiaCNfNhzmxTfsMGkDnlWdKSeJXKsiX43DGG5bmSscrlk5FwznWOxOjGK0DBpXaNZdqCIPwBpvDGgwyf72AGAqTgMD8kaCIVH2Zlirist9jhx8w4Cv4cgY5BXBj6vMIE6Oq6RnxEHFlMZP1oQ9jAWbAJX1pXNxg0kXpI7DVe6h2/sNY5vl1Fv4s0cO2Zm9LOeJcYx4TUaKGnvTV9ttESTWaV78n7Jf8qelcmAftGej+PnPfz5e8YpX4Bd+4RdwySWX7FqF+vWvfz1+4Rd+AYcPH8ZP/uRPLnSvd77znfiBH/gBNE2DSy+9FPe+973P25JMTU9qJpCESPB8BwXf+ODxbg3wThEpqOfb1wwayZziSDEKm1KHwzrEsgB5WOaF0xqqDFSbDY58tkG9vYbbMIa/xOHw6g62qxY701GYZ+h7DGN0GcqCWB2kfSTMIhpcBGScv0WM0OZY0MdXANUxY8ZWy6OYojpFKNEP6PwvrsKi6W1c6kbWpdS18WzBDG0PDyi12e83M5CtIIhaneM1bcEv0mOhwFWjVmwkWwRupQGs77gwfBX4GoWdK2/zrYIqF8hDXuvMCASSJrKgSJ4D59c8aKTgm1KI1CpHAd2i5BNvOp3PaJYmTOA7rmdIowBSWw+og0BTqlxYq7QmuMaFpR2mHuMTE4zvnGJ6eITtiyrsHI3OnToq4tUWh9d3FEC3rTMp3MkAK41hYL7UPJvpER5NVEAVm2gxolEcruxjehKpYgKSwyaNxzxtHwl0DL2f0snSaWyhuiJ/keGn5CSTa4UKxqJILfi2gKc0jjsggHr6ghzs9s3fRrqdAcukz4LstY3sCOnx0AIqWTqbS4+jjNJlEW4TVVQgc0BJpjWUJPwZIk9FNMpXahDLcQrCRGdWBBqxTm0gw5ehgFZwWkmhw/FZoDnjMDlC2LkoOFSxEtYcZWJMNwB/uMV4bYrxuIn3ZFQUDWMCKpcMYokOO3AyfqNBDAAVscoUFyPIMt/RaQq1BzsHXwed6EQvtmFuIbtgmIujxPeBcSo+MN9Gh2tFpMgzdnx1dPyi3hbLf1xst78p4dmFSQCz6FtrGEt/+gxq80wk+pU59kxtjo5zuYgS6yUz+ZyclFZOuAUf4V1NzNA6Gm3x0ATHihM5GMSV6svW9wd4wlriBKpjwGOMMF1QZXNwJrsmFpL00CU527HDdCPwQm7FEBImSUUkJbsp1c5GdkyHCj5hhxjxDW31Y4JvY1S7ilHu+JtHDn4cVpxoR5Twp9UtRkZ3+LD3+Sc9P9NRXLYdgkGR48++4+NvBjRjKtOPxsFq+UJ5w17HXFtxJpAbxJZHevvBdigALOnOHHk4yifEqLEq96hXNShRRIt7vrNstaH27JH2bBRffPHFeO1rX4sf/MEfxLOe9Sz89m//Np72tKfhYQ97GC677DIAwPHjx/HhD38Yb3rTm/CBD3wARITXvva1uPjiixe61//3//1/YGa85jWvwTOf+Ux9YOearCAR0ihxFCKi4C34Dh658Akekvi+JRW2Dt4zGocXn8aWHRTReKoYPGVQHYQJ1aFMfAC84dzxyQZHPutwYnwRTt5rgkPHNjGqWnhHQaAVhrEt/Bz+J90efkRhFH8rqRJJnNmJFstSQzZiXCFEemMVTVmxg3yMItt5vIgCTCPF0O88ImRSp+XRzRnFKkkVbbYxGhei2QsBmxu1cV6hKyNZ8bmWQN16G8lexx4nxjByhe1yY1iEFOJrGe4jF1Hi+CWPT9p8riXKeSFxSHX3CE+WXm8B3sKTWaRWvMpxGQfN5tDlDhJfsr6vqPCj8eiaoFir7Rbrt3qs3OmC4h2FdcnJE1ZHDY6ubmNrOsLWtEYT1zDu7+EwDUXjxFCz6VgkxX0YwQvOgLMyRqqls9FDfWOyT2GWNGPsdCI61P+RyDaJ3LDgOzqYdL3o2F5xyHljPKb3JMV2OAcxBuD2RYWFdF3M+KYcgk7QLG/7rBUoiWMCIW1d5T8gxQjByNdY1Yr1sbvynU0Z4cHxchCI0T82hzKrhB+ts6p04EpxKnEOS2QVatQZ7wghLsMEkA9Lp9U7wMqdhGYtFqhcC8XxpocZK0e3cWRjO6R7mwJfLhqzBGRp0BIZ7nNSlTgBgF4nGNoMqhhc+7BsWh0KbspYAEK7OatnYMZzj7NHb2mMVJHfoVjmDIPYnCo/WC4qbbKGc0n20Z8vivfIDOPIbKKzS9LmRr0ojinrbO7U5iDBaOX8T2R8PkQH3SAORMqHQmkKUq4zJbgj2RstE9oCQ2pgJE6X87GoKo0QpziEl8cUnDoB93EIgtSEyeEKk0OUUpILkvRpdZR5BzivhnE4JugzazzHrmZYzVcMF4MtPgZaWk8g70IadRuc20DkrdrFdc/FIA78Gngx9Xv3lUBSXzTAabC2RsMLLDbw+tJzN1OMrE4LrEGd/ttsqfLbOo/ye8j+hK/7DGLb7b5CoFZEgcQAlg1ygYzJw//WQJbjGEnpm/81E8s+5+Kx7UdU7dkoBoDv//7vxzve8Q4861nPwl/91V/hAx/4QO9xzIzLLrsMv/d7v7en1OlPfOITeNSjHoVnPetZ+2nuXGQFSZ8QEaVujeHGzCdWIlaAyjXALYeCLXGZDwF5+rbJFqaCrrdIniNYZ9DYAT6kFY7Pehz6QoUzbozTE4fq0BR13WZKcTCNynjmdJPZ3qGMiUj/740Wu+BlC4iJAqAFpahxWYkFUKO4HadUVFZv3UDq9ADNM8fRPgoFtrohRbHkvmTBiY0ESSRH36VRyvGT0nGQ5ktLnwS8GxCcUqaRUs0HBJS8mkGyO8WREVNasnYvGjm4ANS/NBr1er3VgeVzrzdbySnPvEpKHmoU2/eZlI4AVleFQnnUhPnGbuJRbbcx5d+h2qmw9sUatx05jMNX7WBtFBaomThWsJFllZR9LbZnrGvkTGlQaFpvNDS5CkagR/Bak6zBHac563UFpxcgoBNlLdpB2UXy9gyRKHXhL4mmarQ4GrhO9KOMT7mVYPjSeJDKvlU6pptlkRR5r0KP2/qcL+mcAiiW0y+Ep6OzMIuyATq2MrxqwE5yonE+n/RAUg/wjo3tzawqnFXejGN19ilfivzkqEdClFUGRXheMdraROPYM9yEUW3HqQ8Th8kk8uwxQlV5XLy2iXHV4tTOqla+1kq3FNKoK5k7DEZevyAOWJhoG3efgZNosdQuaELxMPKA9+KJSvrQOkhEf6RMqTSG+9I2wwNMBWikppHuYnNMKQfnJeHDWdv3MkYz/ZRfM8PM8r5nXMMaC3bucDYVKW4j0bP2Egs62A/6vGKGFILLqdSZYSpDytxozbSGHM8iOqxi1psEejzC8mEmU4FdwntSeHJymNAcCudpYANIRiKHQAOz0X+yhFg2nqnjTLNt1Bo3ET/6EaFZkf0BU/uWEw4lpEzFcShmKxmKGi0WXUXmPiZrIGVqJFnGiu2lj+aZcjHzNQOk3d+KKRkJb8fz1Ag0UeEsa6p0rBkHEVt5YsfzrKwpDI/9bLv00RjGIVATZR8BWvhPLl5e1soCKxOMGi7xvvE57pn2ZRQDwBOe8ATceOONeO1rX4t3vetduO6663D77bcDCMsvPfShD8W/+Bf/As985jOxvr4OAPDeDxbJ6qNLL70Ul1566X6bOgdRZggDySMsXjUxgsWz1nJKm7ZgSub5ccXRU8xx3i0Fz3e2zlhI8dK5qC4oS64Q08cioGUGUwDkzYqDmwBrtxCq7RF2Lqqwc6gFrbSgijvGU0YDGqYvDTLzPOsgNVXiohGZRYs5AEvyIXWHY4oYvKTCmXtQNBajh048e8mARG4Qw3z39WuXlJVBYFAAW1bgXqR6VkgFUoxUEgMzCZ/0TGYXD0NKm1ZQyLlBbKLFvYKp7z1br508F0r7QsZ02Gb02YGk3TI4JHVaebPI4Mi9ypxFpGCUPPu4vBgjpWsCSGlhFMFBdFhVDtwipHlGB1a108JNPY59muDrVdx6+BCOrm0DiDKBQlpwxyGlfR1Gl7PmCmrfxLiUdGrEVyvjOvIlvLmWAY2cAUm57mCTehopF+xrn9ynJ5oal6WQdDlfQ2VFqoIPbVdyOiW+8lphFrvKCzbvt88gnuW4yBwQpk0KyK1B7GAYTJ5P0R+Y9yPP3xj4B5lKPQnk6ZkKwiMAF2eVZHBk0xp0fHCYEx8zjtiLQ1nGA2kkX2o8hGWYANdSLFbJGJ9qMT4d9EqzVuP06VWsXtrgHmun4MDYbmuNWAMx0mvWIu6LEpeZY53iPwhD2bmw9qqvKPYhniuy2MV6G+W6qDDjuWYF5b3O4AjGFX9HmZ/lFxjHAxf/o+St3chErXTGjQWk9iGQkSvlAyrOy/4vWKXvUL1fwX9WjqX5n3Gb6FUTCSuNm1kZJHdH2i3rUSLDahz3ZG+o6DLyzab4q5yOBR3BBEfQtbZFTk8PhaUM/Qi5gan3IfMJ706KbXEmW0SnFzqQWOWA4q6RZJmI3hbnWcrOAJIeaUcpiJFhtjIYMzA+rCGcDGPk/cqUPfp1pcWfoiflt4uwW7F43rYsu1K/OQsodZ7/XvT80HPg1P9BwxjUZW6LQSm8fy2KW+JTiRbLqYVhvF/at1EMAOvr63je856H5z3veTOP+8hHPoLXv/71ePOb34wvfvGLc1//B3/wB/GmN70J29vbWF1d3W9zB4nRbwxbBagVqJlQeryFtMBV9EqGZVEQhElbAPCRngVJw+OGYpomgSrAtQhrAEub6uTRAgNuEqritg2hXXPwowAqEBdIX2QuKjAAzI0SkeiIFvVRgzBG3SIP+ngoS8o0R2FpjW8SoWS8e+Ilr00qpESutD2z2t9lkpnzpjt9BDRibAxYX6XgTRBMSbiSD1BEq+Fa0F4bw1/AnkYpRWEjKe0ZBnFZYXu4LwL4k4AiRAEdhZQaSWr8zX48F5LmzeDo8mqPYWMVnIvvQ5YvqkidOiqJI/qLTt5Q4MoFvtSlgmNRPFnXuJow1o4zTt1wFGcuWcd4Y4LRqNV5aX3R3nkjOPbcocIzabkDYbPw3iWDg8twqAE9nQiLHpOfk7ziBYoFurxWAFjrTAOH5yinq9IX77jBshYEZOnTlTEgYuo0ZyC4+6CEF7TSabEvO27o3ZAdH3EulBjC8p7sceLK7jWK86wYHfIHlC/FWbUbb2pmlcmw6nU4RF2lafCiLwWg+gB0AcS0ShmjFM8NMk2zAmJatZsw1o97TG9Ywc2XHsVV6ydxZLyFuhljux2pjEjFtHqixAbICUYQo8JWuNfXSimFmmoOleA5zkOOTjaKVe9FNyo5oyeMLsnGgRq0EW6y8HcQUuV8RjGIMyN4N32o70XtiiyCy/onHWePL8+fC3yXIFma2Xef7NoyFmSbGAJGjunYMAW15DIk318ZBjFjWGdavSjBHeHHVo3OQuZppgKZaGzMDowGqDhpgOCcClOUgHZMaNaBds1kxQ0aliFi7L2Dcz5MXTF9yo1nE3EVfaG4KwSS2rHsF56joLetUUwSVUYyiIux08GfsS1xdqxiq2zgwvAfI0WJzfdgPQ6K14n8H7Bz+K1qJOpN6cOgXoy6VeqGZLwCZL8zPjD8os3ajT9EBplL954hhnJfv+V8Sts0ZVo2l/rzHLLtOTGKZ9HnP/95vPGNb8Qb3vAGfOITnwBzmkQ9L734xS/GX/3VX+FJT3oSfvu3fxv3v//9z1NrcyXfJ0ikyq0tFGK9a2K4OBcUYVoknhJw8xSY1pMuyRVOTmlk7AjOQYG2ja4Gr1YoCiCFadxUmMfBjxk8isUOKBVJEAYPg4sMYOx5EFHhDoJu+Y4AkD2FStTRtagZYWI0+HTNPqPYphgHw5gHCo4wegEu4rURjum022rpWWBAAACl33beozWMUyEjIFUuNn1ySAaxBe7We6cGCOvzVFCXFRNL4H5IgVOPgAiRfhHdIlCiwgLUg3ewKQfQfSmaCZi6TMn3Dl8ZR8qXSOC7jgaxfpJYpwKAs0PkUWTGMRCcPG4CrNxBmPAIk4nDZKVFNQ6plfO8x92oHOMkfyQa6xDaztD0YvKUAKPlA6Mo1SDOrjfUhmLHDANSnTGQ+4TmiRHgZCxKO4w9a7NV1AbPlD862ReZkwuWP7qqWgxja+SX46fsK5mot+Z7c5QJJkKsdwvIKWWVFOBe5YYCvOHnflBI+E//N7xpdWWfs6pM0RTZLZFUdrm+zBwKbAxjAEwUnVVxPqGDOpTdNMw3Xr+FcNvxw/ji4aM4NNoJyy9x0ymuKXV3S6PdTuEosYBkjNm+yHxlrsISUuwZGIVEAmoRlpyK8/+tfs/0hzhPrQ7MBmXU5czJ8QUB7ObQDp8Ov9NweCoslwHS+L/Ch57xqUaq9KUE4D3NsdR73Tnu0zGIi+2dY/dIKVPsYFOZ9WiXLxSDOJvnb1Kn+6s8I8lYGaOxeFyMKCV9SYBrAh82a4RmjdGuxLGpUwJyXSeRVJHPPlaeLmWwFpT11B1IIjNqSrUIYrO4IlADcKzRAyQ5bKvDqy4hI7flu2MYxz5wZh5Hh3HSWylSTNG4T23rGsRmc9QjxAnrs/Be/LBpn74XG+W2mVOWR3r6MzfNOk+CMNZhDhij1myXF1AqRCu85He2Lcoh9LDyPlnzvBjFp0+fxlvf+la84Q1vwJ//+Z8jzBVgXH311fihH/ohPO1pT1voet/7vd+LqqrwJ3/yJ3jgAx+I+9znPoPrFBMR/uRP/mRP7WbkSr4bcXKdtJO+qKoUbAhrWsbU2AKAIxp/jgHjtAqKPkaZQzQqLcgd0qeTZ64syAFETNEYrorGuOYlWiUlQonRHeSztBYSwNVruTiuK7kxBeUvY79Mm7bAMEZhQRJZLaI+wtSd9kXmsoDAeBY7bbYgdxZwJ2gUK0TAEQ1+AD49SvXg9YF2V3rskBnEGg0p0qZJUqfFaBKDuMeIKo2nZFyVTyChjCRKwjPMDJUDSuGxpzaWjqs0rSGfU2wjqlmV2/idHB5I4NsznE+pToE3w1hzCIA2APDgdQYhGcVtun67EtZyBIBqiwBfwa86tCse7ciDatb33ckEALL3DbvdPhfjhe6QyBCIIcEhQhwBiaaH23MzZQl0PMrlS6Hi/3nI8AcJooh8FKpNkx5nDSC9jdyzx2hIUxFg+tDfDIlIyNQCQgSNRu6xHjc/fzBJCrtxSthGCJDpeS5WNotBeLApGbvAcHaVjRJbR3J2pQx4xt/WyWEKOVpHshjGjqKxaZxWWtgshgSrbaC+dYwbjl6Kay46gdVqCs8ODpwbvKCwjR0A3zWOOS+uKcZE2S/R/+QAqn2QKXAQo5dEdvgUwY34WseA1Q0dUtTOaUxxKgqXGxPQjdl4HjJ+ZNhSPEnSpoVvRXeX5xeO9kUN4nn2d+4j1+1M+zDAX7BI4WDOvr+iiHqNYfkWg1imAFpHlS/VAhl9KQ4rXfIvZVdxLTozTPXzEQ+2K0C7CvgVn9YnlvcSyUrJND5z2VnOzdVIqzGUYFf6qFn7IzznKsDbaXwQHADoXH6bmUHFGLak+om0pWzanBe8S8clvkUP/5hv4zTWgo1y3+iIYHNekhuCN222CWum2yDcW4QP1DLfnYKYWNDojeeQ4Bc1nu2o4PiXhvu0BzpnRnHbtnjPe96D17/+9XjHO96B7e3tGDUMiup973sfHvnIRy4cJQaA973vfdl9PvOZz+Azn/lM77H7rUxtlXyfQZwLD/tq4lwi4mDUGkOmD4DDkzItokDxccBKRVlHDB/0ckz3iPer8k8v+GNElCAGMaV8ZpdGY4ogdp+bphwXwFRJFU64DxMhrREftrMYlqL0e65l0wVlgfjcQ14U/dETC8Zk6jJf8UiySFZhzGb9cgC86RMH4S9t0Eh4vIbe1uDq9I64axhHoFemTScjGArW0zjKjeF5Ch6Ix9JKoDJqPO9atBeSLOAO3z1p0uhmcJRz/QEgpYIloywD35yUqeOk6DnypESMFWT5MI+RiHTecDsidVyBwpQBmhIcXAATDcd5k4UjxEVQL4o2ttMWqLA0lMkRKsMjV66I3y6OgSGe1meE2Yqv3JWB7Z792bVJFbh4mTJQYc4fmv+vkUR9f9GQzKrUc+oLoE40+Z34v9vPfC5YcpR0jGSRS3Y8iaNOHgaZPg3KUiiwt47Og+qzCtiM5uBN13FWMbqRWJ1aEPkh6AVx6iYgrvoynieOZHlcobAcQup0m6LJIKA+Szh7xxpudh6HVncwrlqMXasy0xXf8hIccR4RF4M49iuPsnX7RJIdZOcAE8CxSi9ZkGvBqx0Tha7TrAOQ8noZWcteFqB4YzgLLIFPa5PIJvmturyPb0pdSn3b96lzrPEgz8biA4kWl3JMdad8p3bsBh2TDD74+lIKVnXHbD+OtQGDvqk9ACBGZ8AplEclPbTAqmOo7vSyrvGYgREnmdaXBaNjMg283LCMciZGifveghrtLiwfBY5LOwkOr5BnLgIZv3UyE/XCUL4pBXiqySJT1NDFpcYgtqnUsr94DEanIOlwq0d6xmrqQ3ISq8Ev1+jwSdHWPjI429bf2DdZrG7ljf02+zIZBPsIrMDdf7P2bRT/zd/8DV7/+tfjLW95C2677TYwM0ajEZ70pCfhGc94Bl72spfhQx/6EB71qEft+R7/+I//uN9mzkl58YyZBrH5P7uCKEET6Uvl3MkYxRFUeIZjSgVm4jcI8C6CbZ8bXqHAgfGIWa9W2SVGANi2mhKXI07A6EKPKvtoVKSlYFhEUEKxuJgYw72KWJnXphebvnUTArL+CZgoPeSWgcIPw0Z9hrMF69aYYITIvkSypN9s3ou9BaV2a/GfbB4xgkE0kDYN0mb0ptburSBILk5EcFPxXA4qlfOjerM4CuPYTmvokFESHfAtPMoWeMd7I0aR4jZPxiBuYyTZUVbFUviTOIAHNCa1kaH3hwsZNbbARnhNZo5gH59mHthc0ZCAauF5MQqNIs+fiwErZeTF3q8cewqkeq5ZPnfDXxItZoJWc5fpD5QxFbJ7WrmXRYszuTTMHxKktsVRusckcDg8jswzUtkRnBssIEaQUgas+q8jzyV89wDHA0a7TTfqc1ZZ6nMwkHkOkNoaCr5ZgaVk7wReJF3XmiikTYPEWA7jy1cI2RxbFc6cXsW0qbAyarAyanQpJkl5VuN4QC+WMkZWoMgjxfIdxoMulxY7yhT1o0cwjnMcHQ/j2an0HMZZKrFFETuXwL1QjnNQlkXkWHnbRtg616Tu75nG8ND4HgD+2Tl6/R6DmOw3EhYz5y3CWjLnPP2/wMkXiLpGsRvkzTLTodcgNg+OHTKeVGdV5ElmArccV2QAeOxBIw91XQ04XZM87g6A3DkZhUQpT0V/VKS4UHCbZnPplLf8NpmRT+hRjeJMlvtGPRK3cXRe92EqaxDbc3PgaJ51DDTJ+l/psFTArFcFU16XwmIc1Y1zUKoXkuTY+SCbYt5JpaYo0dQaTpIOSJCm06d9tnfPRvGLX/xivPGNb8T111+vEeF//s//OZ7xjGfgKU95iq5F/Bu/8Rv7ayGAe9/73vu+xjxUetf6DOIyFaWPFB9RSokUkKODNaZrlvNwxTDW1CrqL8ShUUcLMnsUUn9H5QCjJErgaZWoCJ4BRSAAXo1BWWZFhCdzJgA6yt+cK0a/nQPdC8xhga0teEDm2qX2LgRRH1lA7SLHiqKQxhNg53mLcWOVtRQ1sAIqW+6mTI2LEa2htGky30AOemZFD2Veh53fIUvLnMviBOeTpJm7TWsY8nyXlHjSGC1SZTzylufgrBJFL8Xj5P4hIyQqWQpriUvxNanKaVOxOkpWxqFWgTbQlhAANMJ4ttkPgxjS9FeM6WhRQ7lDxzMSP/cZjj1gZXbEeH4tZOcqSiYJkIpuiNzIIqo6udjczsi9lEaNnLcKuZHN/2KY8d+PwEv+mJlGXcgNfZscf9n79TFeJsc5zQE7wMToTjcC8gwrO2+xb05xRiQOIU4g3GQBhGgxMkApKebZigBAxptA4G3N3PAEv1VjmwnNqMJkXKGuPOqqReVY1ygmIDOQAWRyVPotxnAb08PtvEE1xkjS6k29C5NKmvFs9kzQHctJZBT/p/5z3+AxAHxX2a/qv5xeU8wptvcvb6ftLWXJLvfuO6YH26h+z54Nd5+VOa6TOi2HDcg3O71C/59x/EEi0Y1AP2/atcKtMTzTkWzktvKkCfTocpwc+M9XAI8AVBymEJhVD6hw9NgoZFn3IZsqZPgra6v81OhS5FWZ0hcYOixJ6HvEsOBX6ZtslvvoBGHEoFbU1zGrULLHFCdq423bkeZCG+O604dMH0ALUQYowAl3dt4PkrPY4FCLpeeeT9yvFvN+9V1jATwQ2p3wjTVL+n0jhUQ6Dzpyz0bxtddeCyLCFVdcgZ/4iZ/A05/+dNznPvc5h027MJQbvl2DWKLEQBck9S8GH5klgu5UaTgaSSwT6MNvMYgdAWgRBrGdjysgsFMynvuV0G6DpmRI26dF5D5ZMG+YXRVx+ubiPHu+nRfIs4ChMEsUngb6h8sVfenMqeJ8f3bpCNwVfDvDmbLNgJuO7W2EkzXyJZW6U22aBDzJJynhWQbxkAevLF5hDWOI8SG/++HTgaN5pzWUGRylgVw6E7IldIyi17VzZS55pXo2XBchYozIp57C/4E3KSzDItfT9KUZyigqXU2HZOh4tgV0FlE4WhQn4w6DqEt+75Mbpr3ZeOtpx2CU2Co3o/DEmaZZJkwamu81EgQMa7uM0pfUsAIAlO3OngAD2fPooWzuWl+/pQ8GMIJDe9TLDc7OHwiyZ4A+jwweXABe8qVuE960erMA4DMpPs80RiitDx+jx8qT0hYYw9iMX4/Ai94UpoQn8NSh4TjHsvKoqgpVFZdkcj4sLUNpDeNyeSbpq+2bXYe87A6LDLCXiVObtDI8ADLn9kZBS+K+aVBzgNUSlPedSh0YCkmN4lJ+lDQLhyyqdCwPFxHfXoO45P8ZTuQhKlNFbbR4kToDF4IYCb8CXd4spxgFI7NnqhGQ5JqRTRlPip6rovNPosVx6SYfV0IJ63b75AgWx3/W8IhJKH/GVrd4a1DKPm1ramPKiiLV01LzwWYv2nNVjhfYU52ajOhxQ9LXErkVOd/HFwXu3DU4A9GP4dkzkORfgTvt8daQ7p0XvY9hq12zfDEHH8ylvQpskOGEPsdciUXOoZNqX+nTzIwvf/nL+OM//mNcfvnlePKTn4xjx46do6YN05133onTp09rhLqka665Zs/XLr1rQwq8jBjLsjdA/7ziMNeBg4dJjaKg2BX8mcIqWbS4SJ8GIYsSlwyQERfbuBhxoozt5vJ8qzzleWTCJAmewLx5qhXbNpT3MIpNQEPqF8ft3M/MBTNIxLjvNkmA9gAD2xZpqwrHdEUtIW+fVYFx9H0AWRqkNYiztGntp4kSAzp2StqtyNaQss4jxaUiObigO9AC0xoKhd97NVHy4dIKvoUndXkgNlUfexSwpE475ABRIsVaxTLuyhTTkC6RMc064tQwDrsF/Ban2fOLvvYaxjrWB979gspz7qwD23fzHtghq7SvMrGvHaWsMM6HTFYMyI3k9bcMP9SvfE7xcL8scIzy0AHsWSuSR+Rp3pV9FrZvbKaMDMi+A0FdvpTvEpD7ohO9lbxFH2n2BiAOBuuw0uyqqJfUWVVBszVClJhDGjWQilPGAnfKY60LGJ0pFtoj+IrgnNMosUyHEiO5JC1OJIbxoNyBAm5mSs5W5gS0gRzXzPvuo9yw2RC9h7E5vjxf72kMCcW+AwUZjTGfb59z2zz7tIliDfSc02cQy+857pMikwmoDDvTUmrpwaVh3iwDO31ZkIMRY3muhicpFrdSBzIHeZ5W3QCoCut2M5s0YxsQKKjzbG17rCzueQca1BD5AdZpfRpFFoOW7XnxRzkNR+7DCAawFK6VZ+hiSrMcP4SjbduNgdyHiVmeC5nry26VE/k5ehttf4Gli2M7v2dRH9beBTcu7Diyz87KICA3jO07kWP30qcB2rNR/MEPfhCve93r8Ja3vAV/8Rd/gfe///346Z/+aXzP93wPnv70p+OJT3wiRqPR7heak7785S/jBS94Ad7+9rfj9ttvHzyOiNA0zZ7v02cQ980lHiJHaR5iapQFTDCRYsTUYkopHuUbNYzGZps3UeJ9Ld1hQPjg/lkkbaN8rBKgSnrX6xhlZ1M/OsaD9U6pESgGQzSghVn7hKU16HcFuakdaiRRBC9RQOq17DlI52WgPTOI47HOKAXT1/JJ2Shxp5nF9tI4Lg3gwTRq49Q5iLSbQdwHvIFhwZzSNHv4UrzMLni5nfIn8orAYZDrXEaPOETMXOKugydeZ4ZC0TGt4z3ylIBdmrMCQKmgqZNPscv56eSF5hX1guQ0vpjSPCFR+ADyqRbhwP7rFPIhi8YbHuxvG2lbUuR82DDuS6HudM/yTnSkwRvD2MzhpoHx2JsKesDnFMt0I2B2hhUXx8jz6yyVLY+QTGFFkHnHlNbljCAcgEan0oXSBWUWo12HtJOazgiFgoiANqRAO8chWiwF8AA1kKWN6TnkfbTVcbVfwrNR3oRCeBQd5VREkAfG/cCuNIwp17lDZPXgbmSU+sIrFfQdusDpHRk5BHyHnOZIzx4zdOiu7TAGgESLD3qkGOhOBQSQYdiSH2elTitPGpAihhsTUjFSR6lujslohAuRYi/ykYWPem7W0wZNn9YNcZt8ssbKh7OgBnxU0uLkFrFcGsaiV/rapUUM5Ddl52l/eqztTK+VhnHWudQP9U1FTJJFrDtAMZ0D4hxL6/UW5wE7r9jedpZhvGf+oOwOmWHRyaYpbnGuCsbu2Sj+5m/+ZnzzN38z/vN//s9497vfjTe84Q14xzvegf/5P/8n/vAP/xAXXXQR/uW//Je45ZZb9t3IL33pS/jmb/5mfPGLX8TVV1+Nyy67DLfeeise8YhH4LOf/SxuueUWEBEe8YhH7MsQV2U9YBDvRo44LDZuvMu2YJJGAHyojkeMIETMvNVs2BFCZJkGGFdAfAESs87YzhVAQO9R3iC7EZIROIN5USQ5sMGaVEqegdtkTG0B4S5AwBYaCbtmvKvd+EYMRZIITwAvmroijNkH3K1xH9+P9sUaxFp4LZ5jo8R6jTxlOmviHPKmLzI8M1ps23/ASNppDWKh3dLBYL47pM+f0thzorSh6VUyzUGjUn0XEmcEAF9TFinOjbViXM965hzGcnJ0IDOM5yWNFsfxq1Hn+UzrXcfbQhETIxf0/D6FD4CKC/fKCRMV4oynMPh8c8VuG9XXNwNoZugABYdyB2sYS1t4F8VdjpE94oq7krqRqOEaHENRKUs6vAtwR3GKg3VYZZkcgxQMY67IzPEvni9Hx6AHvAOcLPsEh1D4Ljq9KBnIQrYqtcgcm1VQ8oYayISgU6xBLCC5z6lLA79VD5qHBwzLh3nBaubosbeLxsw8g3M3uTGPDCuv0fm/R57O4P1FSGSD6s347m0a9UElRpc3S4O4nEtsz+2j5Eg2PBqNYGLo/H9ZPs0GblIV9shkA2Ojz9DKDGLDW1lD+/gla2c8SLzX8RiV/BYPy7+uh104GGQsBrE4tSKOUJ1UntiHpTMcWXybSGnSVwZj9zw/vTeQZ47Oq08sliYpGmb4S5xu5lK72UX6WvqOo3BE79SuAcN4Vz16DnRmF98tSHVd44lPfCLe8pa34Mtf/jJe/epX45GPfCROnDiBV7/61bp00i/90i/huuuu29M9XvziF+OLX/wifvVXfxWf//zn8YQnPAFEhPe///340pe+hPe973144AMfCCLCu9/97n30pj9NU2hIoMy8ojGUKDOKYIqIIM0/jVHFviV8ej868Au5UCrO7Jt69lHPB+gIm3mI8s/M9msque2PAbq7GA35/6Xg6fnE43Y1CI0CkOI9bNuZVZPmVP02e2/cNYgLpV1GiQH0GsJ923fzfM9znXIe/EGl0iAuMzbKdLB0Ts/FiPP3Hf8vi5+xHbvGwO285yqAA90ukeJKrmHSmIZoN5BVgmz1hNlj0v/JY23vkd9LKvXKp9Okge3DbeyRK31kecvwQubs65Ebsi8ZNkaOznI2yG+zic3zS+nR3Y/sn8uYKMFHHEdZlG/mh88pqL8rKJ8/PFyDY655xJbK8WH1Y6YzTEFDy5vZd3JSZWuk2mduSIxa7ykzcr0neLMmMSMU2RIDxB47NK9Yfwy9byuDSt2Q/d5NXvTp8z693/fsZ2wTFRud/F0+LtpZHJud13ePvmv0XDN7dnrMuTSI+8erXHXh8XwByPLgLIM48etwv5Xs81aZbHUlJ+NYdWd4L0QhWkymkF3fq7XUaxCbdnbnE4vRnvibjT7RejUSyR5iE4tF5fJ9WFKiz4KXvWwrPrKvNIjnHEcJ57PiiexjpuR15hLb91b+Hrxh8W9hO8zDXTMhwG78WfKyldOzdKjeee/8v2+j2NKRI0fwIz/yI3jf+96HG2+8ES95yUvwwAc+EMyMl7/85fimb/omPOhBD8KLXvSiha77nve8B/e9733xghe8oHf/ox71KPzv//2/8ZGPfGTha5eUpWP2eNFKslUqgfSyCQlQpiggsgiozjMW8GRBoBpbXQCeLfFTVFrtgO9ZY8MqxkEDUj5zcBIlZk0PYfYnq8xrn0d23V36oEAE/caCHlsCAxp+Pr3t5QyEofioIWSN4coYW2TeNUGjBrYi5vlStUNGz92FhpxTZXpm3/GW8kJ4hVPCKEO2Y1PAd+mksuC7QiwsQln6dC9vzkIBPTQTqPQB3t5+G4UCdBVNfDazjOT+ts13XLdBFrgAGX+RecadjwHDzlxHZEYJlGe2PT23vBo1erdp6nSfU63Tv8LgMRXmhz8wxhDv2v6DQqWjasggtqmaQP+4zngS6TvTlbTbGOnypq+hzqo+g6mv4E9oY2in18rSyVj23umnU5BtiCxOMDqg1znSV0W949Db5X59NC/P9jiK9du0acjo7TV+dwW0M7aX7eo8s+Iws73zvGdQOS7LjKP9mdt3EcVxqzyIHNMCiR/7+LCvMnP22+g0qythdGU2pzieT+Yd2IzK/N6FU3Iv/e8bGyLuoyzuxXK2L7FdncfDCOm7EnGW31JV2hrC8rH7SkzN5pr2Nh0+K/tU6I4CY7DtO4y+tc9oHhp4AbNMz0XfWUcOwvxvcdRuetTtabRkdE6NYkv3ute98O///b/HP/zDP+BDH/oQfvqnfxqXX345PvWpT+GXf/mXF7rWzTffjIc+9KH6f1WFfKmdnR3ddvXVV+Oxj30sfv/3f39f7e5LOQFSJGoWDS6XE1+YKnxjNGXebp13moPAITCevGJxEAqw7GkqWe8U0GHIDvUdO+t4O5CRY/Xejy6d0gMA4vUGC2zpDYr/YYR5r/sP+TG2T9KHQmkyiZGLzDOaosfxU+XvtDN/WIC78WDa55YZITScOr1fujssJTFEu0WitNBWz7nDRUPycdfnqJorKhV/e8Ores4QuJuHuPt7YUNUx1gBJnV/AbTPB/WMecDwuFV+Q4ovi+QjyYjSIDZyozTu7ZIephHZ/swYjrJjpmNCQR4646lr8Ax8MmO4uMYBJYbhyR7QLVROPxqau9iRTQOgr8OD6oAsdWfBm7WR5fadDfVPDYu83Ska3PfJj5Hr5P1ENj76DWMU46GHR8u2z8PCux1D5XfPPQs9vdBn6FpDx2THF7zR18Y53qvtXkkdJ5h599n37MsfGOqbylBGiWXb0HQj/W9IV5rxmxmZlHCqXUEjmypmMPNMbFLKC+7Z1jnFyI0y06/QNRbLzZTBBjcrppbtEjWWiPBgpDi/zlykz9z8r30zENfIyezcvegSRiG35QeVh/XG09IBMq4G7pPxbykHe+yDnoBUhs/3qTv3VX16XnrYwx6Ghz3sYXjFK16BP/7jP8Yb3vCGhc4/cuRI9r9UuL755ptxv/vdT7evrq7i5ptv3nM75dXMEyFehGTKYvLcUBrkLs6L0gEnOfZyMuLcNNlPUMN31gCYp+nxWuH3jGP6Lj8TJO7C6bPaawXuoOYqriH/y7OxPCbX6xjCczwgc0iaazHQBttu+d8qbcq/syixuU43RXr3Zs7sAvUXBSm3Ew62orfVbPv39yv5oWkOWX8zQUxJqdiPQ1fqt2a7uXAJ2tP1InDYDdz2UFZAjsJ43svYyN67HcvAMN/uRQ7aB9w3uMy9ewv4zMNnvTxmj919RKfnOtzHWUB4iL/y7nDfxuJ4zg8hzNX+C03lMmnyuy9KPGQ0d0jlI3X5UPSnM++MAWZZF7rnPQlPVghFdvYQMRF+k/EyCxuUDoDBblJfZXjToHLsz0ND5/QNpbkB+QB/lJt6GWTOe+x2//J6VOzrw0GzMEQP2fms+e/uu787OJf7qk/bef0l3i1/91Kfrix0oyx1GDKnWJ2WyTAWhSByNY2vkrfsUy5Tp/vbZy7d4YVd6t4UxOVYKxtFiFWnzTOxxq69aF+bOX13glYz+tTbfdPW1O4Z43/G+O0U+pS2WtyhGGKffGCwgda5oUWE2Lmn8xYp7r2Zc3jCE56AN77xjQudd8011+Bzn/uc/v8N3/ANAIB3vetdum1zcxPvf//7ceWVV+69gdxvEJdrvc1DdikHIAkEVeym2BJnvwE7L6MbjUpzJFQgyW8LHnbpZ/pNsz/lebPG5SADFp++bWYf9ynB3fpinQY9kZ/8nPmAWdnOEPVjjR5nH4koE5LHSq5D6ImEl8Ds/KROz+PYOegK3rZut/RM+70bddI07cdGiw2vdXiTkKVqanGRgk+7EcR5Oj77oN6xPdhZ2+8FjfL9RJJ7ojj5/4A4CnrnJ3ZS0Ivjets6R59gRMacBk7YMPvCebE8pG8dA0MfFJ8FZOAFo8RvQwaxjRL3gfDZl8/fpWQF2MiIOJ40q6pMg+zU5mDN2JknlRZIY6AvYlwe1zvXUbojMt5gAXWKqsGAGWNi1rOa45hZ1PccaJf9s9qw37aU0fE+2TnggB5arnAv1Pfu7fdBppInS4M4n3o0xwXLLnd0m8GwBV9mhWfNN4AOH54zPBL1RSlXu462HplSjmHZZkmGnzVoh7B1eZ51IvTtN5eQ++v3jE/HIDZ6c1eeZPS2Vce68kBPH3uvN2NfSXYsmP/nshnOhcwxdJdEivdL3/Ed34Hf/M3fxPHjx3HZZZfhSU96EjY2NvDzP//z+MIXvoCrr74ab3jDG3DLLbfgec973r7uVQq7WdEpW3lyiEQYMMgoQ+sBj64XB/V2h+EQf/uwW71a2cXDh2Gule3PDS/i6I3ey8Dpk1O7yS4a+D2wbeY6hL1tCs+01zNYerJmeer62iQeqzKqNkQdhWGFUv7bzjWHAKE90LnwWPdWoT5wNH965jzAmygdJ2sWKw8BKXtD3plURyZkfKpRKVOSOkvNUpAwwyCe593HcV1Gi3U3Lz6GOuta2/OHxsMuEdXZNzTXLfnK9GdmRey+5zYrUjSLouxQ0bGbA8L+nuf5yO9Mnsy4QdY3CxZnNuuCU59BPHRc/v/ABcvnZmVnrArfiRYTUrRK3PwMkI/8CDGMcwN0V0Mv6kvLWyWvzTUf0/arb5eJGIucSRGT1JZw8OwmnxPKeBU539q2nJN7zcnv9v8+x1pne4mFZjcjW3aGRS/mkeFy+0FmTka3Js6Q/pzH0BedmarCA5rlk63eEB99kUYtTn8xiFn0KWzm0j70S9bYGdeRe8Z3R+W+Pow9RNkwNJkeuw0Na0zb6yyCp/suW8rMRaivzYKv0cUeHcwxhwN/V6IB+Wf1gW2vnjfHtRegu4VR/PSnPx2f//zn8fGPfxyPfvSjcfHFF+O//tf/iuc85zl42cteBqJQIv3rv/7r8ZKXvGTf95tn/vAQOWIwUVizNApOTZUVoO3S4ErpmnERdPQYxsJEPQBLwLzyV/E9SIvI9IJpZ6dO91x7hhEwmEraUYhzWm7lvQe9WLtcR/tRCNjdnlknwtxjEO9FaA3QuUzlOrgqvpvi1VfVdm7gDRRpxFHC63uh9O4iEM9ANwMKYJEPJTtvSfnSfHgWcLPX2c3Q3Yth3KP0e1NB+8CB7psDuFgZ0AcyFnU42XPLtsj2IV7roY5hs0sTtAtzAra5lHrvicYYNv8fZOrLzpi1SsM8qcU6bKwuKEB44sfIh/F/RtSzkrIZi+GkzI2uDJ7HOdmXTtt/XH7OIJHR89YAjf/Y6QSDBvJ+qeTPPmeVtsv+X4zLedoz71juu1SGHzjfVvBKXpujuMwQz/eB/wGyhvHdgXrnDwMd3rRO5UG+1OAOOrwZcC1AHPAvIs4V/SfPXvBxZ/oWYdhwmmt8YdCgzZKm9cUnhN1zyu5NsPotfmc8OwNgZvh5DoPYDM/d22axpX1PC1Im49QQ7hrGwO64Y/fig+jBJea8PmfceWS/u4VR/JCHPARvetObsm1Pe9rT8G3f9m1417vehRMnTuBrvuZr8KQnPWlf6xQDezeIO3jNeD3C/1BPm4BwVewRfKtCj0IkKPZ4HZ+weFchDHwPUcnQs47r+70bDSkmKwtmeXL38gpsX0pl3nfsLCpB/SwPeem1zr6HQXpZDZNk2xzUF63oO/fuorjnpVme7kWBN4D47ij/bcG3iw6pqOzD2rPoRKUymU6IFW7FIDZjwByzV5oF2ubzxqIz/hc2jLNz51F6nAzDkq/67jsP9RnEQ8fNQjoChntuzeWxfZcYBJC7KPWyjea8cttBJWlhNl8RXR616ZpyXHmNMvKWRaZgdtn3bec0xvn9BBQZV/E+WTEWkb2zjJ/5jKNy224kuCD1W8aeAemFzunUxehr17yOqkVoSJ92jI89jtVZTe4Aql30LPp5ZxGH8TzR4mzf3Fe+MLSbQSw023lc9FP1pMhV6vBjMIjREaqyQos3WGjm1JV5Olm2bUhOU0/divIuErSal6wuK5sya3CXx8+BszN7sK+bQ84iADPr88jFS6db5tDtkzfpHn01fMrt2XmzyHSugy3uIp14tzCKh+iaa67Bj//4j5+z69mUk0UWZ5c0akeM1nq/5JvSHIqg4I1QcQiDQAZZNIQZpOlf5BnsKMPwWbstKFwUcO+m8IptC6d86Inmcn0Kbuj/cNPh62YMXJy/MAiYAdItUOmcV34XgL28x0wwsDeg9pVmAM+ics6ipVnAu5fsO+oB3Bn4jvs1jdoMONWNZcVpc/1dlZM2uEcpDVlte3ntPYp8P4ZxOn6Af6wBrP8j56l5x+8M5b+rgbwLDZ6VOVnyg/W5lf3EYkq9rD4fvudv+4Wi0iC22/uK3O02raGc2hD4KAfhOr0hAm+SjA4PjVjBRowJaT5xn0Hc06QhJ6PdXhpRs/q1a0o1pb5o9GrAOO693zyR5D5+LrcNRWW4OKekof4vMobn0f19fN93/D54ZyhdujSM7y40ZBB3jWMr5wyOLXXDLAey1afCcxAMHH5LtDjxz+zCdaE9c3ZWL2P0jXRe9nPPt/YLu+uiEnPa685LswzjXdrQiQzr7+73QvV5ZlF8VpkM7MEf55ov5pGv55ru0kJb55q2t7fx5S9/GU3TnLNrltUy90L5kkwD69AKuCbkRbeItcBPloqZFXVC9hFFvy+7iLG4QbyX2wwxaZ8BeVfQvMq8NHL6PgB6DWLKU/bKitOdW8/xHBYVEncnJd5Hu/FjXzXNRRwFWRE8IPGi8JmJMOn/CrQTGE9rHCIbA3MbxHNQ1q+9vtc5DYGFnVTznGeVt+WbuT7l+WZ71pfdmwhgPgAkP3u63V952sr/2W3p7L8bGcQy9kpgbQ3ivqI+5TmdJWDkneqGnmci795MUyh5MNef0GPJjiOSe87o5ozhvlixOzMuzDaifGNnTXE5d95xVT6/bN+823qM0Vk6epZOnPf48v4lVihBv2nnfupyhB+iM8r9+XF9BdYOIgnPlQaxUOLROfvUK3uL3wa7ZgUS5TBiVI47RWg7bc/0W67r9vPsB2vWlONvFv/0tSu2LcPQvMunPG8vtItB3Nk3D1nfmvYlx/0d/DFv+/cgJ3UTzf/ZLx1Io/j06dP467/+a1x//fW9+z/96U/jcY97HI4cOYKrr74ahw8fxlOf+lR86UtfOif336sxDCSFRsRZtDm9NFN5rwR6UagogJaI08DaauH4+Q3iTsryzIPRbxCXx+yV5mXaRT1d+zX++hRxB4yVn753ma43VNTFpk6fT7q7G8SZDimixLNSp1GcVxIBXV6UHfJtjWFjBCvPEToVqVGsG5gZxGZcnDNH0Dl8v3Mbxtk59p8ZitruH+Kp3hsU+y3flffpM6Yw0C+hXtk2Q6jO87yL++2qwPvG392ANOqE+Z3Ic1W6BYbfuRkPHYeVHKvVqLk3c6P3PSyiH/dBihGybfIjP2Y3wD4TDA6B+z5e6922y/nlZ55jhvi8dH4NtatHlnTeX98zXJD6C6jtrmcOEvUZxGz05l6J7DtRR3HCoZ2gDdLzSlWo80rUs6i7eggWjwDNc3jf+J9FfR3V9s35GbrmYBsHeKTnezgANYec2zVyX+yfZRz37JvLCbMf2gd7Hkij+HWvex0e8YhH4J3vfGdn35e//GU88pGPxP/9v/8XTdOAmbGzs4O3vvWteOxjH4utra193dumltjvvVK5aHnYmBR7FqEygzot75MrdOXBYmkKOe98gOzewgC7nDM3zWrvogbxom1ZpM27gYaO4g/7MoM4joO+vuylWNY8xm7X833wlXkfzaPIc094d1tGsyIphh+tslcelGiwXZpJMjtI+HVgbCzSlvNNQ49mHsO4x+gb2tc5f9ZzGQLQPbyVXdfw2axiO4M0BHBk915e0TzvdQjgYG8y4ULQPGnTfWB84aXTzDtPS4wUDquBKDGrs9lm7Zzf55tnjMkPzvZRtk2OgeqKjnGcGSP9jpduQ2YYt33bhvTcbs9rNzk3dM15DPeBvp+LyJBSES3uW17rnGTp3BXE2Vf4zWVhyi4eWAgflFjG4tgy2BPJUYgWV5RHi3c1jnvbCujUw0WpNCQHj1vg4n0egUU/s9pRtqXUj+a7ExXfIw1Fi8O+novPYfjPPcYWefZlYGofdCCN4j/7sz+Dcw7PeMYzOvte9KIX4dZbb8VFF12EP/qjP8Lp06fx4Q9/GP/sn/0zfPrTn8Zv//Zv7/m+4lErDWOhPPI7/MIcMRwNHENSVEkMJM4FSLYuqjGMizUYZ3lgFZTvheY1iPt+z/IWLUqzDOJ5Bv1+2jGkrPsUea9gMgq7NIjlkL53NMc761MM/Wmdsw3iu61xjOFCPvsiAZRWoQOGt6xxHH/H/UPrpAIGvGf3mtNoLGmWQrorANo8/Zh1TtnHvojQDLm2K98BHeNjiBYxcveyFnTaVsqLGcZA1o+DjLgTiUE8NL9fdGpJu1dm7tGRQA9fFg4r+zvLsGLD45yGT3H9CyEVbTvyyHX8oiLVtI+PCt0yt3Fs+Wiu7dz9zOxcz/FD55T8brfb68nPvu1zYYNwkMKWGWNxV8P4AJM0uW/qgjWI1WE141ozMasekH/6HlMeKe6JFpdjva9Tg8bYeXgvA9ccGtbnRWzvihd2O3/ObfO2veCF88oP88qXc0gH0ij+2Mc+hn/6T/8pLr/88my79x5vetObQET4tV/7NTzxiU/ExsYGHvrQh+Jtb3sb6rrGH/7hH+79xvHZLpJekhnKPfuDMLECwAoWGEUNYxAbgZN92KSL9XxwfuRCuPAej+WebbvRfg1ie+/SUO/btltb5vHSFWC8NIiz84b/TdtnMPrQ2pj28xVFPf0ZikgBewAtg4ybG2A54GaNSgkA14gU8mPz6y4A3u4KGmjH3EbZbiBV7tHHK3LcTKDcs38G3+XnztH+GdThpUJuLD7OZjzTu6FBLFROX5g993/2c5vZd6MHAz9y8T+0FkfGf5nOFPncNYL3M1yGolzzRIuze1v9ITv6jOMh2TKvcdzZ1nM9u33Ww9mrhdCDX2a2aR5Zo/v3yEMzjOC7o2E8NI9YaDd+BTDHezT8CBP0NA5heXYhUuxRObtucZcfdqPh5ZswH7ab65juc9mPH2hP9tsiBrHaADMwxjwNUMxejPsZWRLzGsd74hvtz13hgTigRvGtt96Kr/3ar+1s/9jHPoY777wTdV3jqU99arbv6quvxrd8y7fgE5/4xL7u3Scg5knzEuPYGQaXecWdFGrqesKpYxBzAt+FYazGcc8no9IAm2dAzjNm+4zeOWmuNix2wfmOW8QQnnk/9Aslw6R9BrFNmy6jxPMog/0q4eEiN/u67F1GZXXbIZpnfnFGmbHFif90mwHfAriLNYjL75kRlmzb7s0LHek/8JxFixcxjHfDT7PAask3Q6B+yBAujWt7jr13cd+9LGG1Z75YlE13MzjuJtSXGs3InVd7A0ThMzuLQwziIpPD6kXKLwkgM4yzobkg2FokhXdRw7iMGss5+zaOh0DlrPG4mxE7i8pz57nHQFt3rWGwACneH3A0o9h/d3I6l/OILZVGDKPf+O/wwlz8yHnRSQAw9xNMXDnfiRZrJsdcxhsN67x5deMCWHZmkxbAl3PbdOfCID6fuqWneTKuysJ0+44o34WO4gNpFJ89exbT6bSz/W//9m8BAA9+8INx5MiRzv573vOeOHXq1L7uLYq8jEQtUo16FkMPRYszQO5yQSPFQhAVf378nO6ou1qQ7xlUzlByFwo89ipq838JYvoMYjm0B5xlt5qzj/MKmLtLtcx5yfJmuX3eIlt9/NlJTxwA331RKQvKe8Ffn3Gn/+8P1J1vOifzi3fj6Xk+5fHFfYeK7exGZYbFIOjt8Yzvm3ousdtSQQeNSr24SA0OC8RL6lSg1h3yET40Dqu4LyuIZwtUZtdhBd+D+noPxnGf/N7t+rMMY7mu7rT6Y5ZckWvMaxwPGD8zx+C8vLvbkJh13CzZsiDtZsyWlajnOeeg06y0aaA79Wi3aQ2d/wt+zJxUpe6T0wCNFtu5xTajUo47L8YQF9/lb6BjVPc2g82nb1vf/oLmMo714Nm/FyqkuyD1RouBmX2bW0eey2afA515II3iyy67DJ/85Cc72//iL/4CRISHP/zhvedtb2/j6NGj57t5c5PMKyagZ15QGS2G8b5BFX04FhDjeCGPa99mFfwLdmbB+2Q0B8jc8/3PJ/UCjWLbUJRKBHsfSO8Fe4tLhlkG79C+u6uB3Bcltku+lLTXfnYAaAm+jcKXqJQaxhjI2LDXs/+fD9qzM2rGrv0axuX+ecHy0PFFdHjWPOJ9pyIvEAGYi2b0/e6WNm3r5s8C2p3zFnAwA6IfB5wrmS4sgLlLRe/K25UOTAvK90u7GcZ9kc5Bw3goamz0y1zGcdG+PVWrPhcya2780m3LTJmyKBVR0ln7ddPd1FgemmJk+XQ353m5zOjQsy+nNNg2MFOAtdQ1hp3LDWIbLRZcTOba1HOP3WjuLMV5DeJFaFE90uek2u13uW2IXxbh475ndq4y1M61bj1HdCCNYkmDfsc73qHbjh8/jre97W0AgO/+7u/uPe/jH/84rrrqqn3d26Z9zZq32EcuGrqh0FZSdn0p1HnqtP1dCJXSMNbtadvCnlmhoQFpzu/1Pu1VOZ5rBjhfIHLoGZZgZkGDuC9KvNg8mtkG8G5pKr3VG+9GtN9K8CVR5/3JN6dvs69Mow7AOxyXF8HrUdaz+HO3bi0yzvfziGbIjrkN41mRqSHjZrdPz7m9196lDwvRDIW9+3ISMz5Dp8wCQQeYZkWJy9Tp3eYTC2VysvxtDNleh5UsUaiVp9kU2iqNrKISdXbdASN2Rlt32z6PYdyb0j3EU+agjlG/C//Ya82MHveNy/18ZtHAPQfbWLZrDpo7Wgwo+L87ziUGcufTLP7L012717GRWzv25prSQFBPsbRF8HE3WgxjIIfrEuL3OXjsg5HUGWPinBjEu5zbeSV7MIj3lDa94DPN62sUJ3PxmXmhOY5ZlM6V3gdAzAcPGv/pn/4pvvM7vxPj8RhPecpTcNlll+EP/uAP8LnPfQ7XXHMNbrjhBtR1nZ3z2c9+Fg94wAPwr/7Vv8JrX/vahe95+PBhnN3ZwuqVx9JGmu85c88/uRc9XZCzY7C718Wcu/vN56D9Dpz9jpZd7z9wg4Oui/bavr4IwQWg6ZfvAOoKfmvnAraiS8KX61cdzXgKQMZL4WcfzwHKd+b49P8e+G/wmOyW5nsxj/bgte5OdFdplbvjs1mAprfcDjrAfLl21THdVvJj+Lfg2c64oIHzMCdvzuBL2WYNwxgGKJ0Qc/iHzwsNssldYXwdOOQ3J53vRzNgPJW3nX75DmysruH06dPnuUGLkfDmypUXdfb1o/0is6PPcAMW40e7jwA4hnM+BohSWxg0iI8H7zujnfm2c4SZDyItzANzOLXvknacf9qvzqx3P+Sup8c+9rH45V/+ZfzKr/wK3vCGN4CIwMxYW1vDa17zmo5BDAC/8zu/AwB43OMet6d7bmxsAACuOXSPvTd8SUu6m9Ln7txSHjhIpHy5ccUFbsmSlnTX0+dObh5wvlzqyyV9ddKB15mHLt/lyCUt6SuP9qszD2SkWOjDH/4w3va2t+H48eO4173uhac//em4733v23vsC1/4Qpw5cwYvfOELcfHFF9/FLV3Skpa0pCUtaUlLWtKSlrSkJd0d6UAbxUta0pKWtKQlLWlJS1rSkpa0pCWdTzqQhbaWtKQlLWlJS1rSkpa0pCUtaUlLuitoaRQvaUlLWtKSlrSkJS1pSUta0pK+amlpFC9pSUta0pKWtKQlLWlJS1rSkr5qaWkUL2lJS1rSkpa0pCUtaUlLWtKSvmppaRQvaUlLWtKSlrSkJS1pSUta0pK+amlpFC9pSUta0pKWtKQlLWlJS1rSkr5qaWkUL+luS3/7t3+Ll770pfiBH/gB3POe9wQRgYgudLOWtKSveNrc3MQf/uEf4kd+5EfwtV/7tVhdXcXGxgYe8pCH4Fd/9Vdx5syZmedvbW3h2muvxdd8zddgdXUVV111FX74h38YN998813UgyUt6auDbr/9dlx++eUgIjzgAQ+YeeySL5e0pPNPx48fx7/7d/8OX/u1X4u1tTVcfPHFeNjDHoaf//mfHzxnyZt3EfGSlrRHes973sMA+Md+7McuyP2/7/u+jwF0Pkta0lcDXUj+e/WrX6389qAHPYif/OQn8+Me9zg+fPgwA+AHPvCBfMstt/Seu7W1xd/6rd/KAPjKK6/kpzzlKfzwhz+cAfBll13Gn/nMZ+7i3ixpSeeOLrReLOlZz3oWExED4Pvf//6Dxy35cklf6XQQePNDH/oQX3LJJQyAv/7rv55/6Id+iJ/whCfwve99b66qqvecJW/edbSMFC9pz/TBD34QAPDwhz/8gtz/EY94BF74whfi7W9/O770pS9hZWXlgrRjSUu6EHQh+W80GuHHfuzH8PGPfxwf//jH8fu///t4z3veg0996lP4xm/8Rnzyk5/Ez/7sz/ae++IXvxgf+MAH8IhHPALXX3893vKWt+CDH/wgXvGKV+D48eP44R/+4bu2M0ta0jmkC60XLf3Jn/wJXvva1+JHf/RHdz12yZdL+kqnC82bx48fx+Mf/3hsbW3hj/7oj/D3f//3ePOb34x3vetduPHGG/GXf/mXvectefMupAttlS/p7kvf8z3fwwD4ox/96IVuCjMzr6ysLCPFS/qqoYPGf0J/+Zd/yQB4ZWWFd3Z2sn07Ozt89OhRBsAf/vCHO+c++MEPZgD8oQ996K5q7pKWdE7poPDl5uYm3//+9+ev+7qv4+uvv35mpHjJl0v6aqALzZvPe97zGAC/6lWvmvucJW/etbSMFC9pYXrZy14GIsK73vUuAMBDHvIQnc/7nd/5nRe4dUta0lc2HXT+e8hDHgIA2NnZwe23357te//734+TJ0/i/ve/P77xG7+xc+4P/uAPAgDe8Y53nP+GLmlJ55AOGl/+yq/8Cj772c/id37ndzAajWYeu+TLJX0l00Hgza2tLbzhDW/AxsYGnvOc58x93pI371qqL3QDlnT3o8svvxxPfvKT8da3vhWXX345nvCEJ+i+xz72sRewZUta0lc+HXT+++xnPwsgpFhffPHF2b6PfvSjAICHPexhvefK9o997GPnsYVLWtK5p4PElx/72Mfwile8As95znPwyEc+EjfeeOPM45d8uaSvZDoIvPmhD30Ip0+fxrd/+7djbW0N7373u/F//s//wfb2Nr7ma74GT3nKU3DVVVd1zlvy5l1LS6N4SQvTs5/9bNzvfvfDW9/6VjzucY/D7/3e7+16zmMe8xj82Z/92UL3ec1rXoNnP/vZe2vkkpb0FUoHnf9+8zd/EwDw+Mc/vjPP/3Of+xwA4J73vGfvubL9pptuWvi+S1rShaSDwpfeezz3uc/FsWPH8LKXvWyuay75cklfyXQQePPjH/84gGCgf//3fz/+6I/+KNv/H/7Df8Dv/u7v4mlPe1q2fcmbdy0tjeIl7Ymuu+46AMBDH/rQuY5//OMfj/vc5z4L3WO35SOWtKSvVjqo/Peud70Lv/u7v4vRaIQXvehFnf2yVNP6+nrv+RsbGwCA06dPL3zvJS3pQtNB4MtXvvKV+Ju/+Ru85jWvwSWXXDLXNZd8uaSvdLrQvHnixAkAwNvf/nZUVYVXvepVePKTn4zNzU381m/9Fn79138dz3rWs/CgBz0oa+OSN+9aWhrFS9oTLSpgfumXfun8NWZJS/oqo4PIf5/85CfxjGc8A8yMl7/85Tq3eElL+mqhC82Xn/vc5/CCF7wAj370o5dZVktakqELzZveewBA0zR4yUtegp/4iZ/QfS9/+ctx00034a1vfSte/vKX441vfOM5vfeS5qdloa0l7YlknsMS+C5pSXc9HTT+u/nmm/H4xz8eJ06cwM/93M/hZ37mZ3qPO3ToEABgc3Ozd//Zs2cBAIcPHz4/DV3Sks4jXWi+/Mmf/ElMJhP8zu/8zkLnLflySV/pdKF5U3gMQG+hLdlWpmwvefOupWWkeEkLU9M0+Id/+Afc8573nDs966UvfSk++clPLnSf5z73ufj2b//2vTRxSUv6iqWDxn933HEHvvu7vxs33XQTnvOc5+DXf/3XB4+95pprAABf+MIXevfL9nvf+94LtXVJS7rQdBD48p3vfCeOHTuGH//xH8+2b29vAwjOq8c85jEAgDe/+c244oorACz5cklf2XQQeFN4Z319HZdddllnv6Rq33rrrdn2JW/etbQ0ipe0MH3iE5/Azs7OQh6397znPQsXLXjMYx6zNIqXtKSCDhL/nTlzBk94whPw8Y9/HD/wAz+AV7/61SCiweOlzR/+8Id798v2Bz/4wQu1dUlLutB0UPjyzjvvHLzm9va27hNDGVjy5ZK+sukg8KYsp7S1tYWdnZ1OEco77rgDQB5RBpa8eVfT0ihe0sL0iU98AgDwDd/wDXOf8773ve88tWZJS/rqooPCfzs7O/i+7/s+/PVf/zUe97jH4U1vehOqqpp5zrd927fh6NGj+MxnPoPrrruuM7/rf/yP/wEAeOITn3jO27ukJZ1POgh8ycy922+88Ubc9773xf3vf3/ccMMNnf1LvlzSVzIdBN685ppr8JCHPAQf/ehH8Wd/9mf47u/+7my/GODlWsRL3rxraTmneEkL03Q6BTA8x2FJS1rS+aODwH9t2+JpT3sa3vve9+KRj3wk3va2t2E8Hu963ng8xvOf/3wAYf6jzIcCgP/0n/4TPvaxj+HRj340vumbvun/b+/uVRoLAigAn21EDIiFiramszSFKAhWNla+QRp7C7ELvoAWtmmiL2DnK4ix8gGEIBa+gT9NZruFZVeX/Uk2ON8HtxnuwExxinMvc+/I1g6jMAm5/FNyyWc2Kdk8OjpKkhweHubp6enb+N3dXU5PT5Pkh6MPsjleX8p7jxbhHff391ldXc1wOMzOzk4WFxczPT392x/3+FtXV1ff/fbl9vY2pZSnESyfAAABfUlEQVSsr69/G+t0Otnd3R3rumCUJiF/Z2dnOTg4SJLs7e1ldnb2p/ednJxkfn7+u7HX19dsb2+n3+9neXk5W1tbeXh4SL/fz8LCQm5ubrKysjLqLcA/NQm5fM+v3hQncsnnNUnZbLfbubi4yNzcXDY3N/Py8pLr6+u8vb1lf38/3W73hzmyOUYF/sDl5WVZW1srjUajJCmtVmvsa+j1eiXJh1ev1xv7umDU/nf+jo+Pf5m9JGUwGPx0/vPzc+l0OqXZbJapqamytLRU2u12eXx8HOs+4F/637l8z2AwKElKs9n88D655LOalGwOh8PS7XZLq9UqMzMzpdFolI2NjXJ+fv7hPNkcD2+KAQAAqJYzxQAAAFRLKQYAAKBaSjEAAADVUooBAACollIMAABAtZRiAAAAqqUUAwAAUC2lGAAAgGopxQAAAFRLKQYAAKBaSjEAAADVUooBAACollIMAABAtZRiAAAAqqUUAwAAUC2lGAAAgGopxQAAAFTrKyDz0+E34RphAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 1140x450 with 12 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sequence = 0\n", + "samples = [0,4]\n", + "timeSteps = [0,19,39,59]\n", + "field = 3 # velocity_x (0), velocity_y (1), density (2), or pressure (3)\n", + "\n", + "predPart = pred[samples]\n", + "gtPred = np.concatenate([gt[:,sequence,timeSteps,field], predPart[:,sequence,timeSteps,field]])\n", + "\n", + "fig, axs = plt.subplots(nrows=gtPred.shape[0], ncols=gtPred.shape[1], figsize=(gtPred.shape[1]*1.9, gtPred.shape[0]), dpi=150, squeeze=False)\n", + "\n", + "for i in range(gtPred.shape[0]):\n", + " for j in range(gtPred.shape[1]):\n", + " if i == gtPred.shape[0]-1:\n", + " axs[i,j].set_xlabel(\"$t=%s$\" % (timeSteps[j]+1), fontsize=10)\n", + " if j == 0:\n", + " if i == 0:\n", + " axs[i,j].set_ylabel(\"Ground\\nTruth\", fontsize=10)\n", + " else:\n", + " axs[i,j].set_ylabel(\"ACDM\\nSample %d\" % i, fontsize=10)\n", + " axs[i,j].set_xticks([])\n", + " axs[i,j].set_yticks([])\n", + " im = axs[i,j].imshow(gtPred[i][j].transpose(), interpolation=\"catrom\", cmap=\"viridis\")\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Gx7w16FQTFrd" + }, + "source": [ + "The trained time operator closely matches early states, but you should be able to see variations for the last states at $t=60$. The shock waves for the cylinder are highly unstable, and hence give the network to create realistic but varying predicitions. Re-running inference with different noise values will produce additional variations.\n", + "\n", + "### Temporal Stability\n", + "\n", + "We also investigate the temporal stability of the samples by computing a temporal derivative, and comparing the result to the simulation. Note that the result will be smoother, the more sequences and samples are used. Furthermore, better results can be achieved with additional training data. Naturally, the ACDM posterior samples should exhibit a larger variance compared to the individual simulation trajectories.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "executionInfo": { + "elapsed": 6, + "status": "aborted", + "timestamp": 1734018830238, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "8xrYEFQfMVz0" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "<>:19: SyntaxWarning: invalid escape sequence '\\V'\n", + "<>:19: SyntaxWarning: invalid escape sequence '\\V'\n", + "/tmp/ipykernel_917142/1134808229.py:19: SyntaxWarning: invalid escape sequence '\\V'\n", + " ax.set_ylabel(\"$\\Vert \\, (s^{t} - s^{t-1}) / \\Delta t \\, \\Vert_1$\")\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwcAAAFnCAYAAADzMzU8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABcSAAAXEgFnn9JSAADVJElEQVR4nOzdd3xT1fvA8c/NaNO9d9lb2SAiiCAoDkREFAQHQ3HvhXvh74t74lZEcAIucKDIVBCQJbJ3oXuv7Nx7f3+EBkLTNm2TLs779coLcudJmyb3ueec55FUVVURBEEQBEEQBOG0p2nsBgiCIAiCIAiC0DSI4EAQBEEQBEEQBEAEB4IgCIIgCIIgHCeCA0EQBEEQBEEQABEcCIIgCIIgCIJwnAgOBEEQBEEQBEEARHAgCIIgCIIgCMJxusZugCAIgiAIQlOhqiqiBJTQEkiShCRJtd5PBAeCIAiCIJzWZFmmoKCAsrIybDZbYzdHEHwmICCAsLAwYmJi0Gq1Xu0jiQrJgiAIgiCcrmRZ5ujRo1gslsZuiiD4jcFgoHXr1l4FCKLnQBAEQRCE01ZBQQEWiwWtVktCQgIhISFoNGJKptD8KYqC0WgkJycHi8VCQUEB8fHxNe4nggNBEARBEE5bZWVlACQkJBAREdHIrREE39FoNK73dGZmJmVlZV4FByI0FgRBEAThtKSqqmuOQUhISCO3RhD8o+K9bbPZvJpsL4IDQRAEQRBOSydfKImhREJLdfJ7WwQHgiAIQoOoSJm3atWqxm6Kz61atarOKQFr2r+u6wRBEPxFzDkQBKFJqc+F0KeffsqUKVN81xihweTl5fHhhx/y66+/smfPHkpKSoiIiCAhIYH27dtz7rnnMmTIEAYNGuS235EjR5g7dy4AzzzzTMM3vJFs27aNH374gcjISO69997Gbo4gCC2ICA4EQWhSEhISPC4vLy/HaDRWu01QUJDf2iX4z/Llyxk/fjyFhYWuZSEhIdjtdnbt2sWuXbv46aefgMpd4keOHOHZZ58Fmm5wEBwcTJcuXXy637Zt23j22Wdp06aNCA4EQfApERwIgtCkZGdne1z+zDPPuC4Cq9pGaH6OHj3KFVdcQXl5OW3btuWpp55i7NixREZGAlBSUsKGDRtYvHgxX375ZeM2to4GDBjAnj17Gmw/QRCE+hBzDgRBEIRG88EHH1BeXk5AQACrV69m6tSprsAAICIigpEjRzJ79mwyMjIar6GCcBpauXIl48aNIyUlhYCAAKKioujSpQtXX301s2fPpqSkxLXtsGHDkCSJI0eONF6Dq/DMM88gSZJrCKI/NeWfg7dEcCAIQouRl5fHE088QZ8+fYiIiMBgMNC+fXtuvPFGdu7c6XGfUyd9bt++nYkTJ5KcnExQUBDdunXjlVdeweFwuPZZu3YtV1xxBUlJSRgMBrp3784777xTZRaItm3bur6YysrKePTRR+nSpQtBQUHExsZyxRVXsGHDhmpfmyzLzJkzh+HDhxMbG0tgYCApKSlcffXV1U4CrviieuaZZ7Db7bz66qv079+fyMhItwnEiqKwfPly7r77bgYOHEhqaioBAQHExMQwdOhQ3n//fex2e7VtrItt27YB0Lt3b1q3bl3ttqcOG2vbti3nn3++63nF77HicfL8E7vdzuLFi7n55pvp378/SUlJBAQEEB8fz0UXXcRXX33lVRYPgE2bNnHVVVe5fv8dO3bkoYceori42OP2dZ1YXNV+kiQxdepUANLS0iq97meeeQZZlklNTUWSJF566aVqz/PJJ58gSRJhYWGunP+C8NxzzzF8+HC+++47IiIiuOyyyxg5ciRBQUF899133HXXXezevbuxm9ngJEmibdu2jd0M/1IFQRCagaeffloF1Ko+tpYtW6ZGRka6ttHr9WpISIjreUBAgPrZZ59V2m/lypWubX755RfVYDCogBoREaFKkuRad80116iqqqofffSRqtVqVUmS1IiICNd6QJ0xY4bHtrVp00YF1Ndee03t0qWLqz3h4eGufTUajfrJJ5943L+4uFgdNmyYa1utVqtGRka6te/BBx/0uO/QoUNdbRs0aJAKqDqdTo2KilIlSVJXrlypqqqqHj582O21hIaGVnp9Q4YMUU0mk8fzVGxTcTxvXXrppSqgpqamqoqi1Grf/v37q1FRUa5zJyQkuD3uvvtu17Yn/54BNTw8XA0LC3NbdvXVV6uyLFc6z8n7/vDDD2pAQIDrGBX/B9Q2bdqohw8frnZ/X6xLSEhwvXc0Gk2l1/3yyy+rqnrib6ZTp07V/mzPPvtsFVCnT59e5TYtlSzL6q5du9Rdu3Z5/N2frjZt2qRKkqTq9Xr1+++/r7Q+KytLffnll9Xdu3e7lqWlpam7d+9WbTZbA7bUOxV/C59++mm9j1Xxt16VpvhzqO37XAQHgiA0C9UFB9u3b1eDgoJcFzi7du1SHQ6HqqrOD+rbb7/ddVH8zz//uO178gVYZGSkOmHCBDUtLU1VVVUtLS1VH330Udf6WbNmqXq9Xr3rrrvUnJwcVVVVtbCwUJ0yZYrrQm3v3r2V2lcRHERERKhRUVHqggULVLvdrqqqqu7atct1Aa/T6dTNmzdX2n/cuHGugOKtt95SjUajqqrOL+hp06a52vfee+9V2rfi2KGhoWpoaKj66aefui7w8/Pz1YKCAlVVVfXYsWPqtddeqy5evNi1TFVVtaysTP3000/V5ORkFVDvu+8+j7+fugYHzzzzjGvf+++/Xy0vL6/V/tVdXJ9sw4YN6i233KIuW7ZMLSkpcS0vKChQ33zzTdfF9ptvvlntOSIiItRhw4apu3btUlVVVe12u/rNN9+4gpSzzjrL9d7zpo11Xffpp5/WeJGSnp6uarVaFVBXrFjhcZvt27e7zrFp06Yqj9VSieDAs8cee0wF1Guvvbaxm+ITDRkcNEUiOBAEoUWqLjgYPny4CqiPPvpolfvffffdKqCOGTPGbfnJF2AXXnihxzusQ4YMcW1z0003VVrvcDjUdu3aqYA6c+bMSusrggNA/eOPPyqtN5lMaqdOnVRAvfTSS93WrV+/3rXvBx984PG1VQQPsbGxqtlsdltXERwA6uLFiz3u741//vlHBdSQkJBK51DVugcHeXl5rsCj4vgXX3yx+uSTT6o//PCDKwirirfBQU0WLlyoAmqHDh2qPUfnzp099p4sW7bMtc2CBQu8bqM/gwNVVdUrrrjCrefrVHfeeacKqH379q32OC2VCA48mz59ugqo9957r9f7VHzWnNp7VvE+tdvt6nPPPad26NBBNRgMateuXdU5c+a4tlu+fLk6bNgwNSwsTI2MjFSvv/56NT8/v9J5Kj5PPan4m5k8ebLb8qqCg/3796tPP/20OnDgQDUhIUHV6/VqSkqKev3111e60VPxN+fpMXTo0Bp/Dqqqqjt37lQnTZqkJiYmqnq9Xk1OTlavv/56dc+ePdW+loKCAvXWW29VExMT1YCAAPXMM8+ssqfZk9q+z8WcA0EQmrUjR46wYsUKdDodDz74YJXb3XDDDQD88ccfyLLscZsZM2Z4HBd+0UUXuf7/6KOPVlqv1WoZMWIE4JyzUJXBgwe7tjtZUFAQDz30EABLly51m+T3zTffAJCamspNN93k8bgzZ84EID8/n2XLlnnc5swzz2T06NFVtq0m/fv3Jz4+HqPR6Jon4AuxsbH89ddfXHjhhQAYjUaWLl3KzJkzueKKK0hISKB///7MnTsXRVF8dt5TjRo1CoCDBw9Wmw3roYce8pgy94ILLnDVYPj666/908g6uO222wD4/vvvyc/Pd1tnNpv5/PPPAbjlllsavG1C09WqVSsAvv32W3Jzc31yzPHjx/Pqq6/So0cPzjvvPA4fPsy0adP49NNPWbRoERdddBEOh4OLLrqIkJAQ5s+fzxVXXOH1XKC6+Pjjj3nuuecwGo2cddZZXH755YSHhzN//nzOOusst8/zjh07MnnyZMCZanny5Mmux8UXX1zjuZYvX07//v358ssvSUpKYty4ccTHxzN//nz69+/Pn3/+6XG/4uJizjnnHBYvXsyQIUMYPHgwe/bs4cYbb+Tjjz/2zQ/iFCKVqSAIzdratWsB54TaM844o8rtKgICo9FIQUEB8fHxlbYZMGCAx30r6ipER0fTvn37arcpKiqqsg3Dhw+vcZ2iKGzZssU10XbTpk0AnH/++Wg0nu/ndOvWjZSUFDIyMti0aZPHIGDw4MFVnruCzWZjzpw5fPfdd+zYsYOCggJsNlul7dLT02s8Vm20a9eO33//nd27d7N48WL+/vtvtm7dytGjRwHYvHkzU6dO5auvvuLHH3/EYDDU6TxlZWW8//77/PTTT+zevZvi4mKPk6zT09NJTEz0eIyafofr1q1z/c6aggsvvJAOHTpw8OBB5s2bx/333+9at2jRIoqLiwkNDWXSpEmN2Mqmz2KxYLFYvN4+IiKi0o2GkpISry90AwICCA4Odltms9kwmUzV7mcwGOr893Gya6+9llmzZnHs2DE6duzIlVdeybnnnku/fv3o2bMnWq22VsdLS0sjLCyM/fv3ExcXBzgzIQ0fPpzHH38cm83GDz/84ArSS0tLGTRoEH/99RerVq1ySzzgS1dccQW33HIL7dq1c1v+6aefMm3aNO69915WrFgBwLnnnsu5557LZ599RmxsbK0yHxmNRq699lrMZjOzZ8/mjjvucK17/fXXuf/++5k0aRL79++v9Pv78ccfueaaa5g7dy6BgYEA/PDDD4wdO5aZM2dWedOoPkTPgSAIzVpmZibgvKjOycmp8nHyXdOqvmDDwsI8LtfpdNWuP3mb6jL6pKSkeLXu5Dt1Ff+vbl9w9iycuu/JPAVDJ8vNzaV///7cdtttLFu2jKysLDQaDbGxsSQkJJCQkOAKTiqK0flat27dmDFjBj/88ANpaWlkZWXx/vvv06ZNGwB+//13nnjiiTode9++fZxxxhk8/PDDrFmzhry8PPR6PXFxca7XV6G61+fN79BXd1p9QZIkbr75ZgA++ugjt3UffvghAJMmTSI0NLTB29acvPDCC0RFRXn9OLn3r0KbNm283v/222+vtP+XX35Z434vvPCCT15v+/btWbJkCa1ataKsrIzPPvuM6dOn07dvX2JjY7n99tvJysqq1THfeOMNV2AAzhseffr0ISsri0suucQVGACEh4e73rerV6/2yWvyZODAgZUCA4CpU6cyePBgVq1a5fF3WVsLFiwgJyeHc845xy0wALjvvvvo168f6enpfPvtt5X2DQ8PZ/bs2a7AAJxBTffu3Tl69KhfUqaK4EAQhGatokcgISEB1TmPqsZHi09D50FNd/ruu+8+/vvvP2JiYpgzZw5ZWVmYzWby8vLIzs4mOzub5ORkAL92858sMTGRW265hQ0bNriCmzlz5tRpeNHUqVNJT0+nbdu2LFy4kIKCAoxGI7m5uWRnZ7vVUGio19dQpk2bRmBgIHv27GHNmjUA7Nmzh7/++gvAdREmCCcbMWIEBw4c4LvvvuPWW2+lb9++6HQ6iouLee+99+jduzd79+716lh6vZ5hw4ZVWl7REzty5Mgq19U2CKmt8vJyvvrqK2bMmMH06dOZMmUKU6ZMISsrC1VVOXjwYL3PUTFk6Nprr/W4/rrrrnPb7mT9+vUjJiam0vLOnTsD/vn5iGFFgiA0axXDP/Lz8zEajYSEhDRyi6pWXRGvk9edfJc/Pj6evXv31jiUp2J9TT0Entjtdr777jsAZs+ezTXXXFNpG1mWK41ZbygJCQmMGTOGjz76iKKiIvLy8tzu9Nfk2LFjrFu3DoCvvvqKgQMHVtrG26rbGRkZVQ4tq/gd1uV34E+xsbGMGzeOL7/8ko8++ojzzjvP1YvQr18/+vXr18gtFJqqgIAAxo4dy9ixYwHn+Pevv/6axx57jNzcXO68884q5zmdLDEx0eMNiooeK089chXrrFZrfV5CtVasWME111xDXl5eldv4ovZHRQ93VTemKpZ7+o6o6BU+VUVPtj9+PqLnQBCEZq1iLL0sy/z666+N3JrqrVy5ssZ1Go2GPn36uJb379/ftb6qO+Z79uxxfamcddZZtW5XXl6eazz1yec+2V9//VWrMde+dvKwl5O710+eh1HVHf9jx465/l/V6/vjjz+8aoc3v8OK35k/Vbxub3s5KiYmL1q0iOzsbObNmweIXgNvPfLIIxQVFXn9iIiIqHSMtLQ0r/d/9913K+0/adKkGvd75JFH/PpziIyM5NZbb3WNt1+5cmWN8yCAKudLebveW7XpVSwvL2f8+PHk5+fz1FNPsWvXLoxGI4qioKoqEydOBBqmJ7G6Aom++tnUhggOBEFo1jp16uTqrn788cdrHB9aWFjYAK3yrGJy3aksFguvvvoq4MyMFBkZ6VpXcRc/IyOjyswUTz31FOC8Q3zBBRfUul3h4eGuL6d///230nqHw8Hjjz9e6+N6488//6zx4qK8vNzVs9GuXTu3n094eLjr/1VVKD75Qs3T6ysrK+P555/3qr2vvPKKxyBp5cqVrsnxEyZM8OpY9VHxuqt6zac699xz6d69OxaLhQkTJpCfny8mIteCwWAgMjLS64eni72IiAiv9z91MjI47+LXtJ8vJiN7o2JivizLXr8HfSUgIABwfi6c6uQbATX5888/KSgoYNy4cTz77LN069aN4OBg1+/u0KFDvmkwuIZkpqWleVxfMW+gprllDUUEB4IgNHtvv/02oaGh7Nu3j4EDB/Ljjz+6XcBlZGQwf/58RowYwYwZMxqtnREREYwbN45FixbhcDgA513/UaNGsWfPHrRaLc8995zbPgMGDGDcuHEA3HXXXcyePdt1MZ2dnc306dNZuHAh4ExpWpeLg9DQUFcPzP3338+KFStcd+B27NjBpZdeyqZNm/wyZOvNN9+kdevW3HXXXfzxxx+Ulpa61pWWlrJgwQIGDRrk+lJ94IEH3Pbv3Lmz62Lh448/9niXr1u3brRu3Rpwjr/fvHmza93ff//NsGHDqs0ydbKsrCxGjRrlGmvtcDhYtGgRV111FQB9+/blyiuv9Pbl11n37t2BEz8jb1SkK62YdyAmIgtVqelu+YEDBwDnhXpsbGxDNMklKSkJcCYZOJU3Q5wqVPzNexq2c+DAAbZs2eJxP71e7/r89taQIUMA57BGTypSClds19hEcCAIQrPXvXt3li5dSmJiInv27OGKK64gNDSU2NhYgoODSU1N5YYbbnClpGssTz/9NHFxcVx99dWEhoYSGRlJt27dWLFiBZIk8d5773kckvLJJ58wdOhQbDYbd911FxEREURHR5OcnOzqTXjwwQe59dZb69y2N954g5CQEDIyMhgxYgTBwcGEh4fTo0cPVq5cyUcffeSXiwC9Xk9BQQGzZ8/mwgsvJCIigvDwcMLCwoiIiGDChAn8999/aDQaZsyYUSnTR3BwMNdffz0ADz/8MKGhobRp04a2bdu66l5oNBreeecddDodO3fupH///oSEhBASEsKgQYPYu3evq55ETT777DP+/PNPunbtSmRkJKGhoVx99dUUFhbSunVrFi1a5Mpc5U8dO3Z01cyYMGEC4eHhtG3blrZt2/LGG2943OeGG25wC/DEkCKhKk8++SQPPfSQx8m4GRkZrkDz8ssvdwXnDWXo0KEAzJo1y61mzVdffVXlxbcnFRN6v/vuO7c5B8XFxdx4441VZp5LTk4mJyenVj0m48ePJyEhgb/++suVJazCW2+9xaZNm0hJSXHdCGpsIjgQBKFFGDx4MPv27eOVV17hvPPOIzIykuLiYrRaLd26deO6667jiy++qPLCqSFERUWxceNGHnnkEVq3bo3VaiU6OprRo0ezdu1apk+f7nG/iIgIli9fzieffMKwYcMICwujvLycxMRExo0bx8qVK3n55Zfr1bZ+/fqxceNGxo8fT2xsLIqiEBYWxvjx41m3bp3rAtzX5s+fz4oVK3j00UcZMWIEqamp2Gw2LBYLUVFRnHXWWdx3331s3bq1yjSN77zzDs888ww9evQA4OjRo6SlpblNoL7ssstYs2YNo0aNIjIyEofDQWxsLFOnTmXz5s0ei9N5MmbMGNatW8e4ceMwGAyoqkq7du144IEH2LZtm8e0iP6yaNEi7rvvPjp37ozdbictLY20tLQqL1rCw8NdWWHERGShOuXl5bzyyit07NiRLl26MHbsWCZOnMiQIUNo164dGzdupGPHjo3yeXrHHXcQFxfHokWLOOOMM7j66qvp3bs3119/Pffcc4/Xx+nfvz8XXnghR48epXPnzq6J1+3atSMzM5MxY8Z43O/yyy/H4XDQt29frrvuOm666aYaP39DQkL44osvCAoK4pZbbqF///5MmjSJvn37cs899xAaGspXX33VYMPCauR17WVBEAShTtq0aaMC6qefftrYTRFOYxaLRY2JiVEB9YMPPmjs5jQJsiyru3btUnft2qXKstzYzWky8vLy1Pnz56vXXXed2qNHDzUmJkbV6XRqdHS0OnjwYPWll15Sy8vL3fYZOnSoCqiHDx92Ww6obdq08XieyZMnq4C6cuXKSutWrlypAurkyZMrrdu9e7d62WWXqWFhYWpISIh63nnnqStWrKhyn6efftrjZ7DJZFIff/xxtVOnTmpgYKDaqlUr9dZbb1Xz8/OrbFt5ebl65513qq1atVJ1Op0KqEOHDq3x56Cqqrpjxw514sSJakJCgqrX69WkpCT1uuuuU/fs2VOr11/Tz+5UtX2fS6rawhI6C4IgNDFt27YlLS2NTz/9lClTpjR2c4TT1Ny5c5k6dSrh4eFkZGSI+QY4s9tUzB/p0qVLo2SGEQR/q+37XPwVCIIgCEILd/DgQZ588kkAbr31VhEYCIJQJVEETRAEQRBaqHPPPZfDhw+TnZ2Noiikpqby6KOPNnazBEFowkTPgSAIgiC0UOnp6WRmZhIVFcXYsWNZuXKlW50IQRCEU4meA0EQBD+rKHAjCA1NvPcEQagt0XMgCIIgCIIgCAIgggNBEARBEARBEI4TwYEgCIIgCIIgCIAIDgRBEARBEARBOE4EB4IgCIIgCIIgACJbUYuRmJiI0WikdevWjd0UQRAEQWgW9Ho9TzzxBO3bt2fnzp1IktTYTRJ8wGazodVq6dWrV2M3pVkSPQcthNFoxG63N3YzBEEQBEEQGpWqqsiy3NjNaLZEz0ELUdFjsHPnzkZuiSAIgiA0D4qisHfvXgC6dOmCRiPumbYEO3bsaOwmNGvir0AQBEEQBEEQBEAEB4IgCIIgCEI1Nm7ciCRJSJLEc889V+P2BQUFPPfcc5xzzjnExcWh1+uJjY1l6NChvPTSS+Tl5bltP2XKFNfxJUlCo9EQERFB27ZtGT16NC+99BI5OTlVnu/k/W+55ZYqt7NarURHR7u2XbVqldc/g9OJCA4EQRAEQRCEKs2fP9/1/y+++KLabX/44Qfat2/P008/zZ49e+jXrx9XX301/fr1Y9u2bcyYMYOOHTt6HAY9ePBgJk+ezA033MDIkSNJTU1l+fLlzJgxg9atW/Piiy+iqmq151+4cGGVczB//vlnioqKvHjFpzcRHAiCIAiCIAge2e12vv76a8CZGXHfvn1s2LDB47a//vor48aNw2Qy8eqrr5Kbm8vSpUv58ssv+e2338jLy+OTTz4hKCioUu8BwE033cTcuXOZO3cuCxcu5K+//qKgoIC33noLnU7HI488wuOPP15lW/v06UNRURFr1qzxuP7zzz8XWYy8IIIDQRAEQRAEwaOlS5eSn5/P4MGDuf322wH3noQKRqORyZMnoygKH3/8Mffffz96vd5tm4CAAKZNm8bmzZtp27atV+cPCgrirrvu4ueff0ar1TJr1iz+/fdfj9tOnDgRjUbDzz//XGldcXExv/zyCyNGjCAxMdGrc5+uRHAgCIIgCIIgePT5558DcN1113HdddcB8M0331QaujNv3jzy8vI4++yzmTx5crXHTElJ8To4qDBs2DAmTpwIwNtvv+1xm6SkJIYPH86aNWsoKytzW7dgwQKsVqvrNQhVE8GBIAiCIAiCUElJSQmLFy8mICCA8ePH065dOwYNGkR+fj5Lly5127bibv2kSZP81p5rrrkGgJUrV1a5zbXXXovVauWPP/5wW/7FF18QHBzM2LFj/da+lkIEB4IgCIIgCJ6oKpiLm9+jhkm73lq0aBEWi4VLLrmE6OhoANed91OHFm3btg2Avn37+uTcnvTu3RuAQ4cOYbPZPG4zbtw4DAYDP/30k2vZ0aNH+fPPPxkzZgyhoaF+a19LIYqgCYLQaBRFoby83JW6TqPRoNVqXf8XBYkEQWhUlhJ4sU1jt6L2ZqRBUGS9D1MRAJw8FGf8+PHcc889LFmyhJKSEiIiIgBn+lKAuLi4ep+3KrGxsa7/FxUVkZCQUGmbsLAwhg4dyrJly8jIyCAlJYUvvvgCVVXFkCIviW9eQRAanKqqFBcXc/jwYbKzs8nKyiIjI4Njx45x5MgRDh06xIEDB9i/fz8HDx7k6NGjyLLc2M0WBEE4bRw9epQ1a9YQGRnJ6NGjXctjYmK49NJLsVgsLFy4sEHbdHIaU0mSqtzusssuQ1EUvvzyS8A5pCg+Pp6RI0f6vY0tgQgOBEFoUKWlpRw5coTc3NwaL/hVVUWWZSwWCxkZGTXmtxYEQRB8o+Ju+1VXXUVgYKDbuoo78BWTlcEZNAAeU5T6Sn5+vuv/UVFRVW43ePBgIiMj+eKLL9i6dSs7d+5kwoQJ6HRiwIw3xE9J8A9VhWqieuH0U15eTkFBAVartU77WywWMjMzSUlJ8XHLBEEQqmCIcA7RaW4MEfU+RMWQolWrVnHuuee6rasY779mzRrS0tJo06YNvXv3JiMjgy1btlTa3le2bt0KQKdOnSqlST2ZXq/noosu4ptvvuGxxx4DEEOKakEEB4LvOGxgKwdrGegMEFZ5LKBw+jGbzeTn52M2m+t9LKPRSE5OjsdxpoIgCD4nST4Zu9/cbN68md27dwNw4MABDhw44HE7VVX54osveOyxxxg1ahQ///wzX331FXfffbdf2vXNN98AcP7559e47WWXXcY333zD0qVL6dy5MwMGDPBLm1oiMaxIqB+HDUyFUJQGxUed/5ftzgDBUbc7xELLoCiKax6BLwKDCiUlJRQWFvrseIIgCIK7iuFCDz74IKqqenysWrXKbdsbbriBuLg41q9fz2effVbt8TMzMzly5Eit2rRq1Sq+/vprJEnirrvuqnH73r1706tXL2JiYpg2bVqtznW6E8GBUHsVAUHxUfeA4FSmgoZvm9Bk5OTkYDQafXMw2e6Wmi8/P5/S0lLfHFsQBEFwkWWZr776CsBVdMyTIUOGkJKSwu7du9m8eTMhISHMnTsXjUbDTTfdxOuvv16pUJrD4WDevHn069fP6+DAYrEwe/ZsRo0ahSzLPPnkk3Tv3t2rfbdt20Z+fj4zZszwanvBSQwrEmqv5Jh3OZRtJucjINj/bRKalOLi4krVKetMtqM3ZaNqdMiGaFStc2JcTk4OOp2O4GDx/hIEQfCV33//nZycHDp37lxtzQKNRsOECRN47bXXmD9/Pv369ePSSy9l0aJFTJ48mfvvv5/nnnuOgQMHEh0dTUFBARs2bKC4uJjIyEji4+MrHfPjjz929UiYTCays7PZvHkzJpOJwMBAXnrpJR588EF/vXThOBEcCP5lKhDBwWnGYrH4LluFqqAz54GqIMk2dMZsFH0osiEKFQ2ZmZm0atWqUiYNQRAEoW4qJiJX12tQYeLEibz22mt89dVXvPLKK+h0OsaOHcuQIUN45513+PXXX9m4cSOlpaVERETQs2dPRo8ezbRp01xF1U62du1a1q5diyRJhIaGEh0dzfnnn8/QoUOZPHmyx4BC8D1JFbkBW4QzzzwTgJ07d/r/ZAUHa1d9MSwBAsP81x6hyZBlmbS0NBwOh0+OpzPlIjk8zFeQtDgMUaj6EHQ6Ha1atao2c4UgCIIniqKwd+9eALp06SIKL7YQO3bsAPB6+FFLV9v3ufgrEPzPVOCzUu5C05adne2zwEBjKfYcGACoMjpzPjpTDg6bswaCKJImCIIgCPV3WgQHZrOZp556is6dO2MwGEhOTmbatGlkZGTU6jirV6/m2WefZdSoUcTFxSFJEm3btq12n7179/L6668zceJEOnTogCRJSJJU61n6zZrscJagF1q0wsJCn01A1tjL0dpqfs9IDgv68kwcZblkiiJpgiAIglBvLX7OgcViYfjw4axfv56kpCTGjBnDkSNH+PTTT/npp59Yv3497du39+pY99xzD//++2+tzv/ee+/x5ptv1qXpLYu5EALDQXTZtkgmk8mtcmV9SLIVrbk2qUpVtNYS7Pkm8iQ78a06+KQdgiAIgnA6avFXas8//zzr16/nnHPOYd++fXzzzTds2LCBV199lby8vFrlvh05ciTPP/88v/32m9dj+3v06MGMGTNYtGgRR44coUuXLnV9Kc2booCluLFbIfiBw+EgOzvbNwdTHM4JyNS+B0BS7BhzDlF6dAdYRJpTQRAEQaiLFt1zYLPZmD17NgDvvPMOoaGhrnX3338/n332GatXr2bz5s3069evxuO99NJLrv97ezF044031rLVLZi5yFnSXaNt7JYIPpSVleWbeQaqis6cD0r95g4U5mUTqJMIDAqBoChnj5Uk1b99giAIgnAaaNE9B2vXrqWkpIQOHTrQp0+fSuuvuuoqAJYsWdLQTTs9qaqzYJrrqRgf3tzl5+f7rPqx1lKAJNe/qraqquTm5iLbrVCeB8VpYC4Wk+IFQRAEwQstuuegYn5AVUU8KpZv3769wdp0unDIDmRZxuGo+FdGlh3Icg4WQzEOVUJRFPR6PQaDgcDAQNe/Wq3oWWgOjEYjhYW1mRtQNY2tFI3dR9WUcQ51ysvLIzEh0Tkh3pjv7LkKigRDpOhJEARBEIQqtOjg4OjRowCkpqZ6XF+xPC0trcHaVF8V9QxOdfDgQRITE1mxYoX/GyHbXEPCVVRU1f2B6lxeJakIVao6AJAkCY1G48rsdLKTextO7Xmoah/B91RVxW63+6T3R0IFxTfpT92Z0R4rQXvqMDaNVgxtEwTBJSQkhJCQEEpKSsTNqRZCURRRs+IkiqK4/u/NNVKLDg7Ky8sBCA72XKE3JCQEgLKysgZrU0sgy7J7MFBbqoIkaVDx/AZVVbVOOesr9qkIEkSw4D8Oh6PWv3vJFVGqOKNL9XiQ6b/hPrIsO98L0klfEqoCiAsAQRCcKr5zLBaL67pAEFqSijTjAQEBIjhoiarKklTRozB8+HC/t+HI5uWoqlLzhtVQdQYcwQk+alH1AgMDCQ4OJjw8nMDAwAY5Z0uWnZ1NaWnN2YAk2YrWWoyk2Os9ybg+JEkiOSmZgICAigUQ1U6k1RUEAYDc3FwKCgooKysjODiYkJAQcde5mZMkCVVV3e6Yn44URcFoNJKTkwNAWFiYV/u16OCgIjuRyWTyuL4ikvL2hyX4juSwIDnMqLogv5/LarVitVopKSmhVatWIkCoh5KSEu8CA4fZmXmonkGkL6iqSk5uLikpyc4eBFUFWzkYwhu7aYIgNAExMTEYjUYsFguZmZmN3RzBB+x2O+AsRCs4GQwGYmJivNq2RYfGrVu3BiA9Pd3j+orlbdq0abA2CSfoTHnoyjPQGbPRmvPRWIrR2MqQ7CYk2ebzu82KopCRkeH60BBqx2KxkJubW+N2GlsZOlNukwgMKjgcdvJy804ssJU3XmMEQWhStFotrVu3JiYm5kQPo9CsHTp0iEOHDjV2M5qEgIAAYmJiaN26tddzappkz8HSpUu5/fbb6/2L7dWrFwBbtmzxuL5iec+ePet1HqGuVCTFATiqTmEpaZANUSj6UM/ra8nhcJCRkUGrVq3ExLNakGWZzMzMGucZaC1FaGxNswCZyWyiqLiIqMgosJudhfnE0AFBEHAGCPHx8cTHx9d9Pp3QZEycOBGo+vrvdFHXeZdNMjgwGo0+ySA0ePBgIiIiOHjwINu2baN3795u6xctWgTA6NGj630uwU9UBa25ABQHSmCkTw5ps9lcAYKYrOydGgudqaqz98fheQhfU1FcXOycgxIULIYWCYLgkUhk0fxVjBAQc0fqpkGDg6eeesqr7Xbv3u2T8wUEBHDnnXfyf//3f9xxxx38/vvvrkwEr732Gtu3b2fo0KFu1ZFnz57N7NmzGTt2LLNmzfJJO4T601pLkBQHsiHGJznqK8aWJicniy+BGuTl5VU5bwcARUZnzvNJAbOGkJ+fT3JyMjqbUQQHgiAIgnCKBg0Onn/+eSIjI4mIiKh2u2ovRGrpiSee4I8//mDdunV06tSJIUOGkJaWxoYNG4iLi2POnDlu2+fn57N3716ysrIqHevjjz/m448/Bk5EpVlZWQwcONC1zbvvvutWdG3Lli3cfvvtrucVPSJjx451TYy96aabuOmmm3z0ilsujd2IpMo4guJAqv/dAKPRSG5uLgkJDZM1qTkqKyujqKio6g1kOzpz7vHhYc2DLMvk5uaSlKRDEkOLBEEQBMFNgwYHHTp0YMiQIZUuyE+1aNEiJkyY4JNzGgwGVq5cyaxZs/jyyy/54YcfiI6OZsqUKcycObPKAmmepKens2HDBrdlNpvNbdmpmVxKS0sr7QOwbds21/8vvvhir9twupMcFnSmHGeAoKn/27ei6E1sbKwPWtey2Gw2V/ozTySHBZ05r0lNPPaW1WqlqKiQ6LAECBTZygRBEAShgqQ24KybG264gY0bN7Jnz55qt/v222+5+uqrT/v8tLVRUeegqjoIvuSLOgf1ptHiCIpH1foms0R8fDyRkZE+OVZLoCgKR48exWazeVwvyVZ0xhz8WcCsIcSntiMksWNjN0MQBEHwoYa8JmqJGrTn4J577mHt2rU1bjd06FBWrlzZAC0Smi1FPt6DEOuTWgm5ubnodDpXbYzTXXZ2dpWBAYDGWkpzDwwA8jOPEhDdCn2AqH0hCIIgCNDAdQ769evH3XffXeN2sbGxDB06tAFaJDRrqoLOlIvGVuZxHYoMigNku3OybA3j4rOysjCbzX5qbPORn59PeXk1dQAUR5PPSuQtRZHJPnZIpC0UBEEQhOOaZCpTQagNraUQra3EWflWVanyjrakxRFc9VAkVVXJzMykVatWp2UhHEVRyMnJoazMQ7B1Eq2nYKwZs5UVkpeXR3x8fGM3RRAEQRAanUjTIbQMinx8Ymw1d4BVGZ0p11l9uQoVxb5Ot/kudrudY8eO1RgYoCpo7C2rurDGYaa4qLDm1y4IgiAIpwGf9hwMHz7cl4cDYMqUKdxwww0+P65wmjoeIFTXg2Cz2cjMzCQlJaXRayCYzWaMRiPBwcEEBwf77RyZmZnIslzjthq7sVlmJ6qeiuQwk5OTQ2Bg4GnZayQIgiAIFXwaHKxatcqXhwNg2LBhPj+mcJo7HiDYgxNAq/e4iclkapShJoqiYDKZKC8vx2g0IssykmylUNISGBRCVFQUYWFhPgtaiouLycvL83rMvcf5HS2Axm5C1oeQlZVF69atGz0oFARBEITG4tPg4HQbiiE0Y6qM3pRTbYBQXFxMQECA31OcOhwOjEYj5eXlmEwm14W6ZDehs5W6Kg/LJh15xQYKDKFExCQSGR1T59LwqqqSm5tLSUmJ1/tIDjOSYq/T+Zo6jcOMrCpYrVZRGE8QBEE4rfk0OJg3b54vDwdA79696dmzp8+PKwioMnpzDvagqgOE3Nxc9Ho9ISEhPj+9xWIhLy/PPUOSqqJxGNFYSytdiEuKA0kpB3s5JWXZlKYbCI2OIyI2CX1QOHh5t7tiXkVtMzNpbaU1b9RsOYcWqfoQSkpKCA4OJixMFEcTBEEQTj8+DQ6mTJmCJEk+SwsoSRJPP/20CA4E/1GOBwjBiVVWXK4YauKrsegOh4P8/Hz3atrHJ/pqbaXOydVeUB0WynKPUZ6XTnBICIHxHdHoDUiShEaj8fiwWq1kZGTgcFSf1rUS2Y7ksNRun2ZG4zAj651BYF5eHiEhIXXumREEQRCE5sqnwcGnn37qy8MBzp4DQfArRUZvyq4yQFAUhYyMDFq3bo1Wq63zaVRVpbCwkKKiohND8BQZja0Mrb2szhN9VVXFWF5Oqf0wSmBkndtXnZbda+CksZuQDSpIEg6Hg6KiImJiYhq7WYIgCILQoHwaHEyePNmXhxOEhlNDgGC328nMzCQ1NbVOk1XLysrIz8/Hbj8xVEhyWNCZ80H1rqegJhq7yT/BgSI7sxS1eCqSw4R6vPegsLCQiIgIdDpRDkYQBEE4fYg+c0GocDxAqJgAfCqz2ZnusjasVivHjh0jKyvLLTDQ2ErRmXJ8FhgASIq9yrbXh7OuwelRQVjjODEPQ1VV8vPzG7E1giAIgtDwxC0xQTiZIqMz5iAbolACKk9ILS0tJTAwkKioKFRVRVGUKh8Wi6VyNiBVRWsp8NudeI3diKwN9N0BVdU55Ok04cxapLomd5eWlhIZGYnBYGjklgmCIAhCwxDBgSBUoqK1FCLJVmRDNEjuHWx5eXnk5+fXfuK94kBnzvfL3f0KznHz0T47nuQweT1BukVQleNZi04UnMvLy6NVq1aN2ChBEARBaDhiWJEgVEFjN6IzZoNcObd/bQMDSbZWO2TJZ1QZyVG7FKXV0bbQomfV0ThMbs/NZjPl5eWN1BpBEARBaFh+DQ4uvPBC5s+f789TCIJfSYrdeVFfj2FAGns5OmNOg92B99WQJUm2+j+YaYI0DjOcEvzVpoq0IAiCIDRnfg0Oli9fzsqVK/15CkHwP1VBZ85HaymqdNFYE62lCK25gIac0Ovp4rZOxzkNew0A19Cik9ntdoqLixunPYIgCILQgJrEsKLbbruNs88+u7GbIQjVcmUYUjwUEFNkV6EwyW5EYytDZ8pB0xj1AVTFOVegPhQHGns9j9GMnTq0CKCgoABZPo3mXwiCIAinJZ9PSK640O/fv7/X+1gsFjZt2uTrpgiCz0myFb0xG1Wrd16EqzIoCk0t1afWbsRxPF9/XWhsp0/6Uk+cE7sVt8noiqJQUFBAfHx8I7ZMEARBEPzL58HBBx98wIcffgiAJEn8+uuvTJkyhd69e9O7d2969epFVFSU2z65ubmEhNT9QkYQGpQqIzma9h1kyWFx9mZo6lDRWVXR2k/3CbgqGocJRR/qtrSkpITIyEgCAgIaqV2CIAiC4F8+Dw6WLl3Khg0bWL9+Pb/++is5OTnMmzePefPmuSrLpqam0qtXL7p3747JZOL333+nd+/evm6KIJzGjl/ceqjVUBON3ejT4mzNlcZeOThQVZW8vDxSUlIaqVWCIAiC4F8+Dw5GjhzJyJEjAdBoNIwfP5477riDbdu2sW3bNv7991927tzJTz/9xE8//QSAXq/niSee8HVTBOG0prEbax8cKA601iL/NKiZqar3xWg0YjKZCA4OrmJP31IUhZKSEkpLS9FoNOh0OvR6vdu/Op0OrbYOvUSCIAiCcAq/FkF78cUXiY+PZ8iQIQwZMsS1XJZldu/eze7du7Hb7Zx99tl06NDBn00RhNOOJFudk6c13v+Z6ywFoCp+bFVzUnXvS15eHm3atPHr2W02G0VFRZSVlaEoNf9OKgKH8PBwIiMj0WiaRL4JQRAEoZmR1CaSvFtRFPFlVg9nnnkmADt37vT7uY5sXo4qLiCbBTkwAiUw0qttNbYytJZC/zaomVG1gThCEj2uS0hIICIiwufnLC8vp7i4GJOp7tmitFotkZGRREVFic9VQRBOOw15TdQSNfq3xtatW7n//vtJTU1t7KYIQovjdTpS2e6s4yC4cfW+eJCbm0tWVla9LuIryLJMYWEhhw4dIjMzs97HlGWZgoICDh06RH5+vkjBKgiCIHjNr8OKqnLs2DG++OILPv/8c3bv3t0YTRCE04Kk2JFkK6o2sNrtdJaGLdTWnGjsRpTAyj0EqqpSVlZGWVkZer2e8PBwIiIi0Om8+1i1Wq2u+Qtms9kvFZgVRaGwsJDi4mIiIiKIioryun2CIAjC6anBviXKyspYuHAhn3/+OWvWrEFVVVRVJTY2FkVRKCoSdy0FwR80dhNyNcGBxlrivEMueFRVcHAyu91OQUEBBQUFBAcHExERQWhoqCtDGzjv5lcEAyaTCYfDc4+EP1R8xlYECREREQQGVh8wCoIgCKcnvwYHsiyzdOlS5s+fz5IlS7BYLKiqSnBwMGPGjOHaa6/loosu4oILLmDNmjX+bIognLY0DiMyUR7XSbINrbWkgVvUvDh7X2yoWu9qG1Rc/Gu1WsLCwtBoNBiNRqzWxg/AVFWluLiY4uJidDodISEhhIaGEhwc7BbICIIgCKcvvwQH//zzD/Pnz+ebb74hPz8fVVXRarVcdNFFXHvttVxxxRWi6JkgNBRFRnJYUHUG9+WqilYMJ/KKZDd5HRxUkGWZ4uJi/zTIBxwOByUlJZSUlCBJEsHBwYSEhBASEoJer2/s5gmCIAiNxKfBwfPPP88XX3zBvn37XONnzz77bK699lomTJhAXFycL08nCIKXNPZy5FOCA621GEm2NVKLmheNw4hCZGM3w29UVcVoNGI0GgEICAggKirKL9mYBEEQhKbNp8HBU089hSRJJCYmcttttzFx4kRRv0AQmgCNw4ysqnB86IjksKCxlTZyq5oPSXF47n1poWw2Gzk5OaiqSmRkZGM3RxAEQWhAPh9WpKoq2dnZ/Pbbb8TFxREVFUV0dLSvTyMIQm2oCpLDhKoPAVU5PpxIqA2Nw1Sp96Wly83NBRABgiAIwmnEp3UONmzYwB133EFMTAxr167l9ttvJykpiTFjxrBgwQIsFosvTycIQi1o7c4hI1pLEVIVufuFqmnsJmgaNSMbVG5uLiUlYtK6IAjC6cKnwcFZZ53F22+/TWZmJj/++CNXXXUVWq2WJUuWMHHiRBISEpgyZQq///47iiIq7ApCQ5IcFjT2cjT28sZuSq3IssyBw0c5ciyjcT83VBlJPj1vcOTk5IgAQRAE4TThl2xFOp2O0aNHM3r0aEpLS1m4cCHz58/nzz//ZN68ecyfP5/4+HiuueYaJk2a5I8mCIJQiYrW3LyGE23ftY9Hnn+NPfsPARAcZKBT+zZ06diOrh3b0eX4IzqyYSbOauxGZF1Qg5yrqcnJyUGSJMLDwxu7KYIgCIIfSao/ynJW4dixY3z++efMnz+fPXv2OBtwSpEgoW7OPPNMAHbu3On3cx3ZvBxVFT0/gn/N/uQL3vhwvle9BfGx0fz85fvEREX6t1GSBntoqmti9+koMTFRBAiCIDRpDXlN1BL5dFhRTVq1asWjjz7Krl272LRpE/fccw/x8fE0YHwiCEIzkZKU4BYYVFeky2S2NEzvwfGJ3aez7OxsSktFpitBEISWyq8VkqvTt29f+vbty6uvvspvv/3G559/3lhNEQShCbrikhH8+OsK0jIyeeHx++nerRP7Dx1h74Ej7D1wmD0HDrPnwCGKS8ro0qFtpeDBbLHw+vvzmDxhDClJCT5rl9ZuxKE/vYs4ZmdnI0kSYWFhjd0UQRAEwcd8Oqyoffv2XH755Vx22WUMGzYMna7RYo/TjhhWJDRny1avo3+v7kRFug9XyS8sIjQ4GIMh0ON+qqqSm19IaVk5ndq3cVv36VffM/O199BptVxx6QXcOnkC7duk+qC1EvbQFNBofXCs5i0pKUkECIIgNDliWFH9+HRYkU6n46233uKiiy4iNjaWa665hi+//JKioiJfnkYQhBYiL7+QOx6ZyS0PPsP/3vig0vrY6KgqAwNwDjVKiIupFBhYbTY++nwhAA5ZZtGS3xg5/ibufvx/7DlwuJ6tVtE4zF5u2rKD6JycHBwOkRZXEAShJfFpcLBv3z52797NrFmz6NGjB99++y3XX389CQkJDBs2jNdee439+/f78pSCIDRTS35fycgJ0/l1+Z8AfPvzMtb8vcknx5YkiTumTSI1+cRwIkVR+On3VVw68Raefmk25nrUXakpHazksKA156MvS0djKa7zeZo6RVHIz89v7GYIgtBMWK3Wxm6C4AW/ZisqKCjg559/ZvHixSxbtoyysjIkSaJTp06MGTOGyy67jHPPPbfaiYaCd8SwIqG5KCwu4ekXZ/PzH6vdlp/VpzuzHr/fR0N/nOwOB4uXruC9uV9zKC3dbV271qm8+uxD9O7erW7HDk0BzUlDJ2U7Wns5GocRFPfMa46gOFR9cJ3O0xy0atWKoKDTM8WrIAjeKS0tRZZloqKi/H4uMayofhoslandbmfFihUsWbKEn376iaNHjyJJEtHR0Vx66aVcfvnlXHTRRYSGhjZEc1ocERwIzcHyNX/z6P+9QX7hiaGGwUEGHrl7OpOuHIVG458EarIss3TFX7z10efsP5zmWq7RaLh9yjXcedO1BOj1tTumIQpFF4LGYURjNyLJtqo3ljTYgxNBW7tzNBeBgYG0bt1a3OgR3MkOcJjBbgHZBsExoDc0dquERiDLMkeOHCE6OloEB81Ag9Y5ONn27dv58ccf+emnn9i0aROqqhIQEMDbb7/N9OnTG6NJzZoIDoSmrLTcyMxX3+Pbn353Wz6gTw9eeupBWqcmNUg7rDYbb3wwnw/nL3ClUDYEBvLLV+/TtlVK7Q4maUBVAe8+QlVtAI7gBOd+LVBcXFyDfOkLTZSqgsPqDAYcVrCbK/WgIUnOACEoslGaKDSeiirrDfU5IYKD+mm0dEI9e/akZ8+ePPnkk2RnZ7NkyRKWLFlCSUlJYzVJEAQ/WL/5Xx54+iWycvJcywIDA3jo9mlMueYKv/UWeBIYEMCMu25k+JCzeeiZlzmakcUjd99U+8AAaj3ZWJJtaC2FyEGxtT9XM1BQUEBYWJjIUne6sZvBVAgOy/FguRqqCsZ857Yh8dCAf/tC4zGbzeLarplpEp/iiYmJTJ8+XfQYCEILZLZY3QKDXmd24ZVnHqJD29aN1qazenfn5y/f55sffuW6q0ZXWq+qql+GyGjsRlRtAEpAy6swrCgKeXl5JCU1TC+QUE82o/MOvyGibml5HVYwFYCtDkUBreXO/cMSQVd1NjKh+VNVlZycnMZuhlBLDRIc2Gw2du/eTV5eHsXFxURGRhIXF0e3bt0ICAhoiCYIgtBIzh88gAljLuG7n5dx983Xc8v149HpGr9GQEhwENMmXVlpudliYeItD3Hr5AlcPPxcn59XaylG1QSg6lre2OuysjIiIiIIDm7Eydey3TlRXMx/qJrsgPIcUBQwF0FgmDNI8OZCXbY7ewqsZfVsgx1K0iEk1nluoUUqKirCZqtmPpbQJPktOMjLy2Pu3Ln8/PPPbNy40WP6qsDAQAYMGMBll13G5MmTiYuL81dzBEHwM1VVWb5mPXGxUfQ6s6vbusfuvZkbxl9Ot84d/HLugJJDRB74DlkfRlHXSSgBdS/M9cJbH7N9117ufWIWi+a8QfeunXzYUgAVnSXfOUFZ0yQ6b30qNzeXNm3aNN7kZHMx2E0QGg96kUHJo/JsZ2AAzqE+llLnQx/kvFAP9JAYRJGPBwWlNQ8f8paqQnmec8JyaLwI6FoYm81GQUFBYzdDqAOfD/g7cOAAEydOpFWrVsyYMYM1a9YQGhrKoEGDuOyyy5g0aRKjRo1i0KBBhISEsGbNGh5++GFatWrFpEmTOHDggK+bhNls5qmnnqJz584YDAaSk5OZNm0aGRkZtTrO6tWrefbZZxk1ahRxcXFIkkTbtm1r3E+WZV5//XV69OhBUFAQcXFxjB8/nt27d9fxFQlC07J241bGTbuHmx98mudf/4BT8xyEhYb4JzBQVcIP/Uzy2scIyVpP+NFlJK17Aq05r+Z9PSgoKub7X/4AwGa3c/fj/6PcWIdhEzVRZHTmfN9dZDUhNputcQtf2sqP35XOcF54KiJ5ghtTofNi3BO7GcqyoeiIs0dBkZ0/P1Ohc5mlxD/vWWsZlBwDh7jD3JLk5uZW+i4QmgefZiu68847+eijj5BlmfPPP59JkyYxbNgw2rVrV+U+hw4dYuXKlXz55ZesXr0arVbLzTffzNtvv+2TNlksFs4//3zWr19PUlISQ4YM4ciRI2zcuJG4uDjWr19P+/btvTpW7969+ffff92WtWnThiNHjlS5j6IoXHXVVXz//fdERkYyYsQI8vPzWbNmDUFBQaxcuZIBAwbU5yUCIluR0Di2bN/Fq+99yt+b3P8uPnnjec4fXP/3dXU0tlJi/32XkJzKhdMcgdFkn/049vA2Hvas3rp/tnL9HY+4vtSuuGQErz77sF/uhCsBYciGaJ8ft7FpNBratm3b8JOTHVYoPua+TKtzTn4NaLl1JrxmNzuDJm9JkvPRUAGWJEFgOASEiN9XM1daWkp2dnal5XGxsURF+/8zT2Qrqh+f9hzMmTOH2267jaNHj7Js2TKmTp1abWAA0L59e2688UaWL19OWloat956K3PmzPFZm55//nnWr1/POeecw759+/jmm2/YsGEDr776Knl5eUybNs3rY40cOZLnn3+e3377zes33Jw5c/j+++/p1KkTe/bsYdGiRaxatYqFCxdiMpm49tprcTgcdX15gtAodu87yE33PclVN95bKTAYfu7ZpCTG+/X8hoKdpKx50C0wkPUhrv/rrIUkrXuSwIJdtT72oLP6cMfUia7nP/y6nO9+Xla/BldBYytDshv9cuzGpCgKubm5DX9im4efpeyA0kwoy6mcWvN0oijOeQa1oaoosgNFVap9qF6m8/XmfFhKnL+vwkPOnp+6THgWGpUsy+Tleei9VRVnz57Q5Pm05yA7O5vExMQmcxybzUZ8fDwlJSVs2bKFPn36uK3v1asX27dvZ9OmTfTr16/WbUxKSqqx5+CMM85g9+7dfP/991xxxRVu68aMGcPixYtZtGgR48aNq9X5TyV6DgR/s9ps/LZyLd/88EulgADgnP69eOC2qfTteYb/GqHIRO5fROT+b5E48R40xfUhr/edhGRvJOa/j1zrFI2evL73YUqsXS+GwyEz6baH2LRtBwBBhkCWzH+X9m1b+e61uEg4guNQtYYWN+Y6JSWFkJCQmjf0leJjzt6Dqmi0EBLneUx9S1eW7cwS5AWb3Y7RWI7RaMRut9e4vSRJhISEEBYWhiHQDxPtNRoICD3+ED0KTV1FTYNTaSzFxMbFE5nU1u9tED0H9ePTngNfXND78jhr166lpKSEDh06VAoMAK666ioAlixZ4pPznerw4cPs3r2boKAgRo0a1eDnFwRfcThkRoybxr1PzKoUGPTu3pX577zIF++97NfAQGsuIHH9s0TtX+i6+FclHQVnTCZnwKMogRGUtbmQ3P4PomiclYg1ip34Ta8QlvZ7dYeuRKfT8sbMR4gId05sNlus3PXY/2G1+mNMtIrOlIu+PAOtuQDJYfbvXARVbbA76Hl5eQ035liRqw8MKrYpy3Y+7H7+OTcllpIaAwOb3U5RcRHpGelkZKRTXFzsVWAAzmQE5eXlZGVlkZ6RTnFJMbIv32OK4pwwXdGjYC723bH9TJZlysrKyM7O5siRIxQXF7focfhV1jRQZLT2ema4EhpMi65AUjE/oG/fvh7XVyzfvn27X8/fvXt39Hp9g59fEHxFp9My6Cz3ALtbp/Z8+MqzfDvnTQYPqBx8+1Jw9j+krHmAoMITw4TswYlkDn6e0vaj3aoOmxIHkH32k65hRhIKsf99SOS+BbW6GExOjOflpx50Pd+9/xD/e/NDH7yaKqgyGnv5SYFCvl8CBa21GJ05r0EujBt0crKnIUVVsZY7x94XHnJecFY3Sbe5c9ichcc8qAgIMjIzah0QVMVut1NUVMSxY8fIyc3BZPbxsCBFcb6e8rolHWgIVquVwsJCjh07xsGDB8nKyqK0tBSbzUZubi5paWkYjS1vOGF1NQ20tpJaF44UGk/Ly6N3kqNHjwKQmprqcX3F8rS0tGZz/oquslMdPHiQxMREVqxYUctW1p7NbAJfjTEVmpT0jAyW/PQznTt1YsTw893WDRo6giW/r+S8Iedy8UUj6da1K5IksS/XBxdVqoreUU6wNYdgax5B1lyCjz+CrHkE2dzT4WVGn8POtlORrUGQY/ZwwHaEdn6c/vtexmB3XpxG7VtAWVE+u9pMdgsmqtOqa2/GjL6MH5f8BMD8hYtp0+kMBg86p14v1zvlQD5wfFKopEGlfsOOJFRQjs9xkkpRJf/Xmzh06BB6vd7/qU0VR/0nzkoAGtfPu0UM85LtlQJBVVWRFRnF7xONTUABkiSh0WjQaDRI9XwPu5GkJlPTQlEU18ObnoHdu3ej0WjQ6XSNl/ZXVZwPH6VUlmW5yjmUkuIMOrWFe9DuPuST81XHaDQ27JDGFqZBgoOlS5dy++23c+iQ/98QJysvd3ajVlWQp+KNU1bmn66uxj6/IHjryJE0vl6wkD//WouiKHTs0KFScNC1S2e+mDfXZx+4QZZcWuUtJ7Z0J8GWHHRKzUGGQxPA7jaTyYgZUuMFQXlwK9Z3e4r++14m1JIJQOu8FQTYS9ne4TYUjXcFGKdNm8KOXbs4eND5+bV23d8NFBxUUJ0Xd6qCpNHVL0A4eaiHqiAhoXoZKNWVqqrY7Xb/Bwi+uCupAijH/5WdY92bcy0KxeEWGKioyHJDBAXuVNV5XlmW0Wg0aDVa37wX1OPBbiMHCNVdFFdHURRsNhtarRat1kc/E2+oivOzwPXecNTrfX7y79cTST2NEwE0Uw3yqWc0Gv12d/50U9XkmooeheHDh/u9DWJCcsuxY89+Zn/yJb+vWuu2/MDBg9gKj9GjW+dT9qjnZEBVxZC/nfAjvxKcs9l5J9tL1ogO5PW5m9DQFLp4vVcrChL/D93GWRiK9wGQWLyJ0KxPyOtzn5cXFEF88OITXHXjPdw+dSLTJl6JRtNIIzI1WuzBSc6JtbWkNRegsVced+4IjkfV+b9YWFBQEKmpqf65ALKZnMOD/CE0rnlW8LUZoTQLALvDTnFx8fEbVk0j2DEYDISHhxMS7IObDRothCWBvuGrjhuNRjIzM+s9j0Cj0RAVFUVUVJR/Pl9U1VlPwlLsuZ5EaDwYwmt1SLvdTmFhIaWlpVW+fkm2oTNmuZ5HpXRqkAnJotegfur1KfHUU095tV1jFfsKDXVmpDCZPI95rBjzFxZW92qqTfn8glCVrf/t5u1PvmDV2o2V1rVrncpN146jXWvPw+HqQnKYCU1fRfiRpQSUV51nXdEFYQ9OwBGc6Pw3JMH13BFctwqqSkAY2QOfIn7LawTnbgEgNHMd5tielLe+wKtjtG+Tyuof5hEW2shfOIqMzpyHIzihVj8LyWH2GBgA6MzHqzVrK8+L8iWz2Uxubi4JCQm+P7jd/TNWRUVVVdcFS8X/VRXX3VJ9gN67IS7GfNAGNsqFZ53JDijPwSE7KCkpoaysrMlNgrVYLFgsFnQ6PeHhYYSFhaGpay+WIkNpBoQmNGgmKovFQlZWlk9+toqiUFBQQElJCUlJSQQF+ShgVxSwljgncVc3SdyYBzoD6GruUXU4HBQUFFQbFFTQWD1MThaavHoFB88//zyRkZFERFR/V6Wqi2N/a926NQDp6eke11csb9Om9oWSmsP5BeFUGzZv5+1PvmDdP1srrevcoS13TpvEJSOGoNX6Ziy6rjyT8CNLCUtfhcZR+XPAHpJEaZuLsER1wRGSgKIP88vwAFVnIKf/wyRumElQgbP3LWbHHKxRXbCHeZeetNEDg+Mk2YrWUogcFOPdDoqMzlJQ9XpVQWfOxRGcWKceidooKSkhMDCQyMhI3x7YZkRRFcrKyigtLfVqiIdOpyMiIoKwsLDqgwRVhbIsiGxd6edjMpkoLS1Fp9MRGBiIwWDwmHyiwagqWEtRjIUUFxZQVlba4EOIasvhcN59Li4uJjQ0lIiICHTaOlyaqKozC5USA0FRvmugzeQchnNK0GG328nIyPD5z9fhcJCenk58fHyN11bVku3ODE/WEu/m4lS8zyNaOYfTVdG2wsJCSkpKvAqIJNnq8XNfaPrqFRx06NCBIUOG1Fi0bNGiRUyYMKE+p6qTXr16AbBlyxaP6yuW9+zZ06/n37Fjh2vMbUOeXxBOlpWTx3V3PIwsu39RdO/WiTunTeKC887xWXe2xlZO7PZ3Ccmu3DOhImGO70Np20swx/XyenJw/RulI6/PPaSseRCtrRSNYiN+y2tknvsCqjawTodcuXYj7Vqn0LZVio8bWz2NvRxVG4gSUPNdUq21qMbUpZLiQGfJxxFUt96Z2sjLyyMwMNBnd0YdVhOl+bm1vhCuuPtZUlJSc5BQkQI1IgVVVSkrK6OoqAirtXLqVI1GQ2BgoOthMBgICAjw83wLZ1DgKMuntLiAsrKyJh8UnEpRFEpLSykrKyMsLKzuQYKxwHlhHBJX//eyooAx1xkc6AzOats45xikp6dXOca+viqy/litVuLi4rx/7ygK2Mqcw4fqkn1Ltjtfb5h7Onm73TksrbZpWLXW4tq3QWgS6hUcnHPOOaxbt67G7SRJapQuzcGDBxMREcHBgwfZtm0bvXv3dlu/aNEiAEaPHu2X87dr145u3bqxe/dufv7550pF0Px9fuH0ZLXZ2LB5O53atyEpIc61PCkhjjEXD+e7n/8AoG+PM7jzxkkMHXSWTy9cJNlGwqYXMRS6DydUdMGUtTqf0rYX4whJ8tn5akM2RJPX6w4S/5kFQEDZMaJ3zqWg5y21Oo7Nbuel2Z8w58vvSIyP5Yv3XqZd64YNELSWQlSNDlVX9XAXyW5E42UFZslhQWstQjZE+6qJHqmqSmZmJm3atEGnq/tXUEWa1PK8dDSW4jof5+QgITIyktDQUI9BgmIzUppxgEKrptqeCUVRMJvNmM0nsmhJkkRYWBjR0dEEBHg3Ed4rx4MCa3EWJUWFmEymJjd86FSKopCbX8ixzGziY6Npk5rstl5VVdKOphMdVUZ4eDgRERFoa9ujZSl1XtCH1bNmkqnAOUQLnNWlI1JQFIWMjIx6p3z1RnFxMTabjaSkpKp7c1XVOb/EWuYcXlff37+1HFVXhFkNxGg0YjQasdlqX99FcliQHC00PfBpoF637O655x5uv/32GrcbOnQoK1eurM+p6iQgIIA777wTgDvuuMMtr/Brr73G9u3bGTp0qFt15NmzZ9O1a1ceffRRn7Th/vvvB+Dhhx8mNzfXtfy7775j8eLFdOzYkTFjxvjkXH5Xkg7pm9GXpaM156OxlTdYMSWhekXFpXz38zJun/Ec/S+8mil3P8bi3yr/zd025RrO6d+bz999kYWfvM6wwQN8e0dTVYjdNtstMLCFppLffTpHL/iAwjOnNlpgUMGc0I+S9icC8vCjywjJrPkmx8lWr/uHOV9+B0B2bj4Tb3mAQ0eO+bSdNVPRmfNPpCY9leJAZ6ldjQGNrcz5d+0NxYEk11B0rAqyLJORkVGnC1mLxUJmZiZHjhyhpKQEyUfDFhwOB/n5+aSnZ1BWXkZeQQFbt++kqKSEwiJnzvqirMPI5tqPoVZVldLSUo4cOUJGRkb9h9qqKpiLMWXuJuvAdjLTj2E0GptkYOBwyPy4dAVT73mc86+cQrfBlzFo1CQmTL/fdaPiZP/u3MO5o6/lw3kLKCoqIj09ncKiotoXVbOWg7keNTbsZmfxuJOeq6ZCsrKysFga7qLXZDJx9OjRyr1Udouz1kPRYWevls1Yr8BAVmTKjeXk5uVydPdWMtIOUlRUVKfAAESvQXMnqU3x08SHLBYLw4YNY8OGDSQlJTFkyBDS0tLYsGEDcXFxrF+/nvbt27u2f+aZZ3j22WeZPHkyc+fOdTvWxx9/zMcffww4u9m2bNlCQECAW/Xld999163omqIoXHXVVXz//fdERUUxYsQI8vPzWb16NQaDgZUrV3L22WfX+3U2SKnw1S/Byv+rtFjR6FF1QShaA6rOgKIzIAdGUtxxHLbIDv5rz2nOZrezau1Gvv3pd1b+tRHHKV3c/XqdycKPX2/QNkXtmkfkocWu52Wp55Pf6/YmkYfcjWInee0TBJYcdD7VBZMx5GUcId5Plv36+1947H9vuJ7HxUTz5fsv0aFta1+3tlqqNtDjBGWdKddZRK3WpOMZjE7pkZDtaGQrkmxBkq1IisO5bUgiqrZud8PDwsJISqo5WFSUE/MJTr4jj6qgL0vHV3VXFEVh3T/b+PK7n/hjzd84HDJhoSFsW/HdiSBa0mA1xKNIWq96PiTZisZa6vyMPGkYmMFgICoqqnYJKVQV1VJMWe4xSosLG+TudV1ZbTa+//kPPpi3gLR0z5mkrhx1Aa8887Drucls5rLrbufIUWfSgoH9evHyMw+RkhiPRqNx9SR4PXFZkiA8GfS1HMKmqlCcdqLX4Lj8ggKKlOA6D0OsD41GQ2JiojPRiaWk3kXgVFTXpHCz2Vw5+KhHZjTJbnTeuPCgobIVNcg1UQvWNHKa+VHFBfisWbP48ssv+eGHH4iOjmbKlCnMnDmzygJlnqSnp7Nhwwa3ZTabzW1ZaWmp23qNRsPChQt58803mTNnDj/99BMhISGMGzeOZ599ljPOOKN+L7AhVXFHUaPYwWZHi/trNxTuIWPIi8hBcR73E2pPVVV27TvIt0t+Z/FvKyks9nwXM8gQSGx0FLIs+2xycU3CDv/qFhiYY3uS3/OWphcYAGj05Pa9j5Q/H0LjMKNxmIjb+jpZg2aCxrsJpdeMvRRJI/HY/72BqqrkFRQy8ZaH+OK9l+jUvuGSDDgnKBcgB8W6lmls5XUMDKCiR8IRFIuk2I9PKrSAx1zlKlpLgXMycx1+z2VlZQQGBhIdXXkok6qqGI1GSktLq7wr7nyN9Q8MCoqK+fan3/nq+19IO+Z+Idu5Q1v33jVV4dierYy+9mY6duxI165dufrqq91uEsHx34u15MTvwWFCYy/HYYgBrd6V6SY/P9+V2KNizk9FbQi73Y7D4cButyObS5HLcnFYTX4b6+4LJrOZr7//lY+/WER2rucLRIDoyAgCTxlidTQjG7P5xF359Zv/5dKJt/DcjLsYc/FwiouLKS0tJS4ujuAgL9IqV0xSjmjlmi/g3YsoqBQYFBUXUVZWilZjxhGS2HBzpY5TFIXMzExiwoOJ0de+x+7kYMBisWC1WqvvaVJk5zyk4NpnF9OKDEXNXovvOThdNEiUvOJ52DQH1VLqqnZYE2tER7IGPVfnO4uCuweefonvf6ncFQ/OO9cXnDeQEeedw6D+vTEYGu7uVnD2RuI3vYKEcxKkNbwtWec8h6qvZ10EPwvJ+Iv4rW+4nhe3v5yiM26o1TEWLfmdGTNfdX3RxkRH8vk7L9KlYztfNrVGsiEKJSAcFAd6Y5ZvioJ5e+7ACJTAyDrvn5KS4spLXpEBqLy8vMZJtVpzvtdzKk6lqir/bNvBl9/+xNIVf2Gr4i78dVeN5rkZd7kt+3nZau567EQvqiRJ3HLLLdx5550EaBT3oKASCTkwHCUgwi2g0mq16PV6ZyBw8sW/bEdnLapHsNewJtx8P/9s3eG2TKvVMHrk+Yy64DxSkxNJTU4kJLjy3XytVkthUTGPz3qTX/5Y47buspHDmDnjLiLCw9BoNCQnJ6PXeZkZSm+A8BTvAli7xTmE9iRl5WXk558IdBR9qPfZwnxIkm3oTDkEBxm8yvilKIr3wUAVavu3rbGVo60mO5roOWgeRHDQQjTkH8KRzctRZRsahwVJtqBxmJEcFjSyGY3DQkDJYaL2L3RtX9r6QrcJn+/N/Zo1f2/iyLEMYqIiad8mlfZtW9G+TSvat0mlXetUj18cAsxbsJhnXp7teh4YGMDIYYO56rILGXRWnwbrJThZYNE+Ev9+Bo3iHJvqMMSQOfh/jfLlWRex/75H2LHlrufZAx7DHN+3mj0q++7nZTz07CuuL9/oyAg+f+8lujZwgOAIjkdrK22EiYD1G15UMWSkvLy8VpVm9WXpVfRoVE1RFL787mfmL1jM/sOVi3NKksT5557NXTddz2Ujh1NaXobxlHa9+t6nvDPnq0r79ulxJm/MfJhWKTUPlVI1emRDdNUTyhUZra3k+ByQ5vM1/d3Py3jwmZcBCNDrGXfZhdxywwRap1b/MwkODiY2Nha73U5OTg7f/vQ7T780m3LjifkZSfGxvPzMQww6qw+BgYEkJSV5V6sCICgSQmKr30ZVofioM2sPzrvtFVl6TuUIiqv1zQ/JYak2gUC1FAd6U3ajzPPzulCiqqI3ZlTbRhEcNA8iOGghGvIP4fKLhmOz24mKCCMyIpyoiPAT/0aGExURRuf0hbQu/tu1T17P2yhvPQKAWx96tlJF3lMlxcfSrk0rOrRtxQO3TyW8ieSYbwiZ2bksWLwUVYX7bnG/i11UXMo5l06ke9dOjLvsQkZdOJTwsIYr+nMqnTGL5LWPo7U5h5TJumCyBj2PPbxhx93XhyRbSf5zBgHlzruFckA4Gee9UuusPT/88gcPPvuK6253VEQ4n7/7It06N+S8G4nGupBUtQF1Hl5UF5LDgs6UU+v9VFVl5qvvMfebH9yWx8VEM2HMxUy44hJ6nNmNiPATOeZlRSY3N9c1EdVisbL/cBq79x/i/XmLOJJ21LVtaEgwzz96D5dfdL5X7VH0IciBUSfGdqsqGnsZWmtprQOfpsDucDD62ts4d2A/brr2KhLjq78g12g0xMTEEBpy4nPMdjxASDuWzgNPv8TGrf+57TNt0pU8dMc04mJjiYmuxU2IsAQIrGaOh7HANYnZZreTn5/nMV0tAJIWe0giaLybd6K1FCHJVhRdsPPGSW2GJamKcw5RHRMA1Mfi31aybcceIqNjuOSikbRv3x5V0oCkRdXoQNK6/uY1tlK0NSRBEMFB8+CX4ODYsWNMnjyZFStW+PrQQhUa8g8hLDTE7W6OJwFaWD0lmIGpzg9ORaMna9Dz2CI78M6cL3n1vblenSs4yMC/K793uyOuqio//rqcM7t2okPbVv4pNd/AHA6Z1es28tX3v7Bq3T8oikJIcBDrf/26Ui9KXn4hcbH+TTfpDY2tlOS/HnPezQJUSUf22U9gie3eyC2rPX3pUZL/esTV+2GO6U72wCedX3y18OPSFTzw9EuuAOH8c8/mk9dn+ry9TZUcGIkSWI/CTbWgsRSjtdVtbLMsy9zxyPP8vmotgwf0YdK4y7jgvHPQ63QEBweTEF95nLWKSkGBs4bAyYwmM8++8i6LlvzmtnzcqAt5+qE7CA3x4u6ypEU2RKJKWudFpJfDNhtTaVk5H85fyN3TryPglBo+3s51CgoKIiYmxuPwIIfsICcnB7PZzMdffMtr783FflLvzagLhvL2rMeJi4snNMTLm0eS5Jx/4KkKsMPqHE6kqpSUllBUVFTjMBxVG+icf1AVRUZrLao09E3V6JCD4rzuadOa8vxWTMzucHA4LZ29Bw/Tt8cZpCS5v/en3vM4q9f943re68wujL30Qi4bOZToyON/65IGVdIiqXKNwxlFcNA8+CU42Lt3L2eccUaTnjTV0jTUH4LNZiMw0Lux7ClhEjvviiJC7/xAtwfFkTnkJXYczuXvzdvo3L4NBYXFHEpL59DRdA6lpXP4aDpW64nUaWf16c43H77mdtwjxzIYfuVUAEKCg+jetRO9u3fjnP696N/7TIJ9VXa+AVT0Eiz8cSlZHibv/e+xe7lm7KWN0LLqSbKVxPXPYija51qW2/tujKnnNWKr6icsbRmx/33gel7U6WqKu9S+eOOS31dy/1Mv0r1rJz6b/cJp1esFEvaQJND6v0qwzpiFJNctzSJAabmRgsJit/oUOp2elJTkarPhlJaVUlhYWOnCccnvK3n8f2+63Thp0yqZj197rsEzWPmbzW5n6t2P8femfxnYrxfvvfQUEeHeZ12SJImoqCi33hlPFFUhNzcXs9nMzr0HuP/JF9l/OI2YqAjmvj2LM7t0RKPRkJSUXClAqZJWX7kKsKpCyTFsZiMFBfm1SlXqMSB29f6UVHOxLCEbomssZKi1FKKxlVW7TV2YLRbe+GAeny9agtni7JGY9fh9TLjiErftXnj7Yz6ct6DS/jqtlvPPHcAVl17A8HPPrjS5vCoiOGgeWny2IsH3XnjiAYpKSigqKaWkpIyiklKKjz+KSsooLilFVhRC4loxr7grd8ZtQEJBb84jbusbnDHgMc7o4nmohaIoZGbnOgOGtGPEx1XuMt6+68QFqdFkZsOW7WzYsp0P5n2DXqejV/euDDqrN4P696ZX965ef2g1FFmWWbN+M18sWuLqJThV65QkJlxxCSPOO6cRWlgDVSZu65tugUFh10nNOjAAKGt9AYb87YRmOYfDRe1fCJJEcaerazVUZvTI8wkPDaVPj26nWWAAoKKzFFR/N9UXFIfXgcHGrf9x6MixSkF2eGiI2+9HkiQS4uNrTJMZHhZOQEAAubm5bjfARo88nz7du3HvEy+w5b9dANhsdmKjo7x9Vc2Cqqo8+vzr/L3pX8CZUejbn5YxbdKVXu0fEBBAXFy8VxfzGklDQkIC+fn5nNmlIz/Om80Lb3/MDVdfTvu2rQDnd0ZeXi7JycnezT/wVAXYXERpUb7HoK8mWmsJqs7gSm8qOSxoLYVe9P44M31JsgXZEOPxM8ZZd8T3gcE/23YwY+arrpSxFfYeOFxp28ED+pCdk8e+Q2ns2X/Itdwhyyxb/TfLVv9NRHgYl15wHuMvv4heZ3b1eXuFhieCA6FWAgICmHDFJajVdB2qqoqiKK5u5aKDPxK9ez4AwXn/ErV3AUVdJ3rcV6PRuLJZnHdOf4/bSJIzveCBw0crXVjbHQ42bdvBpm07eOujzzEEBjLvnRfo3+vMurxcn8vIymHirQ+Snll5rLROq+XCYYO4ZuylDD6rT9McLiXbidv+LiHZG12LSltfSEmHsY3YKB+RJAp63kpgyWHXUKmofQvQ2I0UnjG5VmOEhw46y+Pyl9+ZQ3CQgZuuu6rJBa2+4szrX+LX4UUaLzP3/PT7Kh585mUcskxMdCQXDh1U5bYxMTFeVy82BBpITk4mJyfHrUhUanIiX3/4Km9//Dnvf/YNr898pFZ31JuDNz6Y55Yx7fKLzmfqRO/+/iMiIomKivR+EjEgIREXG4dWqwOKeeahOyptY7PZyM/PJy7Wy7TZ1nLQFUNQJHaLkYLDuzGb6zpsR0VrzkcOikNjLan18B+N3Yik2HEYYt163CSHGa2lsI5t8sxssfDKu58y9+sf3IIgrVZD+9atiI6q/Dc75Ox+DDnbWSh29/5D/PDLH/y4dAW5+SfaVlJaxlff/Yzd7hDBQQshhhW1EA2erag2aRJVlfgtrxKStd61KKf/w5gSB9SrHUaTmZ179vPvzr38s20H6zf/W2kuhEajYcsfixp10u7JFEVhxLhpbkWBKnoJrhp9EXExTfcuo8ZWSsKmlzAU7nEtM8X3Jaf/jDoVymmqtOYCEjc8R0D5ibtqZannk9/z1nq9zp17DzDmhjtRFIX2bVKZ+cjdnNO/tw9a3BT5d3hRTQXeVFXl488XMeutj1zLIsLDWPPjPMI89OaEhoZ6f2F58nlQyc3N9VjxODM7l+TE+FofsylbsHgpj8w8McxzYL9efPrW/3kV6MbFxblNOq6L0rJSCgoqp8ksN5r4Y/U6brrhGsJCvQvGFFWlhFBKMg+g2hs6u5cHkgaHIRpVH+JKWerLdMQbt/7HjJmvutXx0Gg03HTtOO6efl2thuPKssy6f7by3c9/8Puqta5hSR+88kylAHzZ6nWUlRs5f/DZREWGi2FFzYToORD8T5LI63UH+rJjrguuuG2zyTj3RRyhNaf8q0pIcBAD+vZkQN+eTL/+ahwOmZ1797Pun238vWkbm7btpFP7NpUCA7vDwTU3P8CFQwcx6cpRfgkciktK+eHX5QwbPIC2rU6MadZoNEy88lJefmcOI4acw7XjRjF4QN+m2UtwEn15Bgkb/4f+pOww5pju5Pa9r0UFBgByUAxZ5zxH4sb/I7DE2Y0elr4SjcNEbp9763zB++aH8109XYfS0rn2tocZe+kFPHrP9BY39MSvw4tUpdpUrbIsM/O195m34EfXssiIMD589TmPgYFerycmpm5pdyUk4uPjycrKqpTVxlNgYHc4OJqe2SznIKz5exOPn1QRvFO7Nrz30lNeBQahoaH1DgzAOaRLq9WSl5fnuvNdVFzK1HseZ/uuvZSUGXnsvtur7QGyO+yUlZVRVlaGoqg0mTSxqoLOnI9yPC24rwIDk9nMK+98ymcLfnTrLejQthUvPfUgfXp0q/UxtVotQwb2Z8jA/pQbTfy28i9+Wraac8+unAL6w3kL2Lx9F1qthv69unPNNRO496HH6vWaBP8TPQctRJPuOThOX55B8p8z0MjOL3ZbWGsyB/+v7nmfa2C12cjLLyQ12f0C5Ydf/uD+p18CnAHGNVdcypSJY0mpx10+q83G1v92s3bjFv7asIX/du9HURSmTbqSJ+671W3b0nIjJpO5xhR/TYUhfzvxm19Fe1LGjbJWI8jvcZPX1YSbI8luIuGfFwgq3OVaZo7tSU7/h7zL+X2K0nIjr703l/kLF7t9SYeHhfLwndOYMOaSRqlT4U+uwmw+JNlN6Mx5HteZLRbue/IFfl+1zrWsVXIin775f64x6m7HkiSSk1O8n8xaBYfsIDMzs9rvvCPHMrj/qRdJz8zhl6/eb1YB4e59Bxk//X6MJmdvTVxMNN99+malzDae6PV6UlJSajWUqCZWm5Xc3FwcDge3z3iOpSv+cq17feYj3H3L1EpzRyxWCyUlJR57eVqy3fsPMeb6O3Acf29qNBqmX3c19958PYGB/h3amFdQxMBLrnH7vBt7+WV89+MSv54XRM9BfYngoIVoDsEBQHDWehI2v+J6bkw8m7w+9zRoBeUrp97Nth173JbptFpGXTiU6dddXeVk6ZMpisLeA4f5a8MW1m7cysat/2HxkA87IjyMv3/+skGrFftS6NE/iP3vI2eKuuMKu15HSYcxDZbPvjFJspX4za8SnLvFtcwS2ZmcAY/VmGWkKtt37eOJF95kx+79bsvbtU7llsnjueKSEfW+WG06fD+8SGsuQGMvr7Tc4ZC58b4n+HP9ZteyHt068/HrM6scrueLoS4VLFYL2dnZHie0msxmzrv8BgqLnalXRwwZyIevPovUDP6GsnLyGDftHrKPZ1MLDjLw1Qev0KNb5xr3lSSJ5KRkr+dy1IZDdpCbm8uRo+mMn34/GVnOXk2NRsMnbzzPlIlXA1BuNFJaWlJ1vYLTwJsfzefND+fTqV0bXnr6gQabF5CRncu7c77kjzXryStwzlH46J03uen2u/1+bhEc1I/fgoNu3bp5zMIi+EdzCQ4AonbPJ/LgiS5/a0R7cvs9iCO4Ycbn5uUX8tmCH/ni258oKa2cCSIsNISAAD0Bej1XX34R997sXohs6Yq/ePKFNykoqj7Hekx0JONGXchtU65pfpMSVYWo3V8QeejE70nRBJDX525MSQMbsWGNQHEQt202oZkn7k7awlqTffaTyIa63f2VZZkvvv2ZV96dU2meTFJ8LM89cjcjhrSMn7OqDcQRFOez4Wf68nSPFVj/98aHfPzFItfz4eeezVv/e6zKsdRhYWHExvi2966ktITCQs+TSOd+/T3Pvfqe6/nzj97NpCsv8+n5fa2s3Mj46fe7sthoNBo+eu05zh/s3Xyx2NhYr+cA1IWKSn5+Pv/t2suE6feTX+gswBWg1/PF+69wdt+eOBxNv2aEv9kdDuYvWMy14y7ze2+BJ4qi8O/OvSxbvY5HHnmMNl17+v2cIjioH78MdE5MTOS9996reUPhtFTUZRKmuF6u54Elh0j+82GCTro7609xsdE8ePtU/lryOU89cBupye5d42XH859n5eR5LPaWnpXtMTAwBAZy3sD+PHr3dH76/D02/Po1j9w9vdkFBpLDQvzmV9wCA0dgJFmDnjv9AgMAjY68PndT2maka1FA2VGS1j2JzpRbp0NqtVpuGH85fyz6hCsuGeE25yQrN5+oCN8OxWlMkmxFb8xEYyn2eFFf22N5OsYPv/zhFhhcPPxc3n/5mSoDA6/mGZRlQfomZ+pLL0WERxAa6rknYvKEKzhv4IkMbM+/9gEHjxz1uG1TEWQw0PekMekzZ9zldWAQEhLi18AATmQy6te7B5/NnuWaP2az27nhjofZuOVfv56/qcnIymHWmx9WujGr1+mYNulKj4GBXq8nNDSU8PBwIiIiiY6OJjY2lri4eBITE0lOTiYlJRWDoe7DfzUaDX16dOPhO28kogV9trVkfuk5EBpec+o5AEC2E7PrM8LTlroWqUgUd7qK4s5X1boybX04HDK/rljDR/MXsmPPAbd1t06ewMN33ui27N1Pv+KVdz9Fo9HQo1snBg/oy7ln96VPj27NPj2l1lJIwj8vuCbiAljD2pAz4FHkoOYxR8JvVJWovV8SeeB71yKHIYbMwf9DDqrbhNYKh49m8OG8BXz38zL69TqTL99/udI2pWXlTSbrVp1JGhR9KHJAeO17ElQVrbUYja3UbbHZYmHYFVNcwxa6dmrPok9erzb7SkJCAsFBVVQuVhyw+VP45yNnIBLZBgbeAR2GezWUTkUlMzPTLcVphdz8Ai6deKtreFH3rh1ZNOfNJj2MTFVV3v/sG8qNJh66Y5pX+3hTTM7XzBYzS5ev4rrbHsZkds5ri4wI49s5b7kVumuptu3YzfQHnqagsJjp113Fo/fcXOM+AQEBJCUlefV7khWZzMxMHCdVqa4Lka2oeRDBQQvR7IKD40LS1xC7/X00yokvUlNcb/L63IMS0LB33FVV5VhGNqXl5djtDmw2O4kJsbRJTXbbbvuufWTn5nF2357NrlegOpJsI/nPhwkoT3ctM8X3JbfvfXWagNtSRRz4geg9n7ueWyPakzVopqsIUn1U9FZ1at/Gbfl/u/cxYfoDjB9zMTdff3ULSJEpoQSE1RwkyHY0shmNw+LsNajic+fQkWPc/ODTFBWX8sNnb9MqpeosaEFBQSQmVJFFqegwLHsacj18jiacCYPugZR+1b0woPoJyn+s/pubH3za9dzTDYjmzJ/zDGpis9v5dvEvTLnrUWx2Z49Pm1bJfDfnLaIiW+4d61+Wr+GBp1/Caj3xPfr93LfpdWaXKvfR6fQkJSWi03qftNJqs5KVlVXrQnEnE8FB8yCCgxaiuQYHAPrSNBI2v4LemOVa5giKJaffg9giO/rsPEL1ovZ84XZXvKTdKArPuKFBe3Gai7DDvxK78xPX8/LkweT1uddvk7TveGQmvy7/E3AOERg76gJunTzBLU1u81QRJISBRgeKA41sQXJYnFnNajEMqbTcSNqxjGonylaZnUhV4N+v4e/ZINcwcbXNYDjnLojtVO1mZouZ7Oxsj+se/98bfPX9L642ffHeSwzs18vjts1NTEwM4WGNdyGuqAofffY1tz50IgA7q0935s1+odn37J6qolfn5XfmuJbpdTr+77F7uWr0yCr30+l0JCYmotfVvseq3FhOXp7nbGHeEMFB8+CzPr+qPgQFoSb28DZknPsixsSzXct05nyS1z1BWNrvIOJXvwsoOUTESZPES9peSuGZU0VgUIWydpdQ0vYS1/PQzLVEHPjOL+cqN5rY/O+JLzi7w8GCH5dywVU3cu8Ts9h38IhfztswVDS2UvTlmejKM9GXZxzPRmSs9fyE8NCQGjPohIWFVQ4MSjPhh1vhr1fdA4Nul8NVc6HdUPft09bC1xNh2VNQmkVVggxBREdHe1z3+H230K51KuC8wHvg6Zc8JkdoaKqq8tCzr7Dk95V12j84OLhRAwMAjaThlimT3IbV9OjWGV0LSxNss9t55PnX3AKDiPAwPps9q9rAQKvVkpBQt8AAIDQklIgI/1U/F5oGn/UcaLVa1q9fz1lnneWLwwm11Jx7DlxUlfBDi4ne8wXSScc3Jg6krNUwLLE9fDJ0QziF4iD5r0cILD0CgD04gYzzXvVb/YkWQ5FJ3Pg8Qfn/uRb5ovK3JxaLlQWLf+ODed+QlVP5rt3IYYO5Y9pEr9JLtgQr126kX88zajUHQ6vVkpKSgrZiGJOqwu4f4c/X4KQaHgTHwPlPQLvzTizL2gbr3oKsUya4avTQ42qI6QgOi/NhN5/0fwsWYwmyzYI5tgdlbUa6hlH9t3sf46be48o/f9nIYbz5/KONmt70q+9+5vFZbwJw5agL+L9H7/U6u41Opyc5OenEz7eRWa1WbrjjQbp37cR1V41u7Ob4VElpGbfPeI6/N514P7ZJTeaT12d6rOdRQaPRkJiYSGBA/b9Hs3OyMZurrlJeFdFz0Dz4LDjQaDSsX7+eAQMqfzFu3bqVO+64g3Xr1nnYU/CFFhEcHGco2EncltfRWYvdliuaACyxPTAl9McU37fek0AFp4gD3xO95wvX86yBT2OJ7dGILWo+NLYykv96FL3J2XOqaA1kDv4/7OFtatizbmx2Oz/8upz35n5N2rHMSuuHntOfR++5mc4d2vrl/E3BP9t2cO2tD5GaksiHrzxLx3beVRt2G+5izIMVz0PaX+4bdRgBwx6FIA8palUVjqxxDj0qPFR5vRdOncNTkdwgMDCAR+++meuvHt1owcHBI0cZfd0drnot557dl7lv/c+r6u2SJJGUlOSTi05fSs9Ix25vWalMs3LyuP6OGRxKOzE3rF+vM/nglWeIjqz6jr4kSSQkJBBk8M38MecE5axap4oVwUHzUK9hRbNmzaJ3795cd911SJLE33//zZEjRyptZzKZ+Oeff+pzKuE0Yok5k8whL2OJdi/UolFsBOduJva/D2i9/BaS/3yYyL3fEFB8wGel5k83+vIMIvctcD0vazVCBAa1oASEkXPWIyjHL/Y0soWEf15EY62+BkZdBej1jL/8YpYt+IQ3nn+0UhCw+u9NWD1kyWkpMrNzuX3GczhkmSNHM7j1oWe8KrYZEBBAeGgY5O6GNS/Dl1e7BwaB4TDy/+DiFz0HBuCcT9JuKFzzFQx/CkJqPyk8OHcLSeueRGsuAOCWG8Zz7bjLWDzvHW4Yf3mjBQZWm417Hp/lCgyiIyN45ZmHvAoMACIiIppcYADOYWSelJUbPS5v6vIKirjudvfAYMzFw/n83RerDQzAWfDPV4EBgFajJSE+3uv3iNC81KvnYPv27Xz33Xf8999/fP/9964PttDQUM444wx69OhBly5dWL58OYcOHWLPnj01HFGoq5bUc+CiyIRkrSMkewNBef+icVTdhekwxFJ4xvUYkwf7v10NQLIbCSxNI6DkMHpjJo6gWEwJZ2EPS/XdSVSFpHVPYShy/l06AqPIGPYGij7Ed+c4TQTlbCHhn1lIOD9OzdFnkD3wSeewEz9SFIU/1vzN7DlfsmP3fvr2OINFc95w20ZVVXLyCkiMb96paC0WK+Nvvt9VWTpAr+fL91+mb88zqt1Pay4gqXQr+oO/e77j33qQ82I/NK52DXJY4L+FcMQ5URyd4cRDH3T83+PPs/49sR3gCIwmZ8Aj2CLa1+6cfnJqAbmPXn2WEeed49W+Go2GVq1aNWjaUm85ZAfHjh1zPVdVlU+/+p73PvuahR+/3uwm9JvMZm558BnWbtwKwN3Tr+Oe6dfXGFRWWYxOtsGxjRCa4BwaV4fgtLy8jNJ9fxKStQGNvRxrVBdM8X2qTH0teg6aB58NK4qKimLJkiVERkby33//8d9//7Fjxw727t1LeHg4L7zwAiNGjPDFqQQPWmRwcDLFjqFgN8E5mwjO3YS+iuJT5UnnUND9JpTAZjJhSlXRWosIKDlMQOkRAksOE1B6GL0px+PmtpBkTIkDMCUOwBrZEerxhRx25Fdid5zIuOOv8fKni4iDPxK9e77reWnrCynocbPfMhidTFVV/ly/GZ1Oy6Cz+rit27J9F+On388F5w3k+qvHMOis3o06rr0uZFnm/qdfYslvJybKvvDk/Yy//GKP20sOMyHZGwlNX40h/z9X0OZGHwyD74Mzx/r/d6Qq2Ne8iv6/r12LFK2B3L73Yk7oX2lzq82G2WwhsgEKRv25fhOT73rM9fy6q0bz3Iy7vN4/IiKC6CjPE6+bgpPHxj//+vvM+dKZOKBd61S+nfNGg/yMfclqtXH7IzPp2/MM7pg6scbto6OjiQj38H0o2+HH2yDTGWgQlghth0Db85zpenXV9ASpCmRvhwN/OB/GyvOgbGGtMMX1wRzfxzkK4PiNEhEcNA8+TWWqqmqz+9JpKVp8cHAyVUVfnk5wzmaCczcRWLgPiRPtkQMiyO9xM6aks6s5SOOSHGYi9y0iNGN1pbkV3nIERmFKPAtTwgDMsWfW6i61zpRHyur7nOkigfKkQeT1u79O7RCOU1Vit71NWMYa16L87jdSdlJWo8ZwzxOz3C6qO7ZrzeiRwwgJDkan06HTadDpdOh1OlIS4xnQt2cjtrYyq83GfU++wNIVJ4YB3TB+DM88dEelbTXWEqJ3zycka73rvV1JUm/oehl0vAACG7ZOSeGfHxG1/UNXwgUVDQVnTqWs3Yn3iMls5taHnqW4tIzP332J8FD/9eQVFBVz6cRbXQXkOrVrw4/zZmMweD9EKDU1tc6ZbxrCyak3f1y6gvuefMG1bmC/Xsx9+39NugidJ7Iso/Ui+1K1gdu6t2DLZ57X6QzQ6mznpPw2gyEk7nhAsAMOLDseEHhfHV7RGjDH9sAc3xt9jyuJ6DzI633rSgQH9SPqHLQQp1VwcAqdMYfYf98hqHCX2/LylCEUnDmtwYupVUtVCc7eQMzOOegshdVuKuuCsYW3xR6aQmDJQbeqxadSdMEYE/pT0mFMzZNhVZWEjf9HcN4253n0oaQPe7P59LbUkUajwWAwEBAQgKqqKIqCoiioioqiKsefq6iq4tU4dk8k2Ubi389gKN4HgCppyD77CSyxjXPBbXc4GDXpVg4cPurV9iOHDeb9l592W2a12vhp2SqGnzuwwQtJlZUbufWhZ/l70zbXsnP692bu2/9DrzuleJPiIOXPhwko8/Baw1OcAUGXSyCi6mwu/lZSWoJ5z3Lit7zmNkyyoqaIxerghrseZdO2HQD0792duW/9X7XVnutKVVWm3/8UK/7aAEBAgJ7v575Nt07eD3UKDg4mIT7B523zJUVVOHr0qKtw11sffc4bH85zrR836kJeevrBJnlj02yxcORYZq1+JxX0ej0pKSlIeHhdR/+GxXd6f7C4bmAuhHLPPdpIWtTU/hh10QTmbHUlaKhSbBe48kNI7u19G2pJBAf1431pvDrYtWsXOTk5DBgwgJAQMY5Z8A9HSALZ5zxD+JFfidr9havacmjGnxjy/yO/560eu+7rRJXRGXNR9EEogZG12lVnzCFmx8cE522ttM5hiMYW3g5rRFts4e2whbfDERzvNtxBZ8ojOGcjwdkbMRTsdust0ThMhGWsISxjDcbEgRR1vgp7eFuP7QjNWOMKDABnANVCAwOdTk9wcBDBwcEYDAbPX5Qe2B12srNzap2JQ9UGkNv/IZL/moHOUoikKsRvfo3Mc1/EEdLwF1F6nY6lX3/I6r83MW/Bj6xeV31iiEoX3MBfG7fw0LOvoNVqGNCnBxcOHcSFQweRkuTf15NfWMS0ex5nx54DrmXDBg/gnRee8NjO8CO/uQUGii4YqfNIpK6XOXsLmsDFX2hoKEUJfckcNJPEjbPQWZwTkyMO/4zOlENu77vp3rWTKzjYtG0Htz70LB+99pzPC3jNX7jEFRgAPHLXTbW+CG0O+e41kobg4GCMRuck5Ltuupa09Ey+/+UPAL79eRndu3Vi8oQrGrGVlVltNm596Fm2/rebT954nrN6d6/V/tHR0Z4/74z5zhodFaLawmVvQsZm57yYY+ud6XhPlre78nEkDaSe5eyBa38+UlAUSlkp6QUF6IxZBOduJSh3K4aCna7vZJf8fY0apAs182vPwdSpU5k3b16l+gc5OTl88sknKIrC6NGj6dWrZVSGbEync8/ByXTlmcT9+w6Gor1uy8tSz6fwzCm1mmwryVYCStMIKD3imhMQUJrm+qCzRHbCmDQQU9JAHMHVXCjJdiIOLSZy/7duH5KqRkdxh7GUtr241hfnGlupc1hV9kbnZO1TP3zBY5CgsRaTuupetPZyAExxfcgZ8FiTuHDylcDAQIKDgwkOCiagHhdUDtlBdnZ2nVIhBhQfIGndU67fizmmO9kDn270n/Phoxks+HEpR45lIMsydocDh8OBLCvYHQ4GndWH+265wW2fR55/jQU/Lq10rO5dO3Lh0EGMunAY7dv4cKI8zmETo6+/gz37T/SWXXHJCF586gGPgYHGWkLqyrvQOkwAlKech3r+44RFNr1J2PkF+ZSVlaG1FJLwzwtuPYK20BQsUV357Z+9LPtnP5llKlnlCp179OO5Z55B56PhL7IsM3bq3a7J3UMHncWcN56v1d3zgIAAUpIbcEKvpdR5UZm/D+wmiOsCCT0gKLLGXU1mEzk5J+56W202Jt/5KBu3OmuU6HU6vv7wVfr06Oav1teK3eHgjhkz+WPN3wAEGQJZNOdNr4O34KBgEhI8fCepirPH4NjxoFAbAFfPc6/27bCeCBSOrIGyk3oBJI1zPkLHC6H9+RDsPmRJReXYsWNuPa+SbMVQsIug3K0E521Fb8xyHmP6Cu9+GHUkeg7qx6/BQdeuXVFVlb17T1yoWa1WunXrRlpaGqqqotFomDVrFg899JC/mnFaEMHBSVSZ8EM/EbX3azTKiQs7R2A01qhOqBr98Yfu+EMPx5+DM71nQOkR9OWZbnfnq2ONaI8x6RyMSQNxhCS5lhvydxCz4yMCyjPctjfH9iS/+004QpPr/XIlh4XgnE1EHvjO45AKY+LZFHe+Glt4W+I2v0polvMLR9EaSB/2OnJQLbO0NFHh4eFERkb6tAiTrMhkZ2djq0N60JD0NcRve8v1PK/nbZS3bn5JGV5591MWLfmN3Pyqh8Gd1ac74y+/mEtGDPHZEJjfV63l9hkzURSFqRPH8vi9t1SZNjFm+/uEH3XeCZZ1weSOfJ+k9mf6pB2+ZrPZyMh0fh5IDgtxW98gJGdTjfvJKqiGKBxBcVhiumGO64U1qiuqtm4BsMVi5X9vfsjSFX/xy1fvExtdRQrXKsTFxREa4n0ROq+pKpRlQf5eyNvn/Dd/n3OZJ5FtILEnJPV0/hvdvlKiBk8XrfmFRYy+7nZy8py9N0nxsSz+/F1ioiJ9/5pqQZZl7n3iBX7+Y7Vr2WUXDuX1mY94Nc9AkiSSk1M8z6PYPBf+fvvE86GPOIv4VUVVoeAAZGxyTuBvO6RSQHCqwqIiSkqKq1wfE2ogPDQYUvtV/0LqSQQH9ePX4CAiIoLzzjuPJUuWuJZ99tlnTJ06lbPOOotJkybx7rvvcuDAAdasWcPgwS0jDWVjEMFBZfqydOK2zSaw5EDNG/uQNbwtpqSB6Moz3SanAjgCIyk8Y4oz5aqv7yKrCsHZG4nat8BjkGCOPsNtXkZ+95soa+s520tzotFoiImJJdRPQxcVVSEnJweLpYoJrlVRVeI3vURIjnMoj6wPIWPoG8iG2l2ENQWKovDvzr38vmodv69ay+Gj6R63S0lKYPUPn/ks9/k3P/5KQWExt025psq72gElh0j+c4YrI1HBGVMIGTwdQ2DTrfCdlZ114v2kykTvmkfE4Z9rfRxFE4Al5gzMcb0wx/XGHppa68+VouLSWs8l0Wq1tGrVyuthelWylEDBQSg8/ig46AwEbOV1P2ZAKCR0h6Rezrvbx++KFxQWUFpa6rbppn93MumWB11VqgcP6MPct/7n1UW4PyiKwoznXuXbn5e5ll049Bxmv/Ckxx4zTyIiIomO8vAZk7UdvrsJ1OMBUvvhcMlLPv8ecsgO0tPTqerSUmQrah78GhwYDAbGjh3LV1995Vp2+eWX8+uvv7J//37atm3LsWPH6NixI2PGjGHBggXVHE2ojggOqqDIRBz6kai9C5BUR+131wRgC2+DLaIdtvC2xx9t0BuzCM76m5DMvwkwVq5UeyoVibI2F1HUdaL/6wgcDxIi9y0ksCzN4yaW6K5knfNcvVKhNgV6vZ74+AS/ZxtRUcnJyXGlRPSW1lxA6up7XZNPW0pWqAOHj/L7qrUs+X0Vew8cdi2vKouQ36gqSeuecA0jtIWmUnTxuyQkNu389eVGI3l57tleAor2Yyjai9ZShM5aiNZShMZcgKMkmxC9d1/TjsBozHE9ncFCfF/XZ01puZEVf67nikt803MVGRlJVGQtglxVPd4TsOdEMFBwEEz5tTtxYDjEdnbWkcjZAeaimvdJOBPOGIu1zVAy8ysXJ/zky2/5v9c/cD1/4PapXqUI9TVZlnnsf2+wcPFvrmVDBvbjw1ef9Xq+iU6nIyUlpXLNCWsZfD3xRO9LWCJM+AoM/kkwkJefR3m55wBPBAfNg18nJKekpLhVTDaZTCxfvpxBgwbRtm1bAFq1asWQIUNYu3atP5sinK40Wko6XokxaTBBeduQZAuS4jj+sB9/OFz/ojpwBMU5JwVHtMMekghS5btIFYFCcedr0JenE5L1NyFZ6z3esbdGtCe/x83YIjs2xCsGSYMpaSCmxAEEZ/9D5P6FBJYeca1WNHrye97W7AOD4OBg4uLiGqT4koREQkICubm5mEwmr/eTg2Io7HodsTs+AiA0ax3lOef5boJ8I+nYrjUd27XmtinXsH3XPhYsXsqS31Z6rDvw6Vff8+PSFYSHhRAcZCDIYHBOEjcYCA5y/n/XvoOoqsrrz82o1V3bkIw/3eYXFZw5lZjopj9MLiQkmKIiHQ7HiRsWtqhO2KI6VdrWaDJz670Pk5u2n+Qwid6JWm45vw1dgovRyFa3bXXWQsLSVxGWvgpFE4AxZTC79L2Y+OQnHD6aQWBgAJcMH1KvtkuSRHh4LS4q7WZY9gQcWlW7E4WnOAOB2M7O+QWxnSE08cSdblWF0nTnHfHs7ZD9HxTsd46rP1nOTsjZSaD+VeKSz6U09XyskZ1cx5k28Uq2bN/Fr8v/pF+vMxk36kLnfoqM3piFvjwdRR+CJaa73+YM2R0OHnjqRX5admIo0dl9e/L+y0/XaiJ6VFRU5c9DVYUVM08EBpLWWQ3cT4EBOHsvqgoOhObBr8HBsGHD+Oyzz9i+fTs9e/Zk3rx5mM1mLrnEPe93YmIif/75ZxVHEYT6c4QkUBZyke8PLEnYw1pRHNaK4s7j0ZdnEJy1npDsDWhs5ZS2H0Vp24s9Bhh+J2kwJZ2NKfEsgnM2EXHge3TmPArPmII9tGnfWa2OJElERUV5Luzjz/MiER8fT35+fq2++MraXOjMnHW8EnXsfx+RHn0Gqj7YX01tMJIk0evMLvQ6swtP3ndrpfz4qqryxbdLOJTmeRjSqSLCQnluxl1eTYyVHGaid3/uem5MGIC27aB6TUJvKBISoaGhFBcX17htSHAQs1/5H9fe9jCr9x1kdZrMWZNvwtC3O4aivQTl/0tQ3r8ElBx2K/amUWyEHVvJ2axk4UUy72/W88z/vcyZnTvSOjWpmjM6K7QbivcTWLQPVJXSdpe6UkKHhIR4P6/HXAw/3+e8eK9KYDjEdIDo44+Yjs6hQDXVoJAkZ8abiFbQdZRzmc0IuTudgcKh1c7/V7CbCU1bRmjaMmxhrSlrPYLylPNQ9MG8dv8kru4RxOj+bTCkzydg9zH0xkznDaPjypPPJb/nLag636aVtVpt3Pno8yz/c71rWf/e3fnotecIMng/NM5gMHieA7LzOzi4/MTzs291Zu/yowC9nuCgYExm72+kCE2LX4cV7dmzhz59+hASEsKQIUP47bffsNvt7Nu3j3bt2rm2u+SSS9i0aZOrUIlQe2JYkXA60Ol0xMXFNfp48oqMM97Slx0j5c+HXBcbpW0upqDHTf5qXpOx+d+dXH3TfV5vHxMVwZLP3yMxvuYsQ1F7viDywPeAszcsY+gbJHTq2zSDA63eWZH2JDWNzT5VRWrXMqOJ5YvmVJrX8eEHH3BxlyD6RJYRkrMJrb3y+9Os6LC1G0FZm5En6qGoKjpTNoaivQQW7sVQtBd92TG3QMNhiCav991YYruTkpzi3c+4LMuZGafoyIll0R2c8wFODgZCYv2XxSt/H+z8Afb94hxacwpFowckj9nePLGFppLb/yGf3ly589Hn+eWPE3PTzj27L++//HStJ/YnJycTGHBK8bqCA7DgBqjoYUodAJfPBh8mbaiK2WImO7tyvQMxrKh58HsRtKVLl3LTTTeRmZmJJEnMnDmTxx47UapdURTi4+Np1aoVW7dWzv8ueEcEB0JLZzAYiIuLQ6f1a4en1wqLCikpqTyGuSqR+xYQtc85r0pFImvQTKzRXf3VvCbB4ZD5Z9t/5OTmY7JYMJktmEwWTBYLZrMFk8nsWh4WGsL9t06mbauaL7x0xixSV9/nCraKO47D2vfGplmQSxcA4anOITAO94vQ3LxcV/59b8iyTFZOHqnJiW7LDxw+ysjxzmAzNTmBtsnxtLLs5rb+AQxp4/nvxRLVFTkgzDnPwVbqcZuTqUiUdx1P2PD7QVPD32D+flhyFxhPuuF35jgYOqNBLkwrcVjgwHLY9QNkbvF6NxUJJSAcre3E37miNZDX6w5Myef4pGn/7tzL9XfMoNxo4sKh5/DW/x6vdU2LsLAwYmNOCajtZlh4AxQeT5UbFAXXfOWsdtxAMjIzKmV6E8FB8+D3b9mLL76Yo0ePsn//fiIiIkhMdP9Q+/333yksLGTChAn+boogCM1UaGgosbGx9c+O4kPRUdFYLBasVmvNGwPFHcYSkrmOgPJ0JFRit79PxpCXnXeVWyidTss5/Xv7/LjRuz5zBQYOQzTFHceSXJsJst7QaJ0XVKYC57jtutDqnGPnNRowREK5+yTk8PDwWgUHWq22UmAA8NX3JzIdpWfmkJ7pzOn/1Q4HF/VM4sMb+5BaugWN48Qwj4phblWR9aHYItpjKNiFpDqQUAnb8w0U73GOWQ+vYmhS5lb46V73jEMDboGzpjdenQ+dwTn0qOsoytN34Nj+LWHpq1xBkYqEIzgBW1gq9rBW2MJaszXDwvTnPua+2yYwtUMekQedvVQa2ULCllcpKR5NYddraw6UatDrzC58/NpzfPfLH8x85G6vsxJV0Gg0RJ2cncha5qxTsPO7E4EBwAXPNWhgAM6MlWJESPPUILfgNBoNXbp0qXLd1KlTufLKKxuiKYIgNDMBAQFNLjCoEBsT68pZXyOtnvyet5K07kkkVALK04k8+APFnavJM34a0Bmzift3NlpzIeWpQyhte2m1RQGDcre51QUo7HYDQeHRvh9OFBoPASHO4K0su/YBgkZ7PDA4fqc8MMyZnUc50etqCDQQEBBQpzoaJzt/8NkcTc9i5dqNKCcd//xzz+bFmY8gh4Zw1GEmJHMt4Wm/uxVeq2ALTcUa1QVLVGes0V2xhySBpCGg+CDxW15Hbzo+RCT7X/j6Ghj+hLMY1skOrYTfHgP5+OuRNM5c+t3H1ev1+VJQcjeOyZMp6jqRwOKDqBod9rBWqNoTQ3IW/7aSB55+FVlWeGzW23Sd+xZ9+3cibttsV4AVcWgJgcUHyO17f73TEw/o25MBfXvWad/IsGC0GZshfaPzkbu78qTsPjdAm0H1amNdhISEUFRU5DbxXmge/D6sSGgYYliR0BJpNBqSkpL9nqq0Pmo7vCjmv48JT3NWHFY1OjKGvII9zLcVhpuLgOIDJG78n9uwFkWjpzx1GCXtL8cResrdacVOyuoHXOmDLdHdyDrnOVJSUn0bHBjCncFBBbsZSjO9DxAkCSJSQXfKGHBjQaX0m2XlZeTn1zKlZxWycvJYsHgpGzZv5/zB/9/encdHVZ794/+cbfY1mUkyWdjC5lKQRQUxsrQV1Mcq1OXBWgGf1i5u/PhaX1WLu48r0lbb2qe1Wu0iVgsWta4ICMgmChIoSAgBkhCyb7Nm5v79cZghQybJTObMfr1fr7wgZ5t7TmY517nv+7ouwP9877sRa06o2g5Bf2IbAF4OBqxjQxOOI+F6XCg++CpUhz8IX3H2fKDi/8mpRfe+CWx44vSFqaAC5v6vXGsgzTQ0NAw4Wba2vgFXfv+naGuX5ymMGFaCf/xxJQpVLhTsfCYsRXSP2oLGycvgzj970MetrW/Asy/8GY/8/Pa4igUGE1/oWiqhbvkPOP8AwaVjInD171PWQ9ne0Y6WltMFFGlYUWag4CBLUHBAslHCqrAqKMACqK2tjfruGOdzonTDUohu+QvTbR2P+osyv+ZErLQNO1Gwa2WfdJxBDBycReejvfxqeKxjAQCmw2uRv+/Pp9bzqKt4EqLjHGXnGggiYB4mDwXqrccjBwgBf+T9gjgOMBXLF8xn8vcAbTVhQUak6r3phud5lJWVgT/4HrD+ccDX68LaOhIYNg3YfbqeEdRG4IqVQPGk5Dc2CpHqTJxpw5YduHnpL0ITxvMsZvxi2Y9x9bdnwLb3DzAeP512lHE8WsZ/Dx2jvtPv0KlD1Uex6PZ7UN/QiIsvnIw/rHgYanXsAa3h6EewffV/4Ab6DtaYgdLzgbILgfFXpnToYoAFcOzYsVCPFgUHmYGCgyxBwQHJNgaDAXZb+uesBwCny4mGhoaot9ed2IHCnU+Gfm8694foHJGAVLtpyljzAfK/+iM4yJ8jjBPQOexb0J3YBtHT1md7d954dAy7FLa9fwwN6+gY9m00T/hR9NlzomUqBlT9pJn1+4COWvkivz/GIkA9QEDbeQLwhKfCjbX3KdlMJhPy8/LlX9qOAR/cC5zcF3ljfQHwnefklKRpioHh6NGjYUOwIvnl/72CX//hL2HLLpk2FY/+/Hac1fMV8iv/FJbutEdrQ7djOrocF8l1bTgOtSdO4jcv/hVvrP0gVIkZAH775P2YN+fimNptPPJv2Pa+2HeFqAGKJ58OCGxj0upmQ+/XNwUHmYGCgyxBwQHJJpIkobi4OCkFzpTScLIhpgJp9s9XwFD/GQAgIGpRW/E0evR9J5tmFcZgPfAaLIfeDC0KiDo0TL0LbtsEwO+DoXYjzIf/BVVX/3M5/JIex2c/B42lSNleA40ZMAwSkPp7gM66PpmHAMj7agapv+FzA+3hdR98PT4cPx5dLYhUKC0thST2uvvs9wFbfwt88Ur4htYRcqpM48B1FNLBQFV8gxhj+POqNXjmty/B6XKHlms1avy/nyzBLXPPgePLlRBdfYeFuVV5+LhOh0f+dQjbjoW/Vh66+zZ8/9rvxNReU9VbyN//6um26fLBnfNdoOwCOT1sGic26J22l4KDzEDBQZag4IBkC47jUOwojv1uMM/LwzVS9JHW4+9BbW3toHcjgwR3K0o2LIXgk7PVMHDw5I1Hd9E0dDsuhF87eK7/jBLwwbbnhbDhGD2aPJy44F74TCPCt2UB6Bo+h/nwW9C09M2q03zOzegYebmyvQaCBFiGRZdRJxCQAwTf6QtG6PLkn2i0HZOHKfUy2Dj4VNHpdP0HYEc/Az56QM7o5JgIXP4soLUktX1D1V8e/kiO153A8id+jQ2f7QxbPuHscfjbyvsw4vBfoDuxPdQTdqbDrQG8XunDhpMmXHXjjzE3xirVlq/fgPXAa6Hf/To7hO/+QS4AlyGCaXspOMgMSQ0Odu7cCafTiUsuuSRZD5kzKDgg2SI/Px8moyn2HTUmeTy4N/rUkErr6OxAc3Nz1Nsbjn4M+57fRVzntoyGs2gauh3TMr5HgfM5Ufj5M9A2na6U6zWW4cQF9w0aBKlbD8Bc9RZ0J3aAA4PbMgb1Fz0KncGobK+BuSTyPIH+MCYX+vI65QtifQzBnLujT1rTWC5Wk6moqAhazQDnpccDtB2VhxGlKlXpEB07fizquUKMMfzr/U/wyIrfoaVNHiJz6ayL8LunHgDHceBdLdiy6pcoce7FxWUc+H7Ohcc8Cq1j/xuugkmDny/GYD3wd1gO/TO0yKcrhOfyX8FQNCa6J5kmPF4P6urqKDjIEEkNDs466yx8/fXXlNYqASg4INlgwLuUgzEWApwgTxpNobr6uqhrH4AxGI+8B8vhtyIOTQjymEbA6ZiGzrJvxp02UQlcjwvaxt3QtB4A41Xwq03wq8zwq82hfwMqA8AJENwtKNz+v1B3HAnt78o/Byen3o2ApI/6McXuekhdtXDbvgEmqJXtNYj14j6IMcDTMfhQokj7tR7pM7n5eO1x+Hy+yPukgCRJKC3J3kxaQ5nr0dLWjsdW/h4fbtiCD17/Y1g172C14yIDh++eJeJ752kxzRE5BnBbxqJ13H/DbftG5A0YQ96+P8Nc/XZokVdfjIbpD6J47HkQUlFMLk71J+qhzS+j4CADJL3UKI1iIoREIooS7PY4JiBLenlokSDJY6JTxJZvQ119XXSfdRyHzpGXoXPEPKjaq6Cv3wp9/dbTOeVPUXccgbrjCEyH38HJqXfBnX9OglrfP8HVCF3DTugaPoe2eW/YRMxI5OqyRiDQA6FX8a2u4ovROPHWmMdI9+gd6NHLY9l1Op2yw4l0+UPbl+NiDwx67+dsCVtsNpsVS2uqBJNpCD14GUSv18ccHORZzFjx0N042dSMAlv46+bOH34f//74U/hUZlguvh6WBf+FY6wL+hNboa/bAk3rgdC2mraDcGx7GK68s9E27r/DU6GyAPL3vghTzfuhRV7jMNRPux8aS3FGBgaA/PqOr6IHSZak9xwcPHgwrVO2ZSrqOSCZjOM4OBwOqFXqwTeORNLIeeUBwNUGdKf2Aiuu7DOMQeqsgb5+G/QntkLVeSx8NSeg6Rs/RNewbynQ0oHaEYC67ZAcDDTsDMvtPlRt5VejdfwNcWdSUazXgOPkQmWSJv5jxSrgl3sP0jStKcdxGDZsWEYlBRiKWIYWReOjDZ/hogvOi1jHQNV2CNYDq6Br/KLPOpdtAlrHXQ+PZbQ8N+fYJ6F1HtNInJi2HAGVKSPSOw+km9NCn1+S8MehnoP4JL3ngBBCzmS1WoceGACA1Cv1pNokT5BMYS+lxWJBd7cTPT1D6MHgOPhMI9BmGoG2cddD6qqFvm4zzIdWgw/4wDE/7HtegKrzGFrOvkkeSqUExiB210PTsg+a5n3QNu2JmFY0yC8Z4LJPAONVELwdEDztELzt4D3t4APhz5uBR/O5S9A54rK4m6nTKthroLGkJjAA5MrJKgPg6Qwt4sDBaDSira0tNW3qRa/XZ31gAABarRadnZ2Dbxilb82c3u86r2U0Gi68D+qW/8B6cBW0TV+dbkfTHmib9sCnKwrrOXRbxqDhwl8gIOnBcRx0un7S7GYIfYa3P1dQcEAISSmdVgezaQhDM3rrHRzwvBwguFOXN57neOTn58VU+6A/PkMJ2sZeB5f9PBTsfCp0wW6ufgdSVy1OTv7/wGIYux/CApA6j0HTvE8OCFr2DxgMAPKYZ1fhFDgLp8JtHS9f4PY5LgPnd58KFjrAezvQoytSrAq0xWpR5DgQVdFnF0oUrSUsOADkoTzt7e0pH4Kb7UOKgnQ6naLBQTQ8eeNxYtoD0DRXwnrgNWha9ofWhQUGeWfhxAX3golyL4RWq82JgI2kHgUHhJAQUZQgCHz0E2rjpNPp4ptnAMjBwJl3fzWpDQ4AOejR6/Xo7lYme5LHOhZ1Fz+Bwh1PhCb36hq/RPHm+9Bw/s+jymgkdjdA17ADmua90LT8B4JvkDzvHA+3dTychVPhLJyKHkPx4A3lODBRix5Rq3iWJZ1WF18PUxDHAYbC1GfXEdXya7dXSlSBF2AwGJJ+wdqbWq1W5jxnAK1WC57no05BrCR3/jmon/4wNE1fyUFC28HQOpdtAhqm3g0mnv5sMxgydzgRySwUHBCSYziOgyRJvX5UUEkSJJUEDvLFktfnQ3t726BFguJhNluQZ1Ug806ku+YRLrpSIS8vDy6XS7ELD7/WhvqLHoX9y+egP7ENAKDqOo7iTT/HySl3wW07N3wHFoCq/TD0J3ZA17ADqs6jgz6G1zgM7ryz4M4/Gy7bBHlScRrgOA7WvDjv9AuSPBFYbZKDynSgMfd5nZpM5pQGB0ZjevzNk4EDB41GE1MBQ2UbwMFtn4B62zegPfkFDMc/QY+uAG1jrwcTTg+f43k+44cUkcxBwQEhOUKn08FqzYNKGjxLjEqSYLfZYbFY0N7ejq6uLsWGOXAcB5vNptykuv5y00e46Eo2URCRn5+PxsZGxY7JRA1OTvl/sBxcBevXcqVhwdeFom2PoPncH6CzdBa0zXuha9gB3YmdED0t/R8LPLzmkXDnny0HBHlnpU0wcCar1RrVazcilU5+PaiGMPwq0VQGgG8KS2uqkiTotLqUFEXjeR56fRqepwTS6/WpCw6COA6uwslwFU6OuFqn04Vu3hCSaGly6ySxXC4X7r//fowdOxYajQbFxcW4+eabUVtbG/OxWltbceedd2L48OFQq9UYPnw4li5dOuAEsuPHj+PHP/4xhg0bBrVajeLiYixevBjV1dVxPCtCoiMIAuz2AhQWFMZ8cSWJEmz5NpSWlsJkMoGLcxiGKIpwOBzKZtvo74JPZYg8Jj7JDHoDdFqF7/hxPNrGLcTJSUsR4OW/Kcf8sH31ewz/YDGKtj8GU80HEQMDr7EMbeVX48QFv0DN3JdRV/EkWs5eBGfRBWkbGGg0mtjnpXCcPKbfOhwwFadnYAD0mw7VZE7NmH+DwZBz49q1ETILpZtcC9hIamV9KlO3243Zs2dj69atcDgcqKiowJEjR7B9+3bY7XZs3boVo0aNiupYTU1NmD59Og4dOoRRo0Zh6tSpqKysRGVlJcaOHYvPPvsMeWd0e+/duxezZ89GU1MTRowYgcmTJ6Oqqgq7d++GyWTCxo0bMXHixLifJ6UyJZHo9Xrk5+crlhfbH/Cjvb0DnZ0dMQ+VUalUKCwshCgo2GEpqgFLWf/rnS19csmnQo+/B7W1tQkZ16xq/RqFO5/sdzIxAw9P3jh0F54PZ9H5oVoBmYLjOJSUlEASowxseQHQWtNr6NBgIqQ1BYDaulp4vcnNDK9ocbkMUn+iHm53ansa+yMIAsrKyrKj50CfL78/E4xSmcYnQz45h+7RRx/F1q1bMX36dBw8eBCrVq3Ctm3bsGLFCjQ2NuLmm2+O+lhLly7FoUOHsGDBAhw4cACrVq3C3r17cfvtt+PgwYNYtmxZ2PaMMdxwww1oamrCzTffjK+//hpvvvkmvvzyS/z6179GR0cHbrjhhrTIaU2yiyiKKCgoQIG9QNGCOQIvIM9qRVlZGez2AhgMBoji4Bf7Op0OxcXFygYGwOB3g9Wm1E86hTy86MwbB0rxWseg7uIn4TGfvskRENToLrwAjRNvxdFL/4j6ix5BR/l3Mi4wAOR5G1EHBoCcgUhryZzAAJADGnXfXhuzOc4sXjHSaDQ5GRgASOvx/DSkiCRbVvcceL1eFBQUoL29Hbt27cKkSZPC1k+cOBF79uzBzp07MWXKlAGPVV9fj9LSUoiiiKNHj6KwsDC0zuPxoKysDC0tLairq0NBQQEAYNOmTaioqEBeXh5qamr6ZBqYMWMGtmzZgjVr1uCqq66K67lSzwEJMhgMyMvLS2oVTa/PB5fLCbfLDbfHHXaH3GKxwGpJ0J0ic0n/cw6COk8AnsRNrI7FiYYTcLlcCTk25/dAd2I7AqIObtu5YELmZ5vRarUoKowh4xHHAXmj0iIgjFmPB2g7o+AdGI4fP65oka6BZHqBrXj4enw4fvx4qpsRUVFREbSa9B/6FBXqOcgISb21Mn78eEyYMCFpj7d582a0t7ejvLy8T2AAANdccw0AYO3atYMe67333kMgEEBFRUVYYADIad+uvPJK+P1+vPvuu6Hln3/+OQBgypQpEVOQzZ49GwDw1ltvRf+kCOmHKIooLCyE3WZPamAAyBMozSYzCgsLMWzYMDgcDpjNFtjtBYkLDHh+8MAAkHsP0oTNZgOfoDvaTFCju6QCrsIpWREY8DyP/Pz82HZKk56iIRHVfeouBIuiJYMgCDk9rl0S5ext6UYUxewJDEjGSGpwsHr1anzxRd+y4Ymye/duAMDkyZFn/weX79mzJyHHCuY3t/aTrjH4xRc8NiFDpVarUVJSovzE1yHgwEGj1iDPaoUhkRcbUpTPVaWTU1imgUQOL8o2MQ8nAiJO7M0ourw+AYLJZEpYQNmbwWDI+aErOl36BUdZFbCJakBMUUVyEpMMGpQZu6NH5ZzepaWRK3MGl9fU1CTkWMHiTv0dP5itKJrHJ6Q/wR6DXMswElWvQVAaXTQaDcaMyI6SSjqtDkZDjHfMJY1c9TjT6fLChl3wHJ+U4le5VNugPzpd+r0vMz444AV5DpBlmJw8IpbPbZIyWV3nIFjAqb+JRsE3XTTFZoZyrEsuuQQAsGPHDuzbtw9nn312aJ3T6cTrr78e9eMHBcfRnamqqgpFRUVYt25d1McaKq/LCSBpU1XIADhwEEURX5/MwbS4Qk30Q0gYAwK+tHnZMjD0+HrA0qVBaYQDB1HqQWVtjEXABBHgDg6+XaYI9ACn5u4wMPh8voQ9FM/zqG6hm1SAPPcgiVMxB8RxHKpbjg2+YbrhAICXh36m6KZVd3d35gdWKZRjtxqTa9y4cZg/fz4CgQC+853vYN26dejs7MTu3btxxRVXoLm5GQCS0mVMspMgCnHXHshIHBfb2HKOS9mXVCQcOAhC6mswpCNBFGIf3sIhrf6+iuDFUMYlDlxCvyfoO+i0dPo8zbi/C8fJPQW8dCpYz7D2k5Cs7jkIdsX2V/kwOCcgmu7UoR7rxRdfRHNzMzZu3IhvfvOboeVGoxFPPfUUli1b1u+chEj6m3kf7FGYM2dO1McaKspWlB6sVissZkuqm5EaWquc9SIWPV6g7Whi2jNEicxelIl0Oh0KCwoH3/BMQ3k9ZIquk4C7Ax6vB3V1dYofXhRFlJaW5vx8g6BuZzdOnjyZ6mYASOOaExwHCCp5DkHoX3VapQ+mXoP4ZHVwMGzYMADoNz1ZcPnw4cMTdiyr1Yr169fj3//+N9avXx/KnvS9730P+/fvB9D/UCFC+mMwGLInMOC4PsWfBjWUcauiSt7Plz4X4/n5+airq0tIcbRMIwgCbDbb0HbWpE9GKsUZCgDGoIaceMDj8Sh7+FyeiKzPl+9uuzvkVLI4VVOA41I+tEiSpOQEBsG7/Qj2xvbzLy/Jn6GCOjvm9pABKRYcnDhxAkVFMeSjToJg5eFdu3ZFXB9cHk161XiOxXEcLr/8clx++eVhy1988UUAwKxZswZ9fEKC1Gr10C+i0g3PA0YH0FEXfYDAcUOf1KYxpVVwIIkSrFZraIhhLsvLG2Il7zTKRpUwxkIADCaTGY2Nyt7VztmJyL0nfmvMcs+ipxOcpwNajRZOV+RRAsmStDvfeltaJWwg6UGxPqCSkhLs2LFDqcMpYsaMGTCbzaiqqsKXX37ZZ/0bb7wBALjyyisHPda8efPA8zw+/fTTPl2OHo8Ha9euhSAIfQKA/jidTrz44otQqVRYtGhRVPsQEqx8nDV3+rRW+UJfH0OwI+mGnsteZVDuQlKhsckmoynnsxeZzZahp73NlQsbQyEM1gKIsaZ3HYBOp1O+ankm0Jj7pIyFqJJ7EvJGQlM4CgFJD6Twc1afjGJ0PJ9WdWBI+lAsOGCM9dsN98UXX+Ciiy5S6qGiplKpcNtttwEAbr311tC8AAB49tlnsWfPHsycOTOsOvLzzz+P8ePH45577gk7lsPhwMKFC+H1evHTn/40rGLl3XffjcbGRtx4442h6shBBw8eREdHR9iylpYWXH/99Th69CjuvffeftOjEtIbz/MoLCjMni9zXgA0Fvn/GjOgjvLLUBVHLQeOk1Pq6fKGfnHPcfL+1pGKda/bbLacnaCs1+uRF8O8qzCCCKhyZGwxxwHGIthKRig2aTYnew3UBsBgH3ATvcUOv9YGn6EEfk1e0ifWqtVqqJJRkC2TiwaShIrrKuPxxx/HqlWrcO6554LjOHz22WcoKCjAiBEjwrZzOp0p61X4xS9+gY8++ghbtmzBmDFjUFFRgZqaGmzbtg12ux1/+tOfwrZvamrCgQMHUF9f3+dYv/zlL7F161a8+eabGD9+PKZOnYrKykrs3bsXY8aMwbPPPttnn7/97W948skncf7556OkpATt7e349NNP0dXVhcWLF2P58uUJe+4ku9hstvScnDZUuvzwLyZ9AdDjBvw9/e8DRF/8rD/Bi3u1CXA2AZ6u6PdVG+V2BwM0fQHQHnkeUixEQYTNZkNDQ0Pcx8okWq02VA9mSHLtrifHQWsfAQvUaDl2AFxg6OlNVSpVWhRNTCpJCxgGn/AuiiI0Gg3cbjcCKiMQ8EPwtiehgbKkDSnKtfcPiVpc4fAVV1yBq6++Gi6XC4wxLFu2DOXl5TCbzZg+fTpuueUWrFixAo899hjKy8uVanNMNBoNPvnkEyxfvhw6nQ5r1qxBTU0NFi9ejF27dmHUqFFRH8tms2H79u24/fbb4fV6sXr1arS3t+OOO+7A9u3bI1Y+nTNnDubOnYvq6mr885//xLZt23DRRRfhn//8J1566aXMS1VGUsJqtUKfhtU7h0xU9Z1EyvOAoWjgO1mCpNywIEEEjEWAuWTwHgBRDZhL5bHfvXtuJI1iw1p0Wh1Mptz5spYkKb4hchyXO0OKzmCxO6BzjINfbcZQhr6IooTCwiFkhcpkolqe3xTlnfLehecCahPAJa9nLynBgaSlicWkXxxTaEq+1WrF2rVrYbFY8NVXX+Grr77C3r17ceDAAZhMJjzxxBNhqTyJsoIZj/pLdaokSmWaPDzPw2w2Z09moiCTo//hIK5WoLufCbpaS2zzE2LhbgeczaHCUwDkoU+6/IGz4QQCQFsNEPDH3QQGhrq6Oni93riPlc5EUURRURGkeMbPqw1ycJejGGM4duwY3M4uiO4WcD3RTbRX5NxnGkEEzGWnsvJEx+PxoKbmdGE43tsBwd2aiNaF0Wg0cBQ5Ev44MBbKPaFZKpnXRNlIscHLra2tYIyB4zice+65WLhwoVKHJiTnCIIAo9EIs9kMPtsKyUjagceJa62Azw14u/uuG2qWomhozPKEZWcL4OmQ50NorYPn7uZ5OWDpjH9IEAcOdnsB6upqU55KMVGCc2fivjjN8SERHMehuLgYNTU16OELwPmcED0tAwapgiAoc+4zCS8AppKYAgNAHvcvSVKoMnVAMkLwdihyE2AgRmMSXte8IH/WEdIPRa860qmyICGZSBAEWK1WlJaWwmqxZl9gAMh34gdjKOj7Zc5x8c83GAwvyJMV80bJmUuiHfanNsY3UboXlSQhPz9LC3oBsNvt8c+dESTFzncmE0URxcXFcl5+SQefvgR+VeShRjzPo7CwMLvmLQ2G4wBT8ZCHIvYeWgSOg19lUaZd/RAEAXp9El7XGjNNRCYDSuiVx759+/DJJ5+EZQkihPTVOyiwmC3ZGRQA8lAQSTP4drwgDxnp/QUmaZP3hTaUx9HbFWuf0WDMygqfNptNmUmw2Vz0LEZhk7o5DgGNBT36QvQOEDiOQ0FBAdQqdWoamQrBwEAc+nM+8z0YUBnA+MT1uhgMxuSkqc7xXjcyuIRegTz99NP41re+hX379oUtb2howP/+7//i0Ucfxe7duxPZBELSmiAIyMvLy/6gAJC/rLV9J+33S9KeLlIU/D2dCVLf3OlxsNlsiua0TzWz2QKjQYExzhwHqHNzInJ/LBZL2GR2JqjhD6YJBmCz2aHVpPn7R0miSp58HOdnhlar7ZM0xJ/A157RmIShPip9eFIFQiJI6Cvks88+w+jRo3H++eeHlnk8HkyfPh01NTVgjOHBBx/E448/jp/97GeJbAohaUEQBKjVamg0Gmg0mty6k6c2xZ4dQ5cnVzT2uQApA+6kayyAp1OuthonnuNRUGBHfX19xs8/iKuWwZnUxuiHe+WQwsJCeL1euN1uAEBAZQLf44bdoh96gblMI4jyDQiFepY4joNer0dnZ2doGZP0YN5OcH6PIo8RpNVqkzMXJEczfJHYJPQTtr6+HmPHjg1b9tprr+HIkSOYOnUqVq5cifLycvz85z/H5s2bE9kUQlJCFEUYDAbYbDaUlJRiWNkwFBYUwmwy51ZgEKwtMBTGInkoUiak3eM4ufaBQtQqNSwWi2LHSwWdVhdfLYMz0ZCIiIITlHsX07OWjYfRZEldo2IlquShh7EGf7wgJwWwDFd8yFnYvINT/GqLoo8BJKkgnSDSXB0SlYT2HHg8nj5vrDfffBOCIGDVqlUYMWIEFixYgNGjR+NXv/oVZsyYkcjmEJIUPM/DaDTBaDTkVlaQgWitMWcLCeEFwFisbHsSKVj7wK1M0SSL2QK32w2XK7pUlenEaDTClq9g6llRHd2clRwliiIcDgdqa2thtVphzbcBPj3QXpvqpg1OpZcLlAUDA58L8DoBX3f/PXE8fzqrWILmI+n1ennCd6/eOyZqwEQNuB63Io8hiiJ0uiRNRCYkCgkNDkpKSnDkyJHQ706nEx9//DEuuuiiUBXlsrIyVFRUUM8ByXhZk35Ulyen8hysUnG0gl/g8R4jk+jyAW+XYmkPbTYb6urq4PcnNo2ikiwWC6wWhYYSAfJrIJpMVzlOp9OhtLQUWu2p8faSVn5PO1tS27CBRKpfImlPzRnIlz+LvF2AzykHDUD0qYbjJN/sMaKjoyNsuV9tgdhzQpHHMBgMiZ+IzHHU60ailtB31axZs7Bjxw7s2bMHAPDKK6/A5XLhsssuC9uuqKgITU1NiWwKIQkjimJoUnHGpx/lOPlLdwh5wfulzcu8i/t4BWsfKEQURBQUFGRERXWO42C325UNDFR6wDyMhkREKRQYBOny0nNCP8fJqYMHe68IohxAmIrlNMPWEbGlGo5TpKF9TFAjICrzekzKkCKVQbnPdJL1EvrO+tnPfgZJkjBnzhzMnz8fy5YtgyAIuP7668O2a25uDsu0QEgmEEU5H31paSnMpgzvLQhS6eUvXEGSv4jj7aoXxNztylaw9gEAaNQaOBzFaZ3BKJhL36BXKOsKz8uVXE0OyrASr95DdtIBx8kZhWL9fOC4pF/kajQaqNV954gpMfdAp9NBTMZrO1c/h8mQJPSTYvz48Vi9ejU0Gg3eeusteDwePPTQQxg5cmRom0AggB07dqC0tDSRTSFEMYIgwG63o7S0BCajKTl5qZNF3esOlqiOP0DQ5ed2sR0Fax8AcoG04mIHNJr0G3cviiIcRQ7lUmaqjfIEU3US7qrmAkEEDEWpboVMEAFzWUb1BEVMDCBICMSZRS0pvQaiiubqkJgkPFydN28ejh49iq+//hpmsxlFReEfTh988AFaWlr69CYQko44jkNhYWF2Zhri+b4ViCWtnC2o8wQQSzpNnpcvjHP9wk6Q5HHRCo73FnghNBSzq6tLsePGQ5IkFBYWKjMBnxfkCtmqHEm/mUwqnfx6dLWmrg2SRu4xyLAhLiaTCU1NTX3m/fjVFvA+J4DY0w2LoqRMUcDBUK8BiVFS+hh5nse4ceP6BAbBdUuWLMGCBQuS0RSigHjvlGQyu92enYEBAKiMke9yq/TyxVq06I5vOK1V8TSsHDjYbXZYlaodEAeNRgOHw6FMYKAxy68dCgwSR5eXurvIaqOy85mSiOO4yMOfeREB1dA+65JS9Izj5M92QmKQ8kGcl156KS699NJUN4PEwK+xQvQ5AZY5mVOUkJ+fD70uiy9aBrqYVxsBFgC6Gvvfhu74RsZxci9KAtJJWswWiKKEpqbGpBdK43keBoMBeXl5ygytMxVn1DCTjMVx8vCi9qNAIBB5G54HeEnu+fI5+98uFmqDPH8kg1ksFrS29u118atM4H1d8mdklDiOS86QIrUpveaakIygaHBQWVmJc845J22OQxKE4+HXWCC4mlPdkqQxm80wGbN40rwgDX43UWOWU3NGGiKjMcvzC+hLKDJJKxdncncMvm2MDHo9JElEQ0NDUlKdqtVqGI1G6PV65Sbhq3QUGCSTIMoTlD1d8nufF+RggBfl33v3IHY3Aa62+B8zC4a2SJIEvV6P7u7u8BW8AJ++GBzrAVgAXMAPsJ5T/wbAMb+8LhBAcPiRTqeDkIwelCw47yT5FP0mnzBhAhYuXBhKXRqrL774Atdddx0mTpyoZLOIwsrKymApHAZRO7SLZUEQYDAYYLfbkZ+fD7PZAoPBIJePl6S0S9eo1+uRZx1idd9MEe0QIF2enFIwSJAAc4mcjjDN/m5pJ4HBk1qlhsPhgEqVmCrSgiDAbDajpKQUxY5iGA1GZbNz0QVM8qn08p18XZ58/lU6efjbmUMLlRgeyAvpmUp1CMzmfl6rvAAmqMFELQIqAwJqC/zafPh1dvToi+AzlMJnKA4NqUpKr0GmVJYnaUfRnoMHHngAzzzzDF5//XV84xvfwMKFCzFz5kxMmjQpYhowt9uNL774AuvXr8ff/vY37Nu3D3q9Hg888ICSzSIK02g0crYUiwnepio4u7vR3d0Nr7efKpYAVCoVdDoddDpdVGP2AyyAnh4//P4edHd3o6urK+nDJgD5udrt9qQ/btLFcgGgt8nd55wgX1jkcjaiWPACoLMBXScTcnhJlOBwOELvF7c7vuqtHMdBq9HCYDRAp9MlLiuXINJQtHQmquULzP6qFEcji4pvGQwGSJIEn88X+868iB5tAbS+FuWyevWH4+QaM4QMAccUvuI6efIkHnvsMbzyyitob28Hx3EQRRFlZWWwWq0wGo3o7OxES0sLjh07Br/fD8YYzGYzlixZgnvuuSc3LsYUFhyGVVlZmdwHdraEhpn4enxwOp1wOp3wer3QaDTQ6XTQarVx53Hu8fego6MDnZ2dCCgx/jUKkiRfbCWl6zeVRDVgKUt1K3JHe+3pKq8J5OvxhQKFaC9kRFGCVisH/1qtNjmvfX2+PGmbpK9en/NDYhmWVXewW1pa4ircarcYYBVcsWWAiwUvyBmhcjh9acquibKE4sFBkMvlwuuvv463334bmzZtQkNDQ59tioqKUFFRgSuuuALXXXddWubuzhQpeyMwBrTVyOXtkyDAAujo6EBHR0dCx1cLgqBcBpZ0p7eFDxUiidXjBdqPJe7CIAKP14Ouri50d3eHvW9EUQwFAhqNJjnFmHrjOMA6koakpTt/D9B6ZGj7iio5OMgifr8fhw8fHlJvNsdxGDVqFARf18AJHoZKVMuBQY4XDaTgID4JCw7O1NjYiJMnT6K9vR1msxkFBQXUQ6CglL4RvE6goy6pD8nA0NXVhba2dvT0DKF7dwA8z6OoqCh7U5b2xnGAdURGphbMaN3NKck1z8Dgcrng9/uh0WhSH/xqTLGlySWpM9QeryztGTpx4gQ6OmJPMGAymU6ndY+3R+ZMGpPihRczFQUH8UlaaGm32ykYyFYqnZymzpO8gkwcOBgNRhgNRnR1d6OrqxNut1uReQlZXcvgTJKWAoNU0OUB3s6k9bgFceCSU3QpWjQROXOojUMLDrI0x77FYhlScBA2oVmXB/h9gKcz/gZRDzBRUG73OxHl6GyAtzupQyWCDHo9DHo9GBjcbjdcLjfcbhc8Hk9U+0uSBJVKBbVaDY1GkzuBAUCFylIlWPugoz7VLUkdSSMPgSCZQWUAuMbYPuMlbdYOb9FoNFCr1VF/zwByGmCt9oyJyIYCINAz9HlIPC/XraBUwERB2fmuJckniHKqxu6hT9KKFwc5u4qcBcIKf8APt9t9KmBwwefzQRQlqNVyIBAMCBRNyZhJOE7+wiepodInvcctrVCvQWbhefk1G8vrNctvPlgslojzKSORJAmFhRGKwHGcPEeg43jsGaEESS4eKOTA3DiSVBQcEOVoLXL3aE/0d1ISSeAF6HX6UFVjBpa4dIyZSGWgsamplsIet5TiBQpMM5HaGH1wkAM3H0wmExobGwfNoGc0GlFYWNh/DR+eB4zFcqKCQJSJNlR6uZAdTeYnCUCvKqKsNJ5cSIHBGbL8rl5GCPa45RqNmQLTTKTSR38xGsu2GYrjuP6Lop1aX1hYCIfDMXhxT0GUewHOfF9wnJzxSW2U5yiYHIB1uPxvlp9fkjrUc0CUJarlL353e6pbQgbCCzRGNV1oLfLdQtbr7mPYBcKp//u9ci9DpuO4rCqKlXPUJsDVFsV2uXHzwWw2o7W1b+YxtXoIVcuDaUh73ICgkn+nIUMkBRQNDubMmaPk4QAAixcvxk033aT4cUkC6fIBb1f03aMk+XLkiztj6KPoPQgEgLYj8r/pQqUHfM7YhkWp9Fk7STUnqI2DBwc8D0i5cfNBpVJBp9PB6XSGllksFtjtdnBD6R1T6ejGDUk5RT+h169fr+ThAACzZs1S/JgkwXgesAyXAwRPZ1KqwZIYUXCQeXge0FiUzYseD46ThxH6fUBHbfQBAk1EzmzBu9n+AerLqIw5NWzMYrHA6XRCEAQUFRVBr9enukmExEXR4GCwSTkkh/C8XJBFY5JzuXs65EBhoC8UkhyiilJIZiqtVR6yF0+vXPCiLd5J0BqzPDyNFwBTSXQBgqiS01uSzKY2Dhyk5tjNB4PBAJPJBJvNBlGkXjGS+RR9Fb/yyitKHg4AcN5552HChAmKH5ckkSDKE6l0eXIvgqdT/sm1DC2JwgvyHVxBJV84ejoGHnqS5RlEshrHyQFCPCmDNWaA4+PrgeA4uRcjSNJEFyBQr0F2UJv6f/0Ikvx6yDGhqseEZAFFg4PFixeD4zhFqtQC8kz/Bx54gIKDbCJp5R+9XZ5cGeiRJ2L29xPwp9/cBUE81bY06ClT6eXAIFjlWG+T53x4OuVAIVJaWZoMmtk0ZsDVOrT3Re/sSPH0QKiNfecNDBYg8Dy99rKFIMqf45GGjOZYrwEh2UjR4OCll15S8nAA5J4DkoU4Ti4AFQ1PJ9DdmB4X44IkXwABQGdd7EVrzsRxQ+tBCVbY1US42OK400O6fG75ItDbJT9OFlcszRkcJ/fCdTXGvq/efnpY0VCPAci9F5EMFCCoTTk1Dj3rqQ0UHBCSpRS9Sli0aJGShyNEpjbKmS+6TqY2lWMwMAheXJtKga4TgNc58H6RBIeHaK3y3f3gnIxoAgVJIxe/iSbFnaSRfwI2OUgQYkirR9KX2iT3Hvh7ot9HpZd/wo7RFvs8ILVh4NdeMEDorAsP6GlIUXZRGQGuKfwzi1JvEpIVqIIGyQy8IBd9MaaoIqSoAsyl4XfdeV4uWqO1xHasYJChy5ODBEkjDw3KGyX/29943eAdY3Np7F/AvCDvG21vDUlvHAdo82LbXm/vu2woBdj66zXoLRggBN+rKh1dNGYbng8PNgHqNSAkS1BwQDKL2giYhyU3D7SoOnWhI0Rer7cBBnt0QyY0JsBcFjkACA4HMpcClmHyRVjwMQVJXq6L4YKQZDeNKfoLbl1+5OFkakNsmatUuui3F9WnAwTqNchOvYMBjqPggJAsQYOPSeYJlpl3d8hzERKZ9aj3Bc5ANGZ5yE5nfeS5ETwP6Auiv3MvqgAxXy6O5XXKcwVovDY5ky4P6GwYeBtRPXDvlt4GtNdG93jR9Bqc+dimUvn1TLKPpJM/2wIB+TOqvxsohJCMQj0HJHNpTHKxtUT1Ipw5NGLQ7bVyr8CZd3NVOrmdQx3So9JRYEAiUxsHv/A2FAy8XtJG9x6SNEOrUUCBQfbiOHnuAUC9BoRkEQoOSGYL9iIoPZZe0gDG4tjnNwiSHCAEL+gNdrl9dEeNJMpAcw+0luiGAUUz9yDWXgOSG9SnqiFT/RRCsgYNKyLZQWeTMxkpMcRI0soX9EO9Wx+cqOz30SRMknhqA+BS961pwQvRT1oW1fJFnqezn/WqvpNPCQHkGynB5AqEkKxAPQckOwiiMnc24w0MwtpEgQFJkkgT1fX22Hq+dPn9v+6p14AMhF4fhGQVCg5I9tBa47sg53nAWER3wEjmUenDM2Cp9LEPtRPEyFmFBJHGkxNCSA6h4IBkj0i53GNhKKS5ASRzBYcQxfM+0Fr7Bsd0V5gQQnIKBQcku6h0Q5ucrDHTmGqS2VQ6eVicLi9yTYNo8EJ4MMALciVlQgghOYOCA5J9dLbYhgYJkpzrnZBMp7fHf6e/d/E9rYWG2RFCSI6h4IBkn1gmJ3MczTMg2UOJmgIcJ/c+8DygpsrGhBCSayiVKclOWqucltHvG3g7XV50eeAJySUaM8Dxsdf5IIQQkvHok59kp2gmZap0NNmSkP5QhiJCCMlJFByQ7DXQ5GSeB/QFyW0PIYQQQkiay4ngwOVy4f7778fYsWOh0WhQXFyMm2++GbW1tTEfq7W1FXfeeSeGDx8OtVqN4cOHY+nSpWhra+t3n4MHD2LJkiUYPnw4VCoVjEYjzj//fKxcuRJerzeOZ0YG1d/kZEPh0DO6EEIIIYRkKY4xxlLdiERyu92YPXs2tm7dCofDgYqKChw5cgTbt2+H3W7H1q1bMWrUqKiO1dTUhOnTp+PQoUMYNWoUpk6disrKSlRWVmLs2LH47LPPkJcXXql0y5Yt+Pa3vw2n04mzzjoL5557Ltrb2/Hpp5/C5XJh5syZ+OijjyCK8V2onnPOOQCAysrKuI6TlZwt8k+QxgwY4qiHQAghhJC0RddE8cn6noNHH30UW7duxfTp03Hw4EGsWrUK27Ztw4oVK9DY2Iibb7456mMtXboUhw4dwoIFC3DgwAGsWrUKe/fuxe23346DBw9i2bJlffa57bbb4HQ68fjjj2Pfvn14/fXX8f7774cCjA0bNuDVV19V8imTM/WunExpSwkhhBBC+pXVPQderxcFBQVob2/Hrl27MGnSpLD1EydOxJ49e7Bz505MmTJlwGPV19ejtLQUoiji6NGjKCwsDK3zeDwoKytDS0sL6urqUFAgj2Xv6uqC0WiETqdDZ2cn+DMyf6xcuRLLli3DT37yE/z2t7+N67lSlDwIrxPorAfMpZSdiBBCCMlidE0Un6zuOdi8eTPa29tRXl7eJzAAgGuuuQYAsHbt2kGP9d577yEQCKCioiIsMAAAtVqNK6+8En6/H++++25ouSRJfQKCSPLz8wfdhsRJpQNMJRQYEEIIIYQMIKuDg927dwMAJk+eHHF9cPmePXsSciy1Wo1LLrkETqcTTz31VNj2dXV1+M1vfgNJkvD9739/0McnCpA0qW4BIYQQQkhay+rg4OjRowCA0tLSiOuDy2tqahJ2rBdeeAFlZWW45557cPbZZ+O6667DvHnzMHr0aDDG8M4772Ds2LHRPSFCCCGEEEISKKtzOXZ1dQEAdDpdxPV6vR4A0NnZmbBjjRs3Dps2bcL8+fOxa9cu7N+/HwDAcRxmz54dGhcXrf62r6qqQlFREdatWxfT8QghhBBCskl3d3fouozELqt7DtLBunXrMHHiRPh8Pqxbtw4dHR2orq7Gfffdh5deegkzZsxAY2NjqptJCCGEEEJIdvccGAxydVyn0xlxfXd3NwDAaDQm5FgtLS249tpr4fP58O9//xslJSWhbR555BG0t7fjueeewzPPPIMnn3wyqufU38z7YI/CnDlzojoOIYQQQkg2ol6D+GR1z8GwYcMAAMePH4+4Prh8+PDhCTnWO++8g5aWFkybNi0UGPR27bXXAgA2btw46OMTQgghhBCSaFkdHEycOBEAsGvXrojrg8snTJiQkGMFAwaz2Rxxn+Dy1tbWQR+fEEIIIYSQRMvq4GDGjBkwm82oqqrCl19+2Wf9G2+8AQC48sorBz3WvHnzwPM8Pv30U5w8eTJsncfjwdq1ayEIAi6//PLQ8qKiIgDAF198Ab/f3+eYO3bsAACMGDEi2qdECCGEEEJIwmR1cKBSqXDbbbcBAG699dbQvAAAePbZZ7Fnzx7MnDkzrDry888/j/Hjx+Oee+4JO5bD4cDChQvh9Xrx05/+FD09PaF1d999NxobG3HjjTeGqiMDckChVqtRXV2N5cuXIxAIhNYdOHAA999/P4DTxdgIIYQQQghJJY4xxlLdiERyu92YNWsWtm3bBofDgYqKCtTU1GDbtm2w2+3YunUrRo0aFdr+wQcfxEMPPYRFixbh5ZdfDjtWU1MTpk2bhqqqKpSXl2Pq1KmorKzE3r17MWbMGGzduhV5eXlh+zz//PO44447wBjDqFGjMGnSJDQ3N+Ozzz6Dx+PB5ZdfjrfeeguiGN/ccKPRCJ/Ph/Ly8riOQwghhBCSyaqqqiBJUlSp6klfWd1zAAAajQaffPIJli9fDp1OhzVr1qCmpgaLFy/Grl27wgKDwdhsNmzfvh233347vF4vVq9ejfb2dtxxxx3Yvn17n8AAAG677TasW7cOV199NZxOJ9566y3s2rULkyZNwm9+8xv861//ijswAOSZ+ZIkxX2cwVRVVaGqqirhj0NOo3OeXHS+k4/OefLROU8+OufJI0kSZSyKQ9b3HBBlBVOm9pdSlSiPznly0flOPjrnyUfnPPnonJNMkfU9B4QQQgghhJDoUHBACCGEEEIIAUDBASGEEEIIIeQUCg4IIYQQQgghACg4IIQQQgghhJxC2YoIIYQQQgghAKjngBBCCCGEEHIKBQeEEEIIIYQQABQcEEIIIYQQQk6h4IAQQgghhBACgIIDQgghhBBCyCkUHBBCCCGEEEIAUHBACCGEEEIIOYWCAxIVl8uF+++/H2PHjoVGo0FxcTFuvvlm1NbWprppGevzzz/HE088gQULFqC0tBQcx4HjuEH3e/nll3HBBRfAYDAgLy8Pl19+ObZs2ZKEFmc2p9OJNWvW4H/+538wbtw4aDQa6PV6TJw4EQ8//DC6urr63ZfO+dA9++yzWLBgAcaMGQOz2Qy1Wo3hw4fjpptuwldffdXvfnTOldHc3IyCggJwHIfRo0cPuC2d86GZNWtW6PM70s97770XcT863yRtMUIG4XK52LRp0xgA5nA42HXXXccuuOACBoDZ7XZWVVWV6iZmpKuuuooB6PMzkDvvvJMBYFqtll111VVs7ty5TBRFJggCW716dXIanqH+8Ic/hM7xWWedxa699lo2d+5cZjQaGQA2fvx41tDQ0Gc/Oufxyc/PZxqNhl1wwQVs/vz5bP78+Wzs2LEMAJMkia1du7bPPnTOlbNo0SLGcRwDwMrLy/vdjs750M2cOZMBYN/97nfZokWL+vzs2bOnzz50vkk6o+CADOq+++5jANj06dNZZ2dnaPmKFSsYADZz5szUNS6DPfHEE2z58uXsX//6F6uvr2dqtXrA4ODDDz9kAFh+fj47ePBgaPmWLVuYSqViFouFtba2JqHlmenll19mt9xyC9u3b1/Y8rq6OjZp0iQGgC1cuDBsHZ3z+G3atIm5XK4+y3/zm98wAKywsJD5fL7Qcjrnyvnoo48YAHbLLbcMGBzQOY9PMDiorq6Oans63yTdUXBABuTxeJjZbGYA2K5du/qsnzBhAgPAdu7cmYLWZZfBgoPLLruMAWArV67ss+6OO+5gANgzzzyTwBZmry1btjAATK1WM4/HE1pO5zyxysvLGQC2e/fu0DI658pwOp2svLycnX322ezgwYMDBgd0zuMTa3BA55ukO5pzQAa0efNmtLe3o7y8HJMmTeqz/pprrgEArF27NtlNyykulwvr1q0DcPqc90Z/h/hMnDgRAODxeNDc3AyAznkySJIEAFCpVADonCvpoYcewuHDh/HCCy+EznMkdM6Ti843yQRiqhtA0tvu3bsBAJMnT464Prh8z549SWtTLjpw4AA8Hg/sdjtKS0v7rKe/Q3wOHz4MQL5YzcvLA0DnPNFeffVVHDhwAGPGjMGYMWMA0DlXyp49e7BixQosWbIEFRUVOHLkSL/b0jlXzosvvojm5mbwPI+xY8fi6quvxrBhw8K2ofNNMgEFB2RAR48eBYCIH2K9l9fU1CStTblosL+DXq+HxWJBa2srOjs7YTQak9m8jPerX/0KADBv3jyo1WoAdM6V9vTTT6OyshLd3d3Yv38/KisrUVxcjL///e8QBAEAnXMlBAIB/OAHP4DFYsFTTz016PZ0zpXz6KOPhv1+1113Yfny5Vi+fHloGZ1vkgloWBEZUDC9o06ni7her9cDADo7O5PWplw02N8BoL/FUL377rt48cUXIUkSHnnkkdByOufKev/99/HnP/8Zb7zxBiorKzF8+HD8/e9/x5QpU0Lb0DmP33PPPYcdO3bg6aefRn5+/qDb0zmP3yWXXIJXX30VVVVVcDqdOHDgAB577DGIooj7778/dPMBoPNNMgMFB4SQnPWf//wHN954IxhjePrpp0NzD4jyPvroIzDG0Nraio0bN2LMmDGYOXMmHnvssVQ3LWscPXoUv/jFLzBz5kwsXrw41c3JGQ8//DBuvPFGjBo1ClqtFmPHjsW9996LNWvWAAAefPBBuFyu1DaSkBhQcEAGZDAYAMgFpCLp7u4GAOr6TLDB/g4A/S1iVVtbi3nz5qG1tRXLli3DnXfeGbaeznliWCwWVFRU4N1338WUKVOwfPly7NixAwCd83jdeuut8Hq9eOGFF6Leh8554lx66aWYOnUq2trasG3bNgB0vklmoDkHZEDByVTHjx+PuD64fPjw4UlrUy4a7O/Q3d2NtrY2WK1W+kKJQktLCy699FLU1NRgyZIleOaZZ/psQ+c8sSRJwvXXX4/PP/8ca9euxfnnn0/nPE5vv/02LBYLfvzjH4ctd7vdAOSAeNasWQCA1157DUVFRXTOE2zMmDHYuXMn6uvrAdDnCskMFByQAQWHWezatSvi+uDyCRMmJK1NuWjcuHFQq9VobGxEbW0tSkpKwtbT3yF6XV1duOyyy7Bv3z4sWLAAf/jDH8BxXJ/t6Jwnns1mAwA0NjYCoHOuhLa2NmzYsCHiOrfbHVoXDBjonCdWa2srgNPzCOh8k0xAw4rIgGbMmAGz2Yyqqip8+eWXfda/8cYbAIArr7wyyS3LLVqtFnPmzAEA/OMf/+iznv4O0fF4PLjqqquwfft2zJ07NyxTzpnonCde8EK1vLwcAJ3zeDG5sGmfn+rqagDyeQ4uGzFiBAA654nU2NiITz/9FMDpFKV0vklGSFX1NZI57rvvPgaAXXTRRayrqyu0fMWKFQwAmzlzZuoal0UGq5D84YcfMgAsPz+fHTx4MLR8y5YtTK1WM4vFwlpbW5PQ0szU09PD5s+fzwCwiooK1t3dPeg+dM7js2nTJvbvf/+b+f3+sOVer5f9+te/ZjzPM61Wy44ePRpaR+dcedXV1QNWSKZzPnSbN29mq1evZj09PWHLq6ur2YwZMxgA9p3vfCdsHZ1vku4oOCCDcrlc7MILL2QAmMPhYNddd13od7vdzqqqqlLdxIz09ttvswsvvDD0w3EcAxC27O233w7b584772QAmE6nY1dddRW77LLLmCiKTBAEtnr16tQ8kQzxy1/+kgFgANj8+fPZokWLIv40NjaG7UfnfOheeuklBoDZbDY2d+5cdsMNN7BLL72UORwOBoBpNBq2atWqPvvROVfWYMEBY3TOhyr4Gi8qKmKXX345u+GGG9iMGTOYRqNhANg555zDGhoa+uxH55ukMwoOSFScTidbvnw5Ky8vZyqVihUVFbHFixezY8eOpbppGSv4pTLQz0svvRRxvylTpjCdTscsFgubN28e27x5c/KfQIZ54IEHBj3fAFh1dXWffemcD83hw4fZvffey2bMmMEcDgeTJInp9Xp2zjnnsNtvv519/fXX/e5L51w50QQHjNE5H4p9+/axn/zkJ2zy5MnMbrczURSZ2Wxm06ZNYytWrGBOp7Pffel8k3TFMcZYYgYsEUIIIYQQQjIJTUgmhBBCCCGEAKDggBBCCCGEEHIKBQeEEEIIIYQQABQcEEIIIYQQQk6h4IAQQgghhBACgIIDQgghhBBCyCkUHBBCCCGEEEIAUHBACCGEEEIIOYWCA0IIIYQQQggACg4IIYQQQgghp1BwQAghhBBCCAFAwQEhhBBCCCHkFAoOCCGEEEIIIQAoOCCEkITjOC6mnxEjRoT2C/6fEEIISQYx1Q0ghJBst2jRoj7LNm3ahKqqKkycOBHnnXde2DqbzZaklqXWkSNHMHLkSMycORPr169PdXMG9P7772PevHm45ZZb8Pvf/z7VzSGEkISh4IAQQhLs5Zdf7rNs8eLFqKqqwtVXX40HH3ww4n779++HJEmJbRyJyrZt2wAAF1xwQYpbQgghiUXBASGEpKnx48enugnklGBwcP7556e4JYQQklg054AQQtJUpDkHR44cAcdxmDVrFrq7u7Fs2TKUlZVBq9Vi8uTJWLt2bWjbf/zjH7jwwguh1+tRWFiIO+64Ay6XK+JjHTt2DLfddhvKy8uh0WiQl5eH//qv/8KWLVtibvfevXtx4403YtSoUdBoNLDb7TjvvPOwdOlS1NfXAwAefPBBjBw5EgCwYcOGsDkXixcvHnLbep+fjo4O3HnnnSgrK4NGo8FZZ52FlStXIhAIRP1cnnrqKXAch3fffRcAMHHixFA7v/nNb8Z8bgghJN1RzwEhhGQgr9eLb37zm6iursYll1yCpqYmbNy4EfPnz8d7772Hr776CnfffTdmzpyJuXPnYuPGjXjuuefQ3NyMv/71r2HH+uyzz3DFFVegtbUV48aNwxVXXIHGxka8//77eO+99/DXv/4V119/fVTt+vzzz3HxxRfD7XZjwoQJuOqqq+B0OnH48GH86le/wtVXXw2Hw4HzzjsP3/3ud/Hmm2+isLAQ8+bNCx3j4osvjrttHo8Hc+bMQVVVFebMmQOv14uPP/4Yy5Ytw+7duyMO9YqkoKAA1157Lf7xj3+goKAAl112WWjd7NmzozoGIYRkFEYIISTpFi1axACwBx54oN9tALDhw4eHLauurmYAGAA2Z84c1tXVFVr30ksvMQBs9OjRzGq1sh07doTW1dbWsoKCAgaAVVVVhZa3t7czh8PBBEFgf/nLX8Iea8eOHcxqtTKDwcBOnjwZ1fO66aabGAD2zDPP9Fm3f/9+VldX1+e5zJw5M+KxhtK23udnwoQJrLGxMbTu0KFDrLi4mAFgq1evjur5MMbYhg0bGAD2/e9/P+p9CCEkU9GwIkIIyUA8z+N3v/sd9Hp9aNlNN90Em82GQ4cO4dZbb8XUqVND64qLi/G9730PALBx48bQ8j/96U+or6/H0qVLQ+uDpk6diuXLl6Orqwt/+ctfompXY2MjAOBb3/pWn3Xjx4+Hw+GI+jnG27ZnnnkmLPNTeXk5li9fDgB4/vnno27Hl19+CQB9skoRQkg2ouCAEEIy0IgRIzB27NiwZTzPY/jw4QCASy+9tM8+o0aNAoDQuH8A+OCDDwAACxYsiPg4FRUVAIDt27dH1a4pU6YAAG699VasX78ePT09Ue0XSTxty8vLw7e//e0+yxcuXAgA2LJlS9RzDyg4IITkEppzQAghGaikpCTicoPB0O/64DqPxxNaduTIEQDAjBkzBny8pqamqNr1s5/9DJs2bcL69esxe/ZsGAwGTJ8+HVdccQUWL14Ms9kc1XHibVswSDqT2WyGxWJBW1sbWltbkZ+fP2g7du/eDUCejEwIIdmOggNCCMlAPD9wx+9g64OCd8+vueaasCFKZ4o2rarJZMK6deuwefNmrF27FuvXr8e6devw4Ycf4vHHH8enn36KMWPGpKRtQ9HT04PKykqUlpZGFUgQQkimo+CAEEJyWGlpKQ4cOICf//znoSFB8eI4DhdffHEo69DJkyexdOlS/P3vf8d9992H119/PeFtO3r0aMTlHR0daGtrg1arhcViGfQ4+/fvh8fjoV4DQkjOoDkHhBCSw4Lj8levXp2wxygoKAhVgd67d29ouUqlAoB+5yXE07bm5mZ8/PHHfZa/9tprAIDp06dDEIRBj7N//34AwLnnnhtzGwghJBNRcEAIITnsRz/6EQoKCvDUU0/h//7v//pM0u3p6cH7778fdlE/kBdeeAHV1dV9lgeLiJWVlYWW2Ww2SJKEqqoq+P1+xdt21113obm5OfR7dXU1Hn74YQDyhOlo+Hw+AIDT6Yxqe0IIyXQ0rIgQQnKYxWLBW2+9hSuvvBI/+tGP8Oijj+Lcc8+F1WrFiRMnsGvXLrS1tWH16tVR3T1/4YUX8JOf/ARnn302zjrrLIiiiP/85z/YvXs3NBoN7r///tC2KpUK8+bNw9q1azFx4kRMnjwZKpUKM2bMwJIlS+Jq27Rp0+D1ejF69GjMmTMHPp8PH3/8MZxOJ2688cZ+MyCd6cILL4QkSfjtb3+LQ4cOoaCgABqNBi+88EJsJ5oQQjIEBQeEEJLjpk2bhq+++gorV67EO++8gw0bNgAAHA4HZs6cifnz50esWxDJI488gjVr1mDbtm34+OOP4fV6UVpaih/84Ae46667MG7cuLDt//jHP+Kuu+7Chx9+iL/97W/w+/3o6enBkiVL4mqbWq3Ge++9h3vvvRdr1qxBU1MTRo4ciR/+8IdYunRp1Odm9OjRWLVqFR599FFs3LgR3d3dis3NIISQdMQxxliqG0EIIYQo4ciRIxg5ciRmzpyJ9evXp7o5hBCScWjOASGEEEIIIQQABQeEEEIIIYSQUyg4IIQQQgghhACgOQeEEEIIIYSQU6jngBBCCCGEEAKAggNCCCGEEELIKRQcEEIIIYQQQgBQcEAIIYQQQgg5hYIDQgghhBBCCAAKDgghhBBCCCGnUHBACCGEEEIIAUDBASGEEEIIIeQUCg4IIYQQQgghACg4IIQQQgghhJxCwQEhhBBCCCEEAAUHhBBCCCGEkFMoOCCEEEIIIYQAoOCAEEIIIYQQcgoFB4QQQgghhBAAFBwQQgghhBBCTvn/AXkz0L1JouL4AAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 750x300 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "gtTemp = gt[:,:,:,0:4] # ignore scalar Mach number here\n", + "predTemp = pred[:,:,:,0:4]\n", + "\n", + "diffGt = np.abs( gtTemp[:,:,1:gtTemp.shape[2]-1] - gtTemp[:,:,2:gtTemp.shape[2]])\n", + "diffGt = np.mean(diffGt, axis=(3,4,5)) # channel-wise and spatial mean\n", + "minGt = np.min(diffGt, axis=(0,1)) # lower bound over sequences\n", + "maxGt = np.max(diffGt, axis=(0,1)) # upper bound over sequences\n", + "meanGt = np.mean(diffGt, axis=(0,1)) # sample- and sequence mean\n", + "\n", + "diffPred = np.abs( predTemp[:,:,1:predTemp.shape[2]-1] - predTemp[:,:,2:predTemp.shape[2]])\n", + "diffPred = np.mean(diffPred, axis=(3,4,5)) # channel-wise and spatial mean\n", + "minPred = np.min(diffPred, axis=(0,1)) # lower bound over samples and sequences\n", + "maxPred = np.max(diffPred, axis=(0,1)) # upper bound over samples and sequences\n", + "meanPred = np.mean(diffPred, axis=(0,1)) # sample- and sequence mean\n", + "\n", + "\n", + "fig, ax = plt.subplots(1, figsize=(5,2), dpi=150)\n", + "ax.set_title(\"Temporal Stability\")\n", + "ax.set_ylabel(\"$\\Vert \\, (s^{t} - s^{t-1}) / \\Delta t \\, \\Vert_1$\")\n", + "ax.yaxis.grid(True)\n", + "ax.set_xlabel(\"Time step $t$\")\n", + "\n", + "ax.plot(np.arange(meanGt.shape[0]), meanGt, color=\"k\", label=\"Simulation\", linestyle=\"dashed\")\n", + "ax.fill_between(np.arange(meanGt.shape[0]), minGt, maxGt, facecolor=\"k\", alpha=0.15)\n", + "\n", + "ax.plot(np.arange(meanPred.shape[0]), meanPred, color=\"tab:orange\", label=\"ACDM\")\n", + "ax.fill_between(np.arange(meanPred.shape[0]), minPred, maxPred, facecolor=\"tab:orange\", alpha=0.15)\n", + "\n", + "fig.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xMNCAuxnZWvw" + }, + "source": [ + "### Spectral Analysis\n", + "\n", + "Finally, let's compute a frequency analysis on a point downstream of the cylinder and compare the spectra of ground truth and ACDM prediction." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "executionInfo": { + "elapsed": 5, + "status": "aborted", + "timestamp": 1734018830238, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "XSgspIVHT8zG" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAesAAAEkCAYAAAAPTRnAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABcSAAAXEgFnn9JSAADz4ElEQVR4nOz9a7RtuVUein7SmHOttfeup112gd88whsDCZTBhONHAridXCDHkJgEx9DADxoJaeBDwk2uG7YvnLTD4ya5CdwQHIe6OGAnjk0LB8LDr3IIXAymcQKh4QMJLhuXU8b1rr2r9l5zDOn+kLrU1dU1HnPOtfcGZm9trTGmhoaGhobUP31dXZLx3nsc5CAHOchBDnKQ61bstc7AQQ5ykIMc5CAHGZcDWB/kIAc5yEEOcp3LAawPcpCDHOQgB7nO5QDWBznIQQ5ykINc53IA64Mc5CAHOchBrnM5gPVBDnKQgxzkINe5HMD6IAc5yEEOcpDrXA5gfZCDHOQgBznIdS4HsD7IQQ5ykIMc5DqXA1gf5CAHOchBDnKdywGsD3KQgxzkIAe5zuUA1gc5yEEOcpCDXOdyAOuDHOQgBznIQa5zOYD1QQ5ykIMc5CDXuRzA+iB/5uX5z38+jDF43eted62zspU861nPgjEGd95557XOynUvd911F4wxMMZc66wc5CCL5ADWB9mbvO51r0uKcM7fQcblzjvvxOte9zrcdddd1zorZyLf9E3fpNaLc+fO4ZM+6ZPwkpe8BL/4i794rbM5W+666y687nWvO3SaDnImsrrWGTjIn065/fbbr3UW/sTLnXfeife+970AAvtvyad8yqfg5OQEN99881XK2X7FWosnPelJ6fcDDzyAu+++G3fffTf+3b/7d/iWb/kWvOENb9hLB+/8+fP49E//9J3T0eSuu+7C61//ejzvec/DN33TN53JMw7yZ1cOYH2QM5F77733Wmfhz4y8613vutZZ2Eme/vSn4+67706/+77Hb/7mb+Lv/J2/g/e///144xvfiC/4gi/A3/7bf3vnZ91xxx34wAc+sHM6BznI1ZaDGfwgBznIdSWr1QrPec5z8HM/93N4whOeAAD44R/+4Wucq4Mc5NrKAawPcs3lt37rt9J45W//9m+Pxn3Zy14GYwz+0l/6S0X4f/2v/xWve93r8MIXvhCf8imfgnPnzuGmm27CF3zBF+A1r3kN7rvvvq3yRvkaGzcec1D74Ac/iO///u/Hi170Inzap30aLly4gBtuuAGf9Vmfhe/4ju/Ahz/84eqeO++8E8aYZAJ//etfX43rciY65WA2DAP+9b/+13jhC1+I2267DcfHx3jqU5+Kv/bX/trs9/Le4w1veAOe85zn4KabbsKNN96IL/mSL8G/+Tf/pnn/rvLkJz8ZX/mVXwkA+MAHPoCLFy8W13/rt34LL3vZy/DMZz4TJycnuPXWW/Hc5z4X//Sf/lNcuXJFTXPMwYzK/VnPehYA4Dd/8zfx1//6X8cnfuIn4vj4GJ/8yZ+MV7/61XjwwQeL++6++24YY/D6178eAPDe9763+l6HceyD7Cz+IAfZk7z2ta/1APw21eqzP/uzPQD/Xd/1Xc04Fy9e9BcuXPAA/J133llce+Yzn5mefXJy4p/whCd4Y0wKe+pTn+o/8IEPqOk+73nP8wD8a1/72uoa3f+e97ynma+x++kaAH90dOSf+MQnemttCrv55pv9L//yLxf3vOUtb/G33367X6/XHoC/cOGCv/3224u/D3/4w9W7//iP/3j1/Iceesg///nPT8/rus7fcsstRdm0ypzy/prXvMZ/zdd8jQfgV6uVv+mmm9K9APz3fM/3NMtmTL7xG7/RA/DPfOYzm3H+3t/7e+k599xzTwr/x//4HxfvcPPNN6fyAuCf/exn+49+9KNVeu95z3uadfTHf/zHU35+8id/MqV38803F9/ssz/7s/2jjz6a7vvwhz/sb7/99lQ31+t19b3e8pa3bFVGBzkIyYFZH+S6kJe97GUAgJ/6qZ+Cc06N89M//dO4dOkSLly4gK/92q8trj3vec/DnXfeiQ996EN4/PHHcf/99+Py5ct45zvfiTvuuAP33HMP/ubf/Jtn/h5SPv/zPx8/8iM/gt///d/H448/jvvuuw9XrlzB+973PrzoRS/Cww8/jJe85CV4/PHH0z0veclLcO+99+K5z30uAOC7vuu7cO+99xZ/T3/602c9/1u+5Vtw11134ejoCP/sn/0zPPLII3jwwQfx0Y9+FN/8zd8MAPihH/oh/OiP/mgzjR/5kR/BXXfdhTvvvBOPPPIIHn74YfzRH/0RvuqrvgoA8H3f9334gz/4g22LaFTIgmCMwS233AIA+Nmf/Vm8+tWvhvceX/M1X4M//MM/xEMPPYSLFy/iJ37iJ3DjjTfit3/7t/F1X/d1GIZh8TM//vGP45u/+Zvxjd/4jfjwhz+Mhx56CI8++ih++Id/GOv1Gr/7u7+LH/iBH0jxn/70p+Pee+/Fd33XdwEAnvvc51bf6yUvecnOZXGQP+NyrXsLB/nTI5xZS2Yh//7u3/27xb0f+chHEnv5xV/8RTX9r/iKr/AA/Etf+tJF+Xr00Uf97bff7gFULNb7s2XWY9L3vX/2s5/tAfg3velNW6fbYta/9mu/lvL/L//lv1Tv/dqv/VoPwN92223+8ccfV58PwL/73e+u7r18+bJ/ylOe4gH47/u+7xt/WUWmmPXdd9/tz58/7wH4z/u8z0vhn/mZn+kB+C/7si/zfd9X9/3Mz/xMyvdb3/rW4tocZg3Af+M3fqOap1e/+tUegP/UT/3U6hrV/+c973nNdz7IQbaVA7M+yJnIxz72sdG/hx9+uIj/1Kc+FS984QsBAG9605uq9P7H//gfyev5b/2tv7UoLzfccAOe97znAQD+83/+z9u8zplI13V40YteBOBs8vVv/+2/BQA87WlPw8tf/nI1zvd+7/cCAO677z684x3vUON86Zd+KV7wghdU4cfHx2lMecrXYIl8/OMfx3/4D/8BX/7lX47HHnsMAPDqV786Pef3fu/3AACvec1r0HVddf9XfdVX4Y477gAAvPnNb94qD695zWvU8K/5mq8BAPy3//bfUt4OcpCrIYepWwc5E/HeL77nZS97Gd75zncW5m6Sn/qpn8IwDHjKU56Cv/yX/7J6/8/+7M/iTW96E37jN34DH/vYx1Rl+pGPfGRxvnaVX/7lX8Yb3/hG/Nqv/Ro+8pGP4NKlS1clX+9///sBAC94wQtgrd4v/8zP/Ew89alPxT333IP3v//9ybTN5TnPeU7zGU95ylMAhLnR28qHPvSh5hxqYwz+/t//+2mYhN5ptVqlDpgmX/7lX45f//VfT/GXyBOe8AR86qd+qnqN3hcAHnzwQZw/f35x+gc5yDZyAOuDXDfy4he/GN/2bd+Gixcv4u1vf3vBoIltf8M3fEMFPM45vPSlLy1Y1Gq1wq233oqjoyMAwMMPP4zLly+rQHmW8t3f/d3F+GbXdUW+Ll68iEuXLp1Jvv74j/8YQLBajMnTnvY03HPPPSm+lBtvvLF572oVVMhms9kyl/WiKCcnJ7j99ttxxx134Ju+6ZvwF/7CX0jXKI/k1d6Spz3taUX8JTLnfYHd3vkgB1kqBzP4Qa4buXDhAl784hcDAH7iJ34ihf/O7/wO/st/+S8AdBP4G9/4Rrz5zW9G13X4nu/5HvzBH/wBrly5ggceeCA5+Hzd130dgO0Y/7byjne8IwH1t33bt+F3fud3qnx953d+51XP1/Um5KBFf3fffTfe97734Z//839eAPVBDvJnWQ5gfZDrSgiM3/3ud+Oee+4BkFn153/+5+NzP/dzq3ve8pa3AABe/vKX4/Wvfz0+9VM/tWLf266oRmOily9fbsaR4+8yX1/5lV+JH/mRH8HnfM7nVGOsZ7nS25Of/GQA0yZ2uk7xr2ehPJJXfUv+JL3TQQ4yRw5gfZDrSl74whfiaU97GpxzaRrXT/3UTwHI07uk/NEf/REA4Au+4AvU6xcvXsT73ve+rfJz6623Fs+Q8uijjyaHp6X58t7j3e9+d/PZ1OHYlnV/4Rd+IQDgPe95T3M63Ac+8IHUKfqiL/qirZ5zNYXeqe/7tGiMJu985zsBXN132vV7HeQgY3IA64NcV2KtxTd8wzcACIyaGHbXdc150rSBBZnKpXzv934vHn300a3y83mf93kAgLe97W3q9R/6oR9qMrypfP3oj/4o/vAP/7D57JtuugkA8NBDD83NbiFf//VfDwC455578K/+1b9S43zP93wPgDAG3HLcu57k2c9+Nj7rsz4LQJjfrc2j/o//8T+mztnf+Bt/46rlbdfvdZCDjMkBrA9y3QmZwn/nd34H/+Af/AMAwFd8xVc0d/Ki6U9veMMb8GM/9mM4PT0FgDQm/AM/8AN44hOfuFVeSNn/4i/+Il772tfikUceARDMsP/wH/5DfN/3fV9arKOVr5//+Z/H937v9yYnsoceegj/6B/9I3z7t3/7aL4+53M+B0AAH2K/S+SOO+5Ii8d8+7d/O374h384ecjfe++9eMUrXoG3vvWtAEKH5uTkZPEzroV8//d/P4DgZf91X/d1+OAHPwggOHz95E/+ZPpmz33uc/FX/+pfvWr5ou/1u7/7u/jVX/3Vq/bcg/wZkWs5yfsgf7pkyaIot99+u/+VX/mVZlp//s//+WJJyze/+c3NuA8++KD/jM/4jBTXWlssqfmqV70qLcChLXYxtvhI3/f+BS94QUrbGONvvfVWb4zxxhj/gz/4g837T09P/Zd92ZdV99LiL3/lr/wV/5rXvKa5kMbv//7v+5OTk/ROt99+u3/mM5/pn/nMZ/o/+qM/SvGmlhvli5usVquUfwqbWm50bFGWXRYCmbPcaEvkcqO33HKLPzo6Sr8/93M/t1ielGTucqMt+eAHP5ju/+AHP1hc22w2/tM//dPT9VtvvTV9L7k4y0EOslQOzPogZyJTi6J87GMfSwxYEz4+fdNNN6XFKDS55ZZb8Ku/+qv4ju/4DjzrWc9C13VYrVZ4/vOfjze/+c2jS2lOSdd1+Lmf+zm8/vWvx2d8xmfg6OgIxhh8xVd8Bd7xjnekJSY1Wa/X+KVf+iW89rWvxad92qdhvV7De4877rgD/+Jf/Av8zM/8jLqoB8mf+3N/Du95z3vw1V/91XjSk56E+++/Hx/60IfwoQ99CH3fz8r/zTffjHe961144xvfiOc///m48cYbcfHiRXzCJ3wCvvZrvxbvec978IM/+IOLy+Vay3d+53fi/e9/P1760pfi6U9/Oh577DGcO3cOX/zFX4x/8k/+CX7jN36jmBN9NWS1WuFd73oXXv7yl+OTPumTcOnSpfS95CYkBznIUjHeH7whDnKQgxzkIAe5nuXArA9ykIMc5CAHuc7lANYHOchBDnKQg1zncgDrgxzkIAc5yEGuczmA9UEOcpCDHOQg17kcwPogBznIQQ5ykOtcDmB9kIMc5CAHOch1LgewPshBDnKQgxzkOpcDWB/kIAc5yEEOcp3LAawPcpCDHOQgB7nO5QDWBznIQQ5ykINc57La9sZP+IRPwKVLl/CMZzxjn/k5yEEOcpCDHORPpXz4wx/GhQsXcO+99y6+d2uwvnTpEi4+/jj+4P77ywt/2lcaN9c4rSX3eOXci2SWfC/l2aO3n/X77fPeg/wJkpmV9lAfDrKNnGG92Vx+fOt7twbrZzzjGfiD++/H0//Xv58DR9rQ6PvPaXtn1QnQMibC/Mg1/tvza8bPiFMe1ftNHS/ElagrsuVMyPhgYBzCXzyHi8nT0RukzQaVd/Mm5MfzfBTXRPyp9xN598r7Ne9pxKvOwcpIudYMu15lbv1f0E6M328BFOU9+uCF4VU85Tlzv28rj2PP3qrTuYXC2vZ7nEHd2DovS2XXOjN1vZG+Gf3e2wIZYCbe557v/n/jGTffNp5IQ67KmPXOn/0s2frStGc3DI6sC58xAcSjStEzoI5gHADaAC5enwPUzbzxfMy8Z6nMVZyNc2/8ny6gPgPZN1BTmjule62scvsCauPz31b52PLe2Z2c5UmfucytL9eDxXZHoN5VtmbWe5Op97saH8mj/BDit5mZDeOvXoe0EsL3BNQlowadx78CpPnLVewUtQIZAb+dWbXWGdA6LyNAPZrXbb/P3IZ4VhVgTiWcS1LOuJJS+s1OJQVvmw1vtgfEJbIL09/puSy9ud9qrpK6HuVqfc85so3lBTOAeg9Nbn9gvfQd9wzSS761Wv8nALsZdyzePmXsGRyoHT9G07cHzIB0zTh2j9QL9D4aaGu/z+jdZwH1WYD0rkqjCVB7KKg9KOSzBmrtWaOgLbOzbXu6Wu2Q5GqBCz1nznf7kw7YwHi5nvU33uKbXg2QJtkPWF8joN7F2gQo9X8EsK96O2iAYaX4fFSKZNp2JgJzOGYzeAZq4/K91fOKZ6Es5KXmti1Z9U5APTKGPZ7nM/6627AlNR1sXRG3AuqxZ80lfWOgvS1gb8PG5o51j4W30jlrmQvaU/VjloXmGtrLp75rq26cJZA30h0F6jPIy5mZwbfK6xmDtJbOJGDPEQ7qc03hUwDVus2bpPSS8m0BdWH6Nmycus736OtNmZ+lCXz0BUSa1xKotzR5TcpUQSxhS3uS2UC9pG1pcUcew+tulc6+GPY+ZM9APebM5Jcmd03H2maIfJ+trCTXk1m8EXyVgRrYFazleOfce5aEMzmL76fqzYaZu+iUnlXvf4YUIB3/CIwLoB4abHqq520UfbBlBZzbCZmUMaBeAtJnBdBjabVe/RqAdlP2VU0nxqObLPtagLP2vB2BetTLeEb8WeA9BdhX2ww49qwJ6137vhHduaSuzNXBC/TTtQBq4IyY9WLz95TZ/ypUvOu9w1oJgS4HYw2o4+9RFqSBM4BiuhZ/tBampNl63mJWvQ+gXmICnRtnbr3kHT/1+sLKt1AZT7Lqs2hfM0B7ErCnlPLVZGBTFq896Q5KZxK0zwqwl9TDXYjanMcs/b777vAtTWvsc+whX1fPG3zH8eW9P0MpvKL+L2XXZ80M5LsJoC48viWj9nU56uCMCcCbGVbFGQHKhUC92Ow9x5N9zrWl8cc6R+q1a9RbPGusGwHtvQD2PmVuHeKXzihvs0D7T3KdmejMzbp/y3t3+WZNVn3GQA2cAVgvzlfr3edWiG0rzpzKcjXBeK6w8WZyHisWO2kBdSv/Cque5Vg2A/TmsvJ83zSjrp6/C0if5fccBeZW+P6V7yirntN2duwAV+mIOM1x7G3kLNroNotq7PPxU6B9tQF73527KT18rcavtc7lQqDedx25Osx6ofl78tvs89uJBj6n7k9ZmJa2n9G4GqMGssMYrVA2ZKCuVijj9zbBrb62HGy1MMVcLeLP9n1qgXnrmVqcqWdtqxhaL9EC7Wb4VVK+c8cZt02zqXzraxVgXw12Pade7AOoRz2b5ydkzBaAvdQUfi2GS3jaSwFbu+dqk6qrBNTAnsFazd/1DNQ8zRZgT7HrXSrHXFbPw2gxE276JqAeTGDS0vStmcDjX7FcKEba60KCNgr02vPmmr9H2fYCkL7aC1mMgfYZKcEmqz4LoG6lo2VhG8BuPueMmNe2QL0kL7PGpspnL/Ye35dcjeduA9hXSVRWfRWBGrhWK5htA9RLv1OzFzoSfw5gs2T2VXWaZKpgxeWKY2YQzmRDXuxEnUdNmW5mQmRo7J455mmezlwT9FkA9VKQXtrQWubsdH1GxZFhZ8muF3ae9/a8XTu5uzKmPSj6rdeTnv2AmMbIt28C9p84D9mGjHbyFMC+GlaXBXGadWQP9eNswVqlXHrUnYF6blmMmermmMRHe38j1+bGVytkBuqm1zffoENtzDn5Oax6cbufsqDNYdX8+jZAvQSk99XApbm2uq5UojmAvVR2aSP7tGYtaRtVe9uSXe8qMzp0Z6mEm2k2GuEiwN4Hq9hGt47JLIvJzHhzZIqVT3r6z3uxs64jewPrM+n07hOkx+6VCnem6W7WtZlSMnlTBPDxZ+n1bQeTlxJtATVLdjYbbt0vw6biaeeTeaB0tgDqbUF6L4y6cV1TvlNKdEemNGsRlLMwh091hmX4FGCfhSws1qsK1Fr6yre8aibxfXbktHvGvsVsMoPROrV3UdK+GnXk7HbdmsmqtwbqCWBaJDItTvRG3mMv9aH1rMimp4Aa0uNbkwrA6va/3HFsImyiko6yai3NpUCdCg/JklB1CLTwuTJ1/1h+W3HOUsHIzzHW7s6qXc3MS9HRaLTL8v4dCm6ic6cqYV63Wmku+ZvMo/6svY6Nzu2JL7k+67lbXL+aK//N6OxvVUe2kL0w61lFtyTfZ9Hjn/tcU58nknNWPTbxrCI8mr7LzTkyUPMpWqOPGAMsLS70a6pw3TqWnkxzxHw9usXliNl8K0/wpY1qrgOZGiYY8xjD3tc45D4sVHPy0SrHORasq2XyHpO5QK3eu8tz2fmudeF6mE2wbVqtbM+pG9eo/iypI7tm72zGrGd+yDHWutc0W0lqpdcA7L2LpqzkdSwDatVq1mLRSxRREaed5bG4TUBXOgbq6mQpfhvgZzuZybhLZcyLdw5ojwH2GHjPzt5EpZ3NshdW/mq8dKG5sui0MnP4kjZ5lm12gUfw9s+IR+2bKEB8ZubwHfXwTs+c0suAbg4fi88v+RGrxNj3lNV7pl7ZVxXZGay3ZdX7BOpt9W5zSEhRDhW7pvDp7LVFVk6ONYlVl8Asf08BdXGuAHd1TyurU3E0xjyanxF23AybAdRjIL3EcUiR0XmuwDzQbgH2WckUMJ+lmZHSGXMamwvY+5I59RFKvdgRqLk51c9iyJgN2DvL7IUO9pjWlkBbPesMHRLnOpblG84OqIGzYNZzyNmegHpf7VgFujPqoTefxa4F8zebT833ph4Bak2a5m9g3vupvcct7xuLE89Hzd+t+6eAeo55c4Zo9xUAPseRrAXYLXY9RzkXnbyRuJPAPf6cOe1Nt1YJ0NY6qVPfZJf2uFBRTAL1SD7mKHgZpwneYyy7SE+ph7sA+hL9nK7vYIXRykz73rvUgV3naU+x6jMGauBqzLOe1RtbFn5WTpjNOt5i10qcpojr1TskoDb5OjmWCaBuOe6o5m/TuD4lc+POSX9pHsbMS7KjMdMsvhdvzYZXLjAB2mOAfZbiG+fqb+XdtshjQXSqNjLChBrns9YP30YanbltgXoxC1PuHQXtfYLxPmUvPhWKBQbQzeKVJWZmndqj7ATUO9ST/YL1Nqx6AVDPfs8dTDFFO1gIwNP5aoUzgKZ4ngE1Z9N8u8vy9iwGFXDPzuJYXA6685Os89Bgz5Osegqot1XAc2VkrLoJ2i3AnopzloA+AdRna7FSWPYEYOd7lTCe7t5N5uNAvQtAq48bA+0JwB5fjhTz69JcVn0WnYXWN6wAWv4+g2+/g6iqaw/5u6qLoswH2zpo9N5tK06jR6cCtmTX2z5jTDESSMfzDM5i0ZMx4UCtMVpxVKdQLZUGSG71WcZYNb8+A6hNI1+Tz2uJTEKhkRVo78vUPUNmTXnaBqi3qRqKFakC7ZkOZHsbu56oW6P1ZQlQ79iBb4L2WXTgljojzrlnFxlj2WOAvQ/hdbZBHKY6/tXlPXYizm6e9RyZqRia7+slhdw2H3U6W5cxYYimFH2eO01/yaRN86VjGhyoZ82lBgRgKWFbyr79jQDoeR2TOUwbmAZqI/6WyNh96YNi+vna+VjYLjITqEX2c/xd2oHSWS87pxOdi9EO+pb5AtQyngvUxvj2OtG71Cnt0pQSGu0wbFFA2vev4pwhUE89Zy5hG6vz+5SrCNTAWTLrKVa9D6DetwhzSjVG3WAAYxbO+hn6OYF0AmU+Xs1BvSWcKbfY858UmWLEE2Gq4lUV9LLGVDAd2cvnz2MsW2XYS2Xs3m2ZsADqWffPLS6tbATTzparBsPm9xvGrvfJqOZ8/xbbEtd2z0s8ykcYX9e7lpGI17ezkKutSHaYnrVVejvILKDe8dn7A+tdy2AK3FO88a+zo7/QrA/a1J0c1NUHinRkOGPPAahNCeDNDOWs14lPhI3JVWybo2ZOlUErYZgG6n04AgEN4FaAWVWgvI6kTuAOYN6SFsNoAfW2wD92T1U2+bmjgL1PUJ6QOVaQuUC981RARX9UgF1cXFhvWpaNsXhTcc9SlkzPmur47SitejIJ1HvqIFyVRVEme+47AvU+/IVa42kVu67yJMK13/Q87V52TEDtYh4YeLdfQuRfPEQtsrMwtSqKV+qRveDRSI81NaYdFW5TeLLauGIBwsrLtsavWzInTkqaKoJycRugbrG3ifzUHuB0I/s9Bdio44b4O7DrRvso48yoN6qFZmFexH1qZw5of/sF9WK2jNaFhS+4jQVmNL0RwD4TUB7/3rPvBfbK5K/+mPVMpVDGMWqFUcfZthR1jFnNi35uIJgyAS+/xsLBpmBV49e+3A6znWmR1TkKiWd/h0q++NZ9K5dWJuYq3G3eXblvtAMwNX4+9pxdRQXtGUAt6lzlYzEhzbg8XXaujmHP1RFz6lQr09q3SdfY6YjiNmYCqGcWXjOdPVmEdpK5SmKOvtrlHpmPsc6F9px9SoNVzwHqXZr2fpj1SMEtrWNzQXN2uq1e60iasrevseuSFbDw1rOFAlTzydv0WPtmD2kx6uJa47rMkMqKDNT3l3GoY6JOe5P3eXZDysKEx+/Eu9RemvzauMKdI+WULAos0/cjrHnW1JqzNIVPAfXcdjsLIOs0xuqFyrBZvdq6Y7UoPn1MFtTs+I3cP+cZJNKpVWParC4V5vApK84SaXbcZqS5LyBM7zIWR7G+jMXZtu4oon3zJUC9j01Xri6znugxzwHq0U6qV/6m4iiyqIMh2YLyR05iNYPW89I0fTNmVxgb5oLyhCztABnxO6Ux4ry0d4KgmsXZ6YjCXdKA1PhjLDt9Gy1/NTBsJZSMZKRjfZ4JoK7a14z2ouZr7Lsr55P1Qr7rLjI2bEJBc4F6F/Ne496xerkVw1b14B7KcSwrY3puzn3N65ypzMyLlsyCTmcZtrxTtq/d0XZn1nMVw8R9c4F6aR4mZapHJ9k13SMZ51heZysiNBtR0WFsgbPGuKuMTSSu5U1j1xQO9nq8JyvZs1bOkkFo6SyRqpEsULjp2eMPrudRY/r7xsLbm7fuwk5VcnabAdSjz5mr4DmzSWGi/sryK+rYDHa9TR2Zik+kVak3S+fXTklxt9Kwy5kE8oZ2+E51rKgfI2+kgv8OzwKWfd/JGQQzGPgCWcSqzwiogaux3CjJElCX5qGzAOlWWsyEN+nx3aoTO/T4xu4ZNWuPVYolDFKCMoBamaIGbBZG+pYip1Ow663Cm6uEx8AXM4F6jPVqMkOZNk2V10q0SjwF1HOV9pxnSuDm9YjCxwBb5nurTpwSJFn1XKDeEaTlfWOgPauO7Sqq/loA1Puq363O/BzAnhUfWTHtFcjnAfX1t4LZWC+9Ea++NgOoZzLVSRkDY5knbex6Im8z9f5ymQDqXdvxFGDTT/78JmCD/ZZ5FWYJg8a4tdaQm5lv/17s6FWlfQbKdEdAb5rAJeMauV5dA9RKtKTIijFofrOsR0rnr0yovtbcPnOOzH2JCaDWHjlXIfO60QRtrY6NyZxx6211citO4565QxXNtj4XsMfiSOvMPmRBA9g3UANXi1nPZdW7APUuDLbxMbX6P9/0PZLoUmlVtn2BMlAp1eo9xbl2PQF2cYsp0+TX5uR/Tz3hpexo9IlLlGkCmnBPii8r1xhoj7FjNX553y5AvbizLLA5JcfrV6se8SjbsKCx+Cq6+uKaqX6LeEoy2yhibdpf9fm1OqZ1CLfp7LW87vm1Knz89za+BPyeArilXm4B7j6tLwskVYsGqz4LoAauphmcZCbznK0k9lEWcyoHqxh63sYVXOXtuqu02tQE666SkR0SplS19qMlza8ZE38zvec53ZbPLjQQz8d03tFoLDKD25gxVcYjn1315PINi02V+6zHY9fGgHqsDs/Nn4xXsWgekK83/UFYWHU+JY12VtYHClsG1FuvUFUMpZSgXdW5iTq2N5lKzzfOMQOkW2lXuiAEVKA9F7DPCKTHnBBzpGmg3sfY9ZmAdXP8a0yWKoqJdPdlglbZ59izGqg2x0qlJy7SHEljW/N3xYKUxAzLhKKPAfZ+0gmLA3bxOlWHCMEUrgD7Etlnb1b2H/TnTbDrbWWbDmuLVQtpAfVkXZ77nhJ5ChYtWDbTt5U5fMyZaKmCbjKhcaAeBemldU1pbBpoV23srOoYlykLzhRQL8lfQ6dVoL1tRy0kUgL5oo7eeLCmY84SqIGrvdxoiwjtyfNw9nCUBk6UrlIxKotlqwK36GerkrTo2wKABkaKT+2JjsdplaFnERNwy3LhyRsUZvEWYHPdfeYyk1U3b4covn0wnx0UcHOXrXRdXPOtcKOHj6Wt5Me3frA2oLLsOe1uW+Y0do9yrQXU+5pHO7bvObfGpGo0p5e/DdtufWstjjjfCaTHniNAezZg7wLKuwrVkzMGauBamMEnZLRnP6aQdnjeXMBW8yEVIL80t+KoXel4aws856Q5R+Z2cMTDs8OzV/Uy/agAW9XyogD2WMFbjaXZv1HGE+c+56otejLVWdRAfClQS2yaka0mgCt1uxqX9qx+SOUth4480HRGnMiYMWiy6llAPUMRN9eQF/dom7yowyfxuhy7rjf5GKlfWt0ors8jTJNAvVQfS93LwhYB9hLZcihyjFVDuXZ9e4NjHutsseq9A7V2XetNj+lQLY2W4hPPUdM1fpG+3tp0PivxBWmKBpLbTVwa1fiirXkZMaUj2LX6PbY0hY+yqOmXNUKJa4A9i13vKq2stpSm0p60trQUqKu32kIRc/0qmc8oYMf4VQdvW0VdMePWeQOoR0B6rvIGSvAuhosUwN6GMG8lY+bvOXVO+z372ZS4CJsC7Cqd/bDrRb4IglWfJVAD1yGzVkW2sxnKbFZarU5p60M3lZ6IN6eyGBG3FWfJd55TObfp9LB7K0eg9DONNqespHPGOhNUswbYZNy7yEh6cx+1t/mss8tXU5ozn691hsfCvNE7mxKoRzqrTSkQGmU9Ee2vAmxknVsqcKKTY88dz1iTVYtrLaCeUsBjJs9U/xXWrc0QqABbsuu5MhZ3So9qQD0HpOfmb4RVF3VHA+y5YHzGDmiatE3iWxAQJld96tZiVj0HqPfUq6sAW8jkGCCyTtnabrhNnDkyVY4zy9Cwd+NsiUB4FLDl86QylpmaUY5LWA7lSU/nqnCY3WWkbYyZv8swBajHQHpBB0+OaJQ3sTrhi2DmeCYU2ll05gSrLpQrHRtAPWc8Up2axT+Nr+M1p/QBFWCXgVvIQgCfDdRL86MRp0ovYD5gLwRm78c7WNvUi1Gg3lH2v5HHWFhxfQ9AvU2vERhnXXVbURVblWcN8LcUT0xkX/jR7Cw1zmU8iHdKDSgcS3BuADZTLpxIjZo4Z1Pg3Qpqyow5l11Psp5F4x8jzxkxRzbN3wyoq3tbQN2qN608av0tBVSK6X0Mnyvzd5EpJU/auLVR7lGkYjnGqwp5FxNnywRezZYgFi0AuzkUY+p7Z8kSy00qAgWoJ0F7Zn4KloMSsCF+S8CeIxpozwTyXWXfQA1cZTP4ojxvA9Rz029UhslncZDW4szpzWlxWHswEL3nKoHpZ7Tij5nvR/0F+HWl7RYMGjVgJ4Us2TUlZFi8bUW5d84cyTNh1PtiPXPHCH07rmbJKsE7xpP3lgRCzwMPa7xzamKcCXkBWLyjqyJ+rleq9aV4AfrtM3AT6Mawlvk7/M6NvMWaZJ2ZU4d8BN/yN51PA/YuVWq2rqy+/QRQbwvSWvw09gFdL0vAZnVp2kKnhO0iC+qHxri3lb2C9WwT9VynsrlxdlGMLfMLT5crrrFnTQF26rFPxMNI/Zr66FNlOKfjMSP9ilXTbysAm1mmisY11YAq5YtKAVe38PKdk+SWDXgnxbmLTHRYZTspvu8UULdAekb7bF4T1pQqWrQg8SVbE2Bj3AlxZzGlAjVoA7XGpOeOWbfGqjUT+CyGvaspvNUZFNdHgXoCpOc2q9KqxvSB7AAuBWw0wraRhQz5rIAaOKtdt7bRZA2lMArUc8Bde1RRSdDQJDlsK1Abe+ZEPGLXrXtG34834JbiHXmn0Xfl5I0YEoG0KMOkbkvPslkNSDVtatnhAC7iTrHqJUC9140TSLb0rJ01dWasLfE6IOOM1JcijZkyVoU8C5CAfVUlmr8l226xpaVzaGUcAuVwbiqArgCbp4WRqrEEuCd0troqmdp52w6ktfjZZ4Fd0MB4KQi37h0jCzMI19hYdSvcGL9T9b5qZnCtXKaY+BKgXlJRUl1oVYCWgms8a1s9XtRNqcV4D7px31ie6pvyUb6TVM7NtFi5FSDtWZtygKdd0k1+jeJ1ljQ4nhnGqsccyxZvFH9Gcmbe5BUgm+qblcBsqrZUAPUESGum9DnSXPWOW1voN2S/TrBrEb5E61UmcJPDCqCO9YorWgnSu0zJaZu+dcCmPGnj18u9wuf0khu/qyPLx4QOHxVeloV+ECxb6eiPsut9m70npNWhu+7nWReifsiRXhuTJlAvAWl5TSp4CSBauluyirHnSinqluHKaeSBohxb9VM1jTY6I1XHRHs8B2ogWbQLwPbsKBpSkwBIEzY/GrRfjinUwrTJwZvfsq3p+yzYNZeKMU8waC1M6VhWnt9jQN0C6Snl3BBt1Tt+e1EXRDtMwNx64JwOX6veqHEzUJcm8LoTOGYKb8m06bsGbMA0Nn3xdf2YlQl+bsrw9M1NGXcuULeKgve0xvLD8VmybAnInuJPOJzNqSPs+XMvtXwXtDh1vO1B+5rNs57dI1sK1HPAW9R7QAE7DaQnwH9nE56okE2vdPkjRmx2KElJN4B6VFFTGFOmCZwTkKIEb5+Pai9ZvHN6z+rIMiNZ9T6BegtTSbPTMSG7rO9svKkfOsaqGwpZ/pbfX4L0bKUs62txOaaF9op3LQdEFdQbz1QfntL3uZ5wVj0B1KOm8Mbj64dzoJaKKKcnTeCSQWv1Tu1ITnh561mcB9Sj9WEKtKuHiutG9EW404vCsNO9rWspzjK2PXdK6FQHbpuOXUuuClhrPfQkyjvMAeEqzpKyGAFt9TkL0i70IwHMmDBgNlqlqzG5zvMWPe0KqH1ZBqPlS+9F+baivZApnKXPvX71DNE7+hK0iz8FqFNj4S82AdJTDUfpCFE6KrvelunMkZHOlxbWBu74W9xfXWdtVW0TY0VJfTKtiFIUU7HsCrA9Dy+VbE0ytelbym9T/taAOl2OQN00b7Kk7Awl7KI3N89bm02DTfEqzeGGXcuZxXKAnOrEqUcB1BMduFHCKztcQKnv5gA2KF6DXY+B85QuaomoI/J8TuduF9kbWDfZ51hcLlJZ8LRY2E4g3XimJvJ9Gvq7cTMmK0MB5Az4wILHe4osvketxTQgFgpau66x7Or1Yt6DMxzgXVSyyRM8p5XY9RxKWZSJTwA9BtTbbrwwW0S5cgU6piebyY0VxRZKV+1Mev3aGFCrbHqkDYzli3c6dWyh8ptY8Y4pcAPUynuGyO0wy9/6GLWpwkvHIA7QU4rYe1PEd6zRaoCd0zRNdp3yzuK0MzBxPSUnALw4NoB6yyYm4/ni42MeYAPtcyl7AOcUZPRzGTbWwdtWzo5Zz/lwY3Gmemv76ayoUgHbiOyNULFKV4F28UA9/qKGIoHalb9TPP48nk96JmO93iIzampXEiy86JAzxhzA35cdGOMBi3GgboH0REObkm13R5KbLZSR5jxYD1ZN4OI+FbjpGqU9AdTFdx+rC0vqm8h6rrojC+iwfCd2rSj0lBft26a6UNYLA0WZKkDNQdqK+PJ8jhBwJ6bN7s/OZ56Zyk36XbwWFqo/qjtaZ0t+04VAPUa8RoWDHm9evO20ABsovvno+uHbAvVY1kdYtRZvX48/czP4rPo848MvBeqWZWTWPb7xvH0DszwXCkg1e2vxfY4QFCD0hsnTaQB1AeZaOpRnAmnGVrzN93t2bxFWZKJODwBgffjjjNr6JkgXDYUp35ZoDWsvuyPtS8bSndWeTPlNkc8B7XvrbHqRglbyKX2iEmiTIoYAbA7SnE1KcGbPaLbJ1HvjipVf52buNlBLkOZ1x874/E75YDRZwvkwICAdz1SANoBHwxS+RJR7m9MBpT/EWD1QdXcjn7LXDiRgrpKSgE0R5rDrxePUCuA249b3qYuisHvmDJmMydVzMNOcE5pxxVG7pshU2vx6pUhY2k2GMpr4HuJNpMGzxDreSQm23t/I91KA2jgUYB3OeYGJ/BmTgDNN1WLRfMdAWmmYdEw+LcSq0xERoKECdQLphjJeynrGALxcbasGbMmuZbrqghbAdB1rXY8Aq3Wypnqkk0CttQENuGcIr6PSWlTicARsn6s0QACVi00e9YeyU6482fNLUB4Hag7Sdov6ZVmGJHBb6IBdph9KZP/z/FF+y+q3Uk8lSMsimJtHTfmy103fVw2jH/laSGbmUqRjHTzo19rOZQq4q5263UCa5NrtujW3AkxcK65r6adII/fMyEP9UOWRRg+nxKu6TCCgBU+wiKKuavk1ejgH7gqoE2D7cQXNQNUbU2eVt6dWWXLmw8stgnMC5gjUhszhyCA9tW7ztqJttEBpJ8COL1oBdhEP5Yfaps1ucU+LVVdArcVfANJjOiibLmNcsPpgtKIxqeBz54fnhVUqqbRnKN9iWVHGhKaAmoN0SwHzcAmqjp0TcDtkU7cG2MCMseg9STW84lF34JCPtbVFdE4X5DuBL7+R6sccwOZ55tmYqhMTouoQpm/KuLkuVWGNuNvK9btF5kwAnTTFzLkGvWLmi40kR3r3eTy2EU8CNQdiTTFqacTKy/ViVR+08uHKWQK186UpXJYJU36egJU1cBgEDWUA3/FnKWjFAZrSIqCO58aWihRMsfJyGevlatJiKnzhChZaXJNmcY09S4ehXZhRUqhL2voIUOc4LXaeX4XHX9KZTawa+dNTmNZ/obwW7cGjZNee3bSEHbGqWbPpaaAORx2cK9ZkfHYiQzZ5Axm4LUzBsjlg5/S1nl4YMAhlNboKgy7JjIX6G2rfeiZQzyJLXCQ+S9CeA9iAqDwsrFU3Fjv3KMEKaI+ZvzVfh23lugDruhKI8Kn7+L2N62PDJ9qzz1JaDHtMAfn0DyXzrjoWvv2yMT5n1QTUxvl87gHwsWyIhkXPj2PUwQweNGvqpLBnVHrB5L/QmWEv1gJq6yrTJSAayAI8DAA6Ha+1FGS4hgKwkwLl30Dpo+wkseOjg2zDO1yIGU1jGqQnO8isbib9SN/b6zAU4ufxa9LZEpwrZd3sMPsyowqrpuMcoKZ6VoB249Gd4ZvYZPBOY9WIgO1z/SXAxpKO3Yy23nQuQ6MT2BinLuqABtKtOlfpJxHG8LMA7VhRmt9bYdfqLmw8Dwv7y9S5U6+xOgEWT+vIFbMKtu+zny1Y5w8sPu5SYBTxxipJC+CbwD/RQah8LxoseVb7IiDjj2Tgx4FwrKNCwJ1Agyfr63qsJtAE7fynKm6e1wjUqY3FKVwwSPOs1bynxHzQUtHEHX6Ho4lgbWO4tZIRxSQajEd9bcVppw73Rfxy7DBfb+1BXAARY9f8nRkk7b9zSN+Sn1dAPA+oeXtd1HZZkRn2mqmeeN7JY3jsgcLzmwM1gcRChqLVlZJVZ6DurBsFaV5L5s6v5nEzs54G7LJk6rqb30+pY8DyesXrRfodn8F1QEuXz31mK44K2gywY5zU2Rtj18XzlteZOm9tkG2Zv8ccE7eVswHrXfKlKAouLaBWy4KHycIW6eyhLBMYVyZw0x6vpnOKl7Ok1A7ZmZSALYDam3hdAjPdkEDaB4AeBGDLsWvkdGFNMk06UD48YMN4mwnaKJx7pUpQvinxCNomMmtjooKMY9bWZpCW02qAceVJSjONQcusFGxGB+4q40xLEGAbII9fC9ZjTDRg7hOcC6CtVzLj8bYCagnSE20zCSuiYkhStAu+jnwou9zJyOCNZAovHlEW76Skr2sAaaEh5aoBtWXXgbqezZlZoIG2BOzJ/MeCmcW6J9k2SlbtxT0jQD3WaVtKGr24nxJJ37YF2BAdOzXhLTI0IdKqx8NZ9qtw6Zy4rVxzM/hkw2+JVBwivBV/NI0xcMfMa3NE3F8AddIqGsJlEE/6kAF2QVHUtRtz0nSkMWrJqhOA88ZK9xvAex8VrUlsGgZpgRQC6mYG2D2pJ5GYdWwYNoC0LUzguqduS7w36HgniCklV4FpCdzhPSU4pzvUNZwJsIuy0m7fRiTYqtcz4HGwnQRqx+ONgDS/NpZPsI4jdUbBqii77sV9qvNYfG6auz/RBo2sX/EFjKg3VJesdaNAzesbMMGsTTB9d7Eu0dxqDtoVYMeX19h1sdyoxqSpUMdkBsjz+lD+Nvk32LOEylpaxznRqHQMPZaPnfB42ut4tE3hS/Jk9NkmZbz2wjljswh2kf2C9ZIyGq/rahwZXpTjXNCe8Zw5womYypoZW66YtoiXzqFcl/mNSizNp0YGbM6kvSlvp9+l8kZS1PRnBy9M4UrhFDYhH5UNXfKBXTMz+ii7Zn95fDqMURNQE6vumLLVPHR18QKgfSwzHcRLRSkzm9PjIK0BNjztCiQ7BOwDLZGJ19Sy3Fa+M4B6DKSn2g1jP4UJnF322pHqbXxewuwZ4Kw9vwhKypV+S2DWgXqVTOMRTEVBW1EIDgyQvSlM3xy05wB2Ki+T62wIWFB/2HdMZaGwatkBVIF6CqS3xMgKtBk+c8BOp2DXec1a2KQqE3bjfm6J0a/rnbglQ3Rz5Oozay3PMz52E6jHAHtmWkUYcmdusYLQgLsVjz+LGiMHb0WKTqaJ81JduCExbAJtyn+jB1oobcmqBxRe4TL/Hj49lxI0NO/aIbBrWtHMl89LaciOSnIqI6aTgdoaPzmeyMWJj1AwXW/C73gPmSCJUVuZRtXIJI3hXX5lyo2hMeryNlrkIvfSsJ0whZpyIxSr4XEWAHWLZY92kkXxpA4k77CyZWmLY5FvAz7xujk2K0UoSEOd1io8s6fcAYz1DCWbpnMOzC3l2yEDqzUezpgKtAGMAraca11NHUSur1KKMqocbjBdz4o6oAP1GEgvwaSq6lAV5elRNjhg04VdhLOWBWlpMwgoO3ycOusmNPXUUrnmZnApo0A6E6hnkK35cbeUpay6GU/JJwdtb0vgzMoxaDhKV76n8YDx2dRdmL5HTOClaTE/1yIopuRZ7kxhXpdLj8rMFGZumx3KSIF2lgN2aXICOyfzIyDWYU6PMgWL7pKCCIXkvE+su822OUDzsAjY2GJ6DS/POTdpoCnrNQM+FYw1oHao46L+XbVBUSRyrLoAaBfrqWWKlz2zIJBlNYvv4vUimlC6UtFmtoxZQM3vIaE6J8/JFG49KtAeA2yaWVDOvw4Fy9cSn5Q5OjACstZBq4CavjtPe0wfzxCtFQHUkS2fyV/Z+LLaFewa2NkUHvLghV5qd9CuBlADVxGstbyO9tCn0lnSqxt7tgZGC6QC2QabLeJpGSnSqDOczT/ZyYP0GAG2B1OA8aJh+UnAnRIt/7iSzue+zLChxhO7+bxhD+F5xiKYwZOjGvtD41ObwKrJmYyYNQfqzjp0TGFqDaFDBukOKAGXyovuj2EZqE1YuML4wumnYNuxMfr0Qeu1nCvANpld5ysMlZSymHQSEtGLaxJgebgvwyUwq6AuQVprO7KOMG2qAbQBSocyw8DZTxdBWQBaWM4wN4FL50TpES6BemVcAdqAYgoXHUYAKmjTQ1uADW9gDVvpbAk4t4S1z5CdUgFV3xmNazw9iPhbgnV6jnK7ZNkFKM8pDo7mrQeqmVFde1m+2k6uEqhJijHsbQsJ1yGzBqADsKYYZM9OxlNkTi9QVRQMjPl4tSYaqy6yJ9JJ6VpWEbW0fUw3NkBSbsGrNgK2jxXdAunHSCeC3rfOf1akANJUrnSPCQ5m3hr4zsPBBDOhMYFFWQ87GDiawuViwhX483fO3t98jJoDdWddqThROv4ADKCRgZpA3HpTAHd439IhiBi396hAuzaPy+5HBvApSabwqbhae0jXmCLmcXy+PgXI6cin62nz7Ivf4jvyDCSsYR0kOjrRoQS/mJ/v6d281xn2mPAO8Fg04xOr5n/GeKysK9i0NIVbMksAcHy93SicTQMRoCcA2zPQpjQGBtj5mDs6qhrTAr0IFyAuwyug1nTumB6eIVr18fyliBgogC2ioekZDuSe4JgQseFBCZRLIJZSOx/S/ePDdUtlv2DdrD1CGuDafJcRUG4B9VRaaj65VlkoKqvmoKyBJQGVjMPBnbPAQuvlMeu841V0O4ssBpbFJ/CV+dBajAmVO3QsTHQ68+XaiYhKl3l9O0QTng0PG6JtzwxIY9jhz8A4nxVy1Ajh0b74S6zaeKy7ITEdACrbScqRAXQAXgNn8jUNuH38JmQqd0AF2hzQOWDL/YgJiE18R5Vdt/BeSuu6VvfZscl8ZJwRoC6Zl2+nTflExgATEcWbWB5kCmcAkIpR9lm2bIdqZ7eoU6US1WYYjAG1NU5h1kPxO3Xo6IWRTeQmNcwSsAmUObvmy9jmhXlye5uUCdCuWPUMoC6+u9TBCy0Acl/zECayviRJ3p7mZ6IC4XEvcKh1hu6TQE3yJ8oMPlsagDteSfR75DUZRnF3sTLV4BoSlqw56WYOzsV1Dty+qnDFFnBAMmdxZkamRpgAjvDIY9rxmeQ1Ttgvw3mHoSjf6CnOqabvTOwQmOx8Q0BvDGzvg2d43NTDRNM4iKU36m8yBpBSRViwYmWcyqw5y0nMxduCWdORTN3EesgUXgH3BGjrC1iEwjLkko/aHF4Pvm1X+dROanVssOp4/xhQG/aNOIuu2DYXDr4mBaVSSPOqlbZM4JxYtCZauOwcj11mSlZj1S2gXhmXQFozhUuHRgJma4Y4Tp3rYrwDFgY9bB6vVtg1gbdk1k1RmXIOK/eszh9oEqgVcE+/WVqjulfLGqi96aCdWhbroJh0nxip3qajJzNsNLM2qzcKUPO42hi19LHZRa4PsB7rdGhKCTVQq8qrkY7yjZZ7gBvRNgRoF781oC7AmV3jpvDGc4NS9LFBhZrsEzWNLxG1gPFZQaZxw/QsE8E85sGaxJ5IYdvewww+sOveZ8VtAB/ZvPe2ULDeGNjIus3gYQYDMwDoEFh1dGzzgqlzsbHyd9ZhFf/4OOK08nR5bquJ4E1OPhGkOWhzRk1p0OppHLTH5sSWXrwMsHndMwzAmEmzoJoLJIGv/K0AOAfsevMWjAK1BHu1s8WBmoAb7H2RwcAjp6my6/isMdWgFgSQzJnlNC06b7Nq6UhGwM3rmvQKB5TZCMhzqymEs+wYktJxYMw7KiNrgMHXpvDZUgAz2h0kFr8F1PKbqyC9QP9SOVBd4aCd9KSfAdj8m/sybPYuXCz91u8xB7M8k6AE6uI8xrWk87eUawbWGmC2fjeBuKWY5LmSvqw8W5McBtpNVh3jSaBOz0u/2cdsfdikDE2s6D72mGmLQbGUZRy7Ns6UzNoim7E7lrzLDdX2AaDtxiWwTmOIBjDGwHcG3jn4lanK1FsDPwB2ADytjjbEvy7GZ6yt0v2cBSEoz5VxWNlBmCapYbgwfhjLLbAaAmhfAncM752NAJwVrGEm8rlzYkuGXZ4nKwY3hxd4zipffbteB2J65e/yWACsprD5dQHUaa14mQbYb/5MBtCcJedOKOugsNXtUj4YSMuO9XyVm9Phpkk6avNkpUPZHKAO5+0xa4tc17LUgO3TeACS3wSx62KsGhNlIEBXCy8cyxSLS4qvATWLE34rIC118UR+CwNTCmZ7m7NrBWCLdNJ1Xn+myA4EOAtgToCvALQ0f88Bait+bytXF6wXtToRv6ow7JzHbYH82PPlBx754BWbFufSlIyyjZRArf0BaRUvteYnBR21mDWp0QePcF7lc6PyXQRscvDpgknX+gA8lhR1VLJ2iIx642AjYMP5zLyBMBbpTABlZwBnQKNwxNrJAc0MBrZHGl8nT3FylkuAzQpYmihJSRK7XtkhTdPKZvigRMnsOHgTwFkBbgcLWCSA9lHBWuMjiAdJzmcms2zjDYaor6cAm49f54UtUAL1pEaW9aB9NKxMC6UcH8fDpoCas2y6X1XM/NU5cMefhFWybVF6cmWyRSA9oQELwI5HMoEDqIBYAnX+HcI6U+asE2PWQ2TGqVNoqGOIErCtA1z47WIeCKS5CXwxi2jpPQVcEetKqh8sHgfqWSC9oP5SR85TGqkJxLwYX1QpX5zkuCnjms6eAm4wMBZAKjt52jh1C6iTCRxlHdtVdgdr1jAX52cGmMo0K2WhVZpGmq38eakgTNah5cPre0r2nGtSQXoSGNdA7dMxArQVxzq3udF5k0GbWJvJ7C1cywty0JaVyTO1y2DpLVu/3PvIgH0CajM4mCFq1ejpYmged2fjXG+b8p2AOnYMfAfGrg2byx07Gz4APndYI6mUaQTqdWI9meWQIh2SOdui9z6DNlOeLi5sLs3j3husrJtk2cQOB9cG7Gq1MyCNXUvv3gzgVHHEeUNk9UvnLSUtgFgFau5k5vK9snPMn5le39T9jwwC0ZwrwFkVCSxTYrx+RK1Q6/Fr1iGMQL0i/wgB1NyaAzTGrGGQxqLie66sqwDbxbqQxqtjWuG3wcC/aQKNqDcaLDr91q5XrLo0f48B9SRIL9C1RTwj6glQUI50IaidcmZAalNMZ88Aaf6wkmVnC0wJ2POBOvXFOHBfF2CtyVKWIG9XK95IHNk2xyqN/E0fOZ5XcbWPbuqjL4AXDKDLsBqofQXmaTUvqYVZTa9WBovKtug8cO3fhaU2bVSUbsVmd7l8D18bnMar4ejoIgsLD/XGRC9vD7+KTNQA3nawG5raBbjOwBJ4r0rQxuCBLgA1772TaHNarfFYM2bNxxAJuFfEbIyH9S6yawcHg8Eb9K6DMyaxaAd9TJs7AQH6QhadjcuYOlsBNgdq6r3rAO2rd69EXNfaQO7E5d8cu6RiLsanR7ZJrTrJ4L9jXWCKV+t3UNqpiHxZj6kdpva4D1EBu7TaAGCALEzfAqjJX4ILn1ObTOKepm/5VN/IakNmBhp6IcsYsWuP3NkM6fvYzxmvH+rCQx5IjmVSPxZ1JneoRoHa199fDWuI6MvWoz+x0oTfypapLHLRX0mVzaBsGPOEOm3ptwLkEqhluGb2BnJncFe59g5mrXdQwo1WWXx5rYjbSktUmDm9sCbL5oAqATpeJ1BWgdois2oG2CaCtlFexCezVajthdJ34aG1ESlk1MGHhT8GWjEJICtesT54ZNbGeZjBAU4wa0rRUWZjGr2BtQ7eWNgO8Nagi0BtVoDpAdNFoHbBPO6dB4Y4/k3maCZcYfLjmjmakXR8fpkZMMBGYM7s2sKg6zw2rgsMKIItmcZ7NrVmBVd4jnOvcTmOTWZNDthloxfsOnmbca3lBU1YIKKeF8CMfC5BuwTsEqibW6WKedYmvVh8WQNOKguFayS7FnlO7GgXYUVXrQHNolTDLJCm8FDfuBVHdhC5p3dnhsIMngrADuhdF9l1qDWW2mR8ac6uuQfy4kVReGcthcV3LvQlY9kxziygngHSXG2p2ad8xHNPaoRlvQBsUb2yzuPIjfzdZ+p1GafanMNkVk2izaPmQC3ZdBG2Q8W+9mA9IpWy4dIAarXyjHUIxLdeAtycLRdhLK0E1BY1UHNwRz43aZ1swa5pzAie9aKpprMKXDwHgfWYCNKpBx9bhWX13UWAHgDTu8yqaY41AXVi1/Fe62H6mE1rwvj04IENkjncdoDvPdzKlNtxDgG4fRc7HkCax5z+xEfpEmA7rGNPg/dmCbAHWFgf5mlvfAcLW4A2bGQwzBTeu9AoOMumcUWgnBtrAAwoAdsbX5jEjckL1WjsGoaZwrnCmdumFSWpsSAZLkE77b7GrzGPcT7HmtLT8hKqYp5HXrwSf7cC6Ededy5y83aiXY79B66AgaxwK1YdgXpth4YZPHcKs9WF7fcZQsB7LC6+aKqrEYGIXct6PiWhrUyAefHNTfk7XjdVPAXMnbhH0bNzgJu/Iv+0/CvX59R4ICpUxuuijzsF2rKOFD2YeGqYORwlq6brLaCW07e0GQTbyH7AulXSY/F48Jy2WFSiOlyeV73+hqQpTyy9Vt0vwguQLYE3gaRtXfPsN537HE5AbYX5hJ1TA/WUZ+sDy7U+O3sNucfqY5AZojez9+gGk/cTJoVNgB1N4WYIXmCpDElxpyleBLIOGAxM70JHwCCwaxs6KrYD3GBgB8CRR3gEajOE9/Eu/o0ob4tQ8WnZUfojgLbGo4uKdI0BG9dhMAG0nTcF07beBfOkjWPbsHGsOsTtEd3krWuaxYESsDtbjmEXjd6EilOsPkV1Y077QeOaRxM8i3MB0DnMV+CcrqXvPaGgkfqMUT9SvWCvxJ5N9Zafp6QaSn+ptCBMM4HTkV9rAfXKhg4i7xSGdIc4jx9pVgIx7d51EeBtsQqa810yl4f19ZkpfMnLEmOocCiHFZikjFWXVhQFqBX9m9Mrn1HU5yKfObsmVg5Jjum2IglRTyp2nS7MKCtFNIeyOjyPU48BtTSDa6ssbiNnyqwXDR8sfRdWcYoKkiqNL+Kq0up9yd8KSHMm3R6r9gy0kVhoBdQs3bTcptjHuXp9AuvYsLwPTmLBUSsAtjc2AraPA3WAt6EZWB+mVWHDyjOZwIlNM1adHqaIDx0FY1xELhPN4T55gmcW7cMypA6wZAKP49e0raZzBs5ZDM5EFpxNzyQWAaAJqAmkA5Az1mM9Nj6Yuwm0yQPcRm/wwKxDPlwEZABYYWiaxbm3OFACdrKGJLCu2XVl6qa6MMPkScq0qtcsnLcJHaBRbNpSKWwyg3tfsKqiKkqlTWFsOVHeKUmsByHdZFzcEziXGYmnhivaPNaoKdiSVdce4ATUVN9ILAa2DG3i2QVoO+OxhsMGYQYGMWobGXUau2ZCTmbVYjrAeD3R6odg1Ul3QvyeCdQSlFtEqQXaUvWOArYGyK3jXDF5mCGp4NSpLoE6g+88oJadwGLMesvOBLBnsN5ybL8QIytGVZFQVZzwcLCK43MY9DzlyhEaRKoorcJk4FyEESAbZCXFAXwKqFkalNlym8iceQnaGbBNMocFkI5e1XaAtzYw7QEBzG0YlzVD7miQ4rYDYHrE+dUuMWjOpEUGKGNxHDKAMYyDMQamMwn4rWDVdgB8jzCOnUA7TgGL7+Pi+C8Hammu7OASA1LBOv7e+C4pRiCA8gbAOkSaZRYPjmjhM5K3eFj8PHx3YtzexOlwxjfZNTd/0/k2kgBSaQuyE8tBu5iSJZVyGq/2gm2x52rVgZ2EfOXFegq82Rc4jxSZNqc6XyuVaKFg43lnaqC2xiWg1hwfQwcwAjcDbXibWHUX2TM5KoZOQa7jNG49iPowWjuoeUqQburQBnBzoGbOhSpQy/qFRpj45kUdMAJvW4Cd6hMyuzZlPE0WLYyS6gTSkc8W4B2+KaDWQDqPWW8ve5u6NTt8z1JWqAZIK/ko60wE7Bww8VAkAOZsugBqmx3KZgG1CDPWo+tqZj0HsJ0zCbhd5+HJecsZoLfwcPC9jSZwkxW0y6w6nQunMlXIJD4AyRxuXWDXnYlj1b4we5dmcHI0i3n2kVl7h8HZNIatCTUCAuq17dOewuG6i05lHhsED/CQRRuPvmDWYfrZkLx3ySzOnYPS1DeD5FRG4uI34uPXHgAtQUosGybO2Wb1KY1bLxEBoEX1EABdK2cxTu2m4pffW4phTNlT3iRQy3zvC7hDBsqfphxj5L8rb+/imOdZc6DWhl3KBzJbCy3PZ4K9pYMB4GC9CWn5vBCP9T6ZwpPuEkk3i2dOuQkAT9+T7mdAPwbUKkgrulbWQcpCisdULTySY1nhP8NfLaXN2HVCeKUj6A1DeCYTwF04lAmQrZzK0AZqzbHs+vIGnwDnXVn3WOVJQO1FXH6vzA/lmQc0FGUFygJoi2sWGaip8rG5xwmQke8vgDuepm0iRS++NfZBgOZBwG2iOdnAWQNPoGcQzjuUA69RWadlRXsH9C5N18plyYCbrwGYxrSzOdw4m8zoxNwDuxamce5oFv8Ga9B1wRTex7wD9ZxWII9jE1AHBuQxII4fxjAyc4fp4L44Om+yHTsCNo1jA8CKefOmlc9inXEmO5Ulj16wXrrPU7i4h68xfDMTJiZqsKn2otV3X/9ugbYEZBPrQKgLXoT5/KxmdrJmzkDANi1hz0pgzo90vqCjL5mTxqhlm+GgmxVrNm0Tq5ZAvTZDMewS4joM0fGjZtUArUJkfayPxid2nVY6E3mbGqtWrTAFW44dcGEKN/waUOnS2UCtgTaUegckXWf4b8/wgGUxrWwnAJvqC6WfwrjO9tG6N4do8fMEzizYlFHLYZRpoNZA2qqVfZns38FM/e1rhTQ3aQG8hYwAtda74/lLFYAup5oh3qPqnSEBtMaqYRYCNQtPphfrYOOCDF1aEzve1uipUaMPoM0AO/4Ng4VzBr3pMDgDv/Fx/Dor5MymXWTXbLrWmF0xlXO4x8ex4MTQ45xttzbJBF46mSHPuR4M/GDDtpvOwblQzcPqYza9K1/isTMu/MEz73CXvXQRmG4Xx6+B3HjILL5BhxWGErDhsAISYFsTTJrEuAmwbQRnMoV2xLbJ2cz4rJAMwhAB7/zzerOLoYy1sQpUJSj7EozLscnS4YyWmK1YVPnIzJo4GMs2xeJyRbzla6piEvKwsBhOyrZi2ELpcnZd+EUw/wiAnNIG5sltE0DnDAc/B41dc1O4NR6DrzsXkwXRKpAWwIq/8K1Ncb3yU2Bhal1gR033VuZvBtTGIzu6aoDNFTVnfVEtFaA9QxKTV8J1b2+ksLlAzUGazxzYoXXv38FMMuidGLVynwrG2rUZHRkO1LSwA6Wj3ZYqHGfVCZQRpymhBOrGPOrqnGXKmMCsO+uw6lxRMSCic9BOgI0SvAdnMXSBDRoD+MHAdWzZQ1LQfG517wK7dg5hXVLTBuy0FRWVXwT4Ifzl+drkbc5AmzmaJVP4kK0CQ8x/Wi6UvX05lu3SnzRRBhO5Tet5F1mPZnEgALb1wQsYDrAI49oE2HIFKgLsFRx62MTyaJyaxq/TMqVgHTLq7Gmsmn9hE+qPmdvMhSLVGJFk3UlpR89vuVCK2q5y9vKjk0KN+fX5N2d+qePCncwoP9uKVjyGPHvDT+4gBDDvb5SKNY9ZZ4BeWVc5MgJIoN0BgWEntOFm8Jh2ZNdjwqf4jDmWqiLHq1mY8ew8Xs91wpRgLIBaczIr6hNq0E54asR16swRGJP+c23ApucRsMMLgKbrXpxvKXxedcukPQXUHKT3ZQo/2/2s5e8lIu+TiiJ9GD+vEom0UiWi38j3V+2BgbTnf2LudOVMRkCdJubGcwnYyNe59yrt5UxsYGXDx9ccF7hI09rgLPr49ziAobdwxfKiYHOsmQm8j2ganhQiToG2Re7ucobGTOFuCE5sfmXyJh+MYZMp3A22cDLLi5GUoB08w+mvXiRlgIXFkB3K2H0b3yVwptfsXQjbuC558LYAO7Fq+GL82iOPXxvTZteg8MIOh1w3iorKooi2UJBJAciGtQWNZZn054trGtjLaZAcbE0OHGe/u+mskIQKzkhtS17WHMKkCbwAaeSxacmouRNjMX82WV7Y5L7IsjvGrp0pTeE0br3o/VlnPJzwi0gmcO17a99edtxARSmAunBMRNmBk4BdhDFd403xM19mgE2dijRMTb99DIy6ZZRVU96m+rmGj1WzYCJHdA3LgLoyhYv0l8rOYJ3KYi5Qs7o1t6OhKaYQ3gZqyQKqnh6/PPZBCzZNfwRKDKSTuRsZqPmGHA1mXe3+EsM6E4C6M77aHhJAVUG4pO0dEZRJ7wNQXxnC5970HTYrtlALkJcZHRzMZoAZBmAYwpgzlRWxUAJkkrBckw7k0hS+IsCWjmYBqE0P+FUwhTvvArt2jF17U3nKhizk1cyIWWfWk5m2BGwAOwE2setiyUj2DbzxFbtuyjYNWSQo20o6FuCtsGUJ0jROLYFaPi8G0IyKbK6MWlkBAZnvxJam3rXViW5FZx3f8FsxeYs2xOdAS89vDtSSWYd3sgVgD94m03ZS4t4nE7iU1nh1MU2zCGfH9FdbKkwCOCRyQh10CFCn16mAeso7nKWbyt/rjruJIEUgJr3JiZOh+sDYNZ2na8jpEYjTrJS5ovb5CjLUdhSbAmp93HpB5oTshVlLrFNN34btZ5vCWAIzRKsUY0Dd7OlxvWL4vcIsx96Hs2n+m8adaR3sJlDzMWsCabpG72LKqQK0l3MXt4Y0Ebi1SlExB+qxR2/oU9fh8hBg6vHVGpc7D/KQSp2e3oVNOyKrNv0AGq82AHwXu70twE7lRQ3UR/N6AGrf+WDy7gG7io5mPS1DamDIY7yP3uvJHG6TObx3FujCFCtajIKEg3JQqATaYSrMUVxmjQM2OZ5t4uIUFh6dd03ApjmyHLCtiSzJ1+PXvMdO7NoY5mhmEFgQ1UmzZXNmJlAz0ja0PyMAvGBWAqg5NgFIHb60ol2ktVKh5hvE+dKXlYrFsPDYnjhIVyuWISpjAmV2LE3gpec3B2ySztTrhGuA3cHBoYOU5AOhiDX19K30iKoMBbvmwD2iH5P3t9CXc4G6IETp3vLDp2VoYxzeqePqPxUFqUS6jYE6Z9HptwSfVC4ttjhfNMdE6UBG4S2dXO5bsFt+9r8oisKwPRTwZiLBvckOwCuUL8O0itV4bgJqnr58Hhgg03txVk3MegqobXksQBqxQrBnFAomXl8Zl4B7FT1StW37MisIYbR2tvMWV9wKKxNY4PG6x8WVy+PtQJ5TS0C96YMZnJzLVsiAzMC4ED5ASMKYdTa1A7YHbB829khzr3vAd/FZcfza8YVRQNtd2moPYZIOrgLqEAYM7OMmwPZdeDDXueRkJgC7g4ec1tXHse3kcJaYpm+y65YYk+clp15lEaEMS2dKezHKkYOyBPQSuIG0jJwEavnJOd5wRWpk2soiKNtKKh/6nc9NftHCq7dYmCJKcu4iUC4YUBBtnDqx62S5ocLMnuEpnWgSp04gmcL7ha8s2XVVhIVzIevxsWPBqjXQpXBp+m7pV66LwX/LvOUsJksMY0xcF3PQ5vlO1xNIm6ow0jXxXL3ASik6eMhALU3gQLaSSHN4a+/zcE+0iI5nY1R2A2sCMM9+C6DepmFOOqW1FI1TKiBYZULo2SWdFysFd2RQxeS/xKqBBNIqUMf1vek+Y6nmsx5bxDY+E4qUDJlfiFkf2QErO0TAdgyM+bKI2aGhg8Ox7RPDu+JWsMah9xYXV8foOoe+82loLTTS4M2NYQD6AX6zCWDbWcDELTE7C1ofnLPpUUnK3idAzt7gPoG2p60zYx/BDxbe2biamY1znPU51x08U6olUCf244EBJjBwUwK2My6NhfNpXM4Ec4o1LjaWch62NR4rDOgRmLncQUmy6/CdyTdBjFsTJeX2wikloymkOceqjfD2VAI6B2rZlgAIVsRMn0pevXK+tVC7jOclOMfzeOTOZdW4IwNp7qSYQbw0f6tAHaUTrLolNhZAa81orY7n8WnW6SmAuQTp/E01hm3yd6UhsDF9Kj3BqS5IgFYAu/IPkqDNryE/g865k1pi02BhsqiK68VGm6q0xpH5nuc5bBlQp3oyCmjzZG/MmqkYzGHTlcwBdkUxcXCWQC0rU+gE+Ji/XFmTmUXLEwdoAvj054uj5wBN14yPQI3EolPlSL039jgO5lECaA8JsGl7yLRNZMNb9cRuErO+7NaR/XV4eLVBt3LoO3qv2GCiB7choD7dAN7Bu47rxFBOXW3W04TKNS2w0pm8olkP+B5wfDeuHjArk5YfpfniNG7dO4ve2+YiKSQE1DSVK2TG4YjO/aoE7KLAkYB6HR3T+LQbAmN41tuOC1uQkxk/D7oxgBg3hdeFxQpN64NrzkT8Fn5NAHPxx8KNAOCKSTH2Upk4wVYoE85BBPoFgGBPIC2FlxsrNm3VKVWhMmWb2LVh682PAHVhBk/OZezcWwwIDN0ZE8B5ZgFont8VYKcL7KgAdItVJ30Zr3OP8BZQp61UWwAt3i9V5wTU/DxbXJIXuC/P4ZneEXo/XWekh65XxSxM422QVgCa1SEeJq0zEqiltebaMWuSMXYdw8L3iuPWMXg2oAuQLswuSsUrKpP4gCmPceMLb3OPjX/gok1EkE4mb8POCai7mEAC78ikaJtLAmmTPxoHZVokowJqBDP4ygZgPrYD1nbAygw4tj3WJvxem6FQJmszpD/nDY7tGt3gcGW9wrnVBqvVEMet2cOGyKz7Aeh7+NPTUDCdAzFrIACNT0t4ReGe4Nr388wc3huYzidHM/IMp2lcLs63DsuPohq3Tl7hDcCWjJpPrzkF0MEC6AvAtggbddi42pk1PgJ1F74BqdxYScg0TtO2aK4sgOTlG+pPZtegb+5NOufj1p4qBj/OEKoyVVvy9TVS1JI5lwDLQJwUp0g3m7wVwNby3lKkimJvqgRT/qUFUVjY3PFqznqkCZwra5rDPwbUtABPSzoTNuzYRsIS/WXactVC3gmrvcBrVm2cURc/qYiPCtilbm12EoGS9cY6UwI1hec1H1odSl4EpK/VcWkextOZ0Z7kPGtpArfsWg3MOlDzocmqgBbK/pYbjT0bXibFB5m6f+ljBRgnBSSAWgJ26jg4BFClCt/KG91DgG2CQvJdBOguArYEamLTBNqmHAvhrDoMC+c5odr8ypVxOLYBoFc2A/WJ3WBtBhzbDVu9y6VrNHVp7QZ08Ljs1jhZbbDuhtBISNFRWQ0O6Htg08P3fTCDI4T7Lq8XXgn3BCfQjr3jtDOXR2DYnYdxtTd4msYVzXJp+dFq3LreNrPOTlgkhZvFgQDUDmE6jYMDPE0FC/OwuTmcjzXSKlQE0vA0DpXBXW55yM3hg89OZVQPigVSqC6MvhUTBZiBGpTLMN9UhhWIN5R0pZSFMibhaYAAuAXMXClr70p1VA339cvytgShXI3GsvMCKAAKEzj3+tZM33TeUWFxT3Do3t1LTN8kcp/3DNLsHlHm8lsmoJZgDHGPy9fK8Wuf6kShV0U9axIkAl0VtJkDsk8YHs7pWYYDdX5WCjP5mc12tAXWcCnGoSFYtQLUvFO4q5zdCmZAVTBprEJWSt4ZMuwD8yhjhaxV0sJ0w2sPteDyeZ59fKpQCZjlgiddPCegth6ILLXai5qDtCnHLXmWSKzNHzYv7p8X/CCgPrEbHJt4jIB9ZMIGjp3xWJseJ2aTlkNcR0/o8/YU57oNOu4ElwrDA87BDy4A9TCEDTasCVO5nFJdxDp9vliFgtJEKBMfQdohOZzJaVxp/Cx+vwDYedyaVi8jT1kqI2I2FnlRFAJq7sHrCLjZa4d52C6xa24Wd97EcWtXjF8DNirqvBIVLUlK3uG8npOjGS05KRWzMT5ZV2AEy24JV1rI50YJ00A6xPUszLM21G5w6dUoDZTj1MWUHX6PzM+UpPrJXoc6zqaMlxg12HkC49zeNBN4sbwomcNjveGOZUAGZ+oM0rl0eKR2twur1kSZPZcLxfPfyN8SGfiKjlgC8LLNSR3aBGqPCqCbepoBc6oH7DeRJ+9NZQLneeV1qAhDjqfWswXe4bRqmdbBKzt6bC71CFDz8eprOs+6EMmuTfomQTgga2ES8EXZyl4i7z2aWKGokpk4T7Rm1lR7Qw5IORqqHJQtUggRsEGg3fmwrnbns+mbgLpzcR9qZJCO21zSszSwBsDM4OGx0UCQGGQA4MyYj02P890VnJgNTuwGJyYANgHUkRmwNoF9b3wXPFG9xfnuCo5sH5bEpB29ikbsEW3P8EP09HIdzygrS5MBGsiMmofx7zxEi4P3xdrgab3wBOQIa4zT/taULV+y6pZHOBDNlMjLkJIM0blsiJWTHM4ccqUMU7RsodDD64Uvoo1f8/m5tHSkj+PY3BRuDYJXuPEopnARbRhD6NZ1ya74kc5ZO6GkpNLl10kxc0UNcX9pmozMyCG0D16fZJ75MxrTJUdfM7VhFi+GaSZwOd1GjjOGMFeyJvZNiVVXY9TIXr55KVqHYQdwprrtETqK3vP6zwsDJSgDpQkc4joHZ+W7p98CtENYPS8/xUEN2EUYy0qqvqRXKS7dynW1eJ5k1ymM3ydJ4kKApry0pGbVtYVGA+qWJWWp7L4oCv8IWfcHUJqRx3LsQhxnZaD8yxXN1+aaKIEghQcZAmNecypmHQCazN8VUHeRSUegNsYnkM7mzlgZGr0s78t4AK2BzdlZHosmgD5vr+CCPcXa9AmgwxrZAag7hN2mAGBjVzgxGxwTWItyNIODGSKz1szdyqIn3pgCpFMYL++kbUpTeFhuNAN02tTDBSc0RND2jtY5B9vQY8zTNrMiAm0AcLDRWxc4Mnn82sWhAninmsNpcwZuDieQho+KPlZkMocTu7bwyRTu0/c3hSk8aSDu9ipXNJsSqcjpmBRybpxTbIgvOVoBNXdGA1vkhedR4nN6jj59K7GhOUK3p15DDuOzKaQJPJ1zJYtsAiep96r2FVBzRq1JBw/tip35otNLiorOmfKXOl9FHFN+S9TxpR6tgLox4wbQQbu4xshbqiIexYIocGH8ugJpDtz8Gd6kOmkgALxVhB6TTUpz8uXn3N8hd+papvBcGyaWRRqV/SyKwlmxBFrBrsM5czRr3cfuVzverKIkVs0rWJqO4HPlA5gDTHigMXG6kM8LtqQx6RXgVz4cE6uOQE2mbwLqeLSGTOCegXWbUaf3EddpTW+5aYU1vgRsu8GJPcUFc8qAeojHUrlszCrdm4vAgG+4AecQmHUEDO9pDkNwMJN/Y2w6vEg4clM4mbo8YAcfpnFpY2kuKxeXALu9XSYXAmjLTOKhGMhLlwM1TecqzeGcXWczuG4O597hLXY9RHM5AQi9B58NMOPV2qIBtrzO/8AVtK+uLZVyfX2fwIErV45XS0C6iFewaYZKos1xEzg3ZwLZxDllAu8EIMupWiHMVQv0WDM+dYuE76/efHdi2GzcOjmXARmE+bkG3BKQxW85BFUAdeURroNzMXzCdTuQdH4B1AbVgijwcX93CdKe3cyueYi6FBm1kfdMiCRUcn51qkdVh0+AtwBq6V2+rezBwSyUuGTItJaGBG6gDvM5mQyYpry/MJ2Lx1eVMlU6wRAQK0Y0P5K5zsSP661JPT23AoYjD78OVmDf+QDcEqg7D9v5xKZpa0sJ1vz1NZF6dnAWnfVhuhIbowWIYYcx6Qv2Ci6YU5y3V3CEOPcaQfmsE0g7wCGayvts/uNlNiBuvOHS0qEmTs8yXRemanUd0Nkw19oycG4NxJCeswGgvUdlCseq/Gay5+4Zsx7b15pL4fQD5g0uADsDdQTttNpU29ks3B00WwcTneB9Am5trWdi2Znp8XXDTTqWgEQAhMUInkinopyL5NUB0Cgj16mtwvuaXbfit34rCr/IBieSvExSGHI7o6DUQW5P2SIpd9gqw0n4tqvpOnNGS0eDURP4VN3VvL716VuI37Rm2fmbm7JsOfgJ57FMbHjbmwHUqZ75/BxQGM8w6e9M0jiOe5Z3Oi9+N8IqoGagvKQjyKUFrHIIpQwrzd0SqNW9z7eQPTmY+VxpOMAi63EqVEB8OPnVTBmXiwRsqXx4b5AW16jmBLIbqRI6ANaGqUMwgO8Ad+Th1oBf++T57Wmqk0UB1NaGsWoC6QzWuWfWYtQAmGnXpLIKgM28oNmqXcSe12bAGkMYtzYDTsyANTy6SHg7AJ0xuOw9BjKRm1IppcY3+LQeeDDJG/iuC2CyWgGrFWBt+DMmnrMPDNGrTt9MXNe8wnlvnisIlxIJQ+dzgNpkgJbOZRQODwwRoiW7dugyM2bsGsYV5nAXp3RpzmYk0tGs9Ar34KuZZXAxOjaPvHrBmljYWFwATNnyP69O1QrfxRcdgdbnSOPWUkT+FilTaWHjoB1BnFuxcsdIM4G74kisWq4FLk2YJEu8e2exa1aQctMaEmLSVZml78EYNXK/RrLTEsAF8HKgZkDeAup6adE6X+kahZlo5mbREssu8pzxQbo90PMTQGtHTZRrLb0sncsorLgOZpXhdUsANb9vF8PZHqduMfCVDJoDNrtUxZVdLuo4Nlg13VfN/WNATQwbEcS9AdAZeMv+OgPXBQbtVvFvHQDbr3x0LvMJpGkOdVraEHVvnoC6YztlTQltAAGgYJLEruXqXZ0JjmQnpo9g7bFGAGgLYJ321HXYRGZAvTznTXTiQjR/eZjBw7vgXAYbZw13HbBewVibWXVndZN3+iZl5fQumkzIFD54mM6wb1ef8++Z51RuL8SKyGs8zI1l141PY9eDp3HHzK5pDXC+KYN0Nkse6anR1qZwOiZTuGHj1ppIkJIilaKikAtlzcMBtKrlKOsey4sRvzm4i7DWO+RMiCOyPkjhCajDObXLlgmcs2s5t1qawLlMjVOPiQRsbRW+qWlbZQBQM2fkNiK+uxHnPEyLJ+vMGFDLjh/QqFOekS3no25nLLtRb1VdUMWPqcT6J+vanFXMuGgLM5ZryJeOieFYen5LoN6HKXy/U7cUwB4dzDfMLBI/ZOUVzp/Bj3VSqedfAHXvYAcPs3EwzsN3FsOxxXBi0Z9YDEcGwxHgjoDh2KA/BwznPNw6AnWaR43sPR3fCy5k2lkAQ9h5ydqgxG30CB9oNSvKp/JyfNqOBYppST56P/fOYuM6DLDYMNpCPbg1AlCvjcHaWHQwsHEczYGbZULlSpXZ8UboownchiVHI7OGjSZwPlYdMp7Pi4KJxzjmbegnmcJ9HiM3A/MZEOY5qYTo5/TqZe1xxjwfNnRqiFWHebEueYa7WHbBeSyuQiXYNTmb0XQsbdtD6WhGOeemcCAvO0qAgxbDHhOp8FpxgGzmBFCNV/s6fvuZzBRuQrrFDlyUPrEkLa9znpU67p45l4UjnxYpO8xyUw7NwawlaRtMcUzXR8yb0gGSxrRLFl2uxMd9MsihMnfeATJ7a4uhpOLgQC5/Sy9vAcSp007h0lzOgFr1BgdGv2GCiXQUvkuEtwyYyw47+zMo3oPUTgH+exA5i0Bea5m/qx3bsplw67zs3xvc1ObtNH6NXM753DOkRmISqfEX5q5WJuKjPJLZG/HcDh72ygD7eA+zGeDXHdz6BMOxxZWbDfoLBv1JAGsyfRNQB49v5bkRqL038C6MwfroZOadh7Mmjl2HMWwfC8qgdFZoiYkvQ3HDXtQdrrgOV9wKG99h47vUYw+Lf2SgXqOL7JrAOoxld/BJQbjY8LMndswP26wjALXJXuBjDmTab34e2bUZHGC7oiGmMmW/TVQyBPCjHrJbSvCUp3OHAV2YH8vmXQ8+hHF2TU5mgWWX7Jo8w8sxrsyuieElXwZvyr4PMiiNdHODtJQkK1PjMwtqMagp4R1hANmnwUPvULAOAbwplKecqlUAuPrwkUwx/RD6N9mixVl0Jza94eOOmgncgingfWl9tDuZErSlVE2KAXc9fSsVTQJayahTeAJoZBDmwK0BtTKNi547mvHok9EC7NRh4EuMNhzNKlAX56OfTLnWIlBGiZPqD+volePYJZtOS9aS3h/J2pTs1xs8dWsy/tKXGQNsMCVlZHpGhIuwnIn8l5e1DH/2dIC9fApsehh/BG+BzXmDK7cabG70gUkfk8mbFJsoVq5V+DUTdlPyNgCeX4VVvrwLY93BopyncaWNHXz2DAZqMCKFQ9fCntQdThNYhyP14MMYtUlAvUKHLprBN75cR4lM62muM+8lk2e3tRGkbQJtr+1XncqfA7O4Zj2MC/zemNjBIRaPDCjlUol56878iAlGzR48pmSJXbvEpoPPeGc8Zal0NEMwf2V2HRY+0aZylZ7hOW7BuE1ISzpFAcLZbIuWzUknV27pN1ArdgbqfAYF+D0kVEC0f3krH2zcWgKyBtCjoJ1YtfiLN5ZTJEl5hiGolgkcKMcduQmcRF9aNHTm5jgNtTy85YI+PD7Nq+ZzrAHozmbpOzLAjkuJZn0of6P4rXbeGKATiKrLjKZj+eU04CYO3QLsolMX0/XiWXIaF49flAmBRRpW8/laQ4oOtJAxU3Zi0oZ38MT0P+NzvdoBrfez6xZY7yYhNFCYOFqAHW/0KJddlOzasyNM+OwVYCNXMLvxsBsHuxmCl7MxwHoFd/4I/Q0dNjcYbG7w6G/wcOcGmGMHuwrmUddboLc16ORXi+dEiQAk5WSBzsFFRWasB2ALZWKMTw1Sup9oPWznTdrAYuO68OeDSXyAqdYltrAJqIFg7iXDOZnRB1ofOJm+2IvZOJZtwvh0Yf7mgC1ZNdVHEe6dSdO2vI/H1OOnBoVaCSyQjjWUXYXvP0xjz7QalWTXdAygzNi1sckUDkPOZRmgw9i1KcatjWGsM4HRjAyLsuKMR4tbmMB3lKA0Fa9wLW/ymb4RPvvh7FlC2RYMGyVIA5lRA7Vy5WPW3PRdeH4LGaBv29raJS4v7DO+dG4xXYv+tcarCWSBghEn4EXZOUtslnRA0gc53RZQhzg+pZkzqIshgLA6YMMzPIjATB0Bya6r6Vjp/UdAmcefEO5QJp3L+JAKd9bVdt7Stle95syaclEANgdhIBVWBdh0H9gFAmdKa+qPiw9zd7srA+xjm+DhbC2Gm07QX1jj9OYVHn+ixelNwHACuGMHrH1yGkt5Miw/LG1VyMEhrbZlYbpwP5/CIxc9IcDWkq1ei41nkRmcGHZo8EGC+bsGbyA4V218h9536IcOJu58ZZPXfMyJsdGV3IZzywBbE6a7tLXDDZCdzIhRs4ZVAIc8Z79bQwdyjHquRD4dzo1L49YDItAirEYV2HIAamLXNE2L9qyW7LqYf+ktJIuTY6tAPW7tc+83F6RW52W58TCmZIuyTmGenbN0iriNit9g19W4NSnZIs4ERre0WtH2fTFeDSCVJ1eumVWXpm4O2BR3H6tNaZt6OG+agE7XpSd4tRY4CLyhfiv5bSVjlr4glflbXMudaR2oJUhPdQA9op5RAJu8v6u6KN4lYQzVH01fGBFnC2mxaDryxXT4cqK8QyeBuuMmzG3ytPWdJEXvFnnqH+vxSg9Oz+6jRUq8QXLk8gbRAzunx89THC0PQDB9X97AXnwc9uJleGNw5QnHeOSZR3j4kzpceorB6S0e7sRls7czcL2B720AljljpPKDOoTdotKOUTmNFtAkZ5K4/nVrbiXFdchgfepXiVkPMvmP9sBPPizutxgiOx+cDdtRxj2lMfhs4kzj1DbsZU1gXWUo/L3ogd/Ck04fzkAt/xzbAISNoXGFY+T5TBnzspwD4pxF8TXF03VqoKZeKzo1SLjUePmcXStAgptlC9BG7sjRuLUUP7dQRAeHh89hQNV1yZ7mSvqWXg1v/uaXxpogB2gAFatmZQzU82QlU+JseZ/j1YO31YIpY6vvkZRAzRUrj6QxbP5nqjbGnTglmHPQD3EmgLoA9VYeyrTjC1Xm9KrTABTn+Z3z0Yg/kgIaWp/Qt/ugUop5+SLB1lg1AAWod5MzcDALx9JEXW6NCaBk2HlRqdArCis/ZnO4Zc9IYG7YlpXJmAIgfvTewZwG9yF/3OHyEzpc+kSD0yc4uBOfPbwpvwMl3nrRRjj/eKxxpDw6C2/DmLEcE8mrEuXfRGBbypnmXXNmvfFB1QzwGLzH8b0O5uvugfngBu5RB7zqJgwIPf7Lfo0rrsMwxDHruDZ3aDS8xpsA1F1XjlfzFaoAvPi+X8Mr730X7jm6Fd/9rG/AfasbM+jLcnImOOOFl82KXANqLYn4t49pEHOExq2JHdPYNcjhrLVQCgGCN3EPcZs8wy2kE1Sej11YXop6MKPjCKGYkhLzNftAreiK8WqZFgnzMZjVl2Xj1og+CTt9Oe2ZrMyoo0NkvwBk+FrRity0zN/kgNYSCcZABGkGytIUPni2g9xIB72505andsgB26ggVoFpMWZds+oKvAsnM93BLORl/OsmRzJkREg6n+oUSzsZ+oQpvFWJKsbd1OWmeZFbZYC6k0fnxcp3auc9pyE3g9lWdmfWQMmm2V8Z7qt49KEKhm19yaxjDr0t/4pniDDXGfh1B39yDH/hXDB/3xidyW4c4M/3wLEDVi7Mm2aVJL3QrgXiwp9zBm7IrJlemQM1MWsJ3i0hhuyYQiDTm/lon4AaAOzr70f3ow/DARGo17g8rDEk57JYu1PLiCghp2rxcWoB1ADw1NMH8f13/yRuu/JwGY/9FcwbKAEFI71gZIVcslWhUA0x3OW92LzaWdnw5O5K1PBaDZTY9dqEHdKkF7JcUSssokPXAM6w8wCkL+r7UuHKuBqv1so8tYPp75Kuj1TaJjuaI/S+rBPDy0UuoleZv1Gya2n+llNs5krwF7FsSlbwHxljzVPj02PTthJoC7bMw6hYEqBLx7IGeHOv8PTHPcNHgNrEdl1sodoEfnm/0lFI7zQv7yqA71LfmKimcDWszaolu94FWfZgBvepISVFIo4csAuz+BRgs/AClK1ybhAXOAHckUV/4xH6227A6e034PHb1tjcYOCOPbDyaR1vMIDfqRQ1cYDvDdzGYujDn/flY6gRZtDOjXLJ8poE1A5Ad9flBNQkq//nA7jwLy/hsl/jMXeEy8Maztlq/fQk5AEelxfVTOAv/ngGapKnnj6IL7z4hzVQA3mcOv2xQsA0IMD4rZTqEkk9Z9Sm8Wozh9Q58JU5vFxvup7juzIOnQ0NN5jGM7jwhXbyu7fzXCg/5PNKAaqK0IvfWxSazMsZSHqFVjkkZp2PSQWxzh1QjktXO2gxpUqyjSmcAJsz5/K6Sccpk3gJ1PIi9O8tw9CIUyzHzP986WQ2AtQpDtuHXvvjeZaADflsVp95OK/LRTNJ76RYRmX936K3K9k2UI9bA7XXuG4G376R7HUFs5CVzB65ECiHaNGZgMwfDMTI5B33KCoekdLyCIuVeAPnPayLQG18YNXHBsOxhbdhoZPLt1j05xGmZnGlRB+A2+x3UTjG58rgDdAbwHm4uHhK5yx8l3tXgVFLE1g0+YiMcPP52EIO/d+8Ae6igX39/UX4k77vUTyjfxC/8vWfhiv9Cq636DR/B2sB66Cy6igvvu/X8MqPvbt69o896QX4hZufzUBAJB7HrJF67gws8uuXwjpSaSxSRErzZLf0BCenMiDPt6ZzWn40j9XY5GxGJnFpDg8m7+wZvgoX4LzByprklLayDt7Z9F58ucygjVi9nKNjKuVVK2ypvKdYb7rOTOCTeRB5rfSjaZy3hNUBbbctAEX5aVNtuEUGyBYUOWVrjrlybAw6d5zN7HuIcWvTtgpPcKB0LlP+5Fi0NjZtCKgVANfTagP1XAxKTQjl+uBkCfCUhsin5ky3tQi9KjmIVi11vwfRyTMecqZAOfPAjersubK/FcyA2aBtAELk4sMBoQDj9NUmYNM4mPOAdSbtMU1s261MWJnsJMyn3twA9OfjPGqDWnsQyKZgX8eZXRasA+ARnM0A+CGaxKNydi4DdYlpZYWSlaVY+7pRAYZX3RziC8D+vP/9Hvz3y3+IX/0rnwzfW9hBzGWm8ei09rcC1B//Nbzy4++pnvljT3oB3n7rF8V3V0BarBHu4xaYhfJvNUiTx3OTaTqx17IMtnUK6kzeh7gzHvDZKzxUSCTAtlwhx7Bi3XBj0tj1Gi7ujx3Gr91gE7t2cbnFzjqEXdaQ3tMgHItZCTOqZMlIcue0Am3w375gP4WCHnnOoiYytjztyENKR1IG1CyMj/XXwyW+6EjRNX4k2cYJyLFhqHTe9PguN+SZkmxlK3/TeGIxv9rzlcBKU3lp3ga7B23zt8c8oGZ1aPRdYHTANkj6IectVC7PnktgLgFcvk8F7jtIQZBEHdKEM2qKy/V0Bz+nCTdlP8xaygRoUweH+ow+frXEsuMqNiE4njCWEbgM0sfxHmlsGyaYwvtzwOnNGajdORdM4NanvJHLm6f8ViCOvXx0eMA7E5y6onIJTtKmfKYpHdBKNp0VD23ikdYx1jL5rbeGchKA/eJ/+n/iQxefgH/6nK8MO21JM5XCqH302Hnx/e8bB2oyaQsHs7CbmQdotTdx/5wZDdwZq5ozC190ZJYIXyOcL0VKq5mFukwej0BwNAvxLGPbazvkiknlaYGNo6lfIc8rOyTzqGTXnXVx0Zz47ZcAnFRcvOy8OCeFiDL+lMKdJdtoI4V5a47PRVxi0koyGrvOirRWutsOrajzqhlgkye4tvhJmqaF1qYdJp2HEwLgumAkQzbir2LLabMjGbc0fyM5HaKsIwyoVeuYIgmgOWDH6X0quwYDaeSOg/f6XteqENDM+LytptaqJ3mYyxUOZRKwSfYxs2Bvi6IwEiwkgjYBMr9CoB2/kmTZ6BAXUA6gbRjDKPSiN7AbQncP11n05w1Ob/bY3OLgjwJQ51pJ+Q0ATeCZ3onyvaujGb/dGbjeoofeByAmhXiUfwRSKztgZV3edcv0zAmKGJ8HvIN71U0Y3Abnv/eR4lnf+a/ejUsPnsNPfsZfKoEyLPsUM1QC9osf+HW88r67qlf8sdue3wbqFBY7U4WzGRKAN8st1q/k81YsGxnHiFHOlQXyjlu7CLHrXFcyYFti1LbHxq0qwHbGJHO4BHG6topsmtg1H7O21mEwcmZAuy5KrJGKG6BzryhzoWy9SJN9HxXTJlYy48KbU/JJGYnTFNmnNtnRjDp0AGfSYjct4VzG4xITailX7lCWw0xyMGtJBubpedaVJJbJmTSq76sxTQngHLS1eBWgp/snQHoMixI5Y4BN2xPTrYJdF6x6CpS190/pjuRJEb75i369TQqkCVzWpV1N4XtdFAXACGiHiwTaefyag7ZPlTJ9JMvSJKAdCJSiIvfh43Mns+EE6G/wwE0brNdDGAcaTJ4CkPLNQHmf7LpIN6ThexvHr30qI2PZGCW9TzQiWBNAYxW9hVfR/MuBeo2hUCxhl+awSMrGD3j0lefxgDN42v/2cJG917zt53D0wg7/7hnPy3nki58wBfziB3+jDdRPuKMGas0MngYdM2CPl1+M3uy45EUHgNBQ5HKRcyUzaKCYR1gw6vzbITNqCdjWeKyJq1ugd10C7MEYrIyBswOcM+ldVtZh8CZ9b2cAaz3c0MyyLlx5szCuxKRyB1CPO3KnwCWP3wJoi3sFTeZOpuleajepI8eBmnUsRCeXpOVcxq+l3yxOa4lRdQEUFkaLoWwjBbtWvpsK3OQZHrNag3Rp1s4MuzR/U3gTqAVIy3on3HCSlIy69F3iJDitIc9BW7yzvEeKGbm2RJoe4KgtOC3fB6pLu9C/PcyzLjNl5mQnlmICbgriyiJ9FJOnIMQG6o2HsQbGIphyAZjewB4hOpUh7KR14nB03GO1GtD3HXrX1UuI7sqep96TxIWK51MPA9kknLbczEqms8FjeGUDAK3MgLUdcGR7rM2AY7vBkRkqM/gAD/gBAzyueIfHPHDPy5+ED22eiC/9gT8ssvf33/0zOPpCj7d/wl+MRWHCVpg0xmwM/peH37+MUTdA2Dhf15WJlsRNnxzY8vSbOBUH9dg1yb42YuAm8TV6wGeAhu0LxrSJe12vMSTADtO5DJyxYezaD3DWJHbdGY+h6JSAaVpWR+VvlYmhBu4CqH0ZF5kpTX2TJTJj7Q/9vqkmqWRSjlmTyFWngLZz2ZQsAV1p3i6YODN/56laI7ttRcnsmjFshDADFACssWcZXoxTC/N3vqcB1BKkeUaJIQvxQOr4JmsbkS1KwygATcmmvCnTW33jfIZonT35u5ieVQFxA7DlDJIdddF+x6x9Dd7hY5QMszgfA+5YOdK1GM9YAC5untEZwCI45zgD23v05wzcUfjaYWw4rErWWpksdxK4mcks/uhN8fxItJktFGPJ/Bn/jEdnS8A+6gJQH9seJ3bDxq1z727wcQ9meGzgccl5POSO8MBwA/6vl30iPvj4bXjpP//1Imvf8f7/A+vPdPjpJ35JmAbX2aS4J4EaUM3e5bv73BpIxnRjYtQAWSCobIK1waf5y3xaFR3DxhzzPlwCYHA2DajsmvLWAmzjsBbpb9AlwCZTuIOBG0w25VuHFcLGKp11GCLjTkWR2CWthT+CZFyBs98aaE+awAWrngRx9o098y/R9j2vzOFFOuxolHCWIerQSKCmekIyZ77sGGA7bwuWzZ3K6HcyhY/0UGhBo7lSuBUQSEcxDLQ5c66AlAO4K8MqZq6MYVdADZl+o81LYWtMJ0YNxqBNmSdPcem3rNsA9PpuWAJnK3O2V02/95Ch/YG1R92g0iXe6xLgTfcC6SNX4BkDPfXIyMkg9gqDE6+JO1+ZsM1lfLOh78K2lXGRkrQE6JjdRpqdlohWBqkSgQFC+JGc0E0er1x1QwDqaPo+sn0B1Md2gxNzihN7irXp02MGAJcjsFz2wMNujfuHC7i/vwEP9BfwK3/tU/A/Lt6Ev/fj7yyy97d/7+fQPWvAT9/yRYlRv/ih38Ar7n9v9SqLgVqK87Qcd1M4UOdxa8mqSzP40jHq4FhWfyyL0vMbHuhMZFXCJL5Gj7CauIeFCb4CQiRgO+MwJCezIY1hd8wUboA857pRPkXOZf+YK9Z4vZpLT3FbJnCW1qjI8Wqt/hPOSPAVwKziGA8fwTm54YI8BwC+8cIccbEOLFW0Y4A9V/LnMI0L4VCYuAXoSnYtFy6hesIBGjKOZvpGjjtWnKUpvFyxDEDNroUBiQC71QH1LO4UPofV8+Z9RzmcUl4rrTNjU7Z02R609z9m3brGdQcvAAbypgDM8C8DNwAfxqPz2HasmF2YvmXXgHEGbuXh1+Hru40NS4vGMWuWCTVvsne6SKY6zS5WGuODkku1MWBk10Wztw3AtO4GrLsBR92Ac90Gx7bHselxYjY4sRth/jbY+DDeufHAJb/CI/4YD7nzeGC4gIc253Bpc4Q3/M9fhiuPHuM1//7niqx9692/APuUAW+/5Qvxv9z/vlGglt7ek+PPI1K0BamXiDlZvjynHCtyrMFsnw/yBKfNPArABhJAt5zOWuwaYGOYNptHe/hoDg87tFlv2TvmxVGM8TqICamUJlfAWjxWx1te4HNxrZk/Jbxk3XocjUWPsuwZoo1bbyMaq9aEe4Iv3ce6XBgJmTyIb1cDtSnCJIAXVhXVwYwDtx83fXOg1nwbbGkKl2PYFbtO5m+PbDFgu9AJgKZ8FNZ3BbRDHKnkp2XKMtOKW1+7Hh3MpmRGg/Za90h+DAqic6o4zsAdhXNvAX8UIwyMTbONNcrE6FlztGI7f6PiQ0cCHjA29vIiEFnrE1AfrYYM1HGMOgF1ZNYE1GTydd5gAxvHq4ENLB6N5u+P9zfhvs2NeHhzDo9t1uj7Dv/qBc/H6pEO//df+pkii6/86Dvw4j/+/+G2/mKV/Tc88Xn46Zu/cBlQF272sjz0cFLg3LmIzJr8T441bjNti8TGNcCbgA0Ilk1lHxSyhadVxLEBKsB2xiTTvzMGG9OFKVwub6e5Mg5DXEecO02RCVybW6K+cgO001HGUdoX3DhjagpvyzaHFd+UrstzESfd00hffbzCrqVsqzDVhU/EHOvB2+ZyoqXTWQnSckEUAAqjZpY5QWBMPDfsmuHf3YnrApAL83c1zu2Le2LmqqGSCpi5nojAndYD52o4zRRBZtgpoTLPHgygG3W4+L29SqhkjkVGOpdx8nAdLIriGxpjBxlpkKoZgyq3vEb5ckqCfuJBS/I21mmja9QzdpRfH0zBBgGsO4fVasB6FVj0uhuC+bsbcNL1CbDP21Mcp/HqPlWOASZpxwEGl/wRHhrO4/7+BjzYB1b9yOkJLp+uw17dg8GdX/x8rC8C/+uvloDdAuq33/JFy8sLUEGGh2smzsIL2GDUs5eP2WsywIwy7o6BcxOwAUyx7OA6EZ7DzeEByE30q4je4jbMTnAmsGrnHXrTWMmsKLPma4TLTEkZqdBIEnvypQmcKfmdZcLKVoKzqeNLFl2Ywj0LLxdE4dJabWquTNWbMWkC9giYcym9wE1lXeSLoUgmrYXx8WfJtjNIs+u0t3V1T8gIAXWrriQeRK8qp/elT1iya/gA5AVDngPK2rW5Mtqx06+d5ZLHY3I2i6LsK43KhqfENy4oNevTNCjvAbexwMYmL+xF+ZRmt22+jXie8SYx61SJbVinfLUKAH2y6nG86rGOc6lPug2OuwDUxKhPzEYB6g4bkCl8hUfcCR4agvn7vs0NePD0PC6eHuPKZgW/seh6AA540+c9D+vHHP7u//mzzdeYBOqxhTsYe/Z5K6R2dG4WFcqZb8rAPTP3KRKwQ6ZyfjrE8UiFZTvYVM84u7bGYeNWWJsBg7FwxiR2TaxablpPRZS2zBSslMtUMRSsWolbjm2LCOzdS9tinU5mxIaFRRaVjsp7CCadz2vzf7HUqJ5MtZBQcRQFMLcOceDWWLUmcxzJtLXDpQmcpm0lc3iKWJq85XfmjBkyTAAxjVNL87cEatXyMkJUCtB2PlkUVXbdocwPiI2zcFB+OMhjHrDvQeasXpZ/786kpex3udHZ8TWt0TonZc3uo940MVPj0a0CO7XGox8srpgjDH3YBpI8cb1VnssVEh290fPYfJ8ZcXhvN75XMIE7dF0wfx+vepxbbbAyQ/L+5mPVa3WqlsWAoDxOfYfH/DEeGU5wHzN/P3J6gkuna2xOV0BvwtaYsSG/+dOfj7/xe/8JT7rySJXl+7obAlCTEl+6ZGS1+C4BdiwSUs4Nf5zMwDKAkYPZEmmxJHIyI3Yd0s+ATddCZugdImjH6xK0O1o0IzmcBFbtvE1gvTFdwa57YxNQa6AzKaxeGaHYpFRMLMarFPEOii/tgAfobUMAdzX0AQj2jaLtA0irl5XgTMf9aWrpCd6KQyK3xQzj1nJdcH1zD77BB5e8nzVU9mwikFcdM+pzKmCewTn/FekXe1krQJ3qW13WafwZSKBd9V3S52Tj1QpBkuPWJIW5XEl3tojx7CXtTttYaGxWwdg2q3NkfyuYATO6+SO/OSjztDgwk+kLgLGBUdN47/F6gwtHG6y7AY9t1nhwsBj8CmaTwRqrDNhGNoiiJmD3ntnY/bHcjPXoOo91N+C4G3ButcH51SlWxuXxansapmrZPqxWxj542h7TW2zQ4ZI7xqPDOTw8nMd9mxvwwOkFPHiFWPU6dF56W+yQ8zc+cJcK1ABw23ARL37wN/D2W74wvpNvArafWsVK7mVIEu+TCpsr6HzrvI8S2I6NQJotEFPmcADZ/B0yx/Jfgza8RWeGBNpkGj8yPU6xYtO7hsC2TZhbvfYDenSFlYDvypWBCNNtiksDYPnKZaP3bCuttcsrMDYlu2aAnLIjdYqSnnyROX3IJUyHAFpj1HRdho2NV4fr05mkOdbhHGkcOwSg7IQRQMffspNm2Pcuvr+X7Nkz8Gbmbwig5hu5aEDNwDY5jLFw4wFP7LoB3Dx9/oU5MBuPclhAEZWR/ymQPZjBRWlMNTRxjwbOIVwB6MRG4x7AkVUfrQbcdHIZTzy5hCM74KHTc7h4+RhXPGA2BmYA/CrOy27Y0JKXNknyFhcVUr7TSMWrfnMlFU3gXeew7hxOIlBf6E6xsgPWxuHYbgKzjqyaL3UXzLHAxnfY+BUuuzUecefw8HAOD24u4P7NBTx4eg6Pbo7x+GaF09MOfmNh+lAeZgBe+l/uwt/9L20TOAC84oH3AkAAbKEVK4Ae05p89y65k5cRf7KssKzHy2XwdhSw5RQuHbSBBNwMtK0hFl4y61OPArAtsW1j445cYa74xlt0xKqhj8svlqlbqZkxpUyyF0LKgJkIISA6YWgcFRBvmc2nrFly047rQZw3BWjLBVFIqhzLTpgEIcGWofxVZvLqzyv3TQB1S9cZHbBzvNoUTmkW8/InQLwqmyItAfAz75uSXRxZd5WzGbOuGpgCzjx8AqBh4qIYBgVIr7ohAl2Pm48ex23Hl3ChuwJrHD62vhEXbU7e+7gmrda5SL0/NheP8kkm8TG2XQzO0H0iDm9gURHRohjkSHaui+BsN2HM2gagpkVQyIwSQMcm0/fGr3DJHQugPo9HT09w6fQIl0/XGPoO2FjYHrC9wTf9+l149fv+j+pV7lvdiNv6R4uwBNhxfnUB0qZxXpWRoYV3c1ElhW4KtiWdzqaAmpTgYEK5hO8ZzCkWbjFgA6U5iwN3mC4tGHXMawfgFMARkAB7YGPZzthgAjcDethiU4m0HKHJoL1tB6ViPGPXU7z6nkp5KlJ+N9EB087pN48/0kmrrgOFpUWuPqVNuZm17aW3sGZIdYWbv+U5MD51S5rCJePWNu+guOoGHkBm0qwHpLHpJUdtTjVn1QTUhj0jXCvRj+6RdWWy/jAQT+PW6d4JPNUuXj/9sjORsxmzHjNTNQA6xRMgTaZuG83eaVWvjqY3OZxfn+KG9RXcuLqMG7vLuOJWuHB0igdOerhjC2wiKFiv9PJQAPYsIQBPr6mz9ZR+PCZSFp9l41j1udUGJ6sA1BdWV4oVyvgOW0Awp3WwuBzncW58MH9fHE7wcH8uAfXDV87hkdNjPBbHqt1pF1j1xuCb//Nd+Hvv/RmZY/zLp38F3n7LHfjae3+l2l3rFQ+8FzDA255wB/tYwCywJpA2JgAzbb9py3sq8yiwiO6FRSz0BbXnALZ6H0w9DpWiZtDuYqfgyJSAzetBWHJ0iM5l0ezNnrsrC9zqdl/eV5hOx24zUJ0FvZUgLJzLWudQjvKlDLZ8SV2cN+jYKziYCtiXeoUTMMvdtpobeMAU5u5yxy0KNKJQOOAyYJVH1IyZA23BqoEiHm2yMwbUtWWmHn/mYSrfWaJ3W+Ib51qcHavP4A1Wu+Z3S9kfs14K0PE3N4NrIJ2X4Yx7GNtgNqa5yMddH7ymbQa2Y9vjpuPLOH/DFVxyBsPlDhhir5TGarTevvp+Qll4EUaVW2UPPjSyAaFXHJ3dTBcY/mrlcG69wbnVBhe6U5yzpzhPY9TFrlr5eS6aWQHgsj/CY+4IF4cTPDqc4KHNuQTUFzdHeOzKEU5PV+g3HbAJQP3yu+7Cd7+jZtQ/+kkvwtuf+ByYKwPe/sTnAN5XS42+4v73whsTNu+QYN1i2yzMG0NznCKbNoXS5krcUxlOyIDoxAMLYEjDA5xdA5jFsDWRcVSnM24i90iA3bFVzwZYrBGBGqVXu9yzfFvxRhDSPeDaInYtwjz/nmy8esyKQkfVLN7K45TlZWc0mJhnHcerp1Yuk7tuqY5kYICdPMIpQjhIoJYWvQJgGZhLE/gkqy7SZICOdmdOA+yyEDyKHtKUyMeIjuW+yXQ1v31EyGrC2yxZaM5C9jpmrQI0sBikybxFJm8Tx2pXXV4rOwN1+FvbUECDtzi2PZ54fAmP37TG/d2Ai48do7+8hr/coXAsE98l75099r5gvbSykSRzOdi58WlNXhor9vFbrqNT2Q3rK7iwuhLmUndXcGKCMxl5f3MlMDBG/Zg7xqPDCR7pT/DQ5jwe3pzg0dMTXNwc4eLlY5xuVug3K/hTC7OxeMU734t/8PM1UP9/Pv1/xtuf9FzYy5vUCN/+hDtgvK9WMnvlfXcBxgRABzJIC/CuFHxk0YFVB2btLVfgOgOTw9uhDExlXhyit7VFWGXBClB2M03iKbsthySukNMC/fSN2LQuWMD0CF6NYZU1F5+XF/onwC63cORiALUtXXciOl08XPP2bjHtwvNbxkthyhx01KA9dx1uqWA1U7iUFlOe89wwRm3Zee0JzqdthQB2jABt4u/avJ3/ijBwICdgrqdqFax6DKi1orE1YE91+GaZyydQeRZwi7L04jglY52+ykoTnU+5bLv7GsnOYF0v3FCy6BBnAqTjbxqXzvv65s0OaGMLDtRH3YCTVZiLvKJpTSaM9T75+FGsjMON68v42NGNuP+RC7gyHMM7G+Y7izxWY9n8Xapw6DWDpgGYeE41KDL61CgAGOuxjiZwGqs+b09xYvq4oxbz/DbR49t3aSrIZb9Kpu+HN+fw8OkJHt2c4LHNOjDqzQqb0xWGUwv0Fq/4pffiH/5s7Uz2w5/9V/Dvn/IXsXq87g2+7Ql3wBtTMexXfvw9gDV4+21fHPMnADqtXlWybWLWvqsZtTSJtkQCtIt/g7FpiKAzQ5r33DGvXg2wpUx5DRfXBXB3cKDNPVzsNCTARhi/5nspk2hOKxVbNF5pbHuWhVtiAmjnKTRu/XsaVlcUMK9BPO7YxjvDQLN98rLLIMgWtWESVqAbZ0Itr3CgXgd8YCBMbbXlCV5P3wpH7glebODRAmEJxok9+zo++PX8bLnXeY63AKivkpwFowZQdJjoTzMCLNmMZZ+yx7XBx0E6/M7xWmw67bBk2kB9FBcNoQ0uaJMLMh2ft6e4dXUJn3j0EB4+OY8/WD0ZlzcrnD6+hr+SHX7qd9hDOfDeMK1FTlbTDmHO7drDrnzqbJzrsvmbNuk4ir2y0OCZ17df4Ypb47HhCI/05/BIf4xHotf3Y5s1Lp+ucWWzwmbThYVhTi1e8Qv/Cf+P/1AD9T/7/P8b3vqM/wmrx4a6exmV6dvjGHUF2B97N2AM3vakL6nBWQPvNGaNwKgTaGev4bSaVVLUvvgk2XPWpl7qkHY8CttPklc2uDkcAG3IQIBNMsauJ+dFFpkjx6Ngeh/i6meD7wLzZruXkBk8LJlaP/t68mCupOjg5rDgiwDxPfl1VCy6BdBL2mFra0yScgjJNEHbwYBWqbPwFbtWp24RMJNZfIJ58V230j0+b40JNEAoAW4oqBJMy6N2XjDkFtBXjFs8HwpQFwtzM123+z4mu4nnDX8/MgbQBOpkoQkWtKBb9lkUe5hnvSVIAwVQE0CT+dsAFVDTX5eAmqY4xalN8Di2G9xoH8eTV4/iRvs4Lvs1TuwGH3/8Bjz8yIXQh45gXbBpI45jkgDAl1TQUYNicYhZA3AdwhSyE4f1UVitjO+mdd5eibtpbVKSQ1xzeONXeMyFMeqH+3O41B/j0f4YFzfHuHgagPrKZoVN3wWHso2F31i84hd+Ga/56Rqo/8kXfRX+3Sc/D+tLQ1Gvw57Wpug5v/2JzwGMqZzOXnnvuwBr8LYnf0lmzkDlOJYYliUHM/bXIZnDW8pa9iN4z5cUcGDWNi9MYjJgE5vmOyhp7JqzZgnUOqCzOIZMX7S6WcgXrYbWwaLzy3dw2ka8CfsbyTHsuTLlXLYssdwJ42PYFUADZWZb19OfZ33DaaDmklYOE+ONS6TFqIHsXMbrZ/F8NjbNw0Y38IjXpMNXChNMuQXg4UiArMyrDpkR4M4S1oCafm9p+ZnyibjW4pSGNNfRLHUOZyyuMyV7nbqlgjQAMnmnOAqbHgPqzrrMsg0H7iHOSQ6bXqwjaN/SPYanrx7C01bAxj+Oy/6P8LvnPxEfProVw2oFeNr5CmUHbDvNFo7cVOUQTO1k+qZLaw935GCOHNbrHivj0rZ9ZBU4intU580BDDa+w+UI1g9uzuPR/gQPn57g0uYYlzZHuNKvcHmzQt936Dcdhj4C9c//J7zm7T9XZfn/9SVfhbd82vOxfswVjRJAnJtkYu84F8jbn/wlQGcDQDN55UffCW8M3vaJz03sORVHWvCEwDiyrpWF6yITo3HruOpVxcqi+KT48lj1AMuYdVgYpjMuTJsCKsAO9xhoU7paMrqQSnGN1gkPjTOw/xzm2MYjU8+clCX1tDRN7PZcLnwxG3pO8ZcBOsVLIM2GQfg1du6BEn00PSPORbTZ0vIKb03jKu4VT2zusBXrKGfUAMqFT+h34QvDz9kxAW95XbJoLpWDGZcI4k0zeHgJyqT6jipgt6yYS0TpwM+9rbnjVgyfciiT17llJpAED4shDacQq9ZkzM9hjuzNDD4F1BqbHgNqvqFBF4F6RUBthgR0a3LOQdjUoYPDkRlw3gy42d4AAHhq9zCece5B/Pcbb8PHe4v+yiqYqJ3JpmrOhse+X0vfGR+dpnyo1AOyM5szgGXlY3wCn43r4vhWfiiBz6nvosf3MR4bjnGxP05ATePTj5+ucdoHs/cwWLjewvcWr/j5X8Zr3lYD9Q/9xa/GT33m87B63Bdj6FnBBicwya68MXjb7V8CWINXfrTcD/tV97wDsAb//ilfmtgz653F+8O574hRE7tGNJ+WSluK85lRD9EUXjJrAwuLU7+K85ujsmKATWPYAApzuDSFa1tujvWKE4Nmpm8ASdFzWdK7VhkjA0cqM9O4vkQ0xtZ6dqXfBLZoZnCVTYtvnsenyzhaRrXX22X4YGAMqDNOncbVMn9Lb3AO2Nz0ndMxxf3EqgugJnYdz0uTdXvlslGGjZJtV2PgITMxngLSAFQzOeo6kZzG5Ieas/85RN1pXZsIWyJa/4Mz6qBv3Gi74p2+ocmkt8/oHhzM2iBNwXOAmpZYpMUgEqs2tOKTS+PYq8i0V8yTtovnQFC+l73FRXcZa9PhRrvBZ577KB657QR/eHIbPnbxRjz62HEcw47TugaTeoHe+va4S6OjFpYzHWC6cNFvLPyphb1iYYZoTuoBYyx81+HKlRUunh7hwuoYj6+PsHErDJ1NbHHjO1x2azwWFzt5uD+HRzcneHRzjEc3J7gYFzs57bswPj10cEPYs/sV//GXq/2qAeAHn/fV+Def8/wE1EbunENADVdX3gjk//4TvhTeGrzqI+8oLr/qj34JvrP490/90sSgQw8sXE+mUALqjkzgkVUz0JZdf1JgNF5NDCUAdy6vMCbtYi/XISz/iQqwW+bwlvdvaR4vC2ZA2OaSg3KwjIRxahvzc6bSav8V0LUq77bPLR9QmTM5IEOya8aixTkH6THgHmPY+xLOrrlMTQeTa4KnGQy8o8nHsL3uCV5sB9kA4yoMOWyUaYuqLjtsxvutHclmmbZ5J29uExEdw6sh0gyuWVO06VvcI3yXXdxI9rooypjZm663gDrNN7UurJfBwmjHJWLVcsqLHF+87I7wgDtBNzyOE9PDAvjso4/iibdcxN3nb8NvnX8Gfu/BT8C97kZsegv0JgA2mazZGuLN9+W9XuOBzmN1PODoeANrPTabDqePHcEBMKcW9tTADgGwB3Toj9a4dHKER9fHeKQ/xk2rY9zYXY7OSDY4kbEx6oc3wYns0dOT5EhWAHVv4AeLr7/r1/Gat9ZA/QMv/Gq86fM4UCOZvujjeAOYzsCjZNaeQJcA+6l/EbAGr/rwLxXP+Na7fwGX1if4j0/9IjZOSZUjKuXEqE153mDVeXqFKUzhgzd5bFCw62BloTnOGbDJPJVYlHA202QMqCmMADtonLgDV7qWPdKvwnC1KjSGPR4nFn8Lz0c6BORcluIxRlWsB05xJePm55oy5npFA20tW63xaoXlSo/fYYRdj41VA/ViKK3n8yN3Lhv1BOeisOWCNbeEjVenI4vftLAwfbBtv6hl3c9h5RK1O5vPt5C5EyKct3DGp/ojncxIaPti6aS4jextzFo6kYWweUDNl1e0/DpQsepk8m7UGJqD/JA7jwEWF8wpbrGneNqqxzNXD+KZqwdhjQ8s9fIxHukDIw1OFQpoyPIterUZiEznsFoPuHByiqNuwOOrFZwz2PQmmMFP45rcHvAbYDi1OD1d4bHNGo+cnsMjqys4353G6VkGjw3HeMwd4fFhjYc253Bxc4xLm2Nc3BxF03cN1BgM7vqsT8cHn/xEfNIf35+y+f1f/tX4iT//fHSPg23iwUE6znnuAtgEfc1enDmIhdc2eOvTvwzeWnzr3b+Qon3k3BPxvid9Olxns4K2jGWDmLSBX2VWndg1Z1O8mKMC4047vevgbJ++t4WPjDuz6/AirjBNwUAF6MmNPsQ1PpWntVzp3DGqOZs8TIoEviiVmRzzwJvHLX+XxyoPLF7FllEepWLWzz20aZWG6ZWlQs5BNM7Ip2+1AJqvd8DN3/R78HLFstyJrMarufkbArC5+ZuEEQPNaUyTpnMZoIPtmD/Djr4OlTlcs8BIUcG8cV3GjS/o2fmSjjLpmg4oxqC13dK48HFrml0gl6zdpST3N896B6A24OFeZdUE0iQE2JxVk3np1He47I6CQrXAiR/wBHict2s8Ead46voBfOLJw/jYhRsxeIPH7TGG0zjViR7Bv0mrt2l8iNfl7S75nsTWBsbtOx+cy2g/6/j1nTM47Ttc6o/wwOl5AMBx9AS/4ta44la41B/hsf4Il/ojPL5ZhylofXAmk0ANB9x7y634+u94Fd7yT34Mn/Tx+/C/v+ir8P/9C89HdyWz6crb1yCYoTsTmKjoXsoxaALftz7jy4DO4Fv/+8/jI+eeiO/886/AfeduZvOoy/nUiWV1gOtMcDJLpnAx97rMQGoovSvZNJnCnQmOeNa4xK7hEXu0bXO43J1Lk7GlSdNWmvCAcWm8WkpeBMPm3dLQnoNbyAJAInD2RujEVhpUFkUaZtwjXOyUJs3W0twtzeEao87DH0zJFvHoN/cC17LW3ghlYOZKJxhQUMJswRzBrpvzqVnBEqvmJnA+ZYv/lcuK6mPWxRh1o55IVj0G4Ck+wNJmF+V4tdIkFrHqGYBbrQ/POvYhvr4hTPMZU21Fyf/otLko5foOBhYmHoOTGXzQ/driKGna6HXhYLYAqMHiyHFqMn/z8GoD+bHGiLz0ZPCgXsM6h0tmgwfcFVz2V/CYDwr2E44fxiffeA4X1qd45Hzc8GKzwunpCkPPQNDFN+Nmb5IugLFZOdg4Vn3adxicxZW+g3MGxgawdscugKEH/JGHOQqrszln8dhmjY/jBjyyOcGR7QGEj9x7i95ZXBlWuNyvcNp3EahtcCYbDHz0OodDauAfu/lW/M2//a14/u/8X3j7s78E9grKMWpWfD6CtIvTngLL9tWstNSAbNnA/u2z/ic8enQOv37bp+Hj528JWWBTsfJYdf5N07XSka5ZlAqdSdItEbAHZhJ33iR2TWPXm5iGNIfLVYX0emSbc6xLp7PYOBVmXaQnHJMA3RyrKXPpE0LnCYyNT52iwpStACMH8MZ0Y124okxhZf4r8zbYt1dA20+cF++sdeCEDiCLnJRtFrDQ2DW/pjqYCfN2CNe+Me9sliuXVc5lBNhACcTpfOTdNDbdIB2Fi0iKT4x0D6yapFiSmMWxIh6E1UW5Z9Zv7dqC6uCVbzpnFbMwhdSjGHqbsNzNkb0tNzoF1GDXy++XdxeSzFruPkRj1Fz44hjkfHTqVwGyvYPFGg8N55MSP0WHU9/hCd0lfOr5P8aTjh5Ni4s8dHoeD10+h4ceP8Hjjx2HJb1hk4m8GD+iXn7nYFcOxjo4Z3FlswpmFGfgXFTOKxfMwetwn+k87NEAa31g9qeBMXdsxbb0fs5icBb9EIC77zsMfQdP3uz0V/TEgXtvvgVv/aIvDqZvuZxg/DiFCXoFOGPjpvPCSMobVjEeCcAa/Owz7yhYdD0diyltYtGRXVdmcKmYGXANjpkU47S2AcEpz3oPZ/IUrjVQmMM7ZEeP0ju8BO+xJSa58M6jBghpShls6kTS86eck5rTSSIwjwoDbW/GddMUg550EqLOlxivlgDMO27F7+K++q+ytKTfZad/jhd4cAKajFaIZNf8u0lTOD1D+lFoJnAO0vUe1hDOZbzxid8UFo9NVr0bRiSZLOZWfeHAyzp1xSJIyCpWsm9ZB4qOIfQ+yxZ9tPL+eORj0nw1vDBencetYcohlbQwSqwf18eYNcaBGuyaZv6ma8SqKT0+Pi3ZtFSmgU2bpCADMK/QRUXkYHF5WKdxp41f4YK9gm7tcEN3GbeuL+Hh/jxuWl3BygzYRFD0fg0HFwA7mlWrWkA/vcHQh8aaHERcqIzG+jB1i97dRiXvTABfYzNxZdPXgNBwBx+AfxgshoGbzFCCsEdalCWbvEUjZoowsOqoIIwJ38abtpdFNbe2NnP7Lp9zhcsZt7dIJnDHPcJ5XAHaNI7UR8AOVocOfVzms7MusetgCs/OZmE0pOFsFmobC99es42ZubJDXDaBc+92/p5SjPGVcjITjJovjFLEASB1hjexjlgDDD7dL+MAyD4IPC3tu42cl8pbj1tZWARIU7nMEemt27omTeFFPAWc5dKiOU2bTN8tE3hlRYn3qh01AcImhrVev73JBt3HFkPx4jo9T7t3jigsmUR+c0DrsJminhT3KvVuJ1DmFsai8xTHq+NRLl4j2w8NqVBd4gw7Db0B18GYNR0LYEZx3gJqyaqBcTP3VA/aJaD2YYEM70JjMbmwgKxULVxajCQt9dn1OFn1uLzuA5iaDt56uD7WqoG9tTPwm7AcqDO68uBbgJJ4FxnzYGGsR9c5rFZD2qiE0uGVJO2+U4B0WVtpVzETmXbBqGO2CTR9R3O9Q7gZADilN68Ja3SVmZuNPfvY+HxxHcn07brYWaCduKz+aJ/e3yQzeGIv0Nl1cDTzcTGS0GGTzma7rig0JTStLOSHxjOzM5LcgUk6KFVigLAEq6nCufIy7LeUCtgNxpkXr2KMmnLlua0JvPwd63zxTo32hFLH7CrEjAr/F5QLoxTxUc+plqvqyfjye3OPbzleTeHSDN4CaG4e18K1aVuFbGPqZgugqOqC6QYAVUe/tNAZvd1L73CU9a6Ztb3XDTqPsz08jVeb5Acx5RWe798+c/th1mxgJDt/1OPU2n3Eqot04jk3hTfHkFIP1iaP4A3xJges46YOYb3oLgazucx+jStujctujU28ftz1OF73cD6wzcGQd3PMRdzykkzQfmMB4wMgRWczGDrGjHoEpu3ZOLM3Ydz7pMfx8Qbnj09x3A2pMgzOYjNYuKGjWVOxbLhSI5t8fg5n1kXv0RjAerguPtt7mNhojA1haYnBYiEEehYLYj1iaeYuTOJ0jD3uwgOcwLqYYw21PgczeByvdmFIYOO6sFCOGdA7i866VA9Uds2czcrNPuZvaZc2BWGNNJi5Tbyezd8UP6+0lueIk0x5mFZCIGaCsuegRUBN+sWb8vpOVrjCqYzOx03g/Llj26HWIO5ZeNYt+3iNXUQ6mdF3y0McJbuutsRECebyu+vLjKIGWt84Ry6mNutuvFy6rnSQtHsqj+72V6mqN4G0wC5vyr8Ul9cXERfan3jONhJAlyyzRmXUIV4whVvE7+9d3P1vSB7hfLGdXWTHtcF9AdQpuDFOLVk1vy5N4HOEpmCkHm3hEWwAH16PGhHNYQ4OSSu28EiYInXFhfgr63Cy6tNzNqaL6QCeUCUy0byYSmCrqU8Q+wsmztf2LoL0kP+MM2Gt8HXgSierHsddD+8NTl0HWiGcTDNpmIHGLgmoZSVlvfBUlAw0EU3fDgbGeXhrolmMgTx90tanSL1iMMVrCtDNR+FERkAdndvovNnoGPPIjmV5YYned7DGp+GQPE7YZtcBdGM9CrUOZAqXDavlHCKVbV4iVgC25zsw2cysYYr8cvNoXd6ZyVRKgwCaHSulJRQd5kzfGlN2UplSukBVN4p4UhmLa2ranE1TEXDds2eRbHoQgMsdyvg64MC4CTxcl+bw2rlMSrWBB1CBeHVNE76D1lTRuRyfsjRZ3GQCj22+kmJWScxKYfY2ZV3Q6l8rvCUS+IUUxSYsHM4bWPE9CGcySPvkFQ7SM6lDRp7gSMB9Tc3gAIrG1BqnVm8TrLocl26/lrY+K5lBLTw2bhV2t4pFQ/NqiXFvfBcYuO+KP+oFr4zDcdejdxZHq6E0V3UensxKcSqWcaZgM0A48dbnxVW8CQ0gOoaZ3qStOt2mw+lmhcc36+QBTBWGVnMbXEjLWh+dm4Pt3cfh9PCI2kRasJc4VhycZeL3ckZ4imfg9gC4icx4qWRN8YzMrDW2XR5dNH07ya7lYjTR/O+ZUutd9JT3FhtvsWIKcOO6sLXqBLvOm3vou2sFj3CdcWvgzXcCS/EUE3ha1CVO21o8x5rp9AKUCaj5uabYjAFVGE/WFOoI+HrzD29QjlNLhoya5VSOZBKkxZ9kURWYs/cOWfDq+a5CzCiNYaPtFZ7iM2k5lnEv8NZ4dRrmiueZXYuC0LLjR65tKxZRv+VEvZkB2FxMWX9yf8QUrFr73tXubY26JRk3f/Y+RRveIFN42PfIJHYt5+5zR8VdZH/e4EVjqhtRa6waQBOkxxqK3O4uNZTIruEA2B5ka+Xj1WnjhwTSZSFaE8aNV9ahtw6dsRisg+2osbnAsCMzjm7j4T2HaMoiNJQSwZ29CHBqceWxNR4YDI6OBhytehythrSByaoLH70n5x9v4H0YS4dH3pCENK2mJCOjprILUwsQgD+OcwdmHcz5mVXnHn1ljRMKOwCxbgIvWDVfE1wxhav6iNiKs+W4dXQ0W5s4lmSm2XUHsRRgrEfSPUxbfUhbbrQ0g5s0zBJ+lybwfJ5NpJxlVxJNwuXQR/0dTOMaXQ9Kzicwb8UzdKSOmQBq/gwa2iBWVCtWVHVBXgt1I9ZFcOD2RfwUpoicRbJP4YDNWTUBdRqGS9+3LthiqhZqh7Jq3JqAO6GbSHCLV9xXsUjA9vHbV40HShxAdPKM+C2Au1GX6Bov6grYwY5T76SUjfcmDcFIj3D6jgTSNJZN7Lpc/OZ6MYMLmZqm1bonnSthc5zKqPAGY8M4tR0SYLtYQJYKkMyQMAmoec+XPzewWgdrHboueGR76+A7G1gIHNBHVu1I2wCm5whGL0VojtTY6LLZGGBYY/P4Cpu1w5VzPc6dv4LzR5u0Pjq6AYbGSG0wwUS/uciAgbRbFq/kbIyYF7QzwQRu4hxtn8zg4T24c0pKH2Ua4R1M2dgSs87PT/mIjdobBtCKN3ihoGM+8ipmQJ8Au0NvHdYw2HgL6ztY7/O4tcKuOwSnwzDVoty6jsawNeAm4SuWqew6dgYpbnENTGkzJzNpJm0K909gSiwxY/AwBtBC6YE+mQg3HmFs2vkE1PnZcrqMKe6tQLrw7lfiinfI9/taybL6sG/HMnI4lB7jxZrxDa3fcgiUJnAKa3mFZ09kZOcyIXJIKrfPLV58Ryk6c0W4Kb43r0Oe1YWybjAw19o/UIcLkFZlYT0p9x9IvAbSIzy01+zI2iUvcJ1dw8eFl5JX+PYVeE8OZgJ0Z7BqbgIHlu+Yo64iE8uFAzY1NEsshnrHCCbTsLynVRukjXnurIdzHq5zGTS68DAPAEOswHH8Om2PSQ0sUhZZSYFwzfTxXgDuyKL3wOU4het43RfzrtP66XEN75BGrEzRRB7GjsNYdPKy7vJzLeXXxSVQLQNtqldREXgYVSlwhVud83FrCdIE3hKsJWjzZ8UWzddNJjN4Voy2AD5nFK9cYkQGBbsObFt4/EYTeSoU5NkEHLDTOLVwLJPj1Xw8uxivVhQ+HwIJR8RevtLQTf4eU0DG45CCLMatjYGHD/uZo4ynsx1TKFovFHXyX6BvLxQu92+Amr5AJ5PPzYz3bYnmFMT1jwRuEs6qOQgnlo35JnA+vxpgAM2PAqBD+MiLGXHch8ThESm5PlDbVh4qlhrm37lcuaw0eVcmcDTC1XpTdvbG+r7VO6UeawZpOofJ49UU5gh/DK1OVrNrmn8NtDt9c2UnsObfAdX5NKvmcUkmmbTPJojwW0xM9x6IDNsan6dg0P0wVaNLCp8VJl/yNHmlWwdrDZyNqaaucPgLQJfHrwuTNzU+bt6jnwObZgUDt+qw6dbwzmJz1GG1GtDFPDhvYON0r/A+cUTeR290G0E7TY/ysC4CXVRwzgRAxhDzQXk2ceUyAmx6B5/PQ6bz9/CiwRSAzECad1YKEzh1JGi8WjRSKjduJhyiCbyPXuG9iWZwmLxWePRf4KbwLo5XE7vmjmZ8c4/W6mV8wRTOrDkQA/qUrdYyo9UiGex5FcMSionqWapvyN84ATMrz5Rack5EMW4dugMBsMHi1t9YOAwK5Vmcy2Vk5ffVzN38fQsvSdS9RkWKedMizTnj0PT9pfe3lFKHjMytRv7W1NlUx6sTMkFUhMlX3k0YIBcL5UTiUyny1lQvavPF9+XDYg1WDZR1QKkvrQ5d8ZtnEQKol4J2nPFhAHWNcMIWwp/gD1Oya74EKc3f3+VT7nfqljin33wBFHltyZxq3uNteePxHg28g4uewjKdAUHRp+k0yngTLciSnbxinq2P4OgTkCTA7uK7euIsASWTziHWRA+h8IgPdgBw2cC5FforHfqjFezRgG41YLUKS5RaG+ZlW+vRGw/0HQYba4uJR4u43jfgXWxzcVcxbzm7RmDXBqEnTIslhPqa8lgcG2DNG2UTpA2KOdXZTO/ZPUpPHiiYyeAsvA2e4L13paMZAaAxaT41mcLho4PZiKNZsZiBAYC8WEqaox/HseVCKHLVMhqjDqmUTDoBNhu7DscR/SwZtugoaUBtUMYh5aY6oAGFcpaKUpq0E6u2mfmoSralnJH7sRVrEllS1zFolZMi3E9Bv95ePIWuS+/vdI0Ud3EshzkqxzL1jyW6FLA5U6/7KVmofD07yqQ4aFf3s5SZ34I0f6tADFlPJlh1A6S9+KPrxe90z3yITKqOJVKayE3sgPs8ddNndt3FrTG5ZzhhUZpxsqXsbT/rOay6ZQLn16XwXgypxbxggYlj0dS7sdgggGznHZwJ9w6+TjMDdocNG6+Wpopqvrf1cA5I86hj1zjvOxs0j4dPhWKch0dmzwHM4wMUM5fdGJhNXOHryMIdW7ijDsPRgNV6wNFR3k606wAXF1dJjDpOIXMrBFa9ig91EYwH1mGmvwF5nQNi2tFyQAaBIpu8AaFW4lUPWrBqfl6Mq6f7fPUwMmQMLjSQ3lt0zsJZbgYvZwfIRVIyuw4NqIvjSZxd145mRDFQgXYCZQLpgmEzxyMYtJzLtOMsIeCWSq2Kx64JkDQyrHFvsdWpBdJqdEKptpi2BO4C0NNzvDjW7xX1+2Iv8ClGLYFa+y1FfksAKqvmJnD5zGLzDhLqvQACsJd0TeokZ9/NAVw2hjEfKXoAM39TliWrnqoXNSgrIC7er8rLSB0hPjImmpMZSeqwmUwc4WMH3KBg1yE/4fyaM2sSjVXvWxJ4+zyozwsJsVeTmbXe6Fpr+KrvBdHRsMEb3DvGBI0JS4qSGRkm1AgbF68YclrJEU0BQL5MKOJYtnMWzgHOAX28Z7WKnsyDzY3d+JyHDiBvdYe4lOiQF0FJ4wJcETrWEBLViXmTn7ICa2Tl2wJtOZadTOG+UPLFuHVSWlHhRSc/YtfOZkez3ltYb2G9m1gkZUiMm7NrzdEMLF6Ypx8yxjfv0OZWV1O2BNuiOOF5YgUrTYELaSlfb1Cy6kLpmdDJBECmcJ/qrTLvminadB6BOnwnw76rZu5um8BHFbUmmuPZDCGHIJ0IhFWm5MYt/HdhCeHDZig7+ATSOW2TjqRnuEOZXNE3LTKmgfNcNaoAWBHEZwQAFXsOHXR+v8KuhYqU86p5tdW+b7EqWeHr0ADksToifnt5nZWLts2qlDx1jhRgEO5kRhY7ixKLWmPXfMxaTvVbKntzMMvnihl8Thoz4tRrsMaCYeccsB26EWZti0YmvTf196TtPONfHLvO7NqwShkcdRJbtYFdUxYBVIyVHNJoKpU35MJmYJyF6w1cb3F6pcNm7dKCKwDSs03nGXC6UG2MB3oCaVJ6MRcDwqAMKfdoKicP7OQkpxZIfLZQxk3Qpk9TsGmfTPbhj7Gq+AyuL8jJbHAWvQme3+RoRiuacXbdmsYVlpfM07gCu2Yg3QBsVoti8dWsmm/cATAw9zzMFEc618xvY1IYxY04SlG+V2UBK5StSWGFH4L8rhPfnyvk9AwDFAxa5CGvXDbyPnuQcmgtPEj+BlCAc3k/75xlvcKvcVbt0RivZrLLRlcEgmML3lAHzUSfFfpWJbCHzErHsRLcTVEnvIHqVFavdAdoU/1qYOedTHY/8vUyTa5MsajuyDJ3HjBe7GVt8prhjoZdGRbJsWswvAKoXm1fmffGrFtrg5Ms9faWjUieE6Pm7Dp5RCTABqTdhrOZ5EWM0iypMWy+2Ug16pUUj6nPCaQBRF/blCVjkK0kBIoSvIdgvvMumsavAL6zgZGuwvabWLmwzGkXdgEzHeBtnLzkI2DDhwVZSPizhlB0BrEBMHY/qThEo2mBdKHw5Tg19Xc0pU7Z9QyovcEqKrveWXQm+B9Y4wt2TQCuL5IS2XXq/ZbsmkQuxg+gAO4Wqw4LntTj1YXDEWdfLKza13hKTM2iiFXz6VucaWeFmad2Fd1qejz/fnx8ujCDm/ytBYBPMWhvlG+/IzhLk6UmfG9rYHxb1LLjVTqVtTr83ARO92nj1Uniy8vvru1jPUuVFm2SgbcRcRSLmYfJfiso44xu0iHN3xxoeT3R9MQEq/bKX3queN859afl/Mw9woHw3QygOpcRuw5M29fs2mTH56Tod5A9jFnzc6+e8zACPTkWPCWtHnDJqAEC7AFhbVcX1/uWW9zl6T55FSm5ZjNJYOf5d16ZzeTHEkhbJM0Z9oUOH99bBtgGgTl7xDW5UTUaepzxSPO2C1C0gFsZuGMPdwLQvG8Tx6dN59ga5NkrPicienkD4DvozJqicxF6pmBWYOf8WIA1A2oDwaobJk+m5AZHTmYuzLn2HVbeFeza+fFFUohdl2PXJbvODmh5zJqPVwNosmo5Xk1h4Z5aiUvmNmtFKynaZQbUZAqn75XC5MpxIj25MYcE52KIwwB8n/Iphat+8xTm0zU5Vi03ASrLrl1ONIQ2dj0tYsDCWlY3df1vzxzLREdM5lMds9ZkhJnJzlqIX56nOAzQwm57kVxYVLuumYnB3QTGClCn786c0KiTONWRy3XEqNfLzkgug8nOX0OvcAXnvImdpNJy6XzwkeJsmpgzLYBC7Jr7UdGGHov8URTZ65g10AbvbSS4y/vid/HyMAVAl4AdYpDIBSrCkSlxXzOflmSwzqCdNldIlSk0LG/jEqAuXieiFusgmcl5Y4t35lpInuIJ1CkdarwWfu3hBwM3mLA5CLvP27CAiu9M1PxUo0Nngko4EUgyx1O9G/uMQulqYF0AtWFAXVz3JQAkMyghFim2rOCcN3FsOjia9Uay6zCFa5JdK57hhTk8Pr8Te9IOcVyae4CnKTzIgJ4YGOrOobTi5HHNkTJXv4OPDIoDM2uP/LdQiiGrcvySN2QdiOlcKuZC4bIhD0qrAGfZ1LYcm9aEWA9v15xRp40WIgvS5lyndOI301g1pVXrlXKc2qf0agtKseUt2JHLFspegnhucyabwlvxhRlcrR8FKMrZAGKqFvdLKeqMKetJA7hlPazq8VjxtK55k3SMHKtOFpBWfTCSaXvmYJbPqfPX4TpwMBvdWWvHtGkbx6ZnZgHQLhcgAqtueZgTIG9cVzQu2eDk84zJIGqS0iGzN1NAxhDqFoCU5mHbaNqOFpJ0pPcGA+yyDoVnx3XGu9OY5ml0JltZoPN5LDiWkScATxWSlIyHBRvh8qEYCc9nM2sWXjZYendEQEEG6qTweTn58pzKmZ4VlRpXgIOzGIxFbztY57ExYV/rzvgw39r4sHUqMe4Jdo0KsAFt2kWaosXGoxOr9jatN19s3uHzNEFpIpVFPOZo1mpyBUCz72GK75HrqmHnyQyufVsJ1IWjGfszObxSuPw7o7xe/IlrLZPlLiKncWmWO34NqMetpXWuxb6l9cSLb13tYLmtRhflbVh4VS/EPfS9jDXwtE8Ajy+Am66FdmxUoC5Au6h7+Zma+TuDuinfiXX407PTO3iU9Wi7Tp8GzkBm22Hcmu+6FxwYAbKW5VXN8jlhUz28ukT2OHWrNk+R7GO93tQIjDabwJSAHeMBUBRsbHisocmFKeaYK6p6yxpEYqcVu45xEkArgO0zPoRXCoCdFikxWVGnNb37+Hzap3plwgYZax/+ulhxLYF2LK/Yz0iAbZA9wjmz5uVZFUTMq1CyNWD7srEVzNrXylwqb+S85IUlAlB3kU13zmJlwpSuNeL0LteFsUgLdN5V7JrmXcMAA3wG6AjYLo1rM5YdJe1NLVj1xq8KE7gcr3ai7nGhOdbleCbqRTNGvgV9D8mqE/BV3ya+mq/TSd9WjEsnpVpZSEx1rQJ8/ofyd3he/YJzN+8gz90xkSyIHAg5A+LpASVQcycySq85t5o6xfHekk0r31V891xA4iVm6CjtOxpJKhBAkW/mggjYKRkJ3PzxfJMOBs4ZdDngmqJOSKtMUT+UqYGyAyjrU3pnrje2xJ5gEQmWR+ODxcr6bApHGo9us2v4epbSNWfWJFNe4fuS1FOJwh3OKhO4qGR8IQoVqFGbr8aE2HXaLYsrv/AlAZAjj4lLgpo2YJNCjKBNDNtbk5zQUj+A1vNmRRsAGzBrD+dM6TLDlQGZ7YlE0hJnMV7hXDb26Ux59KKxkHm7AAciqSZcT+VFDC/1RurH8ekVcgejwdXsGhaVObzzLrHr0PkLhUrOZgVgUz4Klp1Xt6LxalpyNAC3jcvYBsVNS9q2Fkfh71K970jRtySxqqTgSBnzjmRU2rye8sezxpyqRTFGzRStMGEWnS61AzbCgoo8yN96aWhTbZyJTMiHIYnWes4AH17LHv7cIUgD6harbpnAKZ9O1F9eyIUpvPHhVW00pqJM2XErAc8UpvDUofMAH9T3cp4Z8nUJuhyoi06dAF4VbEf+/Fh89p5FTmWdGsEgWYfGxIHGtNFk19nBTJ5vL3sfs96HkOkbqFk59WYwCtgAgbbzAN9xi6dTMB7RI9byJIUWf/FUw2NFNakyUW8VCZiMC3E9TL5EvxlghwfEZyMAttqbFmCdATxWPm/ge9Z4eFzeEDqkjkUCasLMkTpcZImDdHz/JlBzhyTBzpICZ2VQPFOwlMEbWGfhbJhfbRHmXYdxax/2u6YVhxB3ZYuyBsK+4QbJHF4ANoDCLJ6KmXmBR6AmD/DS3M1N4OWWmFM+EnPHrZOS5eXFj0xhJ8UtlSF1BqF8U5BSznEr03dU1NkUXirWKYYUntX45mMgLYbHuhmkQHrt0j1csUoPcLpeWUJQ+x1oZnRfpLNsTv0SKb6vFBkuv0HsxHkBWkbxxktZFuZuDtS+YN0sXmTcvE6VQGxYPCWfPA+KrkjPBNrloEj4Fj7hj/HMRyYyaRPrDtW9bA5vz1LKy5AqJooFcqbLjVZtbqIhUWUuxqdhYD3GwZtdo0IpG4yt4qpAjZpha2OJVXEb8vqGACjDKpPJNxsgoCwLAwNwwngL3STuS0xJRgQC7vjXecN3CQ1/vMITS+cYZWJhe6a8p/QfB2iwMmDvWwB1asC+bHAmPr9S3nUGMqvO5wGofQHaYdzaJXP4BqWzGXyHNQAHh1OscGT6VBiDjybRYunRIBpQE6umudeVCZyPVyMrbjqqU3qgdxRl2Vfn8XsYdi0BtuWBgV2n4Q/+HcW9KlCz8euKRTechTgLkvVknyyIL2LBy7k13ZPWkifApvjhmIG6NZNE83mRQ2t8vJovL1q1sVRAk68ZxIjvjbITV07fCkCTxqFJr5i8PnyRFS0TjTHqPNRlCj0oO3VanZBhXpx7JW4RBhQFoHU6d5VkATNI7JovkgLUs5SKGUs7yHXDrOf2OfjYdTHWxEUm5FH3iBtAzc1XY5KXVFWeTUoxgRApl2gOD9oiNa7cyDKAj3mJFyw8NoJkMvfh3ABpNzAyjfsV4FY+78Al8k3fIJhKfdampq07ywbhcxhrPKnRsfLhplC1qCeUNt9OkDpUPipIAmprPKyLzmadzxt8kGZ0QOrNAFijxylW6OAQZqeXLHvwXVq5jEAaQAZqwao3blWYwKX5u5zbv0VLVhSUDEsATSZPj1LhxS0x+XC8DtZZGXPGozIjhVVr353nUVWs/NvPLB7nTR5bVDr2Y9M9CbApbr6vBmoARYdrzATeGq8m8fykKozRfss8YeUsQTGlzb9HdXtd+FNAna4xdt0yjZeAbKo8avWlqCNGD8t5XVaALQ/w0Fwyi+bsmhZJkUOyfMhF2+t8iezNwWwX0RpWcR2ZXUvW3QTsIpOy8fFGVgJ1ShesZz6StonKEIb2fY5xk1Kq0DbAbezdFsALAc6lFZ0lIczodJ9mDo/XvIs62QfnEW9ReItX5vSUlwjALW3JbkrFpDWsonGXx+IeTWmL83rFJ2Xs2njYuFCK9TaAts2AzcsJtg9OI36FNXoG0NGJDSauduaShadg01F5a6xaM4ETKwvnyxwbm6Ldyso5eYNbZEMPU6iyUJtTt5Sxac62E5sWrHoSvNNzttMnLetDKt94eWyN8NIZiKWB8ttRuvRbIwJF3kB1tMzrLKfBKIVvCgd6pi/K9mVK3Vy1Q1N0nEIHXV/5TM1aelbIQLDamap9VyBdeIbnZ3PrjAbikPdIXUH5LHSKr+JM9XzI94jOycksD5XQ+h21+Zuza+r48SEXa9zyKZlM9riCGT/POdrFE1wzi8twCdh5S7L8fAm4sqFxRS8Vv7ynKdIU7k3JrhOa5o8ZThvj1yL5CrBZQLgPSB06Us6MZSdzmwN8Z5Jipfxpr1cU+5hZkgNuPErg9jyuHJvkJnCgvDYiman48rulubUWvfPMHG4Bh+QdniQ6epOvpkXebrNLDMxhiOloIO183rSDWDUHas7GOAtLipu9Ez+WL8wiauVBipspMz4+nRZEkX4uhT06p5VkBKwlUNfj2GDg7av6UNQBlM9Uw5Wsp3Nfji3SNBuAOkie6YeaXVvjMmAz0YCar1wmfV4A1ASAHdXVy+jIvrG2eplaBvSdNSlArgRoDtwmOlsG3TPVc2CduTGg5o5nNE4tLDEyLxKQeb1KRaUAedKFUheJfOdzpVPiR8oRoo1G7JHTuOohlHKhlF1kN7CeV5cWi/Ohl8JBX7JrDbApJgmPp5ofYapGxFk1UCoDzSkyOZmlHlX84qQE+G+WYPIOp0Bt/BplBfL5MiBB3Yj+AFfYEbRtH8MG3psFwBpRpR/mgHTKN0SDQNGB4Ne4fqrvaShu/uwI0jRu3QGFWTyxax83+HDZOxwuupVVgB1M4mFqBiDHrsM8baggDYR6tfFdmF8NkwC/XJqU10NR18aAWhPl03DApt/0nhWjpmtKJ2AeWJvyt4hXKmrxraWyZc9Sz+V7empg5bkWr+zAsbapAHaQxhLFDIj5UsV0rWUC18arc77r8/IF2mUwW5Q2KcHbw4RhEheB15f30IIoY+vFa0Cdv72p6gNn0fXWqyh+S5BOekLGhwBsWb+ASr94bwCv7xRJ11sOZTwcBqPselc501235gg3OwC6SVyG8d+lGUK6x7fXBad7+ZHONacQTcgZjM6JUYffka2ScmixawDwOVru2OfAoscXby/M4XQfNaC4qEliVVEZmyErcm9jj5g1nMohCKjN3zO+caWA5f28MYGdjyhn9TmxPEkpGn6Mypk8wWlVM2LRLcB2xiUP8bCmuovm766xRjQBN41jm7QgSlpwhylyzZGR0uPH+mVZ+MQnKACbKzgbA8mpDFCnCtUdtpxGMlemc5TnggVl0FYUq2am5b+184bQxgvVnNiGVa4F2NoUG/mtijUaPPuuTHdwkY6D5GFM13I86N/WN841Ed+8mFkS31GCYeqb2qif+GchB1c+lY8Nn1VAzRbESUBcATe7rvg8SFN4AcIyLv1O7+hz3Fb5zBDuEQ6GNWQCl6ZwQDiWAQzUuUPjQiXH5MwczLbPUikFMCOwayNM3dpDa+AuncwkKEtWvWQcsQDt+I9W9TTsnINzqHARak0IVMeh6RavhCEAdu4Q5LRlJZfjXWnKsEcGLLrX5spuRDr5AnNWSgUhC4Y3okZcDfwXVB5pPnY+OxjRX++Cs1nvurxujg3zrxN4I9SPdVyCdG170GIxLplI83MJmOkcCICdnMp8nm+teYBLZR/CZ760EUc6Z1ac1HkjZcwVG3cq80w/eyVdSOVqqpXnCqDmSlhh3FQnpOIt329eQUyN/xGj5vOtiw48tZeKYYt0GEiHdBUHM9EBS8NqKS+UZwZ6nh2nAHlGBy2pEiU8/2WTN/0mf5vw+qUZ3JPJiotRQDqm1QRipc4U9VHWB56Oes1XLyvBvZKZekUzhxNAa6ZwGy2dLVJ5XXmDj9n5lwjjnOG3z6ybFwSFV4P8vIejlEyLQXtvIMeYKD88L/yoCkevBJwcZb04IjubyQLQTN1KOREYpkfE56aKa5FnHslGR4w7OqOlBqSZS2O2E3DHgAKw5QdsSK2clUix3Kq65WuNyset+ZglN4H2zhZADYc8J5fGrH0AIgufWHYAaw/4rtiRq9rMw0dvcIS6tPEdepcX3uldV45xou4szisspexat9r8zXi/lZRydqlvJ58ez5RqZcbkoKyOSermypx/ul4r4CkZmxPbMX1B9SD4t+RtC1XAFiJBOpzrY9WaCVyz1CWgVgtbXhgJ06JRu2HfrmjP1JhZGG/2nusj5HSM9yVIx2sVUFuw89qhrARwU90jwTwVDa9XqMOTaHVqdgfQVBZi54GwrYIpQLll4SXzJrf4pvRn5UKXazp1S3vZqWv08hpgA+U4deuZ/CiBWvMA19Izhq1axo7hYkCwfK2s3OHBKFtIvK8wa8eIYcu6GJW1o1RcJrNyqswGpYJOSlnUFhPD0vNkg2INnxdDUvgE2PzdxkQ2tHQ+vxpnZcfrC2ozKNqrWDkTVjTjw5TOGMDlzt4aA6y3cBGkLct8AmvBsrj5e+M79PQbtQl8qQUHgKq8UjhX0oZhEJB2U0sdL4uwK5sBxiiqOkapgHNi1yJvUlFzc+WcV96GCDhfm8KdOC/0hCnnWNfplSAN1I6CWieMpDSBKw2gYAX8+oyXFSCV9Ub4dmnlOgHMZTunATXRF2bqjNJLWUxpGvFbAWpZb8Q4dqojmplc1CUVvNP7zKtTS6TQ7cIETkcYJEczAAVuAaQb9Lq1RM5g161d+g5BWiwaKBc+Ua9NfC05Dq01Li5LVxcqALoAZMmqBbtOrYyH56BUSclEU7BcZAYVFXYRRuwa4bc0iefCQV6MhT2Ct13PTsKBJzhVOCyeVqwLG1oa+2s83/m8pV0aw1YYdmDVFisbGNfKuoJlJyuNr1edHrgiR9g/OzmZkfnbS8/hkokVprXiBRsFYtiRmb4LhWYRlpHk4ey7gu0rMLXoSsIUxaxZATUbtw7xa7BonRfv12DZ5AyUx33rDhufZiM3XyB23XJE1Tx2i457zJQ2Vi07X56Vbb0YCkcdlN96G8QR5UfqJHXOKnAzuYxtjBgyXOoISsOXaSeQLsLmAzWvR0XHzpbppOcX6S+oUwuKUrLqSj163RRO58n5Ob2Yzq63lb3uZ72tFHPbkMtXsm0exgE75KOessXvkc8DSqCWrNor901JWn0MJahxYK5N3XUY7x2r5nACYbpNPoM3InoEmUQ9q4Qm30a/K+HvA/FuC6QoytY5MB/4mWSzN9TpO8Sue3RYYYjntgBsa1zBrp0JHuVrM6Qdu1qS2LU3Cah712HjLXrBqntXHum+VE7aA7RAPiZRKCcB3kAGaYcSsFudtuI5uiJUlaoMI6bD8zImU3VK6ZjR9+YMSC5qkTpt8ZwaBE33dLzBKZmUvi50bDkLShN4uR54mXd+1E3fI4XC2y1VBx4mwCoBt7hedMqNEUNbvnxWjFOBczqaGngV3wU5rausw2WaY+A9W1LbYB2XEZHzrSHONVM4kOtHZR6PveVdIPuamcG1sQEus8aoWY+FgzbdL5+X0hZKUvaKx/KsSWECT4GhxqtMOyFym10n03fSI7o5nAM3NUQvjxB9Aoa+TRDdp7TSNYoi2FL4AgbaLjm9s4Exw6J3iOe02IXFCsEDvIvAurJD2PDDmLTFJgnflQngexwHD3EJ1BvXofc2jmFbdbhFOh6plmn5rVrKmJQbt6hwwDZIO7yFG0cKtqGUC4XM42mKuQKRepnZSeEd2lYUpkjL4ZDQ+bJeeoNTJ0u3+Gj6oGDU0IfPis6Xolu071t9i4VavejgG+XIzlNnO7LrDNRZJeXeedSrolOvgeckUFsRz5Z1pDpnaef8M1YN/i6NpYvHZEe9o5nC0zWYPMLma9K5jexxUZTdMzPGpMcAG0AF2mr6ooesKUrOqktnkZkvwWq1agqvurL8OkuH/S4ZdAwjxls0UrnAiuw1x5MxxccbyT5EpFOlKxWLcg+/OTDCbAYNm4XpH4eza1LUZAZ13id27YyP3uEGzoQ1w50zWJkBtCMXB+gethqXIsDufZe25tz4DM58TJNY9eAycIfXmlfoNItAKjIT/3mT2QPvsFWsmmNUo363QJorTMmOuPk7haGRDnunbYTqgQOi4gzOQPSKUqEWC43E0zBbwM0eRlOBGqb8lhAdMGTglvkvIi2VogyhdNhN+haFvkjfysTxAwHUVKdEp14DbN0zfASoR6Zw1R278tnN6xP6bIlIx2aqV3xrTO68qJnCw73BmREAm7q1vVzztcE1gKa6IoF51Kls5lfhbBrIDYqbv7eRcs41dzajF2Jd06JBCHadwJyZvhOoizCmlPhQuARA+Sjk+lVJE0yXilY3pWKZuH+JtEzhxK5JURPD7l2HlR3Qw2IFF7bPNA4dfAJtmtpk4dGj9AaXL0cKPDuXBaDuI1gTq+6drYZbwv0x2TFlrpWPASrTt82VwAB5KVugnl/NXkerE5Mgza8nwPaV4s5/wglInquZQFUfqKPGh8+kKRy8DsT7yBwOMN1jADmO3RJt1UM5nCZN4GonjOuaKaWjWllyoTC8yL/pyL8N+aQA6XuEVzfR07t8XsGmy6wXIF2GoagLTaBWpnCp9UzUneJ6VSbinqKsJkQWYkPkuDWFtUzh+2LVwFUG6zHTtwTiqTR4vNZYNUnhIMJ7u6KB8ThLHcukJOXIwyIgF6gq2TWdhxwyIE9NM4dFHV0oMwboqRctoqDRCKsXQKmYVWYkxyVlQ0GOJ9POz9i+MhM4k5LmpnBiVGnvWZTjlvTNe4Tdujiz7uDhhlDHEkhHs6nchrFYJAMmMWtS4gmoeRxXMm5uKpWLaDSF6pAof1qgh1am0wAbvtZNVcdAKOJ0DtR1ISlfn0zwUqkWdYPXCfmaU3VTKFauE2gRCyfqAEExdc4GqYsSYLdF27iDLymbLHEov6FL56i/61jVn9NRk+GivRJIpuVE49BIAeCIQMr0TwXePMvN6Vt1ncjgbarrVd1haVbgL3WLqEc5XUXPyLKZKXK2j5QKg4xuCi+GXpZmgsk1YdZhj+nxOC12DZSNExh3JtPCpdk7KUnlnpYJXFOk6tg1hY8Cc4NdQwFcX4bxMWuT4tcLrFBaFDCGjwVAs6Paax0TEbdsbA1FvUCkYyIPr9g16nHLHmF1s5Udcl484HxXgLYV37SHPj2Dg3bvORjbNGY9pLHrWqnT70lRlFbSB1zJxf3TPWPTfFZAVeHHwJqFqZ0zDtQNpcy/eauOTUlRn0VHjXfYaF6s53oCGbDDBi8ll3aY2FCIvrUAZwnUklVr39VzZAIYSs0rB36bEd9Hfps8Tc8nvEgzRGLHTZq+JXjzY9V5kwArTNocqJszCuiaeIecjsKqZT3jZdASo/RSZ4jmZAZkps3jtUzhu8o1NYNPsek5gA0s89rmbJofszlSZzRFL3nuw6QdSZrCJcWtQDzEIccyft+Us1noSRseXL5PM8/1uezRZkXbYNVGpE+mRnq29rk0pT3DwsLPNWaV6g1y71eOW/IxS/rjoA2gNIEDVQFyZs2ZV++7WqH7Mg7vDPKxeFVEHUoK2bDvnRQ0SsBmyrkYn5TfoHomUrpcMTaBmitkkU9Zl0I6ystONOlizfx4nhh8LD9aLKUYMgMDaIME2HJojUQSATlGrX1Pyapznoldy5eZr7942RsRzjvsIBCncALNuHJdWijJlfVAG7eWz+cdraLTJb5zvZEH6t+2rhN1h8+r9aboAKJMZ+mmQHOE+0PIcetqR0ivW353kWs+Zs1lDLy1cWoOqmMObhJ8x4BaxlkqfOy6+Rulwi0yYRIUq4o0tSHWmFRnM8HAqQEanl6DSaX4PLxQ0J6dQwdqHq6kU50jpzs5bhkBeYxZWZjUiHLypLBNOTppALIJUj2jv1TfRuqDuq8xG9ukcere27DBiLNNU6l85UKY2bvYCIaXvUe517kA7ATUgk01i135XvV3LzttOlALS8pW7AYli0T9/UmJ8lWnqs1/UAM2eBgTqQfGgJq+qRyr5iZw+T6lSXyZzvEckE0GWiO+j4nvSe9L3yVVe6pWnDs0O4ssqyMAq27cweLU8dlxxEu8qlc8L1Ud4/kuX2iuQ/RYLHlNmsLpd7E21fJqn+S6AmsupDS5PpG9FQ7oc8yHGhhLoC6n0CzwAh8TAxgIE7lsFJKF8ziSXcf4TWczUCOtlyvlvejRHqeo8Flp+0qBjwI1N1+xvOf87F7AGrNKzkXxGdwcTuOWnFFZEwA+wGhQ24WjyEhhlebRxrarKJV6HrNGYSqtWDWvH0nDsus0Nh3LPM31j+XBARveFEBtxHPUJlR9fxEmrStkAhVxK+Uq0lcVbEO0DhpfZSqDJMq1bxqAnczffnrxijGglswaQPFdKe/winVuQTNIgKyJaJP5+yPtqGXgC/O3iccCqE1ZP6pvpoB2AdQCcDXgrszlSnw5q0CtL6P1aRnDTm2HdQwli+ZpasSyjiOWuN1SrjlYSzatDeaPATaX5g47jbAWUGu96UWiAS9QK1qKm7QbGOgymK2u0Wmmz6M7c0X0XvQWCkin31IBc6AeS4+Dtmxk4rlTkhtVzayCydsXUy0KcziYUxm8yrKpk0YLZ4xJa8tVDtTSC9x5g8Hp8/ur8UytbHi5RwyH8cGz17FOG7LCTotKRl1SzO0de0WhAAuQZnmRzKfosPE8a+cTkvQCKcIEzGDWq5pdkxVlCrBJxsat+bfVgDpbSVDEKzbsKF4q/E2yLV5OjY6aEWVfmcApPI5fh7rAkjQ5SQqsqmClE+S5qetCA5ilPpDhdE128KS1profCgFg77GPRbzkODXXKxKbWuRyG7nqYJ2VatvJTDOHS8AG5oFz65oEahlPdQhZIKRYqs9j4hzZCrRjrppKWpnKBaaoAdUcnnGeVv9FUtYtKXvRvgwrGkX5m19PSlrijhi/zu+npKPlDfx9dWZF1xyCZzg1JLqvNW5JwhW2Y4uhSNY1Zxc3DtrS/E35RAoT9axVF6JGTbu2pfBYQsJXIQF2eDgblwzxJMMuniWzsnQIRNSBArwhFKtSKTXTt7xGZaax67xzWhuwARTe4WP6xcvvDAne+fvSt0ZxHOmMzRACX17u0hQeCiPrgcJfgYZHfPxYtJkLwOoF9PYn60P6pmUd1MzeVT2xrE7YVlyFVXN9U+gkX4aN5L0MnwegkkRK9kwiQXkfIE1yzZk1l7Gx6v9/e9fSajuPXMsNgYSPziAQyCj//3dlkmEPmpAm0NcZ2JLrsapUeniffRMtOJxtvW1JtapKkk3EieeJ48jsCuel680ftj22fd1wrWw2IyBxC3o2QpRb15E7vKBY2c91cC9CmMo2aW26Cmh+rYX0ofLVsgFxJwC9L0yoF023rmET1bOR3rolnQed53nvAndOGjiN5URdSJqHRzuF+Von34CUVg7rsz6YcL7WqIke4V6ObhFxgWyJ2ypSibGgiVoBKnVOWl0nAlLYrt9XodzDQhQTNpcv+uDW30EfcGu6XPM9B2gPgnaBv46D9Tvdz+pQcffl42nB56wLdN8Lgi7lIlJuEDW5ae3JgtIcofDxx4l+TzzuFkFrC7uG0xEf4RrEx8gaCdgoTu/2FuvT939969HD0DUjovbWraNyMqhuKC/zIadPyrqmKm9FGrFLluQzqkKaJHFrnMGg5xp1iqj1fbqCm1tYTjhqK7/fSjjSum5tNKrj67is7IyVxeOeuiRJl/BiUZv1TDDemjhOElKYPXfxxjpO2Ccxy5oNN2FJnfzRuS7Q8hsqbEZwS2XMWEuo7AhcGXVIusSV5Y/nox7YJX7FPf2WObrF+5KIEzZSwPj/5zaEhX3yieQAPH9xnr5eW4IufXMQPQpdCbvHxKmEhiBvYvG8LUAmnAeZHd4RUUP3OMuj5U2oHJj2nc5/SiPiLaJnLKB1a3uE68u+utUD5AoXlnRDaCqeEvAer7cebdetbRrvOot63tojZJH4rsuzrkU6ReKKsFlxFZy4o/rF5FHhGQEtSBzV0TVxnvviPj/uBi3glpXeaEQkJ9m1gezOR89mI6LH9a1fosHHgF6rLvFoTZNb1aUdpY2VyE9HlfL6jAntUiYkbN6XVSjLct1+IhWfHAdaCEdlw+sI57Py+rzj4Lkm0v1kLWwiKVP+fvp7O0o/lnLlb5+oeTtC67pB2JWQtcXLifru00Ka4n0+1QVOVWkTCrxQ4kAbg3EgCFmTqA6jVjql1B/PLdd43h527W5YbY2rpKuaH9+S4be8CTzDs3idrD2tI2tJ67SepdN6HNGmMddlHqQZJeyCeoSL28kpAgfWNYFwTmzkk3ZcFxbOtTwkoInlCyagP6kyEuuxqMQ98kaJMSOtKiK8dlkIWWxiJDZ+Qf/odWoTRpKotav0arc3/oLncEvW83g+AFOsJiKfsIuFJXRGTty8/oi4mQC1FpEl6tQYSAxObw07sq65e1sTNpFVxCIviramr9+PovUQ9ZO+WtX8gRaLVld1HjeR+g/jpIecNXHz8ErkJcFBUuKovufXRM94EE3xCNsh4pCo4dr2adKfrA5dvpFP0W9+U4THEYLpIiaDNODy2Vk2uMZvyGvhx9esvY1mEWGX+ILW7k0Nj4SRVR1h5swcRG3KKSQvOIBF5igXKAueS0XVAcAJmiFqNVFTQK7RqG0s6aklDJ1m7ZpICmkivNmohBNZV3i0mRGRdGmnJmqxU5jl5buGEcR5fS6khRDDitzJjm1xgjBjo/X8FdeYMXC3QYyBLKLBrIXjeSkpdN73ajweknFK/+lNZ4KkWR+HXhRA0iWNVMZI/C9prj7X95d5QPd9sjOKDzmziX7Q80rRk+QrRfnbys6q7xmlrVQldIuADEOSRmmA6xsStfrTcuZ5JqWNp2mbae8ieJZ0jSe0bn2muxrha94NjuI1YRMRzJ9duNcWTETUaD0RtXzWwp4CI89CD3qzWdkhXgW8FriNsnU9Iu6wk1g/DteiSgjzSPNt7YG4CsAbjcQRL7oIu7g/BTErAY7AxxAn6XKtidpaXZKkU8d4jAV89/rd8U3PSxHQLEFrFIsqlRCERM3SzoyBDB6PilTaNGETkRgL1zXrP1GofaMZkhHC0q5hup+JmYlMrmRkB1+T5gpaucVS5PEQ7EFM11eEzZ8MJ+jZ5RChnDGyFYQPdn0johbjxDwLXLZrQQ9Y0gjuZjKgyBfodetZfMX3rLl1HRF2iS/IvIUGkWmvS7u1a7wHfN1annYkMsKmzjgtgm0IFMq1zaVukT0WlJp0eXhLSKtJOIro2E5pgDwt+jwNvmafIWwikpZVon1mHLFwb/MRX9d87lO+vSw1xvgtayEejY1bSusaKnFH9anfov/v8NVjgDfwpFjZN1m4+X+cjzLG0vziN30ewsvHFTS0h0UsZZAlamRV18SsTvG/dU+FlImkK1zvWThYv2vCPooCQYLkmzKBbLxH0uKWIDmTGB8m7G6OCRP1AYXP/a3GDYuLlmSziEi7usEnNdPXyDrT727eBmHzdL2I165l2DKr+SjETLFAnMTD7cxNzjVbVndGy2xaU9olVX4bLdcJfxHaE4MI+/ot17ELWsStu9HsDBcC3RK1tqrD41pcIFdpzf/3KHN33E3a1ari9XhtKLkBSctwwpbPijFQiIqkKxwpbdemM9ZAMBaMrHEeAFKmuNLF9yJoNzhnGvEimhZ0fwAF7Tyobjpjuj1T8hVh3yR9sPKMhY3uH81p9tsQs47rIWr1V2VNWMdp2gR/kyXnLFokrr11Jk4L5E58xLL21p8961rHlTKIxl0KyFUeEbVJ6+SL8hDF8i+NOvFigSwtrOclKGWycsmdbhMY9Iiohcar0/AW97o/zyKKnYkSWNeRVcXdoL9YWc/GMonWS/nRuqZ2l9p16idO3i/774EPrOT4MAb4HSLO3EteM80ykQ5Ri7TqVla6wBE4QRvCvtuE9inEZT4EXcNI9p9czniIWlvVJn2GwOvwVqx8D/MriH0el+8EJ0bYd1ZD0Jy4I5i+fMIhSZc8nUQtDYVTxpMs17bRjk/3uhPR5jKOX/eD/lPpswX48Q1mHC3CvtKwSdbQcjzYtWs/zcxBdu+TmThxrZldZGYPmLtqdgqNuxeAR0KiBpM2rFxMrIYQR1ZVYyLw9WtN2ETSyr6uL2RekMFhLWsulLHrW7eTn8N1oUm6JQcOROFPdq9G89Icx40oBLIO10LTe4SA0FM4sXWtCZpf6zfdEVGTuDVB19/GO2L3IIi2nvK64zaxU4XoOcp1lH+N79mfss+0CzxtWRPZMaDDDnydImoerurUYwsqfyrNoa5Vc7tgTpckyXiGS4i+gKytBW0Jm4imNpbpsmQZNt4IUpB/yU7wg61bZ+7lwNZTzXvUEEnY9AjfEU8MtKpaRA3cUu4by1qE3tNWYUWd4nWUmrCfN5w9ncnd4331FuXuuYbW2KndpHqDmfMgDtXPpwqvfa/Gxz0Y9KgBw8bkkfWrJEBAQ6JWfRu+tS47BjhR6ShGyte1JWxbLyZuVh0rX/cl/23d38KqLvlFgH+bEIxYpVX9FFcJ+3iSEj2kfJxPvZC4G2gSN5QH7LqHqFtWtSFzML4WWbYesi/T+e3eDU5kCVoDHeeKSDtTn1dPlGZWE/JQN5lFt1Kr5r4rL5395rUg7HJxW9kiO/IqwMloXUtQYKO0QDtegfNuxHWLj1VFxPszJmwNtEs4A2+/A1rXhPdyC/c0PMmKFDpG2HcSEWfGhFOl398qHhF1dgwkPCXoQz9lHJDof+tDwGFx/d7mP7OBzCPqGkYir3ig3m1rci5t5DJBkzJdhK1fkiOqOtitauLOwvQ7CD/0Nd5MxtvlEjUPL3kib5wXXuP9sTa6yYzIf+HOLD5G1q0t7tbdjc9fZ3eDR+5n7fbu2YkbTdwUPNLl8ZGlrYUxm8Dm2BYvUiSmWn54u4F1pTVmU5ZWtlZrt8UXqINvIS1fQaqu1fpzIW2+bOFtNHKbA0ia6Hniem0T7RjuRkahA8zMLTF7I8GYCAgXErVKB63qnnGhWOc6lqjGwXnblccjV7QL/AkjocihZSt7LeNsn1IlatP8YlXruGz/s/4tw1h4GJSyTqyfq1XNyqn6DJ5KTYQkXa4POTYgUbdIlYOTczROnRs67vwrvr6VgT5vPYPlZC02kFGgpSuC9gibKP46Vy+yRI2E7SzEiy1MpGJYHYeEMW8Sn8Tlmk1K4f6uZne24aya5gQ9ZVxA4O5aZThwlIBiDTsFKV8V6vdH16qPZ1uaJu0RmA1mKlwL9ddQdbhbdRPelSumEjYyuVpNi3hGE7VQ5Nh4G7l9rZxp4r7TPF+7w4QNCuY3YGMb8kK6wUk8EM+qFgky0/B4PGfiMSiSFnOf5+NVOgQtHBEZePO/hPHwQtIszlzrOM+qFveirGpHnhyHH/cJFAPht1+z5vBcDy3SziDaRGbTxhUtfXNZWbc2FhGTRsBaOul+zSQLM5aTImxdbA+g1YyIWqehAUEdKGeuC1SRsrdmKVziqs29O4Q50CYkRNT8XjLWWBM1izWJxSc0S8OYNOebyHrGhWkm6l/U/175prxG/XocMAarcQ5he5Y0t7ZRfejaI2rk/uZWtbvk0ep/oHRRCWKignN4Wb8mso+1Wt+c/FPKA2hyIBMq4d7x5rrkaxF1xqrmbSx5mvdzjRM+pkaPd3mob9GbKOOjZI1ecNJzIJ0Tboa4o9eGttxdRL7QTSGzWwNNDqUtm/J0HjkzyRA2h2pSNB5h0wFhG6JGpK5/R+W6DQLpjLUlhTap9WqXsEsca86IFhyNl9SO4VJGZtyU1CjtwaOfd4fXCqrQZ3MRdEJzCDdIGv4WYTnRlfmmNRG7NaW8WQsbjwG/fi0rZLhH1DOo/abB5r/oVvAcym867k+hRqTNyye/a6DSzn5reTBK1CmIsjiR58bVQZaUNWmPIDpvPYMft6w9wiaKH1r2/d1end71ih3mEErywWNdnnR0SF1Y1zxNsSwKd1XhXBp9/8s0Xadh19bCQmmcjpoZxKe1JrR1zd3hVjBf6Vqk3d0s5SIt9ctrmcazsoRFVtt29blP0CwuImxTGVmlBzUL9VlTeCefZnbaWdOxVHRZccQI+27zoxhJpa2GJojb27EPiVrEkbWqvfvSQPOeGEkz/b3U534el4hK6wxpg3p6ZQMk6ZKGE3lE1Lp+ROI1bHCWHuQe4xrFecrP76KPeJTfM1hG1p5FrAdN9itcUfhMG6Mw7zzlJwDXs711bKFdq7VJokf4asKucSMNlJfGotbpUB2jY1Vb0E6cFdDW/dnaZITQfAe5E+YRNVq3DsmiNRgdoe4Stkt4JV9i9PcoaqvGhO5rrZx5hE0ESZvIEndYPehbSNRnsE5d8pT48ttDrRIoaVq5PxqEXfteWtpEfd1Qy9Jt4eGclBFxq+taRiVn0KgWURtSP8V69Qou4RtQ61nrRrm/6KA/nXf9E034ccu6ICLsgpnXxPWEozSepdRbHhFZ4Qom3VWgyuNYTqJMh7BLNUbdjtoIcOrJFaTvWqtMu0QdC5oXB4Q6ImwiCkkbfRMZtUde4zhE1HBDUg/0mCCyY6mkQxb2aiWuh6hXKeFFn40Iuy4hPeOGaLS/yw8lF+gJN2NA9fMocNepUyAljpMi2cd/keVZu+Eszy4LbXABkq7hOqz8FmkUUZONk/XzckH8/0G8QtYtizh613f2OFb6zVXJ+J+0qgUCYYvT0+MO5+mYFk1ElrRLmgTgo4zWK2H6XF1DQBbXObfBqG9NU19rAj9MOt8dOqrwlfwkxxBX4jhh6zKySpxOq66ndn2jOY28KknFAhI2q0d/4AYr4Khgn6h55VCRW0DaBod97TAn7NJGo6yTHkJ5yWcta/kfWtg8rUfULI0g6qOE/Zx0br38pIXZUyAfsazR3BolbJ5uuD1Jol51xEbIxEMJgAYRC8sJXVcubllNTz50W0LDdm9ENfQAv+skDKzqjgEvNhcBS3DFBiNN2iVfD3pd4tfFYcMG6obkLOLJEPaV7ZD906nEGcHvEbUR7A2rO4mHhAla10RyTBBRSNpxZY4CpuKN+xuSfaK+CGq88z0okLDL8ynZHWWnq1kOWbsWNk8HiJpUfCyHePmczOVvdGSrhL2gMlXol6OUL279abLjv8YNzpHZYDZTLkdm0b9n80kP9CYzQeRa6LZInVtNWgDXCctNOyV8vFtEfdDQqpvpJwEVOmiBXWHYor6b5pA2grcR0ru+wmw8Gi99ghJ4X4iUVqjScMK+KxSkTWTHDSofwFg7EVEPItoRfiWgJmFf5bCxM6CMG5Jm5XCi1kqZ6fOslS2SqDcVEidordSTJGxVNZFP2ikYRQ3EMQUBu8dPda3KRVb1YHsPkPcKW8cxxQDVTZy1yAs+RtY91nXNs4i0PQHsfY/YyxPt7J2GJ4B1XFGlW25OFS4s0lJmdxuDayGbAqu6VaaHpDvUWNeMsIlIWNlEkgTQznBRttM/WZIW4WgMKTdqCkiJ48oZImz125B2iW8AuiRbRD0rtMo4qOSMTpNgwi5N6t0HY5Qy3hZWp0mvCRmNn6B69/gWEZjP10X0aVyPtHWRGbhucPYbEfVjeQOi5mVHxMzL+I3wvd+zTrqzM1rH6CaziEwjos6W8Ro8t6ZnOWliJvLD9SRvtiURNkLUo48VEbQSzh5h87TeWvUVVsrtayS0mJE1rYh6icip90lKSQOETURIgfPWAwthhOuFkfDmbdTxC6aXdodfYWxMsLrNNOjoY9eaRgkEeXuFBEBKGKua7zsp3XxdK8Lmivz90/WQJJsm2giuQ2v6biMk6oOwEnCQb1WX/Nod3nMbxxqDcLUnWGOarLVlEm4QI/y8e75KsoI8228oe4mgEyTsusKz65KkNHI+YUnV2d3+OKxpaRHlJpI3UHiSxnolJOy7fs8F/pStmowMosgiMu5xfnHANCgtShMulXhAXpsOBS48KpMJy2BE0KFxggibqEnaXvE28MmBSNj3lAQ1dSnOWA5Ud/jN3O4LULguzSMTcw63RxYhwtHtZ4haub+jOt2mMQJHLnAvzxuE+1t/dcvDKt9+qw6NTI1LXzE6A4/AVXxz1++MZQ3C4eail3SeLAxhE0Erm8gSY0Tepp4E8Uohz36D+G5UhcyxrqN8vBGoCUgpbJUH48D46C2jACyJyD5+yjFr3Spvelo3SLq0wYahshp1NZRxYz3fZWrCLidAjJWt2mWIW7c1q2cc9rcgYB0eETWvA5HtgCWdfRnKyNe2EG/xT/GuwKtkDdeTKJ6PbxJ2hqjR2VgvfgXEpiZlAWYtaRPGCPsq6qCUYE41WF6Gm4tM3s5+ZevNYg2yWtMTu4EZYdfmcUtgop/tZqIcUT/r2cNVP9CEHW2qihS41mPIPCaPqDsfMdxkJgjIJ2wiYGXrtpkK0fxXdddwRdSt9eme8aWVbat3sjnPH2uZA0dNUoM5yTtV8h/hkIxImqhJ1CZdCTcE3WhD8pF+woZAPHZ94Ge89pkPDVW0XHcmfSP+13nUv1XoJeoWZoR56/NsBxj81+/TD9PpOfG0JkELB8F8YbkZ6+mFWaM3cBEpGVmF6vH8sbzlr7dOmNeUj9s0BD0WtAUj0oJ8sExy+9pNl23nbBoN15vBB76Oc8rx/lTeXqJGY7EX/nE4EK6JUo0JEe79lXrVn6gL5WG/pZXcJuorjKXTssuQNghjcZnPX66ydqFBB9Kt4LLX3eCzC+/iS0gD5Yw+JLiDF6YbKt6Ca881LGldo01Ep8xjdpYyzdptj4OmNY3yrvaWONa1TPOYHsKY0GNSrWdeaWbapgW9ugZpl1rVBXzMiN+naaObf6r+YJysVNQid53yJGX2I9SskNx1mgOG+4Um00UQ85rwZjITfgWaoc7vP3qOqA08a0ORsAoEyid/N1+ww0nexC2WN0n0vE67Fz+2Zt0zLgp6iLu5iUxfL3Zvp9AiaJQuuy7J44nIuMV5uiRyG8jy5T15OgYyWK984oiEO1yl14Rdq/dcxKnNcP4NhyTdmbcLiY2MacKeaYO4nijL2WcgxgLrXHjk0xE4aaXMI2kd51nVI7Ia9R3owxRh80Yw0iZW1EgftUhapPGImlvKyrKGVrWGa2U3LOhJAv11tr/++KUf8iDydoV7msXg+CCiuRsf7aL4ncE4rvWiDQ/4wx4UWMItkic2VwFpO0jvBI6Kym4uwg0gsW6NkoC1yoiwdTPc8/wLvDI1zAQ8aUKrOjNYA0Eu4s1vR0mZRY/nZaUFpASK9aA47WmVqYMaRD1TNkymvWJE0GIOCVvnUW2eGgItkubhiKhh3kBmaEJHabJxC6HH2+r9Vz++G3xk/qyoT4QFbstP7AIPCR2SsGNddxA2UUDEYWOTYbytM2VHUNZUk7BZeyLSrs1JtL35djsY+NnxZaCVvlWk/ZbnJYL2tLQIu6QZqUo/H4eoV6xVQ5j5TpQlbCJlPWuFDdyH3464nyPXtohH69QHk0stq7p1zaM+RTA3tCG6whX+uTeYNRo7Y2Wn2/By+REioziVqEXMPYRNmcY4bYiue/LPdLbj/oRJtUXukDZq0tSOcBiolUKcAdaLwrJLJjocXZf0UX0IrQ1rPUimz7569EnveE6SwP3BfzeUL+05ye4XEIQbvM1MNcUQNpUy7qLRnPHIu9VGVTeMS1rT8HdL5ujh3znmRkm8x4peZWHP7QYP6h8RdGdc5BS8cjPvd27l6UKm04qbOlMNtHSTFk62/F63E2qHl75jEHeddxbkB/I6rurRMXhSkP880kS9HL3uRJ4v8wfzOuW2LKVRtMi0BJ1H94mPYaJ+az+AJjFAgGaNWP0uw9GQa++fKg/VlbWmn3QekTfGsbieG1fZHd5eer5EKz4S9dNr1t57lltpwzLZ7xVDPkvUNj6fFuWJUNekkYVjEt9qsdK205vNajmlkSCsB71EPZK/hWBzETpre8Xd1R+sDKe90zTijBf4QQcRjxWOJoRFHeSFFvVAfVE7esIH0XrZyRWG6x0WmgmFr5lnJTx5QMrCJrLPokwRfwq4gLcdECgkapgOxHt1tBr7kq7Ug4bTrxtLzll7WPFSkRlrp+RPp31LG07gaA3UdEHlf4MsR0l6hKg9rXslPMUKDJ7meduh+o9mGV1EPYtIsEWW78y46CHqXmGbIsachd0NJIBCT8nidmirMyJL5vGAlrN3TXYIe3+mDKdckT4i6mZYxm3+nlYUeV9/Jefw15yz7rGudfquetjv1q23Sv9JYk7h1pIfCzxpXROIc+u4/2e6Ivu4WjuBo7QJuEd3TDqwEziyskXmdWPD9bS0Jvlql2prfVuHr0KWqFfV6VnYI/W4fZck6ln+yHhI0Lwnqv2ttmjYOb/iuQPSf+IA0QLCbZ6pzjRDD+/UBlGZb2YjmD6mpX/PEvarljWRT4qzZHk2/rrLiyagm2egojcBNdTTJTSRtvWXqr9B1KNdHo2VQDhCAgRW9shby9zmnI0yYRsCou5B63l7JPmG3upa7+smja8IReOFfEGRESIDciLdtgiI1FSc/f2kTVnFve1R+W0dnUQdKvaNcl9CtB6d4baGM60Ly8h6aEPZD1m3/Z8+/HA7teuI1LUe+Is3cg2hl6h7LPAeZNxSjjDWRNsi8my6uM5Pjy2nkatIOyonqnsQQ4Qt0pHbN6a8FlF7dWanXtLjAMktIuyItEv63j/RHkDS3kYy1UZzL5GcyHTphJxrbmAN89rGeRvNRvGKZa1veuRlIm9h2qJf2N5DDVDP/ZLbFd7QYnWalXhbEVBoCkkw/npI26szTcy6fIekmzuNifotuYw3I7Ofocuj0pl+FNm9AI303XXCvTeNuj41JTKETeSS9sg2DX8N+/TJdYaokVXtWdoLkf0MLl+3LqS89DsAN15zg38zYbfqf929PTO4ogGeOrK1+Oayx8SiPBmC6UWPFTu7htJZTtgOcb1oXniEnTpGmPhrlpGs6w3MMhKK+qFbkS7nJCk2SPspL/8Hy9PtOeLfTaLWeIMiApd2vKkM5yu/PYv613lMyZelL0WZWZxf9bLzVh0/iYMG+kpvNMsWzMN0fD3a9MLzeIN4M/A2FmmD577ncKy9MAzDsTdTX2sTYU3n1JPNP4oPHbHJbGxdcZ/uSQJx7fz20BIMzlxOf7NeXxOBudLxbLLLGY4SkVujzqRhP18cwmIDNauWh5f3hMvN1jjfKKYt69hizqct8b+bW3w1Uke4wiMcCY0bpR3BSP631qqJsMBxmljG2tv936yjw4Wbtuh6bwlZR7PIbmzsRYe8WQl/w2BA1CPIejtq9cGaLrr2Hh8fA60/VGZk0beI2m2T/p+QjUlEr5T24no2SyPrenZoLHeDZwg5U8ZqITpa3sfIPGMcJbXMkLCTbrF2Ywbc3wvRJZgbaVcSNy+rSdJvrrUiZIqdJe2fdHnTO4S9bE18pl+jodQibC8sIu9WW6Jynes0UfeMn8VjzSNnvQaN1qbL2nXLNT6K5eesbZwlmfSbzDIuy8V4Y7JHH+pIubeRq7KEee5unse4wckSBX/G0cBasd4eppmsE7nDiaxL0Muu7h1+LW504mVu4+110pbLtaZLuklHx8OM7PL6uEQXTpiUj/Hu/oQXZ7Us8eY6AZe4rh+F6biZdgXXqfX1GqYIvWV198YtBD9LXTiNfzazxD9xcw17aTd4znruKW/qowqLLJW1b5jyZ3KknEABlLKYwPWISyxbfgYfmlQCkUWLkitLeWgMZOoc2QRV8iG0hNmMq3zWbf6hfh89Q98+hvcTAxcgIkUQX8NGLepMOSuIGta30AUuLhzrueEK52XUsMCiXsEdHzlnve6FE/0C89O70Ke0+VDAIrdzwxWdnbyz+BLZVZHp107S7m9Dso4ESb+2FvsT/baqzs65G52h7zqS59W7so96lOIMYUfWqffXSuOVw9rRRdS6vEw6k29NJ7Rc4WhneOQO52nOiQnw4tGtQ1230/SWv2J9/OsBbqFpXY8Q9upH9YFHv8T6WUXap/prps9Z0lNEnfW4fGqarK7n0/O7p77efuu5lQRhu6SdrSeTFqRx63ba+oQHlrMXd4fPfOby+T0Qf/9HR7kQYX+VG7x9Vq2dZ6ROVMb7u3zH8sGxCAk5a0ln1oEThB2Fh2UP5PkUeoXrzF9Pm5LtWmJRrxTOn2hHLz5F2CM7+mfQu5MeNA++mrSkHSVvJ1+oIARtvMIbHsKeuEm0uERb15E7HG04m8Hr7wbXeIOwSxmzu3p7j5q9gmSVXdY1UR9hZyZyr3D/qR3C3+BdKQTdQdK5N6S9cG+rSfsTlvubfdzqtx8a1kTku6MZIImiclp/DtIknSHqyKqeRJ1PcGMgIujy31rXGXc4IuxZPllwzlpfx9a1X85nhepH6mtOkuRAFAO/YV33EnbW1dWjjX8BPwr8BGF3EjRRB0n3YtRjMmKB6byj6H0OA887VV6YpiN8pF3DpydseCFV/jcKtwzU56HC37P5LFFeB2AXBZbwQ8I2jXaHI8LWn9IcwaKjW9LS00ez7DW2DH/iqNanEB3fuuKtoO7K4x3V4r91OmJpiPoF5KdwHvMa9ooyMnWMZBtp1hd7fX4cdR4MPNif9MTouTqbrzGvZwgb1tMKE/EJos7sDp9E5SYgHwpPlTTP/ydct6cQtraCy7GuGXzMDZ5Zv/bSfiNmdn03s7YGf6/G3bKwebrZR//NXbd6XHFrbqDsYUt6yEobqOenMSuPdf9k/j7Vtix6vG+uq7kRP4KozNVEHZS3+jWj1tWdTXf/v+ORlX39jbdt4dEtfd1+ir87YS9BYzK2vAyHN8BNwo56Rx/9T3ibR92lU5XOlTHl7v7/Mi++GauIOtuVXW/0SsTPzO+MUhCWMfHwfnDoo3XqFlaesSYiOs5zTGz8+c9/pv/623/TP/zbv3TU1lfHm32TuunBceVmWyloP6HZ99bxO/HIaFu/dalg4/dEejz9TpMrwgtGwmx+pUD0ej7t6rWP//nPv9Af//hP9Ne//jXZuAfDa9Z//PEHERH9+z//62gRGxsbGxsb/2/wH3/5W+XOXgxb1hsbGxsbGxufwcfPWW9sbGxsbGz0YZP1xsbGxsbGl2OT9cbGxsbGxpdjk/XGxsbGxsaXY5P1xsbGxsbGl2OT9cbGxsbGxpdjk/XGxsbGxsaXY5P1xsbGxsbGl2OT9cbGxsbGxpdjk/XGxsbGxsaXY5P1xsbGxsbGl2OT9cbGxsbGxpdjk/XGxsbGxsaX438BhFefKkc+GKIAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 750x300 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv0AAAFsCAYAAABfFAZvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABcSAAAXEgFnn9JSAADMJUlEQVR4nOydd3gUxRvHP3eX3kNI6CGhI71IkV6kV0GQHoqCgIKgIiBSRESUYkV/0otIUzoISEd67z30koT0nrv9/TG5Ri6N9DCf58nD7ezs7uxxt/edmXe+r0pRFAWJRCKRSCQSiUSSb1HndAMkEolEIpFIJBJJ1iJFv0QikUgkEolEks+Rol8ikUgkEolEIsnnSNEvkUgkEolEIpHkc6Tol0gkEolEIpFI8jlS9EskEolEIpFIJPkcKfolEolEIpFIJJJ8jlVON0AikUgkEokkq1EUBZmaSJIfUKlUqFSqdB8nRb9EIpFIJJJ8iVarJSgoiPDwcOLi4nK6ORJJpmFjY4OzszMeHh5oNJo0HaOSGXklEolEIpHkN7RaLffu3SMmJianmyKRZBl2dnZ4e3unSfjLkX6JRCKRSCT5jqCgIGJiYtBoNBQqVAhHR0fUarmUUZL30el0REZG8vTpU2JiYggKCsLLyyvV46Tol0gkEolEku8IDw8HoFChQri6uuZwaySSzEOtVhs+048ePSI8PDxNol92eSUSiUQikeQrFEUxxPA7OjrmcGskkqxB/9mOi4tL0yJ1KfolEolEIpHkK0wFkAzpkeRXTD/bUvRLJBKJJFWWLFmCSqXCx8cnp5uS7fj7+xvs7/z9/XO0Lfv27XtpKz6JRCJJDSn6JRJJrkBRFNauXUvXrl0pWbIk9vb2ODk5Ubp0aRo2bMiYMWP4+++/CQsLy+mmZgrz5s1jypQpnD17NqebkunUrVvXIF5///33nG6ORCKRSJALeSUSSS4gJCSELl26sH//fkOZlZUVDg4O3Lt3j9u3b3P48GHmzp3L4sWL8fPzy7nGZhLz5s3j7t27+Pj4UL169ZxuTqZx8eJFjh8/bthetGgR7777bg62KO/g4OBA+fLlc7oZEokknyJH+iUSSY7Tv39/9u/fj0ajYezYsVy/fp3Y2FiCgoKIjo7m3LlzfPPNN1SrVi2nmypJhYULFwLg5+eHs7MzR48e5fLlyzncqrxBnTp1uHr1KlevXs3ppkgkknyIFP0SiSRHuXHjBps3bwZg+vTpfPfdd5QtW9awQMnKyoqqVavy6aefcvbsWXr27JmTzZWkQFxcHCtWrABg2LBhdOvWDTB2BCQSSe5g7969dOvWjWLFimFjY4O7uzvly5fn7bff5qeffiI0NNRQt2nTprlizYslpkyZgkqlYsmSJVl+rdz8PqQVKfolEkmOYhrT3rlz51Tr29vbJynz8fExPPjDw8MZP3485cuXx97enoIFC9KlSxeOHTuW6rkPHz5M3759KVmyJHZ2dri6ulKnTh2++eYbIiIiUjw2KCiIadOmUbduXQoUKICdnR0+Pj60atWK+fPnG35E9T9Sd+/eBWDgwIGG+PcXF3G+uMj01q1bvPfee/j6+mJra2u28DY4OJiFCxfSo0cPqlSpYmhDyZIl6d27N0ePHk31/jPKxo0bCQwMpHz58tStW5cBAwYAsGLFCuLj45M97sWFxKdOnaJHjx4UKVIEW1tbSpUqxZgxYwgODrZ4fHx8PJs2beK9996jdu3aFClSBBsbG7y8vGjdujWrVq1Kk7OFKZ999hkqlYpKlSqlWC8sLAwnJyeLwuPYsWP06dMHX19f7OzscHR0pGTJkjRp0oQvv/ySBw8emNVPbSHv1atXee+99yhXrhwODg7Y2dlRokQJ6tWrx4QJE+QMgSRNTJs2jebNm/PXX3/h6upKhw4daNWqFfb29vz111988MEHXLlyJaebme28EmYGikQikeQga9asUQAFUHbu3PlS5yhZsqQCKHPmzFHKly+vAIqNjY3i4uJiOLdarVYWLlxo8XitVqt8+OGHhrqA4uTkpGg0GsN2+fLlFX9/f4vH//PPP4q7u7uhrpWVleLh4aFYW1sbyv7++29FURTl22+/VQoVKqSo1WoFUFxcXJRChQqZ/em5c+eO4fiVK1cqTk5OCqA4ODgojo6OSsmSJQ11J0+ebKir0WgUd3d3xdbW1lCmUqmU77//3mL7Fy9erABm53sZWrdurQDKV199pSiKouh0OsP/zfr165M9zvT6K1euNLxvrq6uhvcJUCpVqqSEh4cnOX7v3r1m/3cuLi6Ks7OzWdnbb7+taLXaJMeavsd37twxlN++fVtRqVQKoBw8eDDZts+fP9/Q1qioKEP5kiVLDMcDiq2trdnnEVAWL16c7H28yM6dO83+P62trRU3Nzez802ePDnZdr5qaLVa5fLly8rly5ct/r+/qpw8eVJRqVSKtbW14ZlkyuPHj5Vvv/1WuXLliqHs7t27ypUrV5S4uLhsbGna0D/3XvwuvQypPQNz4/uQ3s+5FP0SiSRHuXPnjkEcValSRbl27Vq6z6EXlq6uroq7u7uyZs0aJT4+XlEURbl8+bLSpEkTgxg/depUkuM///xzBVC8vLyUn3/+WQkKClIURVHi4uKUvXv3KjVq1FAApWbNmkkerKdPn1bs7OwMonTbtm2GH4WEhATl5MmTytixY5Xdu3dbbHNKP1amgtTJyUmpW7eucuLECcN+0/fqt99+UyZPnqycPHlSiY2NVRRFiO7bt28ro0aNUlQqlaLRaJTTp08nuU5miP579+4parVaUalUyt27dw3lkyZNUgClXbt2yR6rv76Dg4Nia2urDBkyRLl3756iKIoSGRmp/PTTT4aOwKRJk5Icf+zYMWXo0KHKrl27lNDQUEN5UFCQ8v333xvEtqVOT3KiX1EUpU2bNgqg9O/fP9m216xZUwGUkSNHGsoiIyMNnY6+ffsqN2/eNOyLiIhQTp48qXzyySfK1q1bzc6VkugvXbq0AiitWrVSLly4YCiPjo5WLl68qEydOjVThE9+QYp+y0yYMEEBlD59+uR0UzKF7BT9uREp+iUSSZ7j3XffNRuRrlGjhjJ8+HBl4cKFyoULFxSdTpfi8XoBDSQR14qiKFFRUUrZsmUtis87d+4oGo1Gsbe3V86ePWvx/GFhYUrx4sXNRuz1NGzYUAGUsmXLKiEhIWm+5/SK/pIlS1oc5U4rI0aMUABl8ODBSfZlhuifOnWqAijNmzc3K79x44Zh9uHhw4cWj9VfH1AGDBhgsc6YMWMUQClTpky627Z27VoFUEqXLp1kX0qif8OGDQqg2NvbK8HBwUmOPXnypOHY8+fPG8qPHTumAIqjo6Oh85kWkhP9T58+NZQ/evQozed7lZGi3zL6Z+3o0aPTfIx+0OTF74f+mREfH69MmzZNKV26tGJnZ6dUqFBBWbRokaHev//+qzRt2lRxdnZW3NzclH79+imBgYFJrqN/JlpC/9148fmQnOi/ceOGMnnyZKVevXpKoUKFFGtra6VYsWJKv379kgwsmT5/Xvxr0qRJqu+DoijKpUuXlN69eyuFCxdWrK2tlaJFiyr9+vVTrl69muK9BAUFKcOGDVMKFy6s2NjYKJUqVUp2RtoS6f2cy5h+iUSS4/zyyy9MmjQJR0dHFEXhzJkz/PLLLwwePJgqVapQuHBhxowZw9OnT1M8T4MGDWjRokWScnt7ez755BMAduzYYbZIbcmSJWi1Wtq0aZOsO5CzszNdunQB4J9//jGU37hxg0OHDgEwY8YMXF1d03Xf6WHkyJE4OTm99PHt27cHMLQ3M1EUhcWLFwPCicmUMmXK8MYbb6DVatO02O7zzz+3WK5f73Hz5k2ioqLS1T79vd+6dYsnT56k+bgOHTpQvHhxoqOjWb58eZL9+hwE9evXp0qVKoZyNzc3QCxsDgoKSldbLeHs7GxY2P748eMMn0/y6lKiRAkA1q9fz7NnzzLlnD169GD27NlUqVKFxo0bc+fOHQYNGsTixYtZt24drVu3JiEhgdatW+Po6Mjy5cvp0qVLutfZpIcFCxYwbdo0IiMjef311+nUqRMuLi4sX76c119/nfPnzxvqlilTxrD+yNHRkQEDBhj+2rRpk+q1/v33X2rXrs0ff/xBkSJF6NatG15eXixfvpzatWtz8OBBi8eFhIRQv359Nm3aRKNGjWjQoAFXr15l8ODBLFiwIHPeiBdJc3dCIpFIspiQkBBl+fLlypAhQ5Rq1aopNjY2ZqMuBQsWVI4dO5bkOP0IkaXQDz03b940nGfPnj2G8pYtWxpGZV+MrTf9c3R0VAClbdu2hmOXLFliGMWOiIhI172md6T/v//+S/Wct27dUsaOHavUrFkzSTy8/s/R0THJcRkd6d+9e7fh3JZmI3777bcUR+n11y9QoECy19DPGADKgwcPkuwPCwtTZs2apTRu3Fjx9PQ0W09h+mcaHqUoKY/0K4pxBqNKlSpm5REREYYQnhf/DxMSEpQKFSoY3tOZM2cqZ86cURISEpK9P0VJObznzTffVADF09NTmTRpknL06FFDGJckKWkdAY2OjlaCg4PT/Gdp1jEkJCTNx0dGRiY5PjY2NtXjoqOjM+V9uXXrlmJvb68AirOzszJgwADl999/V06fPp3s5zOlkX5AqVy5svLs2TND+Z49exRAKVKkiOLh4aFs2bLFsC80NFSpVKlSkuewomTuSP+RI0eU27dvJznPokWLFEBp1qxZkn2pPQMtvQ8RERFKoUKFFED56aefzOrPmTNHAZTixYub/f+Zfs/feecdJSYmxrDv77//VgDF29s72XaYIsN7JBJJviE6OlrZtWuX0rFjR8ND8sUHqKIYfyx+/fXXFM+lP8eff/5pKH/ttdeSndq19Gc63Ttz5kwFMFt8m1bSK/pN48It8ddff5kt9ASxoNXLy0spVKiQ2ULjF8mo6O/Vq5cCIn7dEsHBwYZ1D/v27Xup66ckzq9du2YIv9L/OTg4KJ6enoZOm778xeunJvofPnyoWFlZKYBy5MgRQ/mCBQsUQHFzczNbwKvn7Nmziq+vb5I2tWzZUvnll18sir+URP/du3eVatWqmZ3PxsZGadCggTJr1izDOhSJIK1iyHQBfFr+LIV5ubq6pvl4S+FrKYWX6P8yc5H27t27lRIlSiS5hpubm/L+++8nCSFLTfRbCqnUr4Oy9Ez4/vvvLd5TZor+lGjQoIGiUqmShGO+jOjXdyLq169v8ZhatWopgLJixYok9+Li4mIxzKly5crJPo9eRIb3SCSSfIOdnR0tW7Zk06ZNhunXBw8esGPHjky7hlarBWDcuHEoYiAkxb99+/YZjk3OWjEr0Gg0ye4LCgrCz8+P2NhYmjdvzr59+4iKiiI0NJSnT5/y5MkT1q5dmyXtCg4O5u+//waENeeL9qMqlQp3d3diYmKArPHsHzhwIA8ePMDHx4e1a9cSFBREZGQkz54948mTJzx8+NBQV0lnSEHRokXp1KkTAP/73/8M5frQnr59+1q0ka1WrRpXr15l/fr1vPfee1SuXJno6Gh2797N8OHDqVChAhcuXEhzO7y9vTl9+jQ7duzgww8/pFatWuh0Og4fPsynn35KmTJl2LNnT7ruTfJq0qJFC27evMlff/3FsGHDqFmzJlZWVoSEhDB//nyqV6/OtWvX0nQua2trmjZtmqS8VKlSALRq1SrZfVkdqhYREcGqVasYN24c7777Ln5+fvj5+fH48WMUReHWrVsZvoY+dKdPnz4W9/ft29esnim1atXCw8MjSXm5cuWArHl/pOiXSCR5gvfee8/wOrkfJFNxl9I+Ly8vw+vChQsDGHzz04P+2MDAQCIjI9N9fGaxbds2wsLCcHd3Z/PmzTRp0iSJEE1PLHt6WLlypUHQp4V169YRFhaWade/f/8+//33HwCrVq2ie/fuFChQwKxORu992LBhAKxZs4awsDAuXLhgyPswdOjQZI+zsbHhrbfe4rfffuPChQsEBATw66+/UqBAAe7fv2/oyKYVtVpN69at+f777zl58iTPnz9n5cqVeHt7ExwcTO/evYmLi3v5G5W8MtjY2NC1a1fmz5/PqVOnCAgIYP78+bi7u/Ps2TNGjhyZpvMULlzY4oCEfv1RsWLFkt0XGxubgTtImT179lCqVCl69+7NrFmzWLBgAUuXLmXp0qXcvn0bgPDw8Axf59GjRwDJ+vvryy39NhUvXtziMc7OzkDWvD9WmX5GiUQiyQJMF7Ha2tparLN3795kj9fvU6vV1KhRw1DeoEED9u/fz+7du4mJicHOzi7NbXrjjTcAMVuwfft2unfvnuZj9Qsz0zvybIn79+8DUL58eRwcHCzW2b17d4avYwn9yP2oUaOYPn16svV0Oh1lypQhICCAVatWpSiW04P+3gGz/1dTMnrvLVu2pEyZMty8eZOVK1caEhfVr1+fypUrp/k8Hh4eDB06FI1Gw7vvvsuZM2cICgqyONqXFpydnenduzdeXl68+eabPH36lAsXLlCrVq2XOt+ryGeffcbo0aPTXN/SYv27d++m+XtsY2OTpKx3794Go4DkSM9z6WVwc3Nj2LBhFC1alM6dO7N3716ioqKSfZ7o0T/HXnZ/WtHpdGmuGxERQY8ePXj+/DlffPEF77zzDiVLlsTe3h6VSkXv3r1fKmHfy5DSbHBmvTfpQY70SySSHOXOnTtcv3491XpLly41vK5Zs6bFOocOHTILv9ETExPD7NmzAWjdurXBXQVg0KBBWFlZERgYyOTJk1NsQ1xcnFlm3jJlytC4cWMAJkyYkK4RbBcXF0A4OGQUvRC5fv26xVH3s2fP8scff2T4Oi9y+vRpQ0blXr164eTklOyfi4sLb731FpC5IT6mIuzcuXNJ9oeHh6fYGUkLKpXK0En55ZdfWLFiBWA++2RKaiN0prMwafnhT230Pr3nkxixs7PDzc0tzX+WRJyrq2uaj7ckom1sbFI9LqtFv57mzZsDYiAjM55N6UHfIbKU/dy0c58aBw8eJCgoiG7dujF16lQqVqyIg4OD4f9OP9KfGRQtWhRIfqbY398fsDzjkRPIp4NEIslRLl26RMWKFWnfvj3Lli0zPCQB4uPjOXPmDAMHDmTOnDkA1KlTh4YNG1o8l6urK926dWPdunUkJCQAcPXqVdq3b8/Vq1fRaDRMmzbN7JjSpUszadIkAGbNmkX//v25ePGiYX9CQgJnz55l2rRplClTxiBy9Xz//ffY2dlx48YNGjRowI4dO4iPjwfED+eJEycYNmxYktFm/QjxunXrCA4OTue7Zk6rVq1Qq9U8f/6cPn36GKaS4+LiWLNmDa1atTJMGWcmevFesmRJ6tatm2r9Hj16AHDixAmz9zgjVKxYEW9vb0B04E6dOmXYd+TIEZo2bZrh9xfEugFbW1suXrxIcHAwbm5u9OzZ02LdP//8kwYNGvDbb7+ZCQytVss///zDZ599BoiZAnd391Sv/d9//1G1alXmzp3LlStXDKOeiqLw33//8f777wMiXKBq1aoZvVVJPia10e2bN28CQoAXLFgwO5pkoEiRIgAWB4F27dqV5vPov++Wwmdu3rzJ6dOnLR5nbW1t+N1IK40aNQJEaKEl9AME+no5TqpLfSUSiSQL2bFjRxIXCRsbG6VAgQKGTL36v5o1a1pM8KR3fZgzZ45Svnx5BVBsbW3NXDVUKpXyv//9z2IbdDqdMmnSJLPr2dvbKx4eHopGozFrw6FDh5Ic/88//5hdy9raWvHw8DCzjXwxqdf+/fsN19NoNEqRIkWUkiVLmrlHpOYsY8q4cePM2unq6mq4vq+vr7Jy5cpMde+Jjo5W3NzcFEAZO3Zsmo5JSEhQvLy8FDBPDpRR957NmzcbHHZIdMlxcHBQQNiI6i1FAWXv3r1pPu+L9O3b11DXNAPvi7zoxmJra6t4eHiYWagWLVpUuXLlitlxybn3mJabfr5M79nFxUU5cOBAiu1/lZDJuSwzceJE5eOPP7boBvbgwQOlTp06CqB0797dUJ5aci5LDBgwwOL3TVGSd+LRZ+/u3r27mX3oH3/8YfjupMW958SJEwoI20tTK9Hg4GClcePGyT4LSpYsqVhZWVl0aErufTC17Pztt9/M6utdiooVK2bRsjO5RIQpvXcvIt17JBJJnqJ169bcuHGD77//nrfffpuKFStia2tLSEgIDg4OlC1blh49evDnn39y4sQJw3SqJdzd3Tl+/DifffYZ3t7exMbGUqBAATp27Mjhw4d59913LR6nUqmYNm0a58+fZ/jw4VSsWBGNRkNoaCju7u688cYbfPLJJ/z33380aNAgyfGtWrXixo0bTJw4kRo1amBvb09kZCTFihWjdevW/Pbbb4Zpcz2NGzdm69attGzZEjc3N54+fcrdu3dfakExwMyZM1m2bBl16tTB3t6e+Ph4ypQpw4QJEzhz5kyK79vLsH79esP0v34EPzU0Go0hxGfFihWZtui0Q4cOHDhwgPbt2+Pm5kZCQgIFCxZk4MCBnDp1ymLCtpfh7bffNrxOaU1Cp06dWLZsGQMHDqRatWq4uroSGhqKs7MzderU4csvv+TSpUtUqFAhTdd9/fXXWbNmDe+//z61atWiYMGChIWFYWdnR/Xq1fn000+5cuVK7hlNlORaIiIi+O677yhTpgzly5ena9eu9OrVi0aNGuHr68vx48cpU6YM8+bNy/a2jRgxAk9PT9atW8drr73G22+/TfXq1enXrx+jRo1K83lq167Nm2++yb179yhXrhxdu3ala9eu+Pr68ujRI0Oivxfp1KkTCQkJ1KxZk759+zJkyBC+/fbbFK/l6OjIypUrsbe3Z+jQodSuXZvevXtTs2ZNRo0ahZOTE6tWrcq28KxUSbVbIJFIJLmctHjeSyQZZeTIkSl6cktyD3Kk3zIBAQHK8uXLlb59+ypVqlQxzBgVKFDAkPPhxUSD2TXSryiKcuXKFaVDhw6Ks7Oz4ujoqDRu3FjZs2dPun36o6KilIkTJyply5ZVbG1tlRIlSijDhg1TAgMDk21bRESEMnLkSKVEiRKGWTTTvCzJvQ+KoigXL15UevXqpRQqVEixtrZWihQpovTt21e5evVquu4/tffuRdL7OVcpSjYsX5ZIJJIsxMfHh7t377J48WL8/PxyujmSfEhYWBglSpQgLCyMZcuW0a9fv5xukiQFdDqdwdq3fPnycoGzJF+S3s+5/BZIJBKJRJICsbGxjBo1yiD8k1vAK5FIJLkZ6dMvkUgkEokF5s2bx7x583j27BnR0dEAzJkzx6LXukQikeR25Ei/RCKRSCQWCAkJMSReql69OqtXr05XAjaJRCLJTciYfolEIpFIJPkKGdMveRWQMf0SiUQikUgkEonEDCn6JRKJRCKRSCSSfI4U/RKJRCKRSCQSST5Hin6JRCKRSCQSiSSfI0W/RCKRSCQSiUSSz5E+/bmMkJAQQkJCAHj99deJiYnB29s7ZxslkUgkEkkewtrams8//5xSpUpx6dIlVCpVTjdJkgnExcWh0WioVq1aTjclTyJH+nMZ8+bNw9fXF19fXwIDAw0JYSQSiUQikUheZRRFQavV5nQz8izSpz+XYTrS36pVKzQaDVeuXMnZRkkkEolEkoeQPv35k4sXLwJQuXLlHG5J7kD69EskEolEIpFIJBIzpOjPZZiG99y4cYOgoKCcbpJEIpFIJJJ8yPHjx1GpVKhUKqZNm5Zq/aCgIKZNm0b9+vXx9PTE2tqaggUL0qRJE2bNmkVAQIBZfT8/P8P5VSoVarUaV1dXfHx86NixI7NmzeLp06fJXs/0+KFDhyZbLzY2lgIFChjq7tu3L83vwauEFP25jNGjR3Pnzh3u3LlD2bJl8fDwyOkmSSQSiUQiyYcsX77c8HrlypUp1t2wYQOlSpVi8uTJXL16lVq1avH2229Tq1Ytzp49y7hx4yhTpgyXLl1KcmyDBg0YMGAA/fv3p1WrVhQvXpx///2XcePG4e3tzTfffENq0eZr164lPj7e4r6tW7cSHBychjt+tZGiXyKRSCQSieQVIz4+nj///BOAwoULc/36dY4dO2ax7vbt2+nWrRtRUVHMnj2bZ8+esWPHDv744w/++ecfAgICWLhwIfb29klG+wGGDBnCkiVLWLJkCWvXruXQoUMEBQXxww8/YGVlxWeffcbEiROTbWuNGjUIDg7mwIEDFvevWLFCuvqkASn6cxkyvEcikUgkEklWs2PHDgIDA2nQoAHDhw8HzEf+9URGRjJgwAB0Oh0LFixgzJgxWFtbm9WxsbFh0KBBnDp1Ch8fnzRd397eng8++ICtW7ei0Wj4+uuvOXfunMW6vXr1Qq1Ws3Xr1iT7QkJC2LZtGy1atKBw4cJpuvarihT9uQwZ3iORSCQSiSSrWbFiBQB9+/alb9++AKxevTpJCM2yZcsICAigbt26DBgwIMVzFitWLM2iX0/Tpk3p1asXAD/++KPFOkWKFKF58+YcOHCA8PBws31r1qwhNjbWcA+S5JGiXyKRSCQSieQVIjQ0lE2bNmFjY0OPHj3w9fXljTfeIDAwkB07dpjV1Y+u9+7dO8va88477wCwd+/eZOv06dOH2NhYdu/ebVa+cuVKHBwc6Nq1a5a1L78gRX8uQ4b3SCQSiUSSxSgKRIfkvb9MSq20bt06YmJiaNu2LQUKFAAwjJS/GOJz9uxZAGrWrJkp17ZE9erVAbh9+zZxcXEW63Tr1g07Ozu2bNliKLt37x4HDx6kc+fOODk5ZVn78gtWOd0AiTmjR4/Gz88PMCbnkkgkL5AQB7p4sHHM6ZZIJJK8SEwofFMyp1uRfsbdBXu3DJ9GL+xNQ2J69OjBqFGj2Lx5M6Ghobi6ugIYBh89PT0zfN3kKFiwoOF1cHAwhQoVSlLH2dmZJk2asGvXLh4+fEixYsVYuXIliqLI0J40Ikf6cxlubm74+Pjg4+ODtbW1zCIokbxIXBSE3oewx2LkSyKRSCRp5t69exw4cAA3Nzc6duxoKPfw8KBdu3bExMSwdu3abG2TqV2nSqVKtl6HDh3Q6XT88ccfgAjt8fLyolWrVlnexvyAVJQSiSTvEBMKAddg30zYMQ7uHeWHb2dw586dnG6ZRCKR5An0o+Pdu3fH1tbWbJ9+xFy/yBcwGIpYsuLMLAIDAw2v3d3dk63XoEED3NzcWLlyJWfOnOHSpUv07NkTKysZuJIW5LuUywgJCSEkJAQQHroyvEciEezctJYKnjZ4n/oKAq8BEH/rIJuWPmfKjG9ZtnQpHTp1yuFWSiSSPIGdqwiVyWvYuWb4FPrQnn379tGwYUOzffp4+gMHDnD37l1KlixJ9erVefjwIadPn05SP7M4c+YMAGXLlk1iB2qKtbU1rVu3ZvXq1UyYMAFAhvakAyn6cxnz5s1j6tSphu2sjKGTSPIEOh3b//6DYe8OYlc/R3DXGXZZK7Fs7+PA4E2RdOzcmfHjxjFt+nQ56iORSFJGpcqU2Pi8xqlTp7hy5QoAN2/e5ObNmxbrKYrCypUrmTBhAu3bt2fr1q2sWrWKDz/8MEvatXr1agCaNWuWat0OHTqwevVqduzYQbly5ahTp06WtCk/IsN7chnSp18iMUGbwI6/VvDh+4PZ3ceGciaCH5WYBbPWqFjW1Z6JjWz4+ptvaPVmS54+fZpDDZZIJJLciz5s5+OPP0ZRFIt/+/btM6vbv39/PD09OXr0KEuXLk3x/I8ePcLf3z9dbdq3bx9//vknKpWKDz74INX61atXp1q1anh4eDBo0KB0XetVR4r+XIZcyCuRJBIfw84Nf/DRiPfY1duGsh4moW6vvwvdF4N9AUPR9OZ2/K+jHQcP7KdGjeocPHgwBxotkUgkuROtVsuqVasADMmwLNGoUSOKFSvGlStXOHXqFI6OjixZsgS1Ws2QIUOYO3dukgReCQkJLFu2jFq1aqVZ9MfExPDTTz/Rvn17tFotkyZNonLlymk69uzZswQGBjJu3Lg01ZcIpKKUSCS5j9gIdm1azScfDmV3H2t83EweVfVHQt1hUKiSEP5uRtu9d2vasOkdB8KDntCsWTO+++47M1cIiUQieVXZuXMnT58+pVy5cil67qvVanr27AkY4//btWvHunXrsLe3Z8yYMXh5edG2bVv69OlDmzZt8PT0ZMCAAcTExODl5ZXknAsWLMDPzw8/Pz969OhB48aN8fDw4IMPPkCr1TJr1iymTJmSJfctMSIDX3MZciGv5JUn6jm7t29m/Ohh7OxlRSEnE8Hf6GOo1gvUGtDYgGtx6LYIto2Bx+cAaFvWigN+jrT/I4pPPvmEw4cPs3jxYtzc3HLmfiQSiSQXoBfwKY3y6+nVqxdz5sxh1apVfPfdd1hZWdG1a1caNWrEzz//zPbt2zl+/DhhYWG4urpStWpVOnbsyKBBgwzJvkw5fPgwhw8fRqVS4eTkRIECBWjWrBlNmjRhwIABFjsKksxHpchhsFzFlClTkizkffbsWQ62SCLJJhQFIp7x765/mDRmKJt7WOHhIAS/ggpV0wlQ+S2xAM+1OFjZQmQQRAdDQizsmgS3/jWc7m6IjnZ/RHE5QMdHo0czZ+7cHLoxiUSS3eh0Oq5dEy5f5cuXl6Gy+YSLFy8CpDkMKL+T3s+5/BbkMuRCXskriU4LYQ/Z++8upn86jO3vWJsL/jenGQW/S1Eh+AEcPcC5EFjbQZuZUL2P4ZQl3dQcHuRI/4YlmDb2PdAm5MSdSSQSiUSSK5DhPbkMNzc3QxhCSl61Ekm+ISEOwh8T+Owp344fxuYeVjjZiIyMOtSo23wNZVqKuk6FwNre/HhbZxHqE/4YGo4B5yJwcDag4GanYnHLSNR3d4ODndhnbZe99yeRSCQSSS5AjvRLJJKcIy4Kwh6ANp6CEVfZ1NPWKPhVVqjbzzYR/J5g62T5PFa24FpCdAiq9YK2s0AjZgPUSgLs+hxOLIDQBxAbwZYtW7hx40Z23KFEIpFIJLkCKfolEknOEBMmRud1Ori9F7Z+hBUiBEerskbd8XvwbSzqOhRIPROlWiNCf+xcoXRz6PKr+TFHfoJ9M7h0bB89e/akVq1arF+/PotuTiKRSCSS3IUU/RKJJPuJDIKIZ2Lx7o2dsH0c6BJj7q0d0HT5BbzriW07VyH604JKJWYEnLygaDXovkQs+tVzcT3PlvtBfBTh4eF0796dMWPGJPGclkgkEokkvyFFv0QiyT4UBcIeQ3Qw/x0/zZqZ76PsnAiKVuy3dYbOv0CxRA9pWych4tOLnQu4FIMCvkL4FzI6PTQrFs/BQc54OYoworlz59K0aVMePnyYwZuTSCQSiST3IkV/LiMkJAR/f3/8/f2Jj49Hp9PldJMkksxBmyBi6uMiOXLiDGtnDKaH03FUSuJn3M5VhOQUriK2re3Fwt2XxdpOxPk7FxbnLdXUsKtmYRWn33ejvId4BP7333/UqFGD3bt3v/z1JBKJRCLJxUjRn8uYN28evr6++Pr6cuPGDYKCgnK6SRJJxkmIhdD7kBDL0ZNn2DRzEHNbGh8/8TZu0PV38KwgCqxshNOOSpWx62qsRHiPcyFoMwuq9jTsKuao5eT7bjQoIRLgBQQE0KpVK7788kvZ2ZZI8jgqk2eH/D5L8iumn21VGn4vpejPZUiffkm+Iy5SjPDrtBw/fY5d3w3i62bGR0+0lRvWPRaDR2lRoLESoTmZlUxHpRIx/s6FoPGn0OAjwy4nTQL7BrnQp7qwAVUUhS+++IIOHTrIDrdEkodRqVTY2NgAEBkZmcOtkUiyBv1n28bGJk2iX/r05zKkT78kXxEdLBbtAifPnOfA3IFMamgU81HWBXDotVS47oAQ+i7FhBNPZmPvJqw9a/UXHYBdX4A2Diu0rOhszWtFnZm4TWS/3r59O35+fmzevDnz2yGRSLIFZ2dngoKCePr0KQCOjo4yM28eR1EUQM7e6HQ6IiMjDZ9tZ2fnNB2nUvTvoCTXUalSJQAuXbqUwy2RSNKJokBkgLDlBE6dvcCxH/wYXtNYJcLaE6c+y8QoPIgRedfixmy7WYU2AcIfwb1jsHUsxIYadm15UojO/7uBo5MTp06eomy5clnbFokkDcTGxvLNN98QHR3NF198gb29feoHSdBqtdy7d4+YmJicbookk4iOjgaQ3wET7Ozs8Pb2RqNJfbBMdnkzifj4eKZPn06pUqWwtbXFx8eHr7/+OqebJZFkPzodhD0yCP7TZy9wfr654A+zKYxTv5Xmgt+5SNYLfkiM8y8Bvo2g+yIxs5BIh8JPufpFNZbNnUrZQo7iXiSSjHJuNfyvKRyYDdEhoNOm6/CtW7cyZcoUZs6cyYgRI7KkifkRjUaDt7c3Hh4ehlAfSd7m9u3b3L59O6ebkSuwsbHBw8MjzYIf5Eh/pvHOO+9w+PBhJk+eTJkyZbhz5w5Pnz7ls88+e+lzypF+SZ5DGy8Ev1b43p85d56rvw2k12vGKiE2xXDrt0yE2+hxLiTsOrObqOcQeAO2jIZnl43lhSpDh3miU+JSFDTWXLhwAbVabfheSiRpIvQBzKtqtKWtNwJqDxLuVLZOYOOUajjbs2fPmDp1Kr/88gsA58+fp0qVKlnd8nyHoihIyZO3qVlTjB6dPn06h1uSs6hUqjTF8Cc5Tor+jLN161a6du3K+fPnqVChQqadV4p+SZ4iPtqYYRdAG89/M9rzhrtxQWyQrTce/ZeZC3zHguYdgOwmLhKe34Edn4H/QWO5a3Ho+CMU8CFU50jt+g159OgRv//+O71798659kryFv9Og4OzzcsajYVqiZ8hlUp0AGz0HYCkE/AJCQlUqVKFq1evAtCuXTu2bt2a1S2XSHIdUhdlDBnekwksWbKE5s2bZ6rgl0jyFDFhYoTfIPjjYMc4M8H/zNYXjwErzQW/Q4GcFfwANo7gWR46fg+VuxnLQx/AuoHw8CyDBw3g5s2bREVF0adPH4YPH05sbGzOtVmSN4iPgZOLk5YfnA2X/hKvFQXiokSG6uA7InldbLhZaJmVlRUzZ840bG/bto19+/ZlceMlEkl+I9+L/lOnTjFz5kzeeustihcvnuYpEf2CqXLlymFnZ0fRokUZNGiQxaydx48fp2zZsgwfPhwnJyecnZ3p06cPwcHBWXFLEknuIjJICBb9pGF8NGz5CO7sN1QJcn4Nr4ErwMbBeJydixD9uQGNNbj7wpvTof4HxvKYENgwjM/al8XN1cVQPH/+fBo2bIi/v3+2N1WSh7j0N0Q/F6+t7MS6FT17Z8C1beb1FUXMPIU/5dD2tWhDHkJsBCgKnTp1okGDBoaqn376qQxVkUgk6SLfh/d06dKFjRs3JilP6bZjYmJo1qwZR48epUiRIjRq1Ah/f3+OHz+Op6cnR48epVSpUob6tra22NjYUL16dSZOnEhgYCBjx46lfv36bNiw4aXbLqexJLkaRYGIp0KUJJIQFYrVjk/g0SljPd8m0GYmaEwW0tk4gouJAMpNRD2HMyvh3ymgS0gsVBFUaTCtv9rJqXMXDVXd3d1Zvnw57du3z5GmSnI5vzWGx+fE62q9xN/6wcLZCkClhtYzoUwLs8P+O36axp1606hebZb/8i3FixUFGyf+O3eDBo0aGeqtXr2aHj16ZNfdSCQ5jtRFGSPfj/TXr1+fSZMmsWnTJh4/foytberuINOnT+fo0aPUr1+f69evs3r1ao4dO8bs2bMJCAhg0KBBZvV1Oh2KorBhwwbatGlD3759+fnnn9m4cSM3btzIqluTSHIOnVaEv5gI/isXznLhmzfNBX/ZVtDmG3PBb20PzoWzsbHpxKEA1B4InX8RMdYAKHhcWsDRz+vzvt87hqrBwcF06NCBzz//HK02fY4sknzO/RNGwQ9QbzgUrQ5d5oO9uyhTdLBzgtlaktCwcPq8PxatVsu+w8foOmAEik4HseG8UasyXbt2NdQdP348cXFx2XRDEokkr5PvR/pfxM7OjtjY2GRH+uPi4vDy8iI0NJTTp09To0YNs/3VqlXj/PnznDx5klq1agHg5eVF6dKlOXLkiKFeYGAgnp6ebNy4kU6dOr1UW2WPVpIrSYgVC3a1CYaiaxdOEbvuPap6mtSr0BGaTzJ3JrGyAZfimZdtNytJiAP/A7BxBIQ/MZaXbsEf4XV595OpREVFG4qbN2/OH3/8QaFChXKgsZJcx1o/Ed4DULw2DPlXvA65D08uwt/vQaywtUVjAx2+Ryn+Or2HfsSff4tFuhqNhkNbVlGvduLvkMaaa89iqFSpkqGT+cMPP/DBByYhaRJJPkbqooyRB355s5fDhw8TGhpK6dKlkwh+gO7duwOYZeqsWLFisp0Imf1Pkq+IixQj/CaC/8bFU+j+Gmom+G841IYWX5gLfo0VOBfNG4IfRAelVDPotVos9NVz6196a7ZycvNiypcxhvnt2bOHli1bvvKZIiWITuKVLcbtOu8bXzt5gWc56PQTWDuKMm0cbP2If1b+YBD8AFM//dAo+AG08ZQv5c27775rKJo2bRphYWFZdScSiSQfYZXTDchtnDsnpmP1XrAvoi8/f/68oaxdu3ZMmzaNwMBAChYsCAgBoFKpqFy5cqrXTM73+9atWxQuXJg9e/ak6x4kkixBp02SVCjozkVqXP6Sih7GsoPxVYmv9jH3z5gkUFEBamtQ5c2kKprSE6kcPwePkLOi4PE5vIMn88v0T/hy/ir27T8AQK9evaSrioSSd1dTWidyVcRau/PfMxcU0+e4LgF0triW/5Tql2eg0cVCQgxvPF1K7aJqTj7SUbVKZeo0asGe0zfNT66+TYsWLViyZAkxMTEEBgYyfvx4unXrhkSS34mMjMTR0TGnm5FnySNDbtnHvXv3AChevLjF/fryu3fvGsqGDh2Km5sbnTt3ZsuWLSxZsoSRI0fSt29ffHx8srzNEkmWo0tIIviD75zj9atfUsbdWPZvXA3iG08Q3uN6DII//YlEcgtaG2fOVxrPI69mhjLHmMc0vPEVs0Z254Ph79O/X1/q1auXg62U5AZUugSKPd5p2H5YpBWK+oXxNbUVqCDUpQLnK3yCVmUNgIutin/6OlLXx4nxn35qOcumoqOAuztvv/02Xl5efPbZZ2Zx/hKJRJIccqT/BSIixMJEBwcHi/v1Pczw8HBDmZubG3v27GHkyJH06NEDBwcHevTowXfffZema5rGpoWEhBASEgJAq1at0Gg0NG/e/GVuRSLJODodRDwRPuIm3Dl/mAo3ZlDU1Vh2yr4JLUbOMT9epRI2hTaWv095jqZNRbKloz8DYJMQxutXv+R1v6+FS5GtswjfSOzgBAUF8eDBA6pVq5aDjZZkK6eWQlyiTafailJvT6OUpYXrcZHCk58yLDl2gN4O+7HRqChgr2LfQCfs6hYWNrKWcPSgXv36qNVq7OzssuxWJJLchhzlzxhypD+TKF++PLt27SIqKorAwEB++eWXZDsOKTFv3jx8fX3x9fXlxo0bBAUFpX6QRJIVaOMh7EESwX/37AEcd3xIUSdj2VH7FtQa/ILgByGA84vgB7C2g1ZfQusZxvUKCbGw7WO4sEYkVQp7CDotOp2O/v37U69ePRYtWpSz7ZZkDwlxcHqpcbt82+SdqmwcwcaRPQePMGjuVnqvj0arE2vD7HSRsOF9sX7GEjFhODg4SMEvkUjShRT9L+DkJJRMVFSUxf2RkZEAODs7W9yfUQYOHMjBgwc5ePAgPj4+uLm5Zcl1JJIUiY+B0PtCxJhw/8wenHd/hJeJjj9k15p6g2clPYdjQfPsu/kFtUbYL3ZbLIQbCOvF/d/Afz+ITlLoA77+ajrbtm0jJiaGwYMHM2jQoGSfK5J8wr0j8NDEsrbO0BSrB8dZ0W/4JyiKwvorCXx2xBmFxDC4yAAh/E2do/Ro45N0xiUSiSQ1pOh/AW9vbwAePLA8wqIvL1myZJZcf/HixTRq1MiQEEwf6iORZBuG0eoXXGieXKDI0S8okDi4qNUp7LVrS8MhM5Kew94d7N2yvKk5hkoFlTpD37/B0ctYfnop7Pwc4iKp85qPYWE/iO92/fr1uXPnTg40WJLlJMSK0B49Xq+BT8MUD3Et4MFHH47A2toaa2tren32C6qmE4wVwh8J4R8ZmPTgWHPHnmfPnjFy5EgOHz6cgZuQSCT5GSn6X0Afe3v69GmL+/XlVatWzZLrjx49mjt37nDnzh3Kli2Lh4dH6gdJJJlF1HMIfyqy7Zry8BRsHI6VVvjSx2sV9jh0pNmQ6UnPYecCjq/I59a7Lgz6BzzKGstu/AMbR/Bm3cqc2fM39evWMew6f/48HTp0IDo62sLJJHma57fhmtFuk1oDU128rlar+Xj8JI7s/Jv/zf6SmtUqQeW3oOFYY6XQe7BxOEQHmx8cF2lYXL9s2TJKly7Nzz//zCeffJJixnmJRPLqkmHRf+HCBYYNG0br1q0ZMWIEly9fTlLn7NmzlCpVysLRuY8GDRrg6urKrVu3OHv2bJL969atA6Bjx47Z3DKJJAtRFCH2o54n3XfvCGz+AOITwwnU1kQ2nsqbQ6YmrWvjKOL4XyU8SsGgneBt4tzz6DSsH0RxRx37/17CRyONPu2XL19m3LhxOdBQSZYRHw3n10BCjNi2c4Vq76R8jAm1GrTAr5eJ5Wb13lBvhHH7+S3YNFLMwulRFIgJBcDHx8dgQnHkyBE2bNjwsncikUjyMRkS/YcPH+b111/n0KFDuLu7s2PHDqpXr86XX35pVi82NtbM4jI3Y2Njw8iRIwEYMWKEIYYfYM6cOZw/f54mTZoYsvFmNnIhryTb0WlFOI+poEgk6PQmlC0fidAFACtb6DAXtxoWOr3WdskvWszvOBaA/pugkol1YvAdWOeHdfBN5kwew5iRxvjuH3/8ke3bt+dAQyVZQmSAWMitp8rbYsbLAhZH4a3tkobD1R4EtQcbtwOuwuYPzWP5E0N8GjduTIcOHQzF48ePJyHBmEBPIpFIAFRKBuYBmzRpQrFixVi5ciUqlQqdTsePP/7I+PHj6dy5M0uWLMHW1pZjx47xxhtvGNKGZydbt24164QcP34cRVGoW7euoWzSpEm0b9/esB0TE0PTpk05duwYRYoUoVGjRty9e5djx47h6enJ0aNHs2zmwpJl55UrV7LkWhIJCXEiblibVCAEHFuD27FvsNYPDVjbQ4fvoZiFDq+VDbgUzzvZdrMKRYFdk+G/741l1vbQ5htiC9emTuvunL90FYBChQpx/vx5vLxesZmR/EZcJJxfC1tGiW2VGoYdhkKvWaw+ZswY1Go1M2bMwMbGxrhDp4OQu+b5MBQFDs2Bc38Yy6r3gYZjjNsuRcDGkUuXLlG1alVDRuhff/2VoUNTXkgskeQ19MlMTa3OJWknQ7/Q586dY9CgQagS4xbVajWjRo1i79697Nu3j+bNmxMYaGEBUjYSEBDAsWPHDH/6Po5pWUBAgNkxdnZ27N27l0mTJuHg4MCGDRu4e/cufn5+nD59Os+EKkkkKRIXJRx6LAj+oCMrKWAi+CMSNGg7/GhZ8GuswLmoFPwgYrhbTYN2s0GVaOkZHw1bPsL25lb++HUOtrZC6D19+pQhfn1RooIt/h9I8ghRQeaj/L5NwLOCxarbt29n7ty5zJ49m/r16/Pw4UPjTrUaHD3ND1CphMB/zWQG6dJfEB1i3I4Ro/2VKlVi4MCBhuLJkycbQn4kEokEMij6HRwcLD5U6taty5EjRwgJCaFevXo5OlLt5+eHoigp/vn5+SU5zt7enmnTpnHz5k1iY2N5/PgxixcvTjZTb2Yhw3sk2UJMKIQ/TrpgFwg+vBj3k3PQJD4dAqN0bLTthqZYjaTnUauF4NfIPH9m1BkCvVaBdaK3qaKFvV9RKWQXsyZ9YqhmpYbowAcQ7A8h9yAySNilSvIGseEQeAvumjjm1PKz2AF++vSp2W9NfHx8UqMGW6ekeS1UKmg0FuzcEg+MNu9kxEUaOo1Tp07F3t7ecL05cyzkzpBIJK8sGRL9NWvWZOPGjRb3+fj4cPjwYby9vRkyZEhGLvNKId17JFlOZCBEBFgU/CEHfsX9zE+oE01HnkTo2OrUmz7vW1h4qlIJwW9lk3SfBMq1hoHbzUdvTy7kA9edzOtfi4VzvmT94p9xcBAijYQ44dAS+kA4wYQ/hdiIpNapktyBoiQd5Xf3hbKtklTV6XT4+fnx7NkzQMwmr1q1ynJyLUevpK4/1vbmC4PP/ynEv57E2P5ixYoxevRoQ/G3335ruOarwL59+yhTpgytWrWSYbESiQUyJPr79+/P9evXCQ4WVmLe3t589913hv1ubm78888/+Pn5GfzvJSnj5uaGj48PPj4+WFtbo5YhE5LMQqeDsEfmoQEmhO37Abfzvxu2H4QJwT9g+CdJK6tU4FxELECUJE/R6vDuXihYzlCkCrzGKN8bDNIuQ3VmucUF1Oh0ojz8iVgQrP9/k2FAuYfYMIgOgyubjGXVeiUZqY+KiuLzzz9nx44dhrI5c+YYYpOToLEChwJJy6v0EOIfxEzd5Q3GfYkuPgDjxo0zDBZFREQwbdq0dN1WXkWr1TJkyBBu3brFrl27qFmzJj/88INhjYNEIsmg6O/RoweHDx/G3d0dEImrTC07J02axIkTJ1iwYIFMSJNGQkJC8Pf3x9/fn/j4ePnAkmQO2gQIe2A5i6eiEL77O1wuGhML3QnWsdW5D4NHWhD8IGw5XwxDkFjGrQQM3iVG/k2JeCoW/C5pBwdnC2FvCUUR/2+RgXknDEhRRPtiQiHiGYTch6BbhvjzPI+iCHvb69shLjHE1cZRWG0m8uTJEyZNmoS3tzdff/21obxTp04MGzYs5fPbuSWdQbNzhUpvGbfPLBeZeUEs/o0V7XB1deXzzz83VPvtt9+4ceNGum8xr7FhwwZu3bpl2I6JiWHUqFG0bt062WSbEsmrRqYOI9vb25slnfnqq69YsGBBZl4i3yNj+iWZTnyMWLCbEJd0n6IQuetrnK+uMhRdC9SyzaUvQz/42PL5HAuCrXMWNTafYu8GvdfA4N1QoQOoTdZAxEfBuT9QlnUiYMW78ORCyufKbWFAOp0INYkOEW0JuSfaFfpAhJHFhAnLV0UR1paWOp55jZgQ0ZE+v9pYVqEjOBdGq9UyePBgSpYsyfTp082e4SVKlGDhwoUG84tkUanMMz3rqd7H+NmJeCoSwekxydD7/vvv4+PjA0CpUqVy3FAjOzhx4oTF8t27d1OlShVWrVplcb9E8iqRqaK/bNmy7N+/n+fPLST4kaQJGdMvyVRiI4QHv86CXa6iI2bnNByvrzcUXXymZYdrP0aMGpu0PoC9e1I/cUnaKfE6dP4J+m8RGVttjV7uKhQ8Q07DOj9YPwhu7bH8/2ZKdocB6XRCtEcHJ17zbqLAfyhmImLDRackOSdoRRELyC11QPMKOp24/4enRNIsPTX7g8YajUbDkydPiIsz3qOjoyMffPABx44do2DBgmm7jrWdGN03xakQlDfaS3N6KSiJnb24KMPIv62tLXPnzmX+/PlcvHiR+vXrv8yd5ilmfv01l86cYPCAPmzbto0uXboY9oWEhNC7d2969eol9YnklSZDPv0v8u233zJu3Djc3d3p0KEDy5cvp2PHjixbtgxXV9fUTyAxQ/rRSjJE1HPLGXZBiMm9083ikU8/1rK3QD/Gjk1G8Nu5vHrZdrOK8CeiQxYXxf1//0fcyaWUdrcwBuNaAqr1hoodjfHcacXKBqwdRdjJy6y90GlFhtmEWPGnjc28zoTGSuR1yIuuT5FBQvRv/xRu/SvKvOuLmZzEhFz//vsvLVu2pGjRonz44Ye89957hjDYdGHJuz/4Dqx8G0j86W4/R9iEguiUO75CA0U6rXAviosUM2Z6OeNeEkVtxdKlS/nwww8JDzeumxkyZAi///57MieU5HakLsoYmSr6FUXhiy++4PvvvyciIsJsCrNEiRJUr17d8FetWjV8fX0z69L5BpmcS5JhFEXEUVtaIApiNHD3ZLPQgFsxrqxXtefT5AS/jaNIAiTJHBTFLOTqm+/nc2zdD4ytb0MDbwtC2NYVKneDqj2SermnBbXapAPgkNRSUpsgBL42zij0U5tlyChWtuBSLG/ld9BpIdif53ev4LaxL2pV4s9nh3lQc4DhXhRFYePGjbRr1848AdfLEBsuwqZM2fYJ3N4jXheqAt0Xi5AgtQbcfZK6/+QntPFiHUVcZPLrWhwLGmYk/f396d+/PwcPHsTLy4uLFy/i6fkS3yFJrkCK/oyRqaJfT0xMDIcPH+bNN9/Ex8cHd3d3Ll++TGxsrLho4gPJxcWFqlWrUr16dWrUqGHRL/9VY8qUKUydOtWw7enp+UpZrkkyiE4rwieS+zHUxsE/4+H2PmNZ0Zoo7eeisnWyfIy1nRBn+VlI5ATaeCH8dTq0Wi3Nu/bjwJET1C2mYVwjB7qU16DihTh9tTWUayNiuwuWfbnrqlRi1kBjYxzBz6n1ADYO4FI0Z679Elw7fYS5P/yA76NNjHtDdM5uB+uI6bOJ1+o0y7oLhz0yXwvx9CKsHWDc7vo7FKspXjsXSnbNzdatWylTpgzly5fPurZmBTodxIYaw8dS44XPlVarZc6cOVSsWJEOHTpkYUMlWY0U/RkjS0S/HrVajZ+fH4sWLSIhIYErV65w9uxZzp07Z/hXv8hJpVKh1WbxyFIeQI70S16ahDgh+PWOHkn2xxC3cTQ2j00WvJWoB+2+Sz50xMpGhGHkpdHYvERclCFJ2r0Hj6japAOhYWKGplvjKqz5oC7qa5vNPdn1lKgHNfqKf/Nyh8zOFZxy78iroijs37+f2d99y5at27DVwP2PnPB0FN+Jz/YkUHnQD/T1G5x1jdDGiwXSpj/XG4bBg8TvcskG0PEH8draHlyLmR2u0+mYPn06kydPpkKFChw7dgwXFxdyPTqdWDQdE2KxYxoY9JzBoyfw4bv9ad6ovjG6QKWCAqXy9vdCYhEp+jNGlor+/fv3Y2VlRYMGDZKt8+DBA0MHYOLEiVnVlDyJ/HBL0kxcFEQ8SX7ENi6K+I0fYP30rLHMtwm0mSlGfC2Rl+Ou8xLRwSJOHPjz7y30eu8jw65pn41i0sgBcOkvOPcnRFqY9StQGqr3hfJtkv+/zO04eoh49FxEdHQ069evZ+7cuZw+fdpQ3q+qNcu6ik5yvKIh9O31FKychaP8el5co3PvCGwaadx+Z5UxH4R7SdBYG3YdOnSIRo0aGba7dOnC+vXrc28emFTEvp4vZ//EFzO/B6B1s0bsWLPIuNOlqLQVzodIXZQxsvQb36RJkxQFP0Dx4sXp0KGDFPwSycsSEyZGi5P7cYwNJ/6vYWaCf+3lBM57D0peJKrVItuuFPxZj727IRzjna4d6Pt2Z8Ouqd/+xNELN0W8eP9N8OaXUPCF0Iznt2DPVFjaAU4uTDb5Wq4mMsjgM58biIyMxNvbm379+pkJfoBPGhtDZ6wrdaRgqWrZ0yh7dxGzr6dEPfA0+SycNubZME3WBdCwYUMmTJhg2N6wYYNZ7oBkye6wL51OdGyC74h/9dcPeyRyWVzeZFhrEhMTy48LlhsObVi3lvm54pO3hh0zZgxdunShZs2a3Lx5M9NvQyLJreTSbr5EIkkTkUFi0W5yE3bRISSsfw/rQOOoyNKzcZwt0ocqlZPJCKpSCcH/YnIgSdbh5CUWtgI/zZxMyRIiPEOr1dL3/Y8Jj4gQI7fl20HPldBlvgjpMCUqCI7+Akvbw/6ZIiFWTqONEwnF/A/C+TVidDo5Ip7mmoRjjo6O1K1b16ysZZM3+G/xF1TxMHEwqtoz+3JWqFRmFq+oVFDTz7h9Y6fIjQDCs/+FZ8K0adNo06aNYXvSpEls27Yt+evFRUGIv/j/i3qefNhgZqDTmot907ZHB8O6gXDuD9G5XTcQAq+zfO0GAgLFzIe9vR3vD+xtfs64yGQvt27dOjZu3MiZM2fw9/fPghuSSHInmS76ExISmDRpEo8eGbNLPn78mM8//1zG7KcBmZFXkip6b/bQh+IHMTminpOw/l2snl83FP16Mo4r3n2Z/vknlhMEqVTgXPjlLB4lL49KBc5FQK3G1cWZFb98Zwi9uOV/j6/n/WZet3gdEcPdey281sV8xiYhBi6shRVdYdtYeHQm+U5hZhAfDYE3RF6B08tg71ci3nxpB5j/BqzsBltGw4FvRDjK6WWWz6MoEP4oa8Wl2eVErH7//v3ZvHlzkv1DhgzB0dGRQX4DOLdvM7vWLaW+rUlm26I1oEhVszCaLMfuhTj80i3Atbh4rejg7ArxWqczZgpORKPR8Mcff1C6dGlRXVHo3bu35Wy9Uc/F6LpOJ5ydop6LnAwh98VMUmY5O2njxcCFvmPx4udUUeDfqRBlklzs2SWUNX1R/vsRu8SJyEG9uuNR4IXwMG18shaz3t7ehtf37t3LhBuRSPIGmT53b2VlxenTpxk/fjxLl4rpxgkTJvDs2TM0Gk0qR0vmzZuXxL1HIkFRjDZ1cZGpi7iIZ2j/eg+rMONo77yjsTws04dZkz5NPiOoo6ewdZRkPxorIfzDHtGwXm0mjB7G9Dm/8G6/nkz86H3LxxQoBc0nQb0RQuhfWCPioAFQhEvT7X1QqJKI+y/d3DwbcFqJCRNOQ6EPEv81eR2Vzqzh/30v7BQrdkq6T6cTYtO1uHkoSyby6NEjli5dyqJFiwyhHYGBgXTs2NGsXvv27Xn8+DHOujDRsYl6LkbT9VTpYT7ynh1orEWHXD8jotZAjQGw7yuxfXkTvP4uOHiIEJ8XZiHc3d3ZsGED9erVIzIyktDQULp06cLRo0dxdnYW73/E0+RHyfU5G6KCxIJhW2ewcQKVioCAAD766COuXbvG4MGDGTx4MNbWJh0inS7RDlaf+yEm9c7D+T/FLNELqHRa3qsUTfMiTgzbGsPooX6Wj4+PBE3SHEElSpQwvL5/PxfMiEkk2USWLOT19/enatWq7NkjfISbN2/OxYsXzXrXEstI9x6JAUVJFPkRaRP6esIeof1rKJoI42zbjIOxBJXvzXdTx6cg+HPfYspXkugQiAwkPj6e/f8dp2WTlNdFmZEQA1e3iRHfkLtJ9zsXhWq94LXO5p07RRFCzkzYPzC+jg17+ftRqUVnJj4aohMXoqo0wjXKt7HlYzLZJjY+Pp5t27axcOFCtm3blmTWWa1W4+/vbyYG0enEwmn9WoOTC0X4FIjO8YAtYuFsdi+GjQkTIX16EmJhWUdj56vWIKg/Qrx287YYprd27Vp69Ohh2O7WrRtrV61EFfEk/TMtKhXHz1+nW/93efDgoaG4XLmyzJgyibc6tEKljU1/FuaAa8KWVJfYnpINoOo7InQt7KF53QodocHopNnCk8kvMm7cOGbNmgXAoEGDWLhwYfraJskx5ELejJFl7j1z585l/fr1qFQq3nrrLT766KPUD5KYIT/cryAvK/T1hNxD99dQ1FFGUTBxTwxRr/VmzpcTkhf8r1omz9xO+NPkk6ulBUUH/oeE+H94Kul+GycRGhIbLkR92APLtqBpRW0tbCJdSyT+FTf+61xEjFCH3of1g43iVGMLnX8WYTKWsHUSoWYZ4Pr16yxatIilS5fy5MmTJPtVKhWtWrViyJAhdOrUyZhIKyFWZE3WC2BdAiztaHRPqjsMGo4RnvjZjU4nYt9Nnw2nl8J/iZadNk7gt1X8a+8mElVZ4LPPPuObb74xbH896WM++3CoyXUSRGhYgdLgUCDZ5uw5eIS27wwmLs5yZ6Fe7erM+uJTGtV/Pc23SHw0rO5j7Lg6eECv1WDvzskTx9k7dxBj6tmgUZs8z+zdodHHULa1sbOoUoFH6SSn/+mnn/jggw8AePPNN9m5c2eSOpLcidRFGSNTRX+zZs0MoiIhIYFDhw6hUqlo2LChWWiPfgZAkjLyw/2KYBD6iWL/Zb+Sz2+LWGqTcIsx/8SgrfIO8776PHnBb+ucM+JFkjyKIkbZE2KT7AqPiMDZKZlEapZ4dkWI/xu7QMlALLa1g7mYN33t6JW2cJyAa/D3u8bwERsneGtB8onGMtAZnT9/PsOHD7e4r2TJkgwaNAg/P7+kM9AxYRAZYP49vLkbdowTr9VWMGCriOfPKUvIiGeinXriImBJe2Mc/xujoGZ/MQvh7mtxxkSr1dKuXTuD4C1X2pdz+zZjZ2crZpu2jIanF0QehbcWQgFfi02JioqmfrsenL90FY1GQ9sWjdm2e3+S9WgdWjVj5qRPqFQhDUnl/p0GVzYmbqig8y9Qog4APYeMYs3GbdQorGbVOx6Ud33hO1KyATQZbxzhdy2WJA/Jpk2b6NxZuGSVL1+eq1evpt4mSa5A6qKMkakx/aYZdR89esSxY8dQqVS0bduWIkWSTrFJJK8siiIs5WIjMib09QRcg43DTeK54f2t0VhVe4cfUhL8Ng7COUaSu9Av7A29Z7AtVBSF/y37k/HTZ7P37+VUq1wxbefyqgitvoL6H4gY6Ut/JR+zbef6grA3Gbm3L/DS4TaPnjxl7q+LuXH7LlVdS/J52SvYqMU6lZAVA9js1Jd+Q8wF+tUbt1i9YRtWDi5Y2TlhZWVl+LO2tjbbtrKyomnTpnh5GT/LLVu2NDufjY0NXbt2ZfDgwbRo0SKpR72iCDFtaYbl/Brj6zItwaVwznrA2zqbi34bJ6jyNpxaLLbPrhDOQla24n5eXAAMaFBY9dt31G7ajgplSrPy19lC8Ec8g00jxCACiLUBmz+A7otFWNMLODjY89fin+jQ5z1+++5LGr9Rh8vXbjDhqzls3L7bUG/Lzr08fhrAiV1/Jf88Arj+j4ngB2r5GQT/nbv3Wbd5BwBnnui4Um0S5YsGwPFfjR3ku4dhbT/ouUokfYuLSiL6X4zpVxQl5TZJJPmELAvv6d69O8WLF0etVnP37l3Wr1+fFZfJ18gebT4js4W+nqcXhSuKXqyo1Dyp/D6/HAlj6rhRyf+YZXLctCQLiI8WC1sVhWEfT+K3pX8C8Fr5Mpzc9Tf29i/hshQXAVe3ClHn5CVEvUviyL0FcZhRLl65Ttt3BvPgkTG8pnN5K9b3sDeEZzyKsaXo8C1mYSR/b93JW34j0nydvXv30rRpU7OyJk2a8Pz5c4YMGULfvn3x8Ehm1iClbNaBN+DPd4zb3ZdAqSYphrxkC8F3zdsbFSQck7SJsfPNJkKlt4Twdythfmx8tAhf0ml5+PgJhb08xWx8yD3YOEK4KL2IZwXo+jvPQqPx8kz6Pmq12iRmHYeOnuTTabM4cuIMAP+sWUSrZo2SHGsg9AGs7m3slBaqAm/9LsLDVCrmL1rB8E+nAFDGtyRXj/wjrhn6APbNgPvHjOeqMxTqvGfx/oOCgihY0Bj2FBgYmPxnQ5KrkLooY2RJ5p0NGzawf/9+gxVY2bJl2bRpE506WXBrkEjyM3qhrw/dyWwL1kdnYPMo4VIBYoHkm19SuFxrpjVJ4TiNtRhJloI/d2NtL+KZIwPp3rGNQfRfvnaTT6fO4seZX6T/nDZOYhQ4Gzjw33E693+fkFDzhcAbryXw3pYYFnYSI7BF7WLFaHLX30T7gISE9IUiWVkl/TnbuHEjrq6uKY/iWgrnMeWCySi/Z0UoVDn7vPlTwtbZPEOvg4dwRLq4TmyfXgYVOxsddxLzQBAdIjoIifdbrEjiuomAa2LwINrknCXqGoV0wFVuzu9Frbn+7N+8iupVXjNrjiV3vob1anN462o2bt/Njj0HLAr+jdt3U6JoEaq/Vhb1zokmoV+O0PoroyWqoyfvD/GjYd3azJm/iAZ1ahmv6VocOv0s1jWcSbSEvblbiP6EWOESZBJ+VqBAAezt7YmOFutY7t+/L0W/5JUg00f6ExISKFOmDB9//DEjR4oU4b/88gvffvstN2/elLadqSDde/IJcVGJi3GzQOjruX8MZesYVAl6+z4raDMTSjVL+Ti1Rozuymy7eYfEhb1jv/iaOfMXGYq3rVpA25Yp9e5yjg3bdtHz3VGGBZ5qtZqxwwfhVdCDhAQtCQkJ1FWd4U2bM8aDitUW+QesbDl26iy/LPqDBG2CqK/VkqCyEf8mJBj+4uPjSUhIYMGCBVStWjXtDVQUIfZjUnAmigmDJW2FKxJAi8lQtYfRGz8n0SYIf3tTQh+I/AxK4jOnzUwo86YI23IsmHz40qMzIobfxNv/uENL6gz6RmTCPfeHofx/p+KYecGDU7s34u6W1A4zPdy45c9rDduSkJDAvA6ujKplIkdafw1lW4nXag24+wgBH/Yw+Q5ayH1Y0cW43We9OM7JK8ksVoUKFbh27RogOoeZOSh58+ZNvLy8cHHJZkvXVwA50p8xssSnf8eOHZQta1ysM2zYMJo1ayYFfxqQPv15mOwQ+iCm5q9vRznwLarEqfwYLcQ2mYZrqoJfLUJ6pODPWzh5gTaOGRPHsPvAf5y/JBYeDvzwM87v32Ix3CKnKVakEFZWVsTFxWNnZ8uq3+bSpd2b5pUUBQ7NhXMrxfbDk7BrErT+mrq1qlO3VnXz+lY2IhQpozaZCXEQ8SR1G8mrm42C385VOMPkhlF+EN9hGwfx3NHjWlyI/Bv/iO1TS6B0S2G5mhBt+X79D8GOTw0x8TrUDN+h5fcTG9hRqiOFCrbl0d21tCkpOm/v1bIhXBVPQNDzDIv+CV/NJiEhgRa+Gj6oqQPEjMzCM3H8tP4nWjc7R6tmDWnQtCW2KpUISbRzSz4poVsJYaMamJiQ8NYeqD1IPDNfEP0VK1ZEpVLh7e2NU3oWxqeCv78/TZs2pWjRomzfvl3OIEhyFVkW0y95OeRIfx4jTh+6E561Ql+XAPePw7VtcGefmb1iRJxCx1VRNOs5gi8+/iD5c6hUQvDLbLt5E20ChN7j0uVr1H6zKzExQqR1aNWMTSt+y5ULEbfv3o/fh+P4a/HPNKhby3IlRQe7J4vPtp5K3aDpeMvhZzYOGQtNiw0XI96p/fQpOjFqHvpAbNf0gwYfCjec7PbmT47YcDELZErANREXr6fTz+Bdz/Lx17bDv5MNSbIUjQ3v7dSw4JA4p5urC7FxcSjxMfzb34E3SpgMFrz5JZRv99JN1+l0fD3vV/47sJsFde9QxFm8p1cDtdT6XyRRJssVHB0d+fLLLxk9erToFoTcSz6fwIkFcGy+eO1ZHnr+If6/CpRKbwPFTJBjwTQninv8+DGNGjXi1q1bAFStWpUTJ04YrWAlGUaO9GeMXPLkkuhxc3PDx8cHHx8frK2tkzpMSHKe+GiICIDnd8Qiy5jQrBH8igJPL8PB72BxWxHzfH27meAPjVFotTwKn3qd+XxMCoseVSrheS4Ff94lMWNvpYrlmPXFp4biLTv38tvSVTnYsORp27IJt47/m7zgB5G8q/kXwmpRz6X1wpHFEnFRQoylF0UR39vwp2kQ/IqIidcLfpUaKncX6w1y0zPZUns8y4P3G8bt00ssH3t+jZhV0WfFtXZE1fFHhk/9zbBAPCQ0jOjoGGISoPOfMQTpTEbL/50KD46/dNPVajUTPxrG1sHFDYI/XlEx+oCjmeAHKFasGDVqJOZzUKnAqVDynb7SLYyvA66J/0OdzpjFOK3EhIhOVci9NB37/PlzWrVqZRD8AMOHDzcIfv1gnkSSk+Sip1feZcmSJahUqiR/+/bty+mmSTILU6Ef+jBR6GfA8zwlwh6K0aqV3YT13LlV5ovrgJAYhd9Px/H675GUa9CJBfNmpNxBdPQ0z8AqyZskLuwdOaQfbZobs9mO+eJrrt64lcKBWUtYeDhjJs0gMjIqyT4npzR87jTW0OYbKGwSk39iAZz703L9mDDzRaypoY0X4i8mNPW60cGw9SM48qOxzLeJ8H3PLaE9elQqsLHQplp+xtcPTsBTk1FRRYETv8OBb4DEzo+dm1hEXbw2NapWYsHcr8xO5+7myvJFv+MxYJkxa7cuAbZ9DEE3X7795/4UFpuJWDf+mO3/HuLy4e3M/XICbZo3xt7enuvXr9OsWTOaNGlCbGysMczHEgV8zUf1byXmBYpP+tlMFm2CMYRIpxXP5BQ+O+Hh4bRt25aLFy8ayr755hv69OnDb7/9Rr169ahatWqSTNASSXYjA3szkUOHDpmtW3jttddSqC3J9cTHiPj82PCsE/h6okPg1m4R4vD4nMUqcVqFLdcTWHE+nm03EojVwtAB7/DzN1NSXi/j6JElVoySHMLeDZU2jsU/zKRKk/YEBgUTHR1Dn2FjObJ9TbaHEjx68pR27wzh3KWr3Ljtz99Lf7HopJMq1vbQYR78NcToEX/wW5FVtlybpPWjnovOQmpCPDYCItIwug/CqWbXFxAVaCxz8BDJrtSanPXmTw47l6SCtGhNYXf59ILYPr0U2s4SIUuH5oiBBD1OhURmZHdj8q3e3Tpxy/8ek7/5gfq1a7Bi/nf4lky0vWw/FzYMFWsA4iJh84fCxjQ9+T4SYuD6Dvjve2OZT2Oo2hOVSkXFcmWoWK4Moz8cSYyNO4cOHeL8+fM0bNgQW9tEFyKHAuL5bCnMp3QL42fo1m6RqCw+CkijzaqJuxFgnCWKjxH3aTLLEB0dTadOnTh+3DjrMWHCBD799FOePHnCiBEjDGJ/7969SfJHSCTZiYzpzwSWLFnCwIEDiY+Pf7kfu2SQsWs5QHYK/YQY8D8o4mrvHhYjZxY4cFcI/XWX4wnWm4g0foMZE8dQp2a1lK9h7yZiUiX5i8SMvZu3bqNT32EA1K5ehU3Lf6VI4exLtnb1xi3a9BzM3fsPDWUL581gUJ+3X/6kEU9h/SDhIw9CbLefByXfSFpXpQKXokmSLwHiPYoKEh3q1NDGizjw08swjH6DCDlqMUUIzAxkB85yQu4lXaR7ex9sG5u4oYJeq4X4v7bVWMetpBD8zpaTZ+p/05KsF7m9T4zy69+rguWEn75NKgtiQ+4JS9Erm8XiYj2OnvDOKuMsgh4L2XTNGxhj2c3nxdwKA7aIz4nJegydTsfdu3e5d+8e9+7do1evXuL3OyFWuAAlh5WNeL801sTHx/PWW2+xZcsWw+6RI0fyww8/GN6zjh07Gvb37t2blStXJn9uSapIXZQx5Ei/RKIX+nERYlo3K1F08PCUEPq3diefGdXdB8q3J9anOf1b+RlEVZ2aVZkxcSwtGlsQQC9i6ywFf34lMWNvx7atGD6wD26uLkz59AOsra2zrQn/HT9Nx75DeR4cYij7ZOQQ/Hp1y9iJnQqJxafrB4u4ap1WuMt0ng+Fq5jXVRSRVMuluBBjerQJolyfpTUlQu/DPxPhmYmIUFuLRbtVexlHdXPzbJmtCyQEmpf5NhYiN/gOoIiOlIklJ54VodOPSYW2Ccl+nko1hcafwIFZYjvwOmwfJ2ZqNC8co0uAOweE2DdNnqVHYwNvTk/aDivblAU/JO/m41EGXL1FRmuAW3uhem8x2m8rOiYxMTGUKmUMA2ratKnI1Bv5wvv4IglxEHofrX1BBgweZib4+/fvz/fff2/WSRo4cKChzl9//UVoaCiurhlzPZJIXpZ8H9N/6tQpZs6cyVtvvUXx4sUN8fapER0dzRdffEG5cuWws7OjaNGiDBo0iIcPHyZ7TLFixbCysqJq1aqsW7cuM29DktkkxEJkkPC5Dn0gRgOzUvAH3hCJY5Z2gA3DRJr5FwS/zs6duNd6QI8V0Hsd1B6EbUEfpnzyAa+VL8NfS37m6I51aRP8Ng7pm26X5D0SF/b+NGsKX00ck62Cf8O2XbTo1t8g+FUqFfOmT2TW5HGZYz7g7iP8+vWiLz4atowSa2peRKcTGWT1M3NxkULspUXwX90Kf/Y2F/zuPvD2UqjW2yj4re2SitnchK1z0oWtKjXUHGDcNhX8xWpB119TFPypUrUn1Ohn3L5/VGTF1Y+6RwTA8f/B0o6w/ZOkgt/aXrg09fwDitdOen57t7S1w6FA0v8blQrKmCzovbVb/GsS1+/g4GBmp3n//n3x2TExSkgWnY5ZX01j1SpjmFTXrl1ZuHBhks9/hw4dDNeJiYlh9erVabsviSQLyJbwnqCgIFasWMHx48cJDAykRYsWfPqpcJ+4dOkSt27domXLljg4ZH68ZJcuXdi4cWOS8pRuOyYmhmbNmnH06FGKFClCo0aN8Pf35/jx43h6enL06FGzEYJ//vmHU6dOUbduXaKjo1m4cCEbNmxgw4YNdO7c+aXbLqexMpmEWBHfm1wcaGYT8RSu/yPi9INuWK5jbU+Cd2PW39Aw8qdtDB/cn6njRplV0ceDpjnPhZWt8OvOhRaOkiwgJlQIrGzi1yV/MGLcVHSJjlU2Ntas+GU2b3dum/kXu3dUiH196JtTIei2SDhRvYiVLVg7JO/hbkpcBOybKdywTHmtKzQam3SE2clT+PTnZsKfiOebKdp4WN5ZPIv0+DYRia/0GXozgqKDfybAzV3Gssrdxf/BnX2WQyQLlBZ1KrRLPhxIn4wrrc8wS2E+z67Amr7Gbb8d4FJYLPRNpGbNmpw5I5LDrfrjD95p80aafxsqvtGaqzfEuoFGjRqxa9cu43qDFxg1ahQ//PADAPXq1ePIkSNpuy9JEqQuyhhZLvrXrl3LkCFDiIiIQFEUVCoVAwYMYNEikVVy586dtG3blqVLl9K3b99UzpZ+vvnmGyIjI3n99dd5/fXX8fHxITY2NkXR//nnn/PVV19Rv359du7caUjcMWfOHMaOHUuTJk1SdeZp1KgRcXFxHDtmYTozjcgPdyaQ3UI/NlxMJV/fBg9OYhYfrEelAe96JJRuxeKjgUye8zuPnz4DwMnRkdsn/8Wz4EvGDmusheBPo6+0JJ8Q8cwss+yJM+d5+Php0mRYGUBRFCZ9PZev5s43lLm6OLNx2XyaNKibaddJwo2dQljqv0vuvvDWgrSPBL/I04vifGEms7a2ztDscyhjYZGlSpW7vPmTIy4Swh4nLb+8AfZ8KV5X6AjNPxfZuzOLhFjYOBwen02+jtoKSjeHym9D0Rqpi3lHj/TPQkQGmXf4FAWWdRKzQACNx4lsym7ehlCwzp07s2nTJgBmfTWVT97r/eJZk+XGLX+u3rzF1dsP6PJOf7OEpC9y9uxZo+UocOXKFSpUqJCOm5PokbooY2RpTP+RI0fo3bs3Li4uzJ49m4YNG1KnTh2zOi1atMDV1ZW//vorS0T/uHHj0lU/Li6On376CYCff/7ZLFPfmDFjWLp0Kfv37+fUqVPUqpW893Tnzp2ZOHHiyzVakjES4oyLcbND6Gvj4d6RxMRZB0CbTFhBoUpQrh260i1ZteMwXwyYw21/8wVjarWKsxev8GbThulvh1ojkm9Jwf/q4egJ2ji0MZHM/P43pnz7I/Z2tpzdu4lSPt4ZPr1Op2PwqPEs+fMvQ1nxooXZ/udCKlcsl+Hzp0jZViK2f/83Yjv4jhj97/Jr6jHfpig6sZD12HzzEegi1aHV9GQXs2LjmPsFPyS2U5N0dP21LmKGRFHAu37mzwBa2UL7ObBuIITcNd/nVAgqd4OKndO+vkilAtuXmFV50c1HH+JzZrnYvrVbiP74SIPo9/Y2fjfu3Umf9WjZ0j6ULe1DRxALjlOgevXqVKtWjXPnhDPbkiVLmDlzZrquJ5FkBln6JJsxQ3iH79q1i9GjR1O7dtK4PY1GQ82aNc38bXOSw4cPExoaSunSpc165nq6d+8OwObNm7O7aZKUSIgTFn7Bd4VDRNTzrBX8iiKsNfd9DYtbC1/vm7uSCn6XYvD6u9DnL5TuS9ny1Ivq7f3o+/7HZoLfzs6WT0YO4fbJPS8p+NXiWhq5Nv+VRKUCp8I8DQzm258XkJCQQHhEJH2Hf0xCQsbXqqjVajwLGu0OK1Uoy3/b1mS94NdTpQe8/p5x++lFESee1u94RABsHAFHfjKKYpUa6gwV/vTJCX4Qi2TzCsm11bu+cD/KqpA/O1exKNjdJ/F6b4iOQP/NUHtw+gwF7FxfrpNlKWmXaaKuR2fE70KcMa6/RIkShtf3H1qYJUkrqS3+RSzo1bN8+XLp2S/JEbJUIfz333/Ur1+fmjVrplivcOHCGQqDyUz0PfHk2qwvP3/+fLLnUBSFv//+22KnwRL66aoXuXXrFoULF2bPnj1pOs8rh6KI0TtFlzYP7kzAIfoRhQIOUTjgEPaxTy3WibNy5lnB+jzxbESYU1lQqTi/6TQLFn3IpcuXzeqq1WratmlNvz698SxYkHP+QeAflL5GqRDT5yr/l7spSf5B0TFyxHC++lqMih85cYYhn35F/759MnzqVu27cvrSTQICA/lyymRuPI3kxtMMJGZKL1bNKVfoDsWfJsaP3zvCk7VjuVx2pBDwyeDx/BQVb87HJiHcUBZj48Glch8QalURzvonf02VCjT3MukGsgFFyZ7ZzWRQVZgBig5FbQ3BJDoHpRONdcY6JzqtsWOn2PKGjQd2cUGg6Li6bw2PirQEzTUAwsKMIXGXbtxhz+kMfJ4111L8HJYoUQKNRoNWq+XRo0fMmjWLunWzMCwunxIZGYmjo0w0+bJkqeiPiorC09Mz1XrBwWlYeJVN3LsnHvDFixe3uF9ffveucRqze/fu1KlTh6pVqxIbG8uCBQs4cuSIIVZQkonkgNC3jguhUNARCgccxCXCctZTrdqaQPfaPPFsxHO3aigmMbNxcXFMnzGToOfmGUSbNW2CX/9+FC+W8tRwihgEfx4IP5BkPSo1zZu34Pjxk+z6918Alq/8g9q1avJaxYoZOrVareaTsWNQFCXbE4ABoFJxvdQgrBPCKRR0FIDCgYeJt3bhhs+AJEJRrYujtP9KSjzZYVb+zKMuV0u/R4JVKp7y+u9WXkKlEn85lH5HUWnEmqWXRaXO+GyESg0qrVgColIT4FGHEo/Fgm2voGM8KtxS/H6o1Hh5GR3OAgLMF8NrtNHYxIUQbZ/CLJApOi1okn8Ou7m5Ub9+fQ4dOoRarcbf31+Kfkm2k6VPtGLFiqW62EJRFC5evIivr2+K9bKLiAjhfpCck5C+hxkebhw1KleuHAsWLODBgwcA1KhRgy1bttCuXbs0XdP0PQoJCSEkJASAVq1aodFoaN68ebrvI1+hjRfx+XERSRPQZBXx0SIBzfXtwkFEsTQVq4Lir0P5tmhKN6eQjROFkjndl599yPBPpwDQtkUTvprwETWqWp7hSRdOXrnbP1ySI9R+rTTV6jfB/94DdDod8+bN48zejTg7pSJ0Ezl++hynz19imF/aFzZmG9XnwuZR8EBkQC3xeDslSpaCWoOMdZ7fhn+mmbtmWdlCo0/weq0LXqkJS5VKLIjPDIeb7Cab3ZwyldSScaUV04XthbvBX0L0Fwi7RPOKBcG9JDh5UtanBKNGCbe00NAw6lUohoODvbBx/vtD4XpUsbNY/GwysNJ1wHDuP3xM+TK+jHpvgDFJYirPY41Gw6lTp+jTpw+FCiX3ayFJCTnKnzGyVPS3adOG+fPn8+eff/LOO+9YrLNgwQLu379P79658McljcyYMYMZM2ZkyrnmzZvH1KlTDdtpmSnJl2jjExfjRqTNbzsz0CXA/eMiPfztPcn7NRcsB+XaQrk2SbzwHz5+woXL12nTorFZ+ZC+PThw5ATv+/Wm8Rvmi9lfCpVKxMlKwS+xgEsRX1b87wcat+uOTqfjlv89Rk2YzqIfUl88uHXnXnq8O4qoqGjcXV3p2bV9NrQ4HWhsoN138PdQCLgiyo7+LNx8XusKl/6CQ7PNnxsFy0GrGWZ2jSni6Jk3BT+AjTOoAnNstP+lSUsyrrRi62Ii+quCg4fIzqxohdmCk0ggV8TVGrVabbCfffD4CeVKFBKZjPU2p1c2ioW/jccZZiFOnr3Ag0dPOHXuIgN6djVeN/q55ZwJiTRp0oQmTZpkzj1KJC9BlsYEfPbZZ7i6utK/f3/GjRvH0aNiSjYyMpIzZ87wxRdf8MEHH+Dp6clHH32UlU1JM3q3nqioKIv7IyNFQiVnZ+csuf7o0aO5c+cOd+7coWzZsmbJQ/I92gRhuRZyXyzIjQzKesGvKMLP+eBsWNIONn8g0tS/KPidColEN+/8KdLF1+xvJviDngfzyZSZlKnTkl5DPyI4JNTscGtra1b9b17GBb9KJazs3H1yv2+4JOdQqWjwZicmjhlhKFq8aj3rN+9I4SBYsHwNnfu/T1SU+PwP+WgiQc9zT/ilARtHsXDUraSxbN/XoiOwb4b5c6PqO9B9SdoFv71b3u5Mq9XJ+9/nZl7WgtUS1nbGDM1qjbAL1XNrtxhUig7GSkmgWBHjiPu9+w/h3ykQ9EJs/4W1cPQXACIjo3jw6IlhV7nSJp8rbYJwmpJIcilZOtJfvHhxtm7dSrdu3fj222/57rvvUKlUrFu3jnXr1qEoCl5eXmzcuNEsti4n0Vt46UN1XkRfXrJkSYv7JelEmwBx4dk7og/Co/v6DmGzGexvuY6No/DtLtcOitW0GDcfERHJ3N8W893PCwkLF6FhMTGxfPvTAmZ8Pjbz2qtSiREk+wLSoUeSNtQaJk39in/2HOD4aWFQ8O6Yz6lbqxrFi5rHKSuKwpezf2LyNz8YypydHPlryc94FMhA1tasxN4dOv0E6wdBZICI0350yrjfzg1aTgGfRmk/p7W9GBXO69i5iJDIvILGSjzfMhNbZ0hINEUo3VwIdxCZgU3emx+//gJbGxu8ixehbPBeuPivyTlcIDZxxuDUIrB15oa10YXQ1taGEsVeiPmPDhaWo3nB5lXyypHl6qF+/fpcu3aNhQsXsmvXLvz9/dHpdBQvXpw333yToUOH4uqae0Ysq1UTsXmnT5+2uF9fXrVq1Sy5/isR3qNNEKE7cREik2J2ERMKN3cLoZ9cIhm1Ffg0FOE7Po2SneKPjY3lt6V/8tW8+TwLMHfbKezlSRnfjHujG7B1EmLfKgcWT0ryNNYOzqxctpjqdRoSGRVFcEgooyd+xbrFPxnqJCQkMPzTKfy+fLWhrLCXJ9v/XED1Kq/lRLPTjktRIfz/GmIuckvUhZZTRZhOWlFrRKbf/JDJ2tpeCGltxu1as4WsmLW0dREWnYoCRWuKTmBMiAjj9D8I5cWau85tExOy+R+Ek/8zHl+insjf8PdQeJ5o4PDf9yS4dTZUKVvKJ2mmdJ1OXMehACkRExPDxo0biYyMZNCgQSnWlUgyiyzPyJvbsLOzSzEjb1xcHF5eXoSGhnLmzBmqV69utr9atWqcP3+ekydPppic62W5e/cu9+8L//Z+/fphbW3N9evXM/062Y5Oa1yMm51CPyEW/A+JDLn+h8QD3xJFqosfgTItU/wB0mq1LF+zgSnf/sjd+w/N9rm5uvDZh+/xwZD+YjFYRtGPOlrbZfxckleaRb98z+ARo2nZ5A2W/PgNxYoUBkSowjvvjWbLzr2GuuXLlGLH6oX4eFt2MMuVPD4H/4wXM4avD4EafdPnaKVSiTwX+em7FvVc/OV2sjLjcfgT8ZkAkZX48gbx2reJyCOgJ9gf1vYXWY1BLOJ+e5n4LYgMEJ3KUDHLryjwzvoo1lxK4K32rVi/5Odk7skn2USJ+/fvp0uXLoSEhODp6cnt27fNEoFKkkdm5M0YMk7gBWxsbBg5ciRfffUVI0aMYOfOnYbV4nPmzOH8+fM0adIkSwQ/wOLFi/PPSL9B6Ecmvyg2K1B08PC0EPo3/xUdDUu4lYQK7cWCXJfUbTO3797Px1Nmcvmaebyng4M9o94dwCcjh+DulgkjVla2QuzbWHaQkkjSy8BhH+Dh5kTHlo1QJ4qrgMAgOvYdyrFT5wz13ni9JptW/Jp7Q3qSo0g16LdRvNZYp/94R8/8JfjBONKd23nZZFxpwdbFKPpLtzCK/ntHxO+SjaP4jdo6xij4re2h3Wzj4I+jJ3SebwgjU6lgRVd7wmOjzeP5TVEUEeaTTFKyKlWqEBMjBr8CAgKYOXMm06dPz6SblkiSJ9+P9G/dupUvv/zSsH38+HEURTHzx500aRLt2xsdKmJiYmjatCnHjh2jSJEiNGrUiLt373Ls2DE8PT05evQopUqVypL2WrLsvHLlSpZcK0vQaY2uO9kp9EEsvrq2TcTqR1hOnIWDB5RtLUb1PSukayp/7q+LGTPJ6NJkbW3Ne/168vmY4RQulAmdM421mBLO7NhWiQTEdzPkHui0+N97QKu3B3Ljtr9hd5d2b/LHr3Owt89n4jc17FzBKQ8PrqRE2COzDLTZwovP1NQkhnvJl+uopZVgfxHmpI2HRa2MMfqtvxYzu1vHiNAePW2/NV/4q+f5bTHiHyNMGqLjFfZ59KNt/2RMSFQqMbBkaQ2WojDp84lMn/E1ALa2tly9ehUfH5+Xv89XBDnSnzEydaR/2bJlGTq+f//+mdQSIwEBARaz/ZqWvZiUw87Ojr179/L111/zxx9/sGHDBgoUKICfnx9ffvllsom7XllMhX5CTPZaxUU8EyL/+nYITCYMyspOPMTLtYUSdV464c77fr2Z++tiHjx6Qp/unZj66YeU8smE2H21JlHsu+SPeGJJ7kStAeciEPYQJ0cHVCaftfcH9ubHr79IGp+c37G2S3Y0Nl9g65y5ol+lEp8jtbV4jmoS/zV9ndwzTP+7YPh9SPw3mRCYTEM/46GxBt/GcHWLKL+5WwwUmQj+789Y8+GIZli8gwKlUDr+SPiKfrjYqrC3VvFmxDp41ga8LCS+UxRhE2rnAto40enQxovXugTGvduTRYsW8ejJU2JjY/nkk09Yu3ZtlrwFEomeTB3pV6vVZj8kaUVRFFQqFVqtpQRIrxZTpkxJEt7z7NmzHGxRMuiFvj50JzuFflwE3NoD17bDgxMYfjxMUanFQqzybcG3abpCZS5fu8GsH3/nx5lfJElmtHv/YQp5FqTKa+UzdAuAmNK2cxMuJFLsS7KLmDCIeMadu/d5o11PPhjSj/Gjh73UsztPo9aAa4n87YalKBB8RywuTS8aK+H5b2VjIvLz4HulTYCQu+K9uHMAtiaOzKutzNZ4bboWT5c/owm8foIC7m4WT/UsIIi32zZgRx8H7K0Tvy92bsLG2Sn9DoTL12yg/4hPDNv79u1Lm49/fLQYzHrVvrPIkf6Mkqmif8qUKUl+OG7dusWKFStwcHCgVatWhumru3fvsnPnTiIjI+nbty+lS5dm8uTJmdWUPEuuDu/R6Uxcd7JZ6GvjRRzm9e1wez9ok7H39KokhH7ZVum23rt7/yFTZv3AsjUb0Ol0TPtsFJPGjsyExr+ASmUU+9LWTZITRARATCghoWG4ueZhT/qXJT8u3E2OxP/rNKFSiTh3W5f8taYo7LEYoNLGwYKWEB9ptvtqkEKd/4UTHgdn926iWmULI/fAwSMnaNypN+3KWrGhpwPW+kmKcm2F00860el01G/7NsdPnwegevXqnDx5MuUZt+hgkcPGylbM3OXFjlgGkKI/Y2RpTP+NGzeoU6cOHTt2ZN68eRQoYG5hFRwczOjRo9m8eTNHjx6lXLlyWdWUPEmu+HDnpNBXFHhyQQj9G/8k/8PlUkwI/XJthWNCOnkWEMRXc3/h16WriIuLN5Q7Ozly59TezFvUKL32JbkFRYHwx9kf751bcPJ8dZLbxccYnGeSxcpWPJtsXfLnQERcpBD+ADsnipBQPTaOtFlnwz9n7gKwacWvdGzdwuJpLly+xk8Ll3P9lj89S0cxzPeucWe3RWJBeTo5evIM9dv2MGz//vvvDBkyJGlFRRHhrKbWtGqNsK3Nq9mjX4JcoYvyMFkq+rt3787p06e5ceNGsj3XhIQEypUrR40aNVi/fn1WNSXPkCtG+g1CPxLio7I/nXvwXSH0r29P/sfK1hXKvikW5Bau+lLTnKFh4cz+ZSFz5i8m8oUMzOVK+zJ9/Ed069ja4HaSIaTXviQ3EhkI0SE53Yrsxc7lpUIx8jQh9yAhzrxMrRYi39b51RCNz++IsNRbe2C7PqRGBR3m8ebHv7N7/38A/PzNFIYP6pP6+XRaWNsPAq6Jbc+K0GNZ+qxiE+k3/GNWrBXuU15eXty4cQMXF5MZOJ1WdNIt2V2rVCK/hI1juq+bHBEREcyaNQsPDw8+/PDDXBX6J0V/xsjS4cZ9+/YZhGuyDbCyol69euzcuTMrm5JnyLHkXIpi4rqTA0I/6jnc2ClsNp8m82XW2IiFWOXbgfcbL+34EB0dw8+LVvD197/xPDjEbF/xooWZ8smHDHinK1ZWmfD1kF77ktyMY0HxvYoMyP7vfE5gZZu+hF35BdPstDYOieE7jq9WTLitiwiN8W0iHNwenoR6w8GnId7Fthqq3XvwKG3nU2ug0SfC0Qcg4Apc2QyvdU75OAvMnPQxf23dSVRUNM+ePWP6tKnM+m622JkQKwR/conWFEXMYjgWBHu3dF876ekU3n77bXbs2GHYHj16dIbPK8kdZKnoj46O5vHjx6nWe/LkicGz9lVn9OjR+Pn5AaTaYcpU4qMgPBmbyyy7ZjTc2S9sNu8dBcXSQm4VFK8tQndKN8+wneXZC5fp0Oc9Hj42v1ePAu5MGD2M4QP7YGeXCaNe0mtfklewcxEd6PDHL7fgM6+gVosY6FdJ6OqxdRHi0Nbl1Q0ttEsU/WoNtJ5htqtEsSKG1/ceplH0AxStIToQN/4R20d+eqnfqWJFCvPZh+/xxczvcXN1waeQq1jHlhAr7KfT0iGPDBTHZNB+9pdffjEIfoCZM2fy3nvv4eAgf8vyA1n67a9atSoHDx5k9+7dtGzZ0mKdf//9lwMHDlCnTp2sbEqewc3NDTc3N0D4wOc7dFrhuHNtG9zeKzoblvAoK0b0y7UGp0KZdvmypXxISDB2LpwcHRk7fBBj3h+Ii3Mm+ONLr31JXsTaHly9IfxR0jCQ/IBK9UouejSgtwV+ldFYi8+5hfwx3iai//7DJ+k77xsfwp19QqBHP4cTC6BhMt79KfDx8CFER8cy5v2BFPQoAKH3098JjwkVi5UdPV8qlPTKlSt8/PHHZmVPnz7l999/Z9SoUek+nyT3kaVPwPHjx9OlSxc6dOhA79696dmzJyVLlgSEe8+aNWtYuXIliqLw2WefZWVT8gymMf3x8fH5wzdbUSDgqrDYvLFDeBdbwtHLuCC3YNlMuKyCTqczew8dHR2YNHYEY76YwYhBfRk/aiieBdPn8mMR/Y/qq7I4UJL/0FiBS3ExshgXmXr9vISDhxB8klcbOxeLoj8tI/2Pnzzjf8tXU660D+VLl6JmNRFbjnNhqDUQjv0qts+vgkpdUzeVCH0A949CyYbgXBh7eztmfD7WuD9R8IeEhnH91h2u3bxj+Pfew0c0qFOLWZM/TaoR4qNFh8HOVawjS+OatLi4OPr06ZMk6sLR0ZG4uHw4EPCKkuUZeX/99VfGjBlDTExMksUgiqJga2vL7NmzGT58eFY2I8+QYz79pu4GmUXYI+GScG2b8Iq2hI0jlG4pxH7RmpmWqOW/46cZP/07OrRqxicj3zXbFxcXx5NngXgXL5rxC0mvfUl+JOq5+MsP2DqDc+bNFkryMMnkLbh28zYV6rcGQKPREPvwUhIxvePfA7R9ZzAA3sWLcvfMfuPOhBhY2V2EyAGUbAAdf0i+HTd2wr9TxOyAa3HovVasrXmBZl36su9w0uSievZtWEGTBnWTv45aLTq8aRiMGj9+PDNnzjRs/+9//+PevXuMHj0aD49MGBjLJORC3oyR5XOdw4YNo127dixcuJBDhw7x6JHoRRcpUoRGjRoxcOBAmXrahByL6c8sYsJEpsPr2+DRGct11FbioVi+Lfg0EklGMonzl64yccYctuzcC8CFK9d5t19PMy9yGxubjAt+6bUvyc84FBDhEBHP8vYCXyubV8+pR5I8KlXigt4Qs+ISRY0j/VqtlsdPn1HcpAxEx0BP+TK+5ue1soMGo2HHOLF99zD4HwKfhub1dFo4+jOcXmosC30gZsEtLAD29Eg5JOuW/72URb9Ol5inIUyE/CRjKHHgwAG++eYbw/awYcN49913LdaV5G2yJcDR29vbbPRakjx5MqY/IVY85K5tEw86XbzlekWqiTj90i0zxWXAlNv+9/jim+/5Y/1mTCevgkNCWb/5Hwb3fTtzLiS99iWvCrbOYvQx7JEQK3mNV3nhriR5LIh+Bwd76tWujouTE97Fi1q0qLx+y9/wulwp3yT7Kd0CitWCh6fE9qE5UKKu0WUuJlTkCLh3JOmxZ5ZBxY5J7D7LlfYBxNqzcqV9KF/Gl9PnLxs6IAFBaZyNS4gVnQsrWxHiZONkmFVXFIXx48cbfjfLlSvHd999l7bzSvIcUrVIXg5FJ0byr22DW/+aJwwxxa1k4oLcNmIaM5N5/OQZX875md+XryEhwdzSrG6tanz9+cc0a1gvcy5m6ySmSl/SKlQiyXNY2YKbd/Ie4bkZp8LyuypJipWN+FwnmGd1P7J9bYqHXb9tDFHVi3EzVCph4bm6t/h9DLkL5/+EGv0g6CZsG2ued8atpMifgALB/mLAzLex2Sk/fHcAIwb1pXAhT0NH5P1PvjAR/cFpvm0g0Q0oAFSBYO0Adi6orB3YvHkzQ4cOZcOGDaxcuRJHR8ue//Hx8ai0cVjZZV5OAEn2kqWi/8CBA+mq37hx49QrSXKWoFtC6F/fLhb8WcK+gHDdKdcOvCpmyUhbcEgo3/zwP35YsIzoaHMx8lr5Mnw1YQyd27bMnKQi1vbCA/lVSGAjkbyIWiOyXr+YDTQ34yjtciUpYOcixG86MB3pL1+mlOVKBctCpbfg4jqxffx3sHaEw3PMFxCXbgEtpsDuL4SLHYjR/hdEv5dn0lh605CfZ4HJmGKkhqKIdXxxkaBWU8CpMGvWrOHSpUtUrlw5SfW4uDiWLl3K11/PYNJHwxg4oJ/oVMvQ1jxHlor+pk2bpkt0abV5cAo5k8mV7j0RAcJ159p2CLxmuY6VHZRqJkb1S9QRcftZhE6n4/U33+KW/z2zch/v4kz99EP6dO+UOe+b9NqXSAQqlVgMa2UDkS8pNLILWyex1kYiSQ4bZzHancb1KlFR0WZJuyyO9Oup+75YqBsbBvGRsO8rk50qkRCs1kDxnarR3yj6H52BJxegcJUU21K8aGG8ixfF06MAJTPDjEKng/DHqFyLWxT8AJ999hlz584FYMbc+fR7uzNWugRwLirDXPMYWere4+fnZ1H063Q67t+/z+nTpwkLC6Nz5864ubmxePHirGpKniHXuPfERYp05de3w/3jgIWPiUotYhbLtwPfptkqjmf/spCPJwungUKeBfl8zHDe7dcDW9tMGI3XWAuxb+uU8XNJJPmNuEgIf5I7F/ha2YBrCRnHL0md8Kdpnrk6f+kq1Zp2BMDGxpqoexdSHlg6vxoOzDIvs3GEVl8J8wpT1g+Gx2fF61LNod23abyBTEatFt8dCyFxN2/epHz58ugSXY9WzP+OPt07J66bKZqtGeele0/GyHLLzpQIDg7m3Xff5eLFixw5cgR3dzk6YzrSr3fvuXLlStZfOC4Sgu8J3+Br243JRizh9Zrw0i/bSoS9ZCFarZZb/vcoV9p84VR0dAyvt3qLXl07MOq9ATg5ZUKMofTal0jSRkKciPPXJrNoPyewthdOPTKOX5IWXhjoCo+I4PS5S9x7+Ji4uHgz84d1m7bz9uAPARE+eunQ9pTPrUuAP3vD81ti290H2s227N1/Zz9sHZO4oYI+68G95MvfVxrZf/gYOkWhcf3XjR0Yfa6OF0fvI4PoP2gIy9dsAKBC2VJcOrQdtVotOthOXtmWkFKK/oyRo6IfICoqitKlS9O5c2d+/fXXnGxKriNbPtyKItwGzqyAS39DTIjles5FhcVm+bbgbsG5INObpbD5nz1MnDGHZ4FB3Dr+bxJhr9PpxEMno6jVIhzAzk2OEEokaUWnFSP+FpIdZRsqlXAisXeTa24k6UNR4Pltw4zV4WOnaNjhHQA8Cxbg2RWjP/5Xc37h869FeEvX9m/y15JfUj9/8F3h4ONSDOoPF59Ti+3QwR9vi8W8AJW6QbMJL31baaVp5z7s/+84hb08+WXWFLq2byV2WNkI4a//bY0Nh/CnXLt5m4pvtDG4/Fw6tI3Xypsk0XT3yZZQHyn6M0aOr8JwcHCgTp06bNq0Kaeb8moScg8WtIBTi5MKflsXqNwNui2E/ptELGI2CP79h4/RoH1POvcbxsUr13kWEMT3/1uapF6GBb9KJcS+m49MriWRpBe1BlyL5czMmFotZuXcfRLXGkjBL0kn+g5jIqZZeQMCn5sZRKRq12kJ95LQ8Xto8mnygh9EmGyNfsbtq5uTz1qvJyE2/eF1QTcNi5cfPXnKgSMnAHjyLIBiRUyS1yXEQfgjcf6EOLGAH7F4uXjRwoZqzwJftAvNheF+kiTkihUYERERBAen03pKkjm4lxRx+fcTRzU0NiLmsHw7kUArG6fKT5+7xISvZvPP3oNJ9j14/CTzLqRP0GLvLhchSSQZxckzcYFv2hdGvjRWNqKTYesiO+mSjGPjaIjrL1rYC7VabYhbv//osSGs9HliyC2ksoj3ZSnfDo7+IsS+Nk6sCag3PGk9bTwc/Rnd+TXE2BfmZJH+VH+jBS7OKYTWKAocmgvnVgonoW4LWLvxP8OIvW/J4rxeo6r5MfExxvA9k+90ATdX7j8UIVHPg0MyeteSHCDHFc/mzZs5cOAAr732Wk435dWl2jug0kCZFsJKLJti8/Rcu3mbSV/PY+2mpHGS7d9sylcTxlCtcsXMuZj02pdIMh87VzFgEP5YuIFkNjYOIvxOOmlJMhMbR9F5VBSsrKwoWtiLB4/EANP9h0bRv3nl/wiPiODGrbtmo92ZhsYGqvWCIz+J7Qtroaaf+ec96jns+AwenUINOETcpeixqdx0caVm/WbJn/v0UiH4QbgJHfiW1RtDDLt7dGpn2WUxLipJUQF3N8Pr58Ghab49Se4hS0X/oEGDkt0XERHB9evXuXDhAoqiMHbs2KxsiiQlag2Eqj3N3XuygfsPHzP12x9Z8udfSexaG9atzdefj6VhvdqZczEbByH2ZRiARJI1WNsL94/wxyIsIKPoZ+TsXMUIv0SS2ahUiaP9EQB4FytqEP2mFp0Azk5O1KxWKevaUrk7nFwE8VHC7vPKRtERAHh6GbZ/nCQ3TpkCasIvfAvVq1u2qb26FY78aF726DSFw42C/p2u7dPcxAJuxlA+09kPSd4hS0X/kiVLUq3j7e3N5MmT6d+/f1Y2Jc+QIz79OTRNvmz13yxcaZ4FsVqlCsyYOJa2LZtkTmIt6bUvkWQfGmuxCDDiqXBHeRnUGiH07VzFa4kkK7FxMoj+EsWKgAh15/6j7B0Ew9YZKnWFs4mj8mdXQpW3RTLMfV+LsJ9ELofa8ZqrWHPgHPcUNo2ALr+Zz9LfOwp7pmKJWW/asfVGBD4+vumaRZcj/XmfLBX9e/fuTXafjY0NRYoUwcfHJyubkOeYN29eEp/+/Mqo9wbw/e9LCQh8Tmkfb74cP5qeXdpnjiOP9NqXSHIGtRpciogkXtHpWKtlZStceGycZLy+JPswCfHxLm5czHvvQTaLfoBqveH8n4nOWI/h76FGD38QYbgNR/PFvMNUDt/PlKaJM9cB12Dzh9DpZzHA9ewKbP9EnAfELEDzL2Dbx6BoKVNAzYjXbXBu2D5dg2vmI/1S9OdFslT0N2nSJCtPny8ZPXo0fn5+gNGnP68TExPL4lXrGNirO3Z2xvAaJydHvp08jpjYWAb17o61dSbE2UuvfYkkd+DoIcJyIp4lv8BXH15h55atCX4kEgMqFVg7QFwkJYoaRb9+weqjJ09xcnRIebFsZuFcGMq2gWtbxbap4Ld3h9YzoXhtvDyvMXVLLE428PEbib+pT87DtjHQeBxsGSXChECE3XX4AQq9RkiJN3G7twOAL5rY8rR1w3Q1r0aV1+jesQ0F3F1pXP/1DN6sJCfI8pj+hg0bphjbDyIM6MCBAyxatCgrm5MncHNzw83NDSBzRHAOkpCQwLLVfzPl2x+5//Ax0TGxjHnf/LMw4J23Mudi0mtfIsl92DqD2jpxga/Juh2VSnxX7Vylg5Yk57F1grhIvIsXNRTdeyhi+kd+NpW/t+6iSCEvZk76mP49u2ZtW2r0M4p+PV6vQdtvRacA8PQoAMAnu2KpWdGX5u6J6w8enIA/exq/ayoNtPkGCgmjlIU3CjBYUXCzU4m/5/8CtdLctJ5d29MzHWsAJLmPLPXpX7JkCYcOHUq13uHDh1m6NKkPuyRvoigK6zfvoErj9gwePcEwYjJj3q+Ehact7XmakV77EknuxtpOLPC1shVhd44FRb4PRw8p+CW5A2sR4mM+0v8ERVEMHv2Pnz7D3i4bZqMKlgVfkyiJip3grQUGwQ9G0Q/w7YWCwvJTj2nnuvnnwno7kSUb9/DlgVjj/ovrIPhO2tt2czes7i3sRZUscOmSZDm54okbFxeXL8JYAC5cuECNGjUoXLgwDx48yOnmZDu79x9m/PTZnDx7wazc2tqaXl07oNVm0oNCeu1LJHkHjRW4FpedcknuRK0GawezmP7IqCiCngdz885dQ1kSj361xlxkZxYtp8Klv0Tn2KdRku+NV0EPw+tnQcHQ4neRGfu2yTrKesNFhyGR2NhY3ni9Bn9se8rw2lpKF1CDooXD30OHeam3KeAq7JwIugSxhkClgbpDM3qnkmwmxzPyKorC6dOn882C1dGjR+Ph4ZF6xXzG8dPnaPFWf97s7mcm+FUqFf17dOXakX/4ceYXuLtlQqy9rRO4eYukQFLwSyR5Ayn4JbkZG0c8CrizY/UiLh3aRtidM4RHRBIba3TNKVvKx/wY5yJZ87m2dYaaA8C3scXzexY0jvQHBD0HtRW0niFG/K3soNYg8Wd6Sltbfps9nXvnjxBbe5hxh/9BY3LO5EiIgV2ThODXc+J/cP2fl7o9Sc6R6YqpefPmZts7duxIUqYnISGBW7du8eTJE/r162exTl5iw4YN3L59m0GDBrF8+fKcbk628PDxEz4YP42/t+5Ksq9z25ZMH/8RlSuWy5yLSa99iUQikWQFNk6o1AG0bt7IUPTf8TOG1yWKFcHBwd5Y39ZZhK5Z2YoMttmIaXjPs8AgFEVBpbGBN78UfylgbW3Na23fg79PwKPE+zs0B3r+kbxF7pGf4PntJMXKv1NRuRaDQpVf+l4k2Uumi/59+/YZXqtUKp48ecKTJ0+SrW9tbU2HDh347rvvMrsp2UpcXBwff/wxM2fO5MqVKzndnGzD0cGBfYePm5U1a1iPGRPHUK92jcy5iPTal0gkEklWolYLpxuTTLTXbxnj3fXZeQEx+u6QOKNvZZftot80vCc2No6IyEicndJhT61SQYMxsDZxsDXoJuydDk0+Szqodu8onFtl2Fx5Pp42ZTR4OKhRaWNh6xjosRzcS2bkliTZRKaH99y5c4c7d+5w+/ZtFEWhe/fuhrIX/x4+fEhERAQbN26kYMGCmd0UAE6dOsXMmTN56623KF68OCqVKk2+tNHR0XzxxReUK1cOOzs7ihYtyqBBg3j48KHF+vPmzcPT05OePXtm9i3katxcXRj3wbsA1KpWmZ1rF/PvX8syR/BrrMXiJbcSUvBLJBKJJGuxMRfO124aRX95U9Fv52YMLbXKfqtZjwJu/DRzMmsW/MDeDSuwtXmJjNWFXoPyJk48VzbBX0MgzCQ/QUwo/DvFsKkUKM37OxLotiaaeG2iDW9UEGz96OWT8UmylUwf6S9Z0tjbmzx5MjVq1DAry26+/PJLNm7cmK5jYmJiaN68OUePHqVIkSJ07twZf39/Fi9ezJYtWzh69CilSpUy1H/69ClfffUVO3bsyOzm5xpCw8L59qffKVWyBIP6vG2274Mh/SlX2pcu7d7MnCy6ao0YRbFzyfi5JBKJRCJJCyaJugAuX79p2GVYxKu3h9ZjbRLyk01oNBpGDO6b5vq/L1+NTqdQomhh6taqhkeBxPY3Ggsh9+Bp4jq8Z5dhTR9oNQNK1IV9MyAyQOxTW6NqNR3Hr/zYfzeA97fGsKBT4r0HXIMNw6HnCvH+SHItWfq/M3nyZDp16pR6xSykfv36TJo0iU2bNvH48WNsbVOPB58+fTpHjx6lfv36XL9+ndWrV3Ps2DFmz55NQEBAkrwDEyZMoE2bNtSvXz+rbiPHiIqKZtaP/8O3VjO+mjufiTPmEhkZZVbHwcGeru1bZVzwq9XCxs/dRwp+iUQikWQvag27Dh6nZvPOFCxfh72Hjhp2GcJ7HDzMha1ak+sNJWbM+5VhH0+ife93OXXuonGHnSu89TtUMRnIiwmFzR/AjnHColNPveFQsBwF3IUZx8Iz8dxyNa5/4NpWESIkydXk7k9qJjBu3Lh01Y+Li+Onn34C4Oeff8bJJE5uzJgxLF26lP3793Pq1Clq1arFxYsXWbFiBUePHiUkJAQQMwWKohASEoKDgwM2LzP1lsPEx8ez6I91TPvuZx49eWoof/IsgPlL/uDjEUMy72L6RD327nKUQCKRSCQ5h7U9Zy5cTlJcrrSPCDm1lO3dyh60L5GDxsbBbA1BVqDT6Xj42PgbXqJYEfMKGmsRy1+oMuydAdpY4cF/619jnWK1oHofAAokJg8FOKRpQOmSOrh7WBQcnQ+1B4Nrsay6HUkGyVTRX6pUKVQqFbt378bX19csBCY1VCoVt27dyszmvBSHDx8mNDSU0qVLU6NG0rj07t27c/78eTZv3kytWrW4efMmcXFx1KxZM0ldd3d35s+fz7Bhw5Lsy63odDpWb9jKFzO/N/MnBnB2cmTs8MEMHfBO5lxM77XvUCB51wCJRCKRSLKJEr5lk5RZW1vj411cJJazhLUdxL6E6Hf0goR7oMu6RFdPnwUSHx9v2C5etLDlihU6gEcZ2PYJhD8ylts4ibwBib/R+pF+gKDQcOg+A9YNgvgo6PWnFPy5nEwV/f7+/gCGD5h+Oy9x7tw5AIsi3rT8/PnzADRs2JC9e/ea1VmyZAlbt25l7dq1lCuXul1lpUqVLJbfunWLwoULs2fPnjS3/2VRdFqOHz3CwsVLuXXb3JrL2tqazh070vudHri6unLievJuTGlGrRbJPaR3t0QikUhyCdHR0Wbb7du1xcHenv3n/UFj2cgDRQFtvOV9yaFSgeaeSO71Egm+9h84yMHDhwkNCeX112vTo3s3i/WuXrtmeO3o6JjK77cVVhW+pNKNH/EIOQvARZ9BPLsRCYj1DbFa42z86St32HPxCXY+o9FZ2xN39TlczVq9EhkZiaOjY5ZeIz+TqaJf90Jv9cXtvMC9e/cAKF68uMX9+vK7d8UoeMGCBWnatKlZnX379mFra5ukPLeiKAoTJ37OsePm1ptqtZo2rVrRr09vvLwyKXmaSiUSiUixL5FIJJJchr29Pc7OzoSHi5H71m++SaXXKorfreRQqUAFKOm4kP43UKUG0i/6/e/eZe++/QAUMPHtf5GAgEDDa880uCQmWDtxruI4CoScJ97KiXDnMmb7nZ2dDa/171GMnZcIE5LkevJ9TH96iYiIAMDBwbJFpL6Hqf+wZwaXLl0yvA4JCTGsDWjVqhUajSbZ5GaZyaHWLc1E/9ud2vLl+NGUL5P2EK0UsbIVU6M54HQgkUgkEklaKVXKl3PnxGx+IScNzevXAOdCKR8U9ih98fkuRYRb0MscC1w5U4Zlia81unia1yxjsd7Fk4cNryuULZVsvaRYjlI4Ur4k6xJf21thPJ97yWwR/nKUP2PIVZNZwJQpU3jw4MFLHTtv3jx8fX3x9fXlxo0bBAUFZXLrLDNm1AcU9HCndbNGnNz9N2sW/pA5gt/Ua18KfolEIpHkcry9jTbj9x4+NibiSon0+PWrVGLxrx5Li4NT4cWsvMlx/9H/27vzsCjL/X/g75lhgGHfFTfALbfEfUcITS3XXDMtcElNPYXVse24JJanLKNTWWkd9KuZpEdF89eiIYWaqKFppVkEijuyqIjs9+8PmpFhZmD2YYb367q4rpln/TxzzzPz4Z57uTfufosWpre3r9mmP//vCkqyH6zpr0U5Wk9xsfb/uu/cqZ6AouZPXOY0Y8YMDB06FADw+OOPQy63zk9mnp6eOP39XjRtYqZmPBxrn4iI7FDLli1Vj3Ou5es3JKchSb+Ti/pIdc7u1eeorND7EEGB9/4Ryc3L17ndxZoj9+hotmyImqP35BfcNPl4ZF1mH73HWA1l9J5WrVoBgM6aeuVyS004lpiYiFdffVX1PDDQTEm4HsyS8CsnLnH1Ybt9IiKyOzWbkPznw3V4+z8fwMmpnnTJkKRfrqX5sIsXUKw7ea+tZk1/bl4+hBBa58rJuXwv6dfVV9EQQyMH4Pj+nfDz8Yafr4/JxyPrssjoPfYsPDwcAJCRkaF1vXJ5165dLXL+uLg4xMbGArjXpt8uSCT3kn2OtU9ERHaq9iSeen0PS6WAkzNQUVb/ttqaurp6A3cLVLMB1yco4F7SX1pahttFRfDS0gLh4uV7o/W0bNlKr2PXxd/P996MvmR3zJqdVVVVmfTXEAwcOBDe3t7IzMzEyZMnNdZv317dhWX06NFWjqyBkkiqP6x8Q/8eb58JPxER2a9Zs2apavYnTpyo/2zzTnr0W5NItP8qIJXd69irBz9fH7W4cm9o/kpQVVWFKzUm12xhhqSf7BsztFqcnZ2xcOFCAMCCBQtUbfgBYM2aNTh16hQiIyPRs2dPi5zfVh15jeLiCfi0AjwCObkWERE5hNDQUOzfvx+rV6/GBx98oP+OTi71byN309301YAOvTKZDP5+Pqrn2tr1S2Uy3L51C1lZWUhLS0PrNvqO3EOOSiKEnr8lmUlBQQEAwMfHR///nk2wd+9exMfHq54fPXoUQgj07dtXtWzJkiUYOXKk6nlJSQmioqKQnp6O4OBgRERE4Pz580hPT0dgYCCOHDliUv+FumgbsvPMmTMWOZeasjvArSv1bwdUTx3u5q/fBxwREVFjUFkOFJyvexv3AEDho3t9wXm9J/rqPOgh/PZ79aRZyZs+wpgRQ9Q3kCvUZ8gVAsizUN9JKw3ZqZzMtOZQ56Q/q9T07969G8OGDYOHhwcCAgIQEBAAT09PDBs2DMnJyRY9d25uLtLT01V/yv9xai7Lzc1V28fV1RUHDhzAkiVL4Obmhl27duH8+fOIjY1FRkaGxRL+Bs/JpfoDxKsZE34iIqKaZPL6f/XW1om3JgNq+9U682pp3qPRd0AiMUsT3OGTZqBt7yHwa9cLRzN+Nvl4ZD0WHbJTCIFZs2Zh48aNqmTb5+/hngoLC7F//3589913ePzxx5GYmGiRmv/Y2FhVx1hDKBQKrFixAitWrDB7THVJSEiw2eg9Osnk1TX7Lh62joSIiKjhcnKt/uVcG6msurNvXVy8gOI8vTr0hrRojtBWLRAU4AcvTy3fz9r6DkhkAEzrQ5mdcwmZ2RcAAHn5hSYdi6zLojX97777LjZs2IDg4GB8+OGHKCwsRH5+PvLz83Hz5k189NFHCA4OxqZNm/Duu+9aMhS7ERcXh6ysLGRlZaFdu3bw99djUhBLkcoAj6Dqn+2Y8BMREdVNXsfQnfXV8gPVNfEu+s0DtPGDN5H10wGkf/M/TBr7kPpKiQQllRJotOCWml7Xywm67JdFk/5169bBzc0NaWlpmDt3Lry87k3U5OnpiTlz5iAtLQ0KhQLr1q2zZChkCKkUcPevHpGHk2sRERHpp64RfPSdld6IGXo143BB7IwZ8PDwwH333YdNmzZVLzfDoBt+PjWSfk7QZVcsmvRnZWVhyJAhCAsL07lNWFgYhgwZgqysLEuGYjdsOnqPRFI97KZPaPWY+5xci4iISH9OLrq/O/Wp6Vcew9R+c04K5OTkoLi4GOfOnUNFxd+z/Zqlpt9H9Ti/kEm/PbFo0h8YGAhn53rarwGQy+UICAiwZCh2w2bNe2QuHGufiIjIFBKJ9oRdJgdkBiTcptb2y12Rk5OjetqyZcu/4zP9+129pr/Q5OOR9Vi0I+8jjzyCzZs3o6CgAL6+2mdwy8/PR0pKCqZNm2bJUOyGj4+PqrOzXG754a9UDPkwIiIiIu2cFEB5ifoyAybeAlDdtLa8GCgt0rlJRUUFLl+9jty8fNy6XYQHBvVTrauUOOPy5cuq56qk3xzNe1jTb7csWqW7cuVKtG7dGtHR0UhJSdFYf+DAATz44INo06YNXn/9dUuGQkRERGR52mr69W3PX5NHkzr3O5eZhZDukeg19BGMmDLzXqddJ2dcvX4dlZWVqm1btGhR/cAczXtY02+3LFq9O3bsWDg7O+Onn37Cgw8+CD8/P4SEhAAALly4oGqv3q9fP4wdO1ZtX4lEgu+++86S4TVINSfnKi8vh0zGmW6JiIjshrbx8evq4KuLRAJ4BgO3LgIVZRqra47TX1ZWjlu3i+Dt5fl3e/57k3D5+vrC3f3vXxok5qjprzl6D2v67YlFk/7U1FTVYyEE8vLytHZM/fHHHzWWWWO23oaoQY7TT0RERPqRyqrb8Ctn1nVyMb6vnFQKeDarTvwrK9RW+fn6QCqVoqqqetz93Bv51Um/3BUXL15Ubadq2gOYqabfR/WYo/fYF4sm/RyRx3BxcXGqycSGDRvGmn4iIiJ74+R6L+nXd9QeXWRO9xL/qnsTa8lkMvj7+ahm483Ny0fb1iGA3E2tE6+qaQ9gpjb9HKffXlk06Vc25SH92awjLxEREZmH3BUovf33YyOa9tTm5Px34n9JbbbeQH8/VdJ//UZe9S8MUpnumn6JpPpPjxl/dWkaFIihkQPg5+Oj1sSIGj4O2UJERERkTso2/BJJda2/OchdAc+mwO2rqqQ9KMAfv/3+J4Dq5j3KfzB01vQD1U18lL9CGCGkZXPs277R6P3JdqyS9GdnZ+OHH37AlStXUFpaqnUbiUSCJUuWWCOcBo0deYmIiOyck3N1wi9XmHeiS2d3wCMIKL8LSKQIbNJUtSq3qKx6Yk1A+xj9SlKZSUk/2S+LJv0lJSV48sknsWXLFgC4N5yUFkz6q7EjLxERkQOQK8zTtKc2F8/qPwCBTZurFl/Pv1ndvAfAjBkz0KdPH+Tk5KBTp07q+5uhMy/ZJ4uW/AsvvIDPPvsMQUFBmDZtGlq3bg0PDw9LntLusSMvERGRA3ByBeQGTsploKCgINXj3Nxc1eM5c+bo3skMw3aSfbJo0p+UlISAgACcPHkSTZs2rX8HYkdeIiIiR+DsUd3Mx4JqtgaomfTXyQwj+Bw/eRrncy4hv/AmBvXtiY59OXCLPbBo0l9UVIQRI0Yw4SciIqLGxcIJP6Ce9F+/fl2/ncyQ9L/y2hp8m3oQALD2zeXo2HeIyccky7No0t+lSxfcunXLkqcgIiIiapR69+6NDz/8EIGBgZqj9Ohi7ll5OUGX3bBo0v/cc89h2rRpOHHiBLp3727JUxERERE1KqGhoZg3b57asm+++QZpaWlo0aIFevbsid69e6vvZO5ZeQuZ9NsLiyb9kyZNwsWLF/Hggw9i4cKFePDBB9G8eXNIdUxH3apVK0uGQ0REROTQvv76ayQkJAAA5s2bpyXpN72m39fHS/W4gEm/3bD4uE1du3aFn58f4uPjER8fr3M7iUSCiooKS4fT4HGcfiIiIjKWztl4lczSvMdH9Zg1/fbDokn/l19+ifHjx6OiogIBAQEICQnhkJ314Dj9REREZKw6Z+MFAKm0esKwOuZOqo+fT802/YVGH4esy6JJ/7JlyyCEQGJiIp544glIzDkrnYPiOP1ERESkr1WrVuHkyZO4fv06lixZUvdsvEpSGVBpfOsK1vTbJ4sm/WfOnMHgwYMRExNjydM4FI7TT0RERPrat28fDhw4AACYPHkyrly5olqnM+mXyACYkPT71Bq9R8Z8xR5o71FrJgEBAQgICLDkKYiIiIgarZrNgE+dOgVRo9lO8+bNte9k4gg+akN2Ft5UOyc1XBZN+idOnIgffvgBJSUlljyNzW3cuBG9evWCj48P3N3d0aNHD2zdutXWYREREZGDq5n0//TTT6rHAQEBUCgU2ncycQSfmkN2lpaW4u7duyYdj6zDokn/ypUrERoaijFjxiAzM9OSp7KpgoICjBs3Dps3b0ZycjIGDBiAqVOnYteuXbYOjYiIiBxYUFCQ6nFGRobqsc6mPYDJNf01h+wEgPz8fJOOR9Zh0Tb9o0aNgkwmw3fffYcOHTogNDRU5zj9EokE3333nSXDsZi4uDi150OHDsXJkyfx2WefYdy4cTaJiYiIiBxfzZr+yspK1eM6Z+iVmFbn6+Ligv3/2whfH2/4hd6Ppk2bmnQ8sg6LJv2pqamqx5WVlcjMzNRZ4+9oI/v4+/ujvLzc1mEQERGRA9M1tHfdNf2mjww4ZPAAwMkF8KnjPNSgWDTpz8rKsuTh9fLTTz9h3759OHr0KI4ePYpLly4BQL2dTu7evYtVq1Zh69atuHDhAvz8/DBixAjEx8fr7BhTUVGB4uJifPXVV9i3bx/+97//mf16iIiIiJRqNu8BqitRhRB11/Sb2LxHRa6jzwA1SBZN+kNCQvTetqqqyiIxxMfHIzk52aB9SkpKEB0djSNHjiA4OBhjx45FdnY2EhMT8eWXX+LIkSNo3bq12j5Xr15FcHAwAEAmk2Ht2rV46KGHzHYdRERERLXVrOmXy+UoKirClStX4ObmpnsnM8zKC6C6pp/shkWTfn2cOHECmzZtwtatW3H58mWzH79///7o2rUrevfujd69eyM0NBSlpaV17rNy5UocOXIE/fv3x7fffquaRXjNmjV47rnnMHPmTLWmS0B1L/ljx47h9u3b+Prrr7Fw4UL4+/tjwoQJZr8mIiIiIkA96S8vL0dxcXH9la7mqul3Yk2/PZEIGwyumpOTg88++wybN2/GmTNnIISARCJR64BiKa6urigtLdXZvKesrAxBQUG4efMmMjIy0L17d7X14eHhOHXqFI4fP46ePXvqPM+TTz6J77//HufOnTM61s6dOwMAfv31V6OPQURERI6rqqoKcrlc1WLi3LlzaNeuXf075mUCJqSACev+D5/t/AoFBQV44oknsHTpUqOPpS/mRaaxWk3/7du3sW3bNmzevBk//PADhBAQQqB58+aYMmUKpk6daq1Q6nTo0CHcvHkTbdq00Uj4geq5B06dOoU9e/bUmfR369YNiYmJlgyViIiIGjmpVIo2bdqgqqoKgYGB+legSqSAML6y9eqNAhw/fhwAcPHiRaOPQ9Zj0aS/srISX3/9NTZt2oQ9e/agpKREVcMukUiQmpqKiIiIBjVyz88//wwA6NGjh9b1yuWnTp2q8ziHDx9GaGioXudU/udaW2ZmJpo2bYqUlBS9jkNERESNz0cffYS7d++irKwMly5d0q+5dGW5STX9+bfvTbx69uxZq+Qqd+7cgbu7u8XP46gskvQfO3YMmzZtQlJSEm7cuAEhBORyOcaMGYPp06fjzTffxPHjxzF48GBLnN4kFy5cAKB7fFvl8vPnz6uWPfDAA5gwYQI6dOiAkpISJCcnY8uWLVi3bp3lAyYiIqJG78cff8Rrr70GFxcX9O7dG6+++qpFz+fpdW+Crtu3b1v0XGQeZk36V65cic8++wznzp1T1egPGDAA06dPx+TJk+Hn5wcASEhIMOdpzaqoqAgAdPZ6V/6HWfMNHh4ejvfeew85OTlwd3dHp06dsGfPHowaNUqvc9Zsm1ZYWIjCwkIAwLBhwyCTyRAdHW3MpRAREVEj8dNPPwEASktL4e/vX3/uUHQdKLll3MmkUhQWFWPNmjUAqodBt0auwlp+05g16V+6dCkkEgmaNm2K+fPnY9q0aXo3cbFnCQkJZvtHJiEhQe2/c12TbhAREREp5eTkqB7XOUa/kinDdjq5qipyASA/P9/4Y5HVmDYPsxZCCFy9ehXffPMN9u3bp6q1thfK4TmLi4u1rr9z5w4AwNPT0yLnj4uLQ1ZWFrKystCuXTv4+/tb5DxERETkGEpKSnDw4EHV8zpn41WSmpACMum3S2ZN+tPT07FgwQL4+/vj4MGDmDdvHoKDgzFhwgTs2LED5eXl5jydRbRq1QqA7p7oyuWGTDxGREREZCkbNmzAiRMnVM/1quk3Zax+uUIt6b9z5069cyCR7Zk16e/duzfee+89XL58GcnJyZg4cSIkEgl27tyJSZMmITg4GHPnzsW1a9fMeVqzCg8PBwBkZGRoXa9c3rVrV4ucPyEhAWFhYQgLC8Mff/yBvLw8i5yHiIiIHEPtpsB61fQb27xHItGo6QeAgoIC445HVmP25j0A4OTkhNGjRyMpKQlXr17F+vXrERERgYKCAqxfvx6ZmZkAgBdffBEnT560RAhGGzhwILy9vZGZmak1tu3btwMARo8ebZHzz5gxA2lpaUhLS0NoaCh8fHwsch4iIiJyDN7e3mrP9WveY2RNv5MLIJFAoVDAxcVFtZhNfBo+iyT9NXl5eWHWrFlITU1FdnY2XnvtNXTo0AFCCKxevRo9e/ZEx44dER8fb+lQ9OLs7IyFCxcCABYsWKBqww8Aa9aswalTpxAZGVnnxFymSExMREREBCIiIpCdnW13fSKIiIjIunx9fdWeN2vWrP6dpEbW9DspAFTPt8R2/fZFIoQJMzOYICMjA5s2bcLWrVtx7do1SCQS/WeRM8DevXvV/qE4evQohBDo27evatmSJUswcuRI1fOSkhJERUUhPT0dwcHBiIiIwPnz55Geno7AwEAcOXIErVu3NnusgPYhO8+cOWORcxEREZH9E0IgMjISaWlpmDlzJj799FP9dszLNHyCLq9gwLl66MzJkyejsLAQfn5+ePnlly3W9FlJOZlpzaHOSX8WnZG3Lj169ECPHj3w9ttv45tvvsHmzZstcp7c3Fykp6drLK+5LDc3V22dq6srDhw4gFWrVmHLli3YtWsX/Pz8EBsbi/j4eP06yBARERFZgUQiQWpqKrKysgyrlJRIAWFghevfNf0A8MUXXxi2L9mUzWr6Sbvly5drjNN//fp1G0ZEREREDqnwAlBRpv/2Ts6ATyvLxVMP1vSbxuJt+skwHKefiIiIrMLQzrxOrpaJg6zCZs17SDsfHx/ViD1yudy2wRAREZHjMnTYTpmzZeIgq2DS38DU7MhbXl4OmcyEabKJiIiIdDF0BB8nF7WnV69exa+//oqSkhI0bdrUYiMbknkw6W9gEhISNNr0ExEREZmdoUm/TD3p9/LywoABA6BQKHTsQA0J2/Q3MGzTT0RERFZhSPMeqQyQqqeNbm5uTPjtCGv6Gxi26SciIiKrMKQjb62mPWR/mPQ3MGzTT0RERFZhSPMeGZN+e8fmPQ1MQkICwsLCEBYWhj/++AN5eXm2DomIiIgckSHNe5w4co+9Y9LfwLBNPxEREVmFzAmQSPTcljX99o7NexoYtuknIiIiq3FyBcrv1r2NRALImJPYO9b0ExERETVWcj1G35HJ9f9FgBosJv1EREREjZWTa/3bsGmPQ2DzngaGo/cQERGR1cgV1bX4Qujehp14HQJr+hsYjt5DREREViOR1D8Gv4xJvyNg0t/AcPQeIiIisiq5W93r2bzHIbB5TwPD0XuIiIjIqupq1y+VVg/tSXaPNf1EREREjZmyXb82rOV3GEz6iYiIiBqzutr119fen+wGk34iIiKixs5Jx3j9nJTLYTDpJyIiImrsdE3SxeY9DoM9MxoYjtNPREREVufkqn28fjbvcRis6W9gOE4/ERERWZ1Uqjkev0yuu4Mv2R0m/Q0Mx+knIiIim6g9Xj8n5XIobN7TwHCcfiIiIrIJuStwt8ZzNu1xKKzpJyIiIiLNEXxY0+9QmPSbwRdffIGRI0ciODgY3t7eGDx4MA4ePGjrsIiIiIj0J5Wq1+6zpt+hMOk3g4SEBAQEBOCDDz7Atm3b0Lx5cwwZMgQ///yzrUMjIiIi0p9y6E6JhGP0Oxi26TeDPXv2qHW4HTp0KO6//3588MEHWLdunQ0jIyIiIjKAXAHcLWTTHgfEmn4zqD3CjlQqRZcuXZCVlWWjiIiIiIiMoGzXz6Y9Dsfhk/6ffvoJ//73vzF+/Hi0aNECEokEEj3GnL179y6WLl2K9u3bw9XVFc2aNcPMmTNx6dKlevetrKzEsWPH0LZtW3NcAhEREZF1SKWAkzNr+h2QwzfviY+PR3JyskH7lJSUIDo6GkeOHEFwcDDGjh2L7OxsJCYm4ssvv8SRI0fQunVrnfu///77uHDhAubPn29q+ERERETWJXdjTb8Dcvia/v79+2PJkiXYvXs3rly5AheX+t/EK1euxJEjR9C/f3+cO3cOSUlJSE9Px9tvv43c3FzMnDlT577p6el48cUX8a9//Qv333+/OS+FiIiIyPKcXFnT74AkQghh6yCsydXVFaWlpdB12WVlZQgKCsLNmzeRkZGB7t27q60PDw/HqVOncPz4cfTs2VNtXXZ2Nvr164fBgwcjKSlJr2ZEdencuTMA4NdffzXpOERERER6E6J69J4GhnmRaRy+pt9Qhw4dws2bN9GmTRuNhB8AJk6cCKB6xJ6aCgsLMXLkSISGhmLjxo0mJ/xERERENsEcxiE5fJt+QynH1u/Ro4fW9crlp06dUi0rKyvD+PHjUVxcjJSUFCgUCq376qL8z7W2zMxMNG3aFCkpKQYdj4iIiMjR3LlzB+7u7rYOw24x6a/lwoULAIAWLVpoXa9cfv78edWy+fPn4/vvv8f69euRlZWlGqrTxcVF668FRERERETWxKS/lqKiIgCAm5ub1vXK/zBv376tWrZ//35UVVVh1qxZatuGhIQgOzu73nPWbJtWWFiIwsJCAMCwYcMgk8kQHR1tyCUQERERORzW8puGSb8Z6JPY6yshIQGvvvqq6nlgYKDZjk1EREREjROT/lo8PDwAAMXFxVrX37lzBwDg6elpkfPPmDEDQ4cOBQA8/vjjkMvlFjkPERERETUeTPpradWqFQDg4sWLWtcrl4eEhFjk/ImJiazpJyIiIiKz4pCdtYSHhwMAMjIytK5XLu/atatFzh8XF6fqDNyuXTv4+/tb5DxERERE1Hgw6a9l4MCB8Pb2RmZmJk6ePKmxfvv27QCA0aNHWzkyIiIiIiLjsHlPLc7Ozli4cCFee+01LFiwAN9++62qt/iaNWtw6tQpREZGaszGay61O/LKZDKd4/gTERERNRaZmZns62gCiRBC2DoIS9q7dy/i4+NVz48ePQohBPr27atatmTJEowcOVL1vKSkBFFRUUhPT0dwcDAiIiJw/vx5pKenIzAwEEeOHEHr1q0tEm/NITt79+6NkpISVT8DU2VmZgIA2rRpY5bjkeWxzOwPy8z+sMzsC8vL/pirzC5cuAB3d3dcvXrVHGE1Og5f05+bm4v09HSN5TWX5ebmqq1zdXXFgQMHsGrVKmzZsgW7du2Cn58fYmNjER8fr3PiLnPw8fGBj4+P1rhMpfzFoOa8ANSwsczsD8vM/rDM7AvLy/6wzBoGh0/6Y2NjERsba/B+CoUCK1aswIoVK8wfFBERERGRFbEjLxERERGRg2PST0RERETk4Jj0ExERERE5OCb9REREREQOzuGH7CQiIiIiauxY009ERERE5OCY9BMREREROTgm/UREREREDo5JPxERERGRg2PST0RERETk4Jj0ExERERE5OCb9REREREQOjkl/I7dx40b06tULPj4+cHd3R48ePbB161Zbh0V6OH36NJycnNCiRQtbh0J12LBhAyQSicZfamqqrUOjOpSXl2PlypVo3bo1XFxcEBoailWrVtk6LNIhKipK630mkUhw5coVW4dHWmzcuBFdu3aFu7s7QkNDsXjxYhQXF9s6LIfmZOsAyLYKCgowbtw4dOvWDa6urti1axemTp0KV1dXjBs3ztbhUR3i4uLg7+9v6zBITwcPHoRMJlM979Spkw2jofo8/vjjOHToEJYtW4a2bdsiKysL165ds3VYpMPatWtx69YttWULFy5EeXk5goODbRQV6bJjxw7ExsZi8eLFGD58OM6ePYuXXnoJN2/exMcff2zr8BwWZ+QlDYMGDUJwcDC2bdtm61BIh127dmHRokV49NFHsWnTJly8eNHWIZEOGzZswIwZM1BeXg4nJ9az2IO9e/fikUcewalTp9ChQwdbh0NGKCgoQJMmTbB8+XK8/PLLtg6HapkyZQouX76MtLQ01bLly5fjvffeQ15eng0jc2xs3kMa/P39UV5ebuswSIeysjI8//zz+Pe//w0XFxdbh0PkcDZs2IDo6Ggm/HZs586dKC8vx5QpU2wdCmlRUVEBLy8vtWXe3t6oqqqyUUSNA5N+B1JcXIxdu3Zh1qxZuO++++Dq6gp3d3eEh4djxYoVKCoq0rlvRUUFbt26haSkJOzbtw9z5861YuSNk7HllZCQgMDAQH6Z2YAp91jz5s3h5OSErl27Yvv27VaMunEzpsyOHj2Kdu3aYf78+fDw8ICnpyemTZuGgoICG1xB42PKfaaUlJSEnj17ok2bNlaIuHEzprxiYmKwf/9+7NixA7dv38bx48fx3nvv4amnnrLBFTQighzG+vXrBQABQHTs2FFMmjRJDB8+XHh6egoAokOHDuLatWsa+125ckW1n0wmEx9//LENom98jCmvq1evCi8vL3H48GEhhBDLli0TzZs3t0X4jZIxZfb111+L1157Tezfv1/s2bNHjBs3TgAQu3btstFVNC7GlJmzs7Pw8PAQgwYNEl999ZXYtGmTCAoKEmPHjrXNRTQyxn6XKeXm5gonJyfx5ptvWjHqxsvY8vr000+FXC5X7Tt9+nRRVVVlgytoPJj0O5ANGzaIOXPmiN9++01t+eXLl0X37t0FADF16lSN/crLy8WxY8dESkqKWLx4sZDL5WL79u3WCrvRMqa8Zs6cKSZPnqx6zqTfuoy9x2obNGiQ6NOnj6XCpBqMKTMnJyfh7u4ubty4oVq2bds2AUCcO3fOKnE3ZqbeZx999JEAILKzsy0dKgnjymv//v3C09NTLFu2TKSmpor169eLwMBA8fzzz1sz9EaHSX8jcfjwYQFAuLi4iNLS0jq3nT17tmjXrp2VIiNttJXX6dOnhbOzs8jIyBAFBQWioKBAvPDCC6JZs2aioKCg3nIlyzLkHlu9erVwdna2UmSki64yCwwMFP369VPbNjc3VwAQycnJ1g6TatDnPouOjtYoP7INXeUVHh4uZs2apbbtli1bhEwmE5cvX7Z2mI0G2/Q3EuHh4QCA0tLSenvGd+vWDX/99Zc1wiIdtJXXn3/+ibKyMvTo0QO+vr7w9fXFG2+8gcuXL8PX1xf//e9/bRlyo2fIPUYNg64y69ixI4SOge2kUn5t2lJ999m1a9fw/fffs89TA6GrvM6dO6daV3PbyspKZGdnWzPERoXjxzUSyiReLpfDz8+vzm0PHz6M0NBQK0RFumgrr0GDBuHAgQNq223YsAF79+7Ftm3b0L59e6vHSffoe48JIbBz5050797dWqGRDrrK7OGHH8aKFStw48YNBAQEAABSUlIgkUjQpUsXm8RK1eq7z7Zv346qqipMmjTJ2qGRFrrKq2XLljhx4oTathkZGQCAkJAQ6wXYyDDpbyTeffddAMCIESPUhnl84IEHMGHCBHTo0AElJSVITk7Gli1bsG7dOluFStBeXgEBAYiKilLbLjU1FS4uLhrLyfp03WMTJ05Enz590LVrV5SWluKTTz7Bjz/+iN27d9sqVPqbrjKbO3cu/vOf/2Ds2LF46aWXcOPGDSxevBjTp09nhYiN6SozpaSkJAwaNAjNmze3dmikha7ymjNnDl544QU0a9YM0dHROHfuHP71r39hzJgxaNasma3CdXy2bl9Elrd3714hkUiEXC4XJ0+eVFv3zDPPiPbt2wuFQiECAgLE4MGDxZ49e2wUKQlRd3nVxo68DUNdZfbSSy+Jdu3aCYVCIRQKhRgwYIDYu3evjSIlpfrus7Nnz4qhQ4cKhUIh/P39xVNPPSXu3Lljg0hJqb4yu3TpkpBIJOL999+3QXRUW13lVVFRIdasWSM6duwoFAqFCA0NFf/4xz9EYWGhjaJtHJj0O7gzZ84IX19fAUAkJCTYOhyqB8vL/rDM7A/LzP6wzOwLy6thYtLvwC5evChCQkIEAPHss8/aOhyqB8vL/rDM7A/LzP6wzOwLy6vhkgihY4gCsmv5+fmIiIjAb7/9hhkzZuDTTz+FRCKxdVikA8vL/rDM7A/LzP6wzOwLy6thY9LvgIqKijBkyBAcPXoU48ePxxdffAGZTGbrsEgHlpf9YZnZH5aZ/WGZ2ReWV8PHpN/BlJaW4uGHH0ZKSgqGDx+O3bt3w9nZ2dZhkQ4sL/vDMrM/LDP7wzKzLywv+8BZRhxIZWUlpk6dipSUFERERGDHjh286Rowlpf9YZnZH5aZ/WGZ2ReWl/3gOP0O5P3338fOnTsBVI/pPn/+fK3bvfXWW6oJZ8h2WF72h2Vmf1hm9odlZl9YXvaDSb8DKSgoUD1W3oDaLF++nDdeA8Dysj8sM/vDMrM/LDP7wvKyH2zTT0RERETk4Nimn4iIiIjIwTHpJyIiIiJycEz6iYiIiIgcHJN+IiIiIiIHx6SfiIiIiMjBMeknIiIiInJwTPqJiIiIiBwck34iIiIiIgfHpJ+IiIiIyMEx6SciIiIicnBM+omIiIiIHByTfiIiIiIiB8ekn4iIiIjIwTHpJyIiIiJycEz6iYiIiIgcHJN+ajAkEolBf6GhobYO2WEY83r+5z//QefOneHi4gKJRIKoqCiLxEaWU1VVhdWrVyM8PBxubm6QSCRo0aJFvfutWLECUqkUp0+ftkKUtmcPnzfLly+HRCLBhg0bbB0KWdCVK1egUCgwf/58W4dCdsjJ1gEQKcXExGgsO3jwIDIzMxEeHo5u3bqprQsICLBSZFTbjh078Mwzz8DX1xdjxoyBu7s7OnToYOuwyEDLli3DypUr0aRJE4wePRoKhQIdO3asc59r165h9erVmDhxIu6//36Tzp+dnY2wsDBERkYiNTXVpGPZg8Z2vZbSmF/H4OBgzJkzB2vXrkVcXBzat29v65DIjjDppwZDWw1VbGwsMjMzMW7cOCxfvtzqMZF2u3btAgBs374d0dHRtg2GjHL37l0kJCTA29sbp0+fRmBgoF77vf766ygqKsJLL71k4QgbjjNnzkAul9s6DCIAwOLFi/H+++9jyZIlSEpKsnU4ZEfYvIeIDHbx4kUAQOvWrW0cCRnr8OHDKCoqwujRo/VO+IuLi7Fx40Z06dIF3bt3t3CEDUeHDh3Qpk0bW4dBBABo3rw5HnjgAezcuRPXrl2zdThkR5j0k0PIycnBwoUL0aZNG7i6usLPzw+jRo3C4cOHNbbNzs5WtUG/c+cOnn32WbRs2RIKhQI9evTAnj17VNtu27YNffv2hbu7O5o0aYKnn34ad+/e1Xm8W7du4ZlnnkHLli3h6uqKjh074p133kFVVZXO2H/88UeMHTsWgYGBcHFxQWhoKObPn4/Lly/XeZ5nn30WYWFhkMvliIuLU223d+9ezJw5Ex07doSXlxfc3d0RHh6O119/HaWlpUa+wtWU7YYPHDgAAAgLC1P1sVD+zK5vnIaUmdLu3bvRv39/uLm5wd/fHxMmTMC5c+e0tmdOTU2FRCJBbGys1mPFxsaqxV2bvvHVvN67d+/ixRdfREhICFxcXNC2bVu88cYbEELovKacnBw8/fTTaN++PRQKBfz8/NCrVy+8+uqruHXrFo4fPw6JRIIBAwboPMbrr78OiUSCZcuW6dym9usydOhQAMDmzZtVZfjKK6/Uue+2bdtw8+ZNTJ06Vet6Q957y5cvR1hYGADg+++/V+uvo6vMajLlvtP3nlPS1qbf0HI39XqVdN0DddH3ektKSuDq6qq1/8K4ceMgkUgwaNAgjXW9evWCVCpFbm6uUa+N0i+//ILp06ejdevWcHV1RWBgILp164a4uDhcuXIFgH6vo76fQYBhn0OGfraa+7umpsceewzl5eXsw0GGEUQNWExMjAAgli1bpnObw4cPC19fXwFA3HfffWL8+PEiIiJCODk5CZlMJrZu3aq2fVZWlgAg+vfvL/r27SuCgoLExIkTRVRUlJBKpUImk4l9+/aJNWvWCCcnJzFkyBDxyCOPCH9/fwFAPPbYY1qP169fP9GzZ0/h4+Mjxo8fL0aNGiUUCoUAIGJiYrTGvmnTJiGTyQQAMXDgQPHoo4+K9u3bCwCiSZMm4syZMxrn6dOnj+jWrZvw9fUV48aNE+PHjxfLly9XbdekSRPh5eUlBgwYICZPniyGDx+uen2io6NFRUWFRhwAREhISL3lsXPnThETEyOaNGkiAIgJEyaImJgYERMTo4pVnzgNLTMhhPjwww8FACGRSMTgwYPFlClTREhIiPD29hbTp08XAERiYqJq+wMHDtT52ivfWwcOHNBYZ0h8Nd9PgwYNEn5+fmL8+PFi+PDhwtXVVQAQr7zyitYYfvjhB+Hj4yMAiNDQUDFp0iQxatQo0bZtWwFAnDhxQgghRI8ePQQA8csvv2gco6qqSrRu3VpIpVJx/vx5reepKS0tTcTExIiQkBABQIwaNUpVhmlpaXXuO3HiRAFAHDp0SOt6Q957O3fuFBMmTFC915UxxMTEiPXr19d7Hcbed4bcc0ra7g9Dy93U6xXC8HvAmOsdPHiwACCysrJUyyorK1Xl6OzsLO7cuaNaV1hYKKRSqejcubPRr40QQhw/fly1rmvXrmLy5Mli1KhRolOnTmr3qT6vo76flYZ+Dhn62Wru75qaMjMzBQARERGhcxui2pj0U4NWX9J/8+ZNERwcLGQymdi8ebPaumPHjglfX1/h4eEhrl+/rlqu/CBWflAXFRWp1iUmJgoAom3btsLX11ccO3ZMte7SpUsiKChIABCZmZlaj9e1a1eRm5urWvfnn3+KZs2aCQBi586davFduHBBKBQKIZPJRHJysmp5ZWWliIuLEwBEr169tJ6nf//+oqCgQOtrsmvXLlFcXKy27NatW2LUqFECgNi4caPGPvom/UqRkZEaiYG+cRpTZtnZ2cLV1VXI5XLx9ddfq5aXlZWJadOmqc5njqTf0PhqXm9kZKS4efOm2vYymUy4ubmJ27dvqx0rLy9PBAYGCgBi9erVorKyUm394cOHxbVr14QQQqxbt04AEM8884zGdezbt08AEA899JDW69Sle/fuAoDIy8vTe58mTZoIJycnjfeXkqHvPeVrFxkZaVDsNfc15L4z9J5TqivpN6TcTbleY+4BY6536dKlGsfJyMgQAETnzp0FALFv3z7Vut27dwsAYsGCBSa9Nk888YQAIN566y2Naz9z5oy4fPmyxvF1vY76fFYa8zlk7PvbXN81tQUEBAgXFxdx9+5dndsQ1cSknxq0+pL+d955RwAQzz33nNb1a9asEQDEmjVrVMuUH8RSqVT8/vvvattXVlaKgIAAAUD861//0jjeokWLNL4Qa36wf/vttxr7KGvnhgwZorZc+eU6depUjX1KSkpUScvBgwc1zlPzC0Jff/zxhwAgxo8fr7HOUkm/tjiNKTPla/XEE09obH/jxg3h5uZmtqTf0Phqvp/Onj2rsb0yIah9njfeeEMAECNGjNB6npqKioqEl5eX8PPzEyUlJWrrpkyZIgCIHTt21HscpbKyMuHi4iJatmyp9z7Xrl0TAERYWJje+yjpeu+ZK+nX974z9J5TqivpN6TcTbleY+4BY643JSVF475RvueTkpI0aumfffZZAUB88cUXGtdpyGvz0EMPCQDi5MmT9b4WhiT9uj4rjfkc0qW+97e5vmtqGzhwoAAgMjIy6o2RSAgh2Kaf7Nq3334LABg/frzW9REREQCAo0ePaqwLDQ3VGO5MKpUiJCQEADBs2DCNfZQdV5XtS2vy8/PDgw8+qLFc2f758OHDam2M09LSAADTpk3T2MfFxQWTJk1S204pODgYvXr10tinpj/++APvvvsu/vGPf2DmzJmIjY1FfHy8ap016IrTmDJTvgaPPvqoxvb+/v5ay8pYxr6nQkJCcN9992lsr3yP1X7P7N+/HwAwd+7cemNyd3fH9OnTkZ+fj//973+q5Tdu3MDOnTvRtGlTjB49ut7jKJ05cwalpaUaw+DW5fr16wAAX1/fOrez9nvPkPvO2HuuLoaWu7GMuQeMud5+/frBxcVFra9LamoqPD09MWHCBISEhGisA6B1ng5DXpuePXsCABYsWIDU1FRUVFRo7Geouj4rjb3PjXl/m/u7RsnPzw8AVH0piOrDITvJrmVnZwMABg4cWOd2N27c0FjWvHlzrdt6eHjoXK9cp63TlvIDvDZvb2/4+PigsLAQBQUF8Pf3BwBVJzpdk/4ol1+6dElteatWrbRuDwBCCDz//PN45513dHYevX37ts79zUlXnMaUmfK10vUam3PiJGPfU7omtfL09ASg+Z7JyckBAL1HhZk3bx7Wrl2L9evX47HHHgMA/N///R/KysowY8YMODnp/3F+8uRJADAo6b958yaAe9dTm63ee4bcd8bec3UxtNyNZcw9YMz1KhQK9OnTB2lpacjOzkarVq2QlpaGiIgIyGQyREVF4fPPP0dxcTHKy8tx8uRJdOrUSesIUIa8Nv/85z9x8OBBpKam4oEHHoCHhwf69++PkSNHIjY2Ft7e3lqPVZe6PisNvc9NeX+b+7tGycvLCwBQWFiocxuimpj0k11T1uBNnDgR7u7uOrfTNnGUVFr3D131rbc0iUSidbmrq6vOfZKSkrBmzRq0bNkS77zzDvr374/AwEDI5XKUlZXBxcWlzpFkzElXnKaUmTnpGtnF2Pgs/X65//77MWDAAKSmpuKPP/5Au3bt8Omnn0IikWD27NkGHevnn38GYFjSr0y6dCU2Dem9Zyxd91xdbP05YQpd1xsVFYW0tDSkpqYiPDwcBQUFqpr8qKgobNy4EYcPH8bdu3dRVVWFyMhIrccx5LXx8vJCSkoKDh06hD179iA1NRUpKSnYt28fVq1ahbS0NLRr186g66vrs9LQ+9yU97elvmuU/4j7+PgYtT81Pkz6ya61aNECv//+O1588UXVz8O2cuHCBa3Lb926hcLCQigUCrUP52bNmuH333/H+fPn0blzZ439lDVRumqJtNm5cycA4MMPP8TIkSPV1v311196H8eSjCmz4OBg1WvVqVMnjfXnz5/XWObs7AwAKCoq0npMZU27OeIzRsuWLXH27FlkZmbqPbPtvHnzcPjwYXzyyScYM2YMfvvtNwwdOtTg+RKUNf3h4eF67xMUFAQAyM/P17reVu89Q+47S9xz1mLMPWDs9UZGRiI+Ph6pqakoKCgAALWkH6hu1qMcUlJb0x5jKIcEVQ4Lev36dcTFxeHzzz/HK6+8gi+++MIs5wEMv88b4mersmz0nWeDyH6rKIgAVVte5QeyLeXl5eG7777TWL5161YAQP/+/SGTyVTLlW1GP//8c419ysrKsG3bNrXt9KH8EtD2s7o5vzBNYUyZKV8DbdeQn5+vap9bU3BwMABoHcM8Pz8fGRkZZovPGMpx8tetW6f3PpMmTYK/vz82bNiAtWvXAgCefPJJg8/9888/w8vLy6B/FoKCgtC0aVPk5OSguLhYY70x7z3lP2amtN825L6zxD1nCFOu15h7wNjrHTBgAJydnZGamorU1FR4eXmhR48eAKqbBCnb9Svb8+uq6TdVUFCQaib2X375RbXcHO8bQ+/zhvjZevbsWbi4uKBjx442OT/ZHyb9ZNfmzp2LoKAgvPnmm1i3bp1Gk42Kigp88803al8YlvT8888jLy9P9TwrKwsrVqwAUN1BraZZs2ZBoVBg69at2Lt3r2p5VVUVXn75ZVy6dAk9e/ast81pTcrOYuvWrVP7qTktLQ2rV6826prMzZgymzFjBlxcXPDZZ5+pOsACQHl5ORYtWoQ7d+5onCcsLAytWrXC6dOnkZycrFp+584dzJkzB7du3TJbfMaYPXs2AgIC8NVXXyEhIUGjacCRI0dUnWeVXF1dERMTg+vXr2PLli0IDAzEuHHjDDpvTk4O8vLy0LVrV4Obs0RERKCyshInTpzQWGfMey8gIAByuRyZmZmorKw0KJaa9L3vLHHPGcKU6zXmHjD2epXt+s+fP49vv/1W1Z5fKSoqCkePHsXJkyfRoUMHNGnSxKBr0eajjz5CVlaWxvL/9//+H4DqX8aUzPG+MfQ+b2ifrZmZmcjLy0OfPn3qbMZEVBOTfrJrPj4+SE5Ohre3N+bOnYvQ0FA8/PDDmDZtGoYMGYLAwECMGDECf/75p8Vj6devH6RSKdq2bYsJEyZgzJgx6NKlCy5duoTp06drjBLRqlUrfPzxx6iqqsLo0aMRERGBxx57DJ06dcLbb7+NJk2aYPPmzQbF8PTTT8Pd3R1r165Fly5dMHXqVAwePBiRkZGYN2+eOS/XaMaUWVhYGN5++22Ul5dj+PDheOCBBzB16lS0b98eycnJWkcnAaCaoXbChAmIjo7GmDFj0KZNG5w6dQpjx441W3zG8PPzw7Zt2+Dp6YlFixahTZs2mDJlCsaMGYN27dqhf//+WmeInTt3ripZj4mJUdV66suYTrxKymYN2mYxNua95+zsjBEjRuDq1asIDw/HE088gdmzZyMxMVHvmAy57yxxzxnClOs15h4w5XqVtfclJSUazXeioqJQXl6OqqoqszXt+eijj9C6dWt07twZEydOxKOPPopu3bph0aJFcHV1xdKlS1XbmuN9Y+h93tA+W5X3YO2mRkR1sslAoUR60mdGXiGEuHLlili8eLHo3LmzcHNzE25ubqJNmzZi7NixYsOGDQZNkFPXGPTKCVVqxlPzeIWFhWL+/PmiWbNmwtnZWdx3333irbfe0joLrtKhQ4fE6NGjhb+/v5DL5aJVq1biqaeeEhcvXlTbTt8xvs+cOSNGjx4tgoKChJubm+jevbtYt26dEEL3ePy6luuizzj99cVpSJkp7dy5U/Tt21coFArh6+srxo4dK86cOSOWLVumc0zrxMRE0aVLF+Hs7CyaNGkiZs+eLW7cuFHnjLyGxFff9dYVmxBC/PXXX2LevHkiNDRUODs7Cz8/P9GzZ0+xYsUKcevWLa37tGzZUgDQOgZ6feLj4wUA8cknnxi8b3FxsfD29hadOnXSut6Y9961a9fE448/Lpo2baqaOVbX3Ao1mXLf6XvPKWmL3dhyN/Z6lYy5Bwy9XiHuTfoGLWPd1xwHX9vs2ca8Nrt37xYzZ84UnTt3Fj4+PsLNzU20b99ezJ49W+v7vK7X0ZD5EAz5HDL0/W3u75qaoqOjhVwuF1evXq33GomUJEI08OEUiBq47OxshIWFITIyUmsNKFne8uXL8eqrryIxMRGxsbG2DseifvzxRwwYMMBm77dFixYhISEBx48ft2nned531FhdvHgRISEhmDhxIpKSkmwdDtkRNu8hIrIjr732GgBg4cKFNjn/Sy+9BA8PD6xatcom5ydq7FavXg2pVKrqt0KkLyb9REQN3OHDhzFr1iz07dsXe/fuRY8ePXTOJGppQUFB+Oc//4kdO3bg9OnTNomBqLG6cuUK1q1bhyeffFLrbMdEdeE4/UREDdy5c+fw3//+F56enhg5ciQ++OADm04KtXTpUrWOlURkHcHBwar5EYgMxTb9REREREQOjs17iIiIiIgcHJN+IiIiIiIHx6SfiIiIiMjBMeknIiIiInJwTPqJiIiIiBwck34iIiIiIgfHpJ+IiIiIyMEx6SciIiIicnBM+omIiIiIHByTfiIiIiIiB8ekn4iIiIjIwTHpJyIiIiJycEz6iYiIiIgcHJN+IiIiIiIHx6SfiIiIiMjB/X9kgRMt54rBRAAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 750x300 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sequence = 0\n", + "fracX = 0.25 # closely behing the cylinder\n", + "fracY = 0.5 # vertically centered\n", + "field = 1 # velocity_x (0), velocity_y (1), density (2), or pressure (3)\n", + "\n", + "posX = int(fracX * gt.shape[4])\n", + "posY = int(fracY * gt.shape[5])\n", + "\n", + "gtPred = np.concatenate([gt[:,sequence,:,field, posX, posY], pred[:,sequence,:,field, posX, posY]])\n", + "\n", + "fft = np.fft.fft(gtPred, axis=1)\n", + "fft = np.real(fft * np.conj(fft))\n", + "n = fft.shape[1]\n", + "gridSpacing = 0.002 # delta t between frames from simulation\n", + "freq = np.fft.fftfreq(n, d=gridSpacing)[1:int(n/2)]\n", + "fft = fft[:,1:int(n/2)] # only use positive fourier frequencies\n", + "\n", + "gtFFT = fft[0]\n", + "minPredFFT = np.min(fft[1:], axis=0) # lower bound over samples\n", + "maxPredFFT = np.max(fft[1:], axis=0) # upper bound over samples\n", + "meanPredFFT = np.mean(fft[1:], axis=0) # sample mean\n", + "\n", + "\n", + "# plot eval point\n", + "fig, ax = plt.subplots(1, figsize=(5,2), dpi=150)\n", + "ax.set_title(\"Evaluation Point\")\n", + "ax.imshow(gt[0,sequence,0,field].transpose(), interpolation=\"catrom\", cmap=\"viridis\")\n", + "ax.scatter(posX, posY, s=200, color=\"red\", marker=\"x\", linewidth=2)\n", + "ax.set_xticks([])\n", + "ax.set_yticks([])\n", + "plt.show()\n", + "\n", + "\n", + "# plot spectral analysis\n", + "fig, ax = plt.subplots(1, figsize=(5,2), dpi=150)\n", + "ax.set_title(\"Spectral Analysis\")\n", + "ax.set_xlabel(\"Temporal frequency $f$ (at point downstream)\")\n", + "ax.set_ylabel(\"Amplitude $*f^2$\")\n", + "ax.set_xscale(\"log\", base=2)\n", + "ax.set_yscale(\"log\", base=10) # NOTE: y-axis values are not physical as data normalization is not reversed\n", + "ax.yaxis.grid(True)\n", + "\n", + "ax.plot(freq, gtFFT * (freq**2), color=\"k\", label=\"Simulation\", linestyle=\"dashed\")\n", + "\n", + "ax.plot(freq, meanPredFFT * (freq**2), color=\"tab:orange\", label=\"ACDM\")\n", + "ax.fill_between(freq, minPredFFT * (freq**2), maxPredFFT * (freq**2), facecolor=\"tab:orange\", alpha=0.15)\n", + "\n", + "fig.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "executionInfo": { + "elapsed": 5, + "status": "aborted", + "timestamp": 1734018830238, + "user": { + "displayName": "Georg Kohl", + "userId": "12157187096143551171" + }, + "user_tz": -60 + }, + "id": "i1YmWp-chc1O" + }, + "source": [ + "The plot of the spectrum shows how the trained ACDM network matches the ground truth simulation (dashed black line) both in the low- and high-frequency domain. The simulation has a few downward spikes at the end which are mostly smoothed out by the learned predictor, but it captures the statistics of the ground truth very well.\n", + "\n", + "## Summarizing Time Predictions with Diffusion Models\n", + "\n", + "To conclude the results from above, this code has yielded a probabilistic model for time predictions of PDEs. The great thing about it is that it estimates the changes and uncertainties in the dataset in order to reproduce it at inference time. Hence it provides posterior sampling over time, and can be run multiple times to infer different possible solutions.\n", + "\n", + "The flipside here is that diffusion models are generally not better at predicting the mean solution than classic methods [(see the ACDM benchmark for detailed evaluations)](https://github.com/tum-pbs/autoreg-pde-diffusion). Thus, if the input-output relationship in your data is unique, diffusion models will not pay off, and only incur higher inference computations. This holds for the networks above: they are more expensive, and are run repeatedly to produce a single sample. This could be sped up more (e.g. with flow matching, the model above uses denoising), but a certain (small) factor will remain.\n", + "\n", + "Nonetheless, for most non-trivial datasets diffusion models will pay off: ambiguities in the data will **not be averaged out**, but treated (and reproduced) as a **distribution**.\n", + "In addition, as hinted at mentioned above, a highly interesting aspect of the diffusion-based time prediction is its **unconditional stability**.\n", + "The trained models do not blow up over time or transform the input into trivial steady states. Both cases are common \n", + "in models trained with other training methodologies. Rather, the diffusion-based networks retain the statistics of\n", + "the reference data over arbitrarily long rollouts (it's difficult to prove that they _never_ diverge, but in our\n", + "tests stable networks did not diverge over the course of several hundred thousand rollout steps). This is a highly\n", + "attractive behavior, and indicates a fundamentally different behavior of diffusion-based models. In the next chapter\n", + "we'll provide more details, and investigate it in comparison with temporal _unrolling_. \n", + "\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/resources/probmodels-time1.png b/resources/probmodels-time1.png new file mode 100644 index 0000000000000000000000000000000000000000..fa31bdf7794c9ff8504f66773527d89b0328aeb5 GIT binary patch literal 140550 zcmdSBcRZH;|2}>-Ns%qGS0sB&R%V%55y{@Wgse0~DnfQ7A++oWl|4dMk&<1h>_W=- zxb(i?pZoLp{r>(w9^do6@9tc<uJe4I&v87D<9MBs`nnqAWK3iP0)bphQ}q~uK;lLq zY>FY>j90$xA?d^yHqM6+>pR=p5(s>;XJV?4*6GtW=oK96lDk5|!YmefxVM|k&)Z3W zR!zicTY+Ip$PV`)ZvJE5G^YH^Y{y@ic|E>j<mK%}sY*iiK246l!pZ+bqR}Adho*_& zGHJd~EuQbyXB7CcneX$hSnc}k(%#DPa~C3R8|FI{<z*cp`}4bMdg1lb2fZt1I#qs@ z19}#T9YTqIw>KMx{<iGPXh~uEJ>08&jgkIiY-ED_)g2#rSVf)qNAo{EYikPc5z07t zJHak(`PT7nGMCF0S_g6uE(Vb#M%h0oz3}!!MxSY71M?Syc552mJyH4w=eKSf30>>C zu6SM0$MlrG(2dOpT2-~EXo~6=y6#w0i+PhOe~GE^oetUk;8%;g`wU%@yH|(s;GoJD zne;nxeeVYSx9(vgczn^8G}8ET=f|Ya^Itnek~UwS;VZVDe93Y4T<ES(=SJ3Scg?bF z_DfiJ#MSYQ=~Bjdf!`zy{4USF?p?wX6WDDvkLeHyfxHAl*hK<i6)%N-A`s4q5C~sR z5eRZg1OkIsTBU(JzOmirsD>(Go%l~?b#5G9+2N&W=8OMpZv3a-;;MkZket@iQ6u@Z zi+rox=2t(dnDEls(`v_0AG1Eo?&ag@;Ou74emcO*o?XVq*_}W}{F97*<B$*`6PJ+? zlaQ6L6Oq6_|2qEXbur2Rd0AA%PD0d9#@0?&#z92HModJ)URFj#L{?UY%-+@kZzXL{ zmSb3V9buIbX!QSc3L9}Ib1lKp?D~WV>Do{JNz$Y~+3V$+zUw=8eYh?5;HUX}%~+b} zY6da0<^8jcNio~^To!ef5a}Y5Ka{Cc_2drwUaoNNr`%j&XO_H%I@`k4dAPP*-@MsE z@8k5(vwr9LW>q~deiNBq@<=|G8-MY^&9ayG=G>o7B+dRIqYpVYXKiNIpy}*85Z!WO zp=_5sKaDrZ)^-aHnUHsXWQ<Z>9(3-!u9$adOR}EQdX;|nmMg)8s|JNt1Pb*pG(DD2 zGnD#vGd!Cm$;{~+UtB8^56jQ8RQ)6}n7ie1ZNX0m)?$vb8Hzls5?A)!!4~qXmYYUr z^FHcUldNu*w4m!_`NBj#qQP<fAc@qD<Ocz#xX*?%lm6;*v}9+teZQ|p>X&uR6`$j} z>NQuEEN!x+7;cz9O-z^<y5akDpMIoWPh8uQ5Ead<xh7J3viR1CcWmTKOQyRrx%l$m zWk&~Wl1|>saQ{K{frfJP$WLbcD)tsON2lXtN4EMr*th&%=s1ggTJCzVtET&Ry)*80 ziq4<D$_+}Va3fkMZLM|v5JzDI!d4l4jboEh==Baq#3n&YRoTdY@ay}t7PL+82(trY zA3s$Kut$YuZRQLoud<n`K5HBOMD1E+B$KU;^pnK5PckE;su`lAwy8y(&i?s<qM|Bz zJt<?s;|CeZ=CjP5KX)s%efaR*E#sWu55}k*=dFJ~?>~QPzBD+!>3_Y#Crrw@<=?Nw zkcBt@`)fjWIJ?;Ydf`6%m0kaSL23X0t+!C>>ypsvIi23F@w$LmVgDYP{<NxE|9r9W zf6Xm|v6~1=`P<L6tJ50|AH7Ht@!#*~@jFH0^l!eF&@qT_Jz##m;J=q2rcQ2-#V|U; z!mH}B9OGK8&{tQmWjDotS4`iqi<*%@Fk-9eJ$%&ezi-*Qc`H8dUx#LcF>#qQJB*Bs zwA1Az_wAcHdecCkR;{Px)~)_msnUCM-d?(NiA&?UYKE_qMRlODl~rv=Vv&8@t#{>~ zV<TE|yst78Ypwe!{`;oaScspI&m}B8(|zx#<Zt@xOvUP7zI>57{-hv3pH(rWea&<* zzB_zue(Nj6kTuO)qu;&>PL<~iHYV0j-+83?&l_bLgk4`E5caFd^O?CP-K0~_;mgm7 zeI?w!v)(){`d+aDXWIicK6(-_GoD0WwWO=RZt^{@pFQ-?uM^_QiRZEL>pdboIz802 z;TlKQKJ85H5t}l*Tj6r;)=}QZE$y}Qo%)UHc`O@i{r8vo6g3?;5%gJda&l%qRNG$5 zc221q`B*U(!*RH~yL)z7$g=Y5a4j2&yV;!+QCTv~6sw*!+r)TQnbi`g2=+WKG3n*! z+a_+Rv0v=%>uZ>5Oj8PJpUA&|KQ@+{;e~~=^YI>|Dwce~)U>v3|D0{u<`)I^1VRF* z=!YXV@e~vk-rnB+*^eI0JUCIF<ZT^bb64zTI`!BcpUWB-E?f}UzuzgPzqj}F*|UlC zrU^2~xT!~C%D>*Ub8u*EY8s2Ze*HQxFYmmYb|g=%@4XuC`v1v-iA}_S+plKRe3Opl z)^e<TKnRa|n%Qu^b2w?CZPRs0b1Ghwt!Cz0?XO-59ys9gMAS9b!F<%Ndvs|dqW+$+ zzE2DdBO!A&`=0DW{zxiEwFd?dc0P(xDWbmc_{hE4Z#(|EE&^jFj~GE|sZT<EWuz`5 zI(pZTN||HlZF$z+H)_xQ{Qm7-ISmbsp`qcMM^-b_(?@H<FJ$A=H*MO)zj55Zf1i}Y zmUxUwxerD&iZ{M^p*%X8k3c#UsQTyI`zmR1$GPb@j}{gd=FAtT-|T*LR9*dYMuwG> zlaq^!i-AFGWTaNpb(TZ&@~cbJxsM)o?x$m=*tzqlj!wh+;JbI_9`94MW8&gyn3<#Z zxxTL~t*$<#qRCDDz9#rr|AP}PEiK8($;=c@0|Ntfb$9=saiU|KiLtR|ZOHGIxP3T7 zMn*>bM1OyOU7hXxcuR$j#6SmUY;#>*U2m_EXcNhQ7sKxECPHS5(?Ai=)76#L)g!5e zmQ{XsMfj<doD1RMgQc!b(P_73eJ^VZQ%ADO`-`0Zq(5-S`0UxASFVuGHP|~kitlS{ zX|WFZGB$Qtfo$ha0b$_`#ZZL;VTG6d{XcLv)TS<t(TsLQlCJ$Cij^V1<yM?l7e7nr z3|F6f)7YpUM8_AE#pm+5`(BWO)sGwn|Jlrvk~RyWpH(w81%-ua63*0&0Sl8lYHTbU zC!MdwP0e4Ib@b@b;^JZf0Rg&dVt(~*&o0LQr0(c9ul@W`eXjc4Pps%&o~6MEO1Y3V z|KXb8M^?4EM?0TJQwIM0ZrOSJkYdoX{&e`n`1tA1-4nATb(_x<ZdeP&X60pPXX71a z-d80?=ei~>XXWR+Am_G_P-yGw(pzl{ntEG(t~@u_(cAk;y=<36wZp5FOFJ1RCnt}z zn{ZH)mbt&1oSr^mY`iV<z{VMW*?Zr6$JX!<yMFzgdGuzYn^-$*Yin=ZxN+~^J><pH zr%%huq&!M9KRrNQ&U9c;M-Hx${2tc*U}I|=v74=9YQd~0hTrqUv!|zCY)<<XE_*E{ zg~=n}{CWe8oulIoMsZ#_IrEN>{I0isC)*>hUX45SM3Z}UB!VqRH{Hd_>B{)giSzFm z#vaxB&%GQT&iLagXFK=k;-yR928tcO4VD&eHZnGTl_EL)b)dMAoJS!7pV@lcaO33l zr!K0Dj5Xb8srB&iSgMpcuO#C2QOV(hR7%da&B`h&n+sCy)jap$XZtSPLhqYpEA*Ou zd1+@dm0eVpd5M##U2_apbIh*BFh`q;bZhqNLF<<niG^Bv2`QrxvbNkNTs!M8FV^|? z?c2r0(<?jc))G}?-j%wZMc|&D`7pP#79Ab!JJn%!;zZmdS~|LKLr)F=7&|<i$<@p7 zI_!4l%+gHl`k#*UgP%Wt4pLZuUv(DeyH734IdG~Yori~~u>0YO^6x`WeeHHd)Fn%M ze!$&Q2wsg(NLcDrTo3y7t(=>I#CMx4a|PQ*BkC14d0$i`aB8~$K^>LdydRUe-+?DY zP#aHQqPm?xFvCe-At@{@q+pTjE%&q%6ck*1TJ!7s`>OEp&CF+WoCEQj0;Uh^*GG4x zrKg9k%{A$!%aJolTxk~<5%GF?aYvs}%7D-X#=(=%{O1rZ5|WZ?oKz8YPaZ!`60v?6 zwrR^?nR{w-a%An&&*4zdp$dbJTP&lm@>rOeag|deBgzUszP?pnBPs<Z4?=!@la?2g zmj3y<C-(x$Zr*!>LPAI)_GG#nO$WV4>+2(FTDIO*zs4l%W0#>2%&VOgc6h<gCRQ{1 zlO;Lv7H5vCa#9tKYV1F?)XTj5sP>Oabbij0Cr=RJT3V6k&u=PziCT@;cgu=Ec+Pt= zokiS1`}py<kFD!UN=uX7`EDx&M=5BiydN6EA{>k~3kwboW?^AzskOGYmK5B6e|k5g zm>m)>B_-v`YyXQ`e5jmOp}!Nf({A1jANLq|5ykE+lNS1CCD$-lchp_I|B=;jp_%xx zv3&t?b9SM>mrM-|sLZ}MTxHPO$|!1{xr<F<Xn44G(+@7<=@U+kddaj$u@#G%O|?Zu zMYXoHC}(i>BG)=QI%>{Lo18ku{=JWp6S3J<p+pG;l0WkG>(`kXPdB%ACcU21PELF) z<*1_6wbxz0phww7>+=;_lAV&2EEPOa_IUEZ6M~wWTDM$HL4ToH@nE^99{mf8sLPkP z7YB$@7~5_>f9lOc%kdMetgLmH$!!zjcJ10L6`gQlx6fZ_*vr-(aCx~o@Mdi6c@n;; zQJ<#^ldmr1i4q7BE|kP@lCsF)?HghXSw1h(bIPQYKWebpQ4iSXH1Svzu3h8w_MlZm zK@;NRyCQk4<E2RM*Zv2oSFc_zNiK2ei(2t?aB$EuW$yI)@GPKRbo404UJe0)t8TX{ zDr6k$#_0r1t|Z3E7VsRs)$4I#W5vQ!ZZ4NuRNF{#iHM3?|A-=@Ez$64pleMfrg!K- zdMOf-++L^po}D>;Iw@d((tZH}E-o$<OfQ`KP6nY~xhdh|H&l*}j*Nx?5n5|DI*BNx z++1obzWnV8M>I80d6b{uLehG&AHl527F_!7FA7#_2-3>3iyTfkR3~R;k>384V+wtF z{sIvsYbtT3-oAaCnL^_>nT?iKOIxCF#-VdR{`~%RgH4f_n;SK%&pnoznfc4P1|1z8 za&mIlRl%q%WU^{mYFSyC|Bv1D=m$cHC(2VvH?A`%GA4#{EuT@Rr#f({yQ@oybYgPy zHr^8@0<C=8wr!U$Uq)HOt^2*Y#KrhdGhrE7Tw$!NsY#mbuCCsQADnx9{kkq%GPlqn zaq)$W&_4mcSI?N6n}>wdpbcNUrt_}MJy$!K^RCCr;%CDl+u~cdOm46qn$=Xun3<Vb z|I$~Wm!V+q;IMt`*5hVoPimGYU!@k9K2q1vaI~`{z4Q{@LlTwU^wG(~mv?bI;wVBz z2MnRueNa|*U~uplEe|c3C)(GqAK%8u$AMOa5~mTrBO|Y?&z*I+F2ktEr^@*n6%TI` zImJ#(=I-u(qQuGC(^Ju|nbOtORo<+$n(FeUOO`c3vSMOl2<xJv?!m!9fP=O+*Tqk- z0fZ?pY$pV95GRqa15#2_MFJ;i)h=Oe28tSxX$mS??G}`)tE)@ZHKiw2QS_ZJyV=?r zep>{_7#fln6ug!o|94j6Yt7L~1sJ^;!6xtjacr#E@7ti_pXIwnMbx4nWUJ23u&Oi< z4XrKDjiFYlM=wuiDqrBPIo}kdBgoC2eK>-mJ;}k|egb6=Yv2*9sd`H#=;!;h#g3hS z#%?GAyP6dP0-{gtWA%8QwJk*Yd+&WiR6(0bzq*NiXqWr+Zm+E_xlSIjK6v(fNpbNz ztlZltwk?{+dNVWGyT3KHCyOJVLVkXKFY7xga*j-y^!KlsTEMZp8z3ZA+Oxl_D~4*l zI&}Td;^!V5$y@+5*N--g&EZ~^y7cWockUeby(#yoEI{uZy^KE}Uu=o2>g(?I8Ed>I z<H#bkeQW$CLMcHOs5b1H*<G8)!)ASEYcrK+riXCtYispf&9rKB{?E`qh!>Y_rm7Qb z?q6rLlr346C-qrXO>JB9cIoZ0*K$5*WpOs!Z*-+h`6RucZLO`VKWA#)-$|KlWxUI` z|KP!M%`qH`>uchS7xo--(JZVOjjb5e7E4vr&^Y^T@C+)G|DSfTkF|7kbR-nadk*@! z85`3TymP#xugP1t^cGOQBT4kI`3$>+4w}PYUELOqnAmJ{4;!0NG>*<R*}CZND7^!e zq(8n6j7?9sMX|^6t8u<Y8>)Wx?8wohJRX#>nkCLXIh(d@7dgnmZPiqlkdQ#KoAtDh zPbErLL0+#TPQusM7p-*eo<40tZ0r+&n4ukhb&gHj33<Ez23<SD@bLs>^L5rkmCil9 zLpGalh)PH>OM46<Up+oNV`O2mG&g6WrpA~@KjfE5&n+dLr`S!;QI)0DQ<9#}vXa<) z!Cu=+UtizCVko8nbrpwQo%eAI(O*B_dE$<1E4;MUafqk6vGT2a*vnj8o10qH_Qe5z z?&ACNbrHJ{p82x)<J$?7)5n8&f%R=0qk&eaY1qbU8H6m37dwzsPqU=#5;iNc1DZuc z7-bX9WgxpG?${ykI~g7AzJ#EhXiL0G;+MPy$#e1I*Y{PXK^IWS(XZBWGeT6>zg>(8 zN-v~UGcYzbM#AnUC#Mr`M1dExslW2|tJ|FHW2uh$iMF%fhxlvW69`JWfBS<&waMB& z*{o;J)}|lTHr7e#pj%=Lo*Ext{`E^37@{jv8RJ>SUO5xNvi|t87J`~VJH>WPWZY%V zr*zq<sP2^fozuG{BG0BqQ@RWkO~i6(oW$sCZl02maAsxRo`i&?`+7xw{+IIM5U$}> ze3IW+<W1A{M>VTt!4GS`eE$3mUjtDc#5Zb!4>|`upIVrDm1=5Xp{?@p_phJpNF&AI zRik6a=GRshaDvmHK7EYzj(dk0KzwKWt_$?Ev<ECJ<LkAZQ%p=vJ$rIq0h4)~k04sG zR*4ex#-^rLRes;@YTO_rBRghjxMlO^#%p^uCNGaQ<Bn(^dA!t<s|T3g>4=(%RcdK& z<`WP&xBllh&MaAZmgS&d{H<F>`8B|=HQr;}#ZN2vj5nilZX+QvH8u`jU2N&>d<34r zju!+1%B^+vuRRDU>$>el>X^)ifu(RE2v%`1F^}PzLyjHHlZyf-h09ouuF%wTD38ya z2m~iFuS2^QmX;Ev%u=P?o9))u7H*WZAW$2hrLoHTs5WLrP_P`yS^M*ACYdev@|NSe zx)ckBHz&wBPA|_|GhRJ)FXQU<>kc7uwvD^yU#CdACb401OAqSJHx?Lp=QYuqU^n{I zck1Sxfq_B$y_vU94*v+6>_~4*yWM+dqZTL~vYuc*QRc?zy4ivAl-pp5v&=R|LoF>W zRKjKna0H`mfs3E0lAm{X-&~>cc%a?0h=tT*Hq_Di2FT0JMuma)!-o&;oWX0$u|X-R zscmalB;L=?&j(`CvbX0+E<(XJouAu^@#Mve7o!b7e*Sd)LDl`#*Kslz_oDE5!G#NT zXk+!J?n__#uDoVl!DQOLg5^hR6caz{Hc)g)k|tKu$iQF(gP{p7edfcV$)F_0g~A69 zGUNj|Yt+j<hoz*Y_r;Yuy$*jG+aOKE9~<0L<}FQL$%`>5DT7I(w%I!T)R72sgQ|O7 zHjkG2WX+G1O)v>|eE7inlQDe#koV}t=*X*4Q3y;DceahRkEd5NNI!U1Az(iH_H9;Q zd7U0PIl1<FQdwD9%$PQP1~y-I$cu@J&TYiHIlzJRa1fV5aN8}xM<=UYY;05-nGXdT zsXvir?m*GTjh!4Bc@dO5i?u`R;t~qGe7SKrbp6}+??Qi;yvG`U&o!})52J-6?b)>$ z_fe`KnoJ*B%q=d`S`9Bvzd2!M_B!Jo*S>xG#1o4!)1Zyde@16Ad0^g<vO~>)iHRvu z$Wlx~g1fCj@UEz$V(s(iO7nDzii*_U4oos$?8OeZlaj9dQj0GGgi~T77EPlx`Pi<( zZH^!!S{?&9#m2@i2hAqoywV4bs04|beEW7Zyurt0>*w_!S2-Q;S#1|eyt<cnEcEc< z!+Pm*JnpX%E&BxpALJ(e<yDt`By@l@ENwL0NjXd&y#|foBXxv5jz!id``I(*-2g#M zjwH9xztb4s9>U`K-{`mVMoJD>cylGT+0%u|M$FXwdI$ocn_e1|D0)InsCT>hGhf<^ zT_}&178cwcs)mL=b#)ik+Kwz?^pO%9%2K<Ef$WGtbaFCd@%>h`q-GJ{YYv^a-xrt) zJD&(ab;D=u8@s_Q8xEj4NhDD9y}LQH3!Srn3yf9a7kKNC&z%{HiN{+M&VFb9T*74Q zH^Je}UplRQgMPX*CHj$++wTd!s8!sj(vlL&yC&aeW;)Hc#cE1~{#gU+P;Tnlh@95; zfq|zQH(0yBWT|f)<HPOk+ACAhQ;e*vx+whOmz%~~mRnJ8v<`{y+ZQpwo@ka~WN7#c z!*<N^bssc_c9HM#{DyXkUSE3e+bsibjEcI-udggjwI%Hkk7M=yWoKsxBo`CPaNu~@ zFY)-v2(}Oz)TU%{M_u&buWv<<g@IdPbgj>K&`XuNw#%wIP*PEmZ4lauOH{!pa0E)# zas6Q`On^r!onkp(d+*b%GG}A%9B+<A<zZ3?ssKNr(}P7}QwSmsYUpofR?%0k<mKmM z0HJp5VB)XR<)6D+SRq^B=wcH5B&Sb<u?JBayzol;M7c*p50ELpVU9&j&{Kr#$&)8> zVL-K&D5k*WvDvKU8-*xr-pkKVy?eo+OX5{wPLbSH40&f9qpHw>1J42$czyraC22n@ zC^&KQ<n^YH^|bBIkLSjk#_V1d+KfrGjt?&r4}b3Jd@J;j%R9-)08icA-0I(i4-}Wk zbTcspd-R=WV4$I?ON%~D*KF?nES5j2sGN8>zLFOeeNs{qAI}Yb7{!gcd@rjIKR?It zgZ%ucYuD@@MsPy|i1S|NXi}-DN%fJS&Czuu%``)&H_Cf!XJ^y81IQEBLxWvikHIj3 zh5><Kcc<{_p^&w=LqpH74iy>)2a<VQs2mdJ=$v(KPV7i2F1w@Z+F!V1*RG(Id7j&; zO6(P0BQJ4x8{S;48<Ft*AkWVqxptzb?=K!+Y9f+@{>RQ0HVD{fk6L1qWnj=~WRvmw z`2749%_GKfeT7N%(@80xy6;`B|Df>l<;$dX;6kI@FXI~Q?d>B;VlnF^Th6wKOIt`W z*EZVr_V%Vodv;hbyK)_U7dA37k{zzovj{+KwiGZ|d5E8&f}VI)@-TsrN5AGoLdcVG z_;_4>(#oWDTfk)D-MhZuhh!xsCF}Fl8E9$20o}{Z6;E_^cdriq<u`d2Hvx?|c^jp$ zx=!r=kBLT~Cd|${FXTE8HaCBIeOF`rm4ZXxEjLag$J}vC@I+F2;9=rSjhMW@XV0GI zWus@oVe$*yea(4!e35;+=G60+^TOiWTh}VDUAtEQT%dTOD0<ry`Xk%98w-;M<j3n> zBDH%;5)$ZKds_a;D)kF-a;lj3&`hewl^wI&qOz5dz^=Ibnu6f8-|nJ9Z1%qO`8`-W z&<FO`)-R&;<EGYV)n45`^b4%*!c=E@Q4wcGRQdau+)YJa!$rBu#2muyq~@NBdNc0L z9~_wXe}=IGeE(2yZ+zeA-gQ6}e?Xc90aLMqr#N(=bK(fQ8PiX?C9-dyYkY^wkHtQz zmuk^@Lat(SKVJGX^^dv?MyFh~a4l)=u9R(QYvZE%^yw4(69yXB5+3^lw2{9XsfNQK zrEU=RP9Vkq00!*bxpS^o(7fdNmQlJ=eA-QJI-GFgp?8enQqpARFvK7bF*hSYQIgMi zd3l{ZOPu;}a^Jpw^-7Qy5t$utiTm^CkIJ3L;KFKZYWykC=+FK5I<l}r%7GvOY3*>o z|DokUx3?nl@*wFLdG7E<m7JaQk^zrl_i)hEDp*bKj>D_mqlrS<5l(X#UE5c<E?%Z! zadCEzY<e6x;n4rpu_I0P%$HsOsO{UfAvC5YCz<x{eK$Dx<8x0_TiZ^(xSKasT-wEM z?c7)@T9rRx4myW3027!gBI>Pkb<+V9&D^;x#Lgp2>*p|JQrBKxI7kCrmv7*#5xvLY zs_`v)rp8zgi?5*d26^I7-Lw5r>Y7;Mz*#8Y=I;-BOwy7Q@r1DIGSa67(6gA_;}AjD zK8Gpr;p?;jdGH+IAyS)|I$MQb=NlJX+lx7&!XSv^DueJXsRbhOaGgc`!SN?5gBmDZ z+<|R2Zf?(fCXUE5yvBQ=pL1&M=sms;>VkZa$f@UHo2aK2fLV)*#N^$qt<P7z`#V19 zoChykd@dR)!HvDr59t@I8`6`52Sj6aH#?``%Kl)mpsV;U^XKZ(lN*D_frI5fNZQk< zCCrAQ4dmUwU+UbmU6gth5qctsH)duJLBE{Xznm&v(v>UJ7fg*uU5VUNbF-%W*Xikl zKI59s!}m6b%TK<>HGry7C--iwbXO)&-r?}(cHJM@K(S4az8lc0os2#_zr-JY_@RF* z09#3kgtPmt9YaT@)C_>aih2&ep)H`AL-RyaXl1T*Q3%3-iX<Kj?d$EGpPye`S~^kc za_`O^12eP8+~{l9fbh9ol?%Vfc`QX!cK7xcs;LlV)--TugfHqxj<nwC3|X7g=+A9m z4fgk6Mj$s=MWEdqpC0&&OE36%dvnww#R~KCVnm<l^L_2QbGX>y6)@j}!a~e(kxgv_ zPIc|=?MT42UsD;OVv2OT4-Z$J?Hn9r5{8g)KZh}+L6iZvRlp%|6#PpuuLF-5ppw)| zIpVgW;R#xs^J{H`UbfIR4sSC%83~ErR*c2PH*ek)w%{Tt(QH*Fs*7iAd-DwJWaQ<8 z28!%ApAU=XC>=pquP!f>UQ)5R-}mN?Rk6dhthT=@AyY3>u;twO$jC^{$uXjHNKdV^ zfMrajPT?Z%gA!tEO>Ci124X^!%@UqqM7cQvxyMV!ib>YG@lt7NDYy;YTgx9`T=@9$ zl(QA20zl?{>lCc=$Ahjpr6~ALYCAdQEf+P<qIRiW#<ZDTP;hnJwH_So)(r);m)z6S zQ(RnJ9@hpI3S(9U68*}RE9eP%d3gxjkl#yhwrt<U{+pijqRFF^uiW+k3*boEEG=Cg zNwY7j^G-XF3Wu0MU6-<B#|~7)eWG0)hcEA8Vj8tx>1q1CJa&WIRV1Sm4d|4=zl<5P zcyK);0#l@>x^A-Ay^c4*;IrCq?q-ts1l*cUs4(J;%_}PM0hj?_W_QGaGN9!q4>%%j z!Fd1+0CVMj(%m1QT2=?1fl4yYRivJu9<-aFKeZurXL=wBEGxXu4?N_MkT~5CMF+h> z9DnokyDfL-3sUu>3djA&z~@3I%Cui^`zuV5U(3qFG8tQ1vP}7XTv*vje;`T5+ve1% zQ`XiTw{tKFqj@SQC^$Pib8nZ!lqN<a`>wlN!X0Vu@QUf!&TCh$d>VSX04R#Z+q!wv zZM~qNwKrCw)!@vj&jSM5HM-Z@*(a|D1_WGVIe2R=H6fu7;|$=<$R9PnsQkRV3hyy> z6fKb3M|e|Zyt4`l1XfH94ShlKX6GSH@bM@+K|jB<v?Qc~)Ntv`-$BER*phd&w0sYo zBi*YDeuMVY@!cq9>7U<M{Y2DkCufR}i#x1d#H9LhlTc!nUCT{WFBD+@%HEB8nK|-N zqDDgJ-Me=fMFM+rbjG<tH;$+*H+Od`74ViatC0%((vLs&u@}s$l*y`ueigS*4}@YI z>kpH{<L4<y=lp;C_yKtkkfz-ei)8uKNA2+8ySgUHl9QNussa`q@QHuQ3k%)mMjJ>u zFcENZ-5npdGdWp-rp_vN`bsIeV|$YK^6W^Wu+``_E=p3c@=zB8$;q$L3!2l?(}Q#t zV`v@mTKoMQoqakeV>9A#L$S^jLI>fOlKO#Uz!=tOdt6XhTU&ee$G2Z#H!!55Ve(Zz z`+K>{u}00LcdSBICcrlp%5iv@rY0q64t9>lf_r#hdB*iYoQRXNb2UD?J6o%84n!6P zokCKvh`Koltn>5vx!1bT129Ym`ujg_1gPQW<|f^`dD4Z6kr9!nY-N>Ea<DPOM<%W5 z1{(rBi7^|pJ!(CIPFy^$^udprVMV8|%s_K4LRjkt6&)t$aO%|KQ!m0ZGc$p=raCjM zfbuZ?$pfbY|Kekdii>B4YlTnR{-;%RVK(?s6FfaR$?Lv3B?k<wH_$i|I9Q9xDkW!W zaS_Ddbv8wzD*igGi&aff%U8)t1sPe{YX3PK%+S=PWKEZzT71VSicWq(ptF7XVB^>v zcsJjPRyw>i$)GjPa$|9BE&!Y@y4CcVYtS;Tg@2dXsJ+DHq*EV!h?|#JQL$(J-6JbS zlTT8xNAdBI?%usus=cK}t5JS8vy8rp$z@7Nt}nv36+U+J@tKFR;{9A1g!IVEOGQVI z8yhbH>bbso7`!~ofr2C~+}YfmXN+mlymWqcHc8B$EU}GlciH^P8uBH!6xT{6Zp_4Z z<Ii4mHB$6Hq704xj3hw};%g!~@6Dwi9n(*cg;0eX?Qenr1;rNoL|yN;Ji0kK>yNoP zjLY#-_Lz=Pc`&#n-MV!vJ^dP`3ncKncWoi6p^pvb=<E&f^9~951BMA9c{?U1CLzK2 z*s*R%M$got(thp9y)i@re4@F1qY?a#v-|9Kj2)sAR`{upYM5M2eq${=?MYRd^fc{V zL?3fSM=l8=>@vy!{5-+vF8zyFOu=e?r>oS(O|Qv(O)P9+P#~HXyoo-8{~S*HKXqmY z@28IB4pB9b^thy6!`aE8RUgN=8o#VIKy@tO7LP5{0NWF(^yPZH;CsPF--?o|r}`=f z*whTTId{90Y$BZ5Otj7X=g4F#>=KOhX-z(z<@ey`^qDhX?5GOc+X_kj>&mw|d{0b~ z`i^*G{FjGFf}@D5wrI=s`3SDP3SKLhj;_s1FqNLPc|fDoMr!>gz<CovhxuO)8~sEk z%dbVcWJ90&;l&##A(GVpIc62bsFzwFb=cltdQW($OSZ=2oB|_Ii}JtRI>aA6_Wyn1 z?+EbE8-*Ed5SRaa2{26euQMRNthw!9OHF*?nDYNKZ*iXbj<fj)hH-Y81f@eU3z;_$ zG5(3qah|j*d=wKpBJ#H&5W*@|Ug#a@db?qj$~w9!MQ)&pW1&Y*-e#__d6%oGqfD@p zElHDz{sEcIf58(Cd@#y&9D>buLFPMW$H@7}7BUlpnZ*<vtcT_J3F6@v?u_|@dkC#c zw~H?XNT0Xe!)L;BvitA-(|5p{las9XI+iujuE(FMeh}?KZ3Y*WmVC)^5^-54`&tXV zl-+Muz3e;m)z?&h*zS#FQ)VUT8<PL9hzV$osft`y)(y@1M7|~EBCHzPsZxRh0y`;W ziFb#PIiI<-HBY1P?6-;aBbGWlgp<Pqv*aUgmE1Hsp)$84-tnH&*wQ6gW0&|lYJ&_7 z>-z%>2nl_Vf|{F~p|;2!JXrVQ@46W6g@(R#WkvktpGTU%H2vBpQaZ@P%uh*PjQ6#P zwEZ%^>2`F|rRd2t>V0`Xj4tiFuEg5j|H6k=ynV}!m6u0KIb`P!h_>g6PQPa$eA&(H z_V@Jo!`Q|0tO^sayPjvX2os^#&ty786}xBMrr}u^gNB1^`qpH+k8!!Lc<VKQX6>#1 z*k0B)1G{Qs!b=^gPrh5$;p?97w3*hAA0~T!{JWrijj*AGec4G)UhO-j8xj(ttgMXR z@b(tX=$u+uVWx0I>qJMVUvI^q4(&<6+^wsZ)D6(zdw?EM@#|~Pps*Jf9)Nhd(PFve z0bw#RwtaFZFjYrIkp&HnZkiW1F*9pnHZwNnp(LHPik5}ia#6(^It^>&nEjR5He>m^ zB2Dg>Q=22|3=9p&ykz{9f|AximQVRS{bJ*P6Sg8JQKGZR*?G=iUd{7N*K&4FPR+TW z4>L0fR%nvMHVJ1A6k{TN?>(y8zX-YK;8_pAG4MJ;3K?k>5CNgjcXV_RSy?G5hv1{! z)b60bMMd$MhNh-(&<EGVAt&NO)I7I$aX-F&{CS+z-{l`<zf!pRMPAD)ARxfU$LGkA zBbYyMLOAeuGqZu~EC($tEb4P-0J2V=yj^dW5Ff9(ixU<gX<1pbQPbOsp{#rNPJjR2 z!L*Js7ve;eo}NMc{rjIG|3aHPA^eV^H!4k5Zz3&H9&Z_?ARr{f8+sIfJ$e+P*ld`D z${otiT!Rwd_~V);-30jqwr6CRucL!JeE1Ok2M5Ik)(aS$A3hXfMN@pP=YjFZY_})- zi9E9A)>h2k%g}EP3|?nz#hpHL#*79|lcyCGKsra(0@c;G@8A^QO96R8kc;brq-aR% zJiJ>7ZNKS$^4~ux1JS1;_3{W^svEJWJnf9xW0Y;gQGWaO?OuF;Q940MN14)WsbxSQ zR(^hA;n(8lg+IT~MP^i1Rjp%?9387V{TT`(xuvBgvt>7QM@*PqT_5NCt%8>l>dk_o z6hgIypT&+&GYylHmV7v*oYz^G?%m@Nr#@e+)&o%e1CiHop}C=<0j(LNfO}uQF&bz3 z#__Ji+1Arj`0kt!&5cWuB%${%U6^RU#?EzBr8Kn?ZUNBK($dnx!opx1%L5MZ@jYLM zW<xya=|^j2$krw}PMKJp?B*SddZBaSsfCa;Z?p!6=#hZY0UsIWMOiw6xFA93DZFZt zsw#J4Rv322h;qhWk??z1SV&8{b=ea^?J79CgH!M<e(2?<)3W8eTq!CmE3r(VTN@i2 zA;>rGf(avM7e+6uB8_o*^BS)}9#gjT=GPLz7(#x|3^#2Y`?$G9c3-Zjs2~#FOLU;L z9JctKIdf+1B<Y74coewVMBAQXfQBx?b<s<}AKzmBCMYaiUR(?*a?;c(#n0Dwdbl<e zE(?S$yedT5Rh^rfhnF|%kuI_wgAne*5{Be5x6dCxb^(lPXlO8O9PaMl%oo-E@f7N4 za5)_#aZ&D|_?|q5aO4DuwQ-o2d;ESSJ$yxPee%^_Jw3h2JyBU0enE0Fv#`L41oC@l z<OEfus*D70=tu!eCt1kI+f5;!a>Bxo^75|K)4-kzB;^RME5-Ww@#8Q7v_!@DDg(^p z(l8<|jW%3$HSgf1vyXXFWL4qql+w}G)`qH!k+`FSH?+8@NV69=HiD6^!G($|hY$I3 zRD(jM?gCN+i=C6h%Q`vdkJQI{kH020x%-OeT#;P#ZnCZ6WTG-G8fIo@C=r+zGCG9? z1nM~C9Zq~D@+A80?3AP~<pascl~)_S%mW7wc&TrecLU(V;qLwbaruo(EqJS*v9V5P zD`4}{Aj7R3+4t`UtS&lF#>t9hU^t79r$t4<!NQV$*(@E3Itcfm$V@&L@ctG;zZe5h zM6S{cVoVfRC+PIxE288YxR_V3_W1VR7jxT_K#b79@5spbd3-$kQ_)6ABIwt$Ul}sG zvc5~5^bk0HP&k-QLBn0Wc8xAlm0Kt-CB?<vT~Hwd?*@-5G7E?Ki4!Nx&GQQi-URG0 zIHY0Q(%zYVkO92r-o1Mn8Iw~|j&yr-Uc}u4*PyS%DV)z_7UMtLoO~mET>I2D+DKIp z$j-a)2M$2rWlu<H3j(7L?0I<YK6=ThXE26fuz0Rr9M&WJu@=jZ&m1-2V7!whw`2au zP@vUY%A2x!MUgJmcVmNg?^q5}=pYLpQ6I(~0GH3r1FwpZGwaD?$2e<f3Uq3$(M{m? zu($7f7T~*gZz>{XY!gluiV$Oy<Fy}m)83i2wD`s#fiL2~=S4&yf?b`R)8)>PO|dwH z9Fmi(glq-LUQn^Pyxeo3=w5odC6>GXZi!WesC|ZpWcrQz8wx?ov(Rtw9w6*t)5C!n zc&3lqySTV$-u}#hP4HveKM+oWg;LdoMe;X4N?Z?-Y<psI5!nq7njCK1*T+}=z4X;( zqUk>5m!(mklTR$B%Z)zPVq#)KkKvAriV9bflq3U9oQg~RN@pn8KB$!#w_$<$4nJ!8 zv&iA&%{0T-6l0p+$BrGdvEl5vn~pn@mX?M%zJ0r6*QTrM_8l2ne5^MdF{a|c!r5#b zZf?<W93K}+xxEfll@xNR+6?6nHs3ATa?CHt>`&csb*&naOA`D9fj>eAKkT1+!5)%w z)$<#CifL)gLuv9TkOvR$T|b%<i}#$Im}m*L?e6bywANuBaC@DlwlN{O*q=J3U!~LQ z|1Q~NufRH#<L|?@>u45`I{N8rd?s3PU0?Ep%jK=s=BK=<ZzvhP=Wmoty$M<XX`Pi7 z6chwzq(0?1A1$i6^nn9~pe!+WetuW}sJPfSecYF1|Cax3GsyfL#$FV4R96=*`_{6q zHz=mWL{mfyys@dNC%|9Go&MBS6MXK(iFf7)G|d-HI?Cd#veX61CUza*<d3}q!==L( z#Lzd`sCL1ohegMY$Y(K(=`W%2e2BXX_fkXXt)!%+`1ts=v;()jH`}U3q1vWOx?UFF z^U-KK3JDH+dV1g*m|z0~1Lqlv9-5Tt(sMZG6?7C2^xJq8y<v*nmN}hYascwZw5H>W z8*I>exTQ25MI|L00z6?COjkg|dzef9P(J&?8?f|Pu_h*P7f9;yiHTCMF(wqZR%>M5 z^e{{$UsyBvI67)WoQl=j2L~(R)gexP!?m>#E%RB`ltTWQKy*m9#u{&3$aRCG3^<Kw z0|f{|0ArekN#>}wmW954=EH{_WTJ1hE*4mam`f{NG#`Rx73P-(7(&v>=>fS81uha@ zzp1II`IqUMOF6Lslf`%!tP4_Ne%?pyUdh+3xO{FZW$>NQ^kHMVw2q=GHS1Skd7@2j zcZbyTHwEblY5ctfg4)-_x_bkUqR0YP!D~JAl4ZT&_*1c%<2$E`CL<VXK&!gHD{BZv z|C#pNDX_c$2ux&P;d8UHUiS19!z%gx`*(mFG|SQxzvVt(c$lN}bs{6@;pAn?Kt#)Z z!(0%Qv}|mh%$*}%L^B6?A|`j~%)o!9#}o=u&VuWYA3ugyooFzFh}C|}5cd)ebDzma z@o_Ho7BzN)QCF|RJrjgggEtC3ypORo`*h{ceoxCXEf9i}rJ=t5VnoCkTMN)Js2O;g z#cHx1KJ)-q1fl8bdNpp>$6bR6&{EyscjT3i&tCd+#>&p#e&lrdo{*Ou2VXw`e^gaf zm72QukH7<0{fWf1v>^ELKtN1PO~HEgp`(N1#v_C8moCd2GKuX7N!QfY4x0V=f>;mW z8%a&QN|^%NEKZ-!QYiD(zwbO<^hz5j2Zr*UaZ=}Zq2V%%*^&B2!_kLs0Gn!4G^4Gv z^ZieB#{7lp)J#l)!1UmJ&P?}%%(Q%cui$qS`$cLR8o-2gw2;}^SuEG5PfpG&e3U8x zEfg8CA>~9lZp15Io^`7ct85uiwylj#)?MN;Hx>it7C1k07~wv@xcGJGX>snx0lqQu zKqY<8o5d<ndPH0v`X|WCON2214g*NR{l9oUZaSspIIjZHad2>eJ`n+1bx71=hcWAa zrfH>~P0DsWVh}LkxLaH7(L-~T{5=-{iWMhoNIL;g4^aW%_jq3^d0%0e>2}&LfHSxh zfSa0&57x+UQMz_>h3wKxP;vnNHDF?3fWgOs>(xA_Kn8C$@&vvK*@Fki7K<RYOW`DP z3l0(Dqcph@8NZh2Y&A8TL9DABK8)-3@`{nPNB@9rqW|yxsj8@8S2uBT-jc^lqUhTi z76wP?c1$a+PwCH}KVQ2x--cv|1DO#JO9W#S9F}IlD6dnWM(*e5e;T+%G~Xu=ESx9X zpytrso#ZfX_;W|xEiFBRjTP|GV{ZinAy>H!=;o*iX!B~1^y7G070sXeOkno-`t4ij z>gQY}PuzH~<dOY>z)=`13hv+UJN<bSm?Jzq98C5c=t<y906eZId7_DJaKD~jA?}BO zyGl$ftM{y)E1_4`VSWhONmrNtn#2V32>{1Y@>zuNIm~)kLsX7(r0-zzU8dVqpg$o> z%LcEOL_|c$_msO0+~n^5{PxKh^jc_PBje*+bMM#?MR&w99E7Wrsh)5d+d4Uso>MLT zUk#NWAeB4uQe<QcxMiZC<2GgjlQ3lD=g*((q)LJ7<={U=sx0%!I_8`9kImGs_pX4j za{-E7HY6d50L5y*p{>PKR|i9Ege9HlfvLoRFBAs<`EjjNr#?bDNJWWPxCYaA$Bt=4 z5024MBr}BumD97DY=clWwFU?sCu<;nPqZ-zpXBD@xwEd|<ow~;3Rq1DKSQ~CY=;gV z>UVQ}vun7yne^xB)gC>?2WG|Um`2QnY~>xGK|#g@jh-s&%X|G~AK!1$JYWA}5PtsP zAD8vv`?Emfg3+(SLg*{4@jp~i*J&k6GqbJRw?o1aX*zJC>?>TNZ@RjgU%h&dP(uO3 zR7ItN;DbjyBdcvEw}wl-MwDt65T4smg{Y7a1xXV2eguDfz6mHu)|L$88w!ZDngR3$ zh{^<4v(cH?W3@mV@H|xGKS*cZ()w4ZNYR>LG>uD4Oay|$JPIei9rp|N;e@iBLJbB= zp-rvow{u;)Rh}c4(J;}ioq^3%RkyN6=8n(#<7-CfInZTvw6$GW>Rz?9ycjq$=SH0P zu*m@<ia=oTCaC~F4==A-K%AMOrx(`0_1^D+bq@Eh;8W3sK&1Kxvi-XZ%<}$TKpchd zN4|eo0C|lC0D2k`h1|JMHw~tYTT*OSh9#p@a+K&ux55-_Q5zC`<OrFHCejoJv%OMo zd1aU25kWVE-9d)+&-bdCGLQHB-E9;y&`p1%)_<t*zAz9(y<S>eJPnNqHqPqmYV6C% zefaRYOW$eB!OFTPBuwcklft@sdMJ>8kPYC(Gm?|F9=^2@DhIGcm%?s=XmkS|$3KV| z)G3iB)EYPR8$>R~R2I3@lo_efr^iW8svB(WXC;=uC^`WzqzmgzB7zp@MQf?9|MTBn zOW-Qp>;R-1qZ%@s-(nj`sp}hHrJqMXByEo}HZdtf0-|h=MHe7ZQWQgLzCM~=2|`(z zr`^O+VqJGRBV;vFR!3R+1^5VI%gRN>E_(Q+23Tp-zn^n+pRqGWklKAq*Pa$e&EGdQ z;EyFCAtAaGaeHL+uYCUWDVj-=NTK7R6GJ_44p55ZRuYprB62>X44~l}yxvRKo210P z{QKvywEG~eaOWv2vEC?vw3dAOP5*O6*RysK{_K;NXV!`g?2<Ty`-w7%fWGN`{Lq~i zLg$Y7h_bRDfcJ-0RDg>d0eSUK@v*aqF)FK*{$5+?#KNnSCL|^jNgZ@X;1C4;Gwijx z&W<#Osdg1QEcSGOV@Hmrfx*AdF5Uiu5W%c}AS!D-l2knR{%3L7s4RJTc?do0Sj_tR zdf<;U--j4EjLgjgC)<+&Cn_o{SwYNqPPK`bCnfEf>-}NJE+V4;`ULITjWq`8lpF{c zH{kaM6@rfT?(JKp7^=VXSXUlcV|X^KV-pg1Y&SbPPGLs>_%r3aOHA(E7?i|^R<%M3 zAg#Wm5S(gEgp{X_Duvx<Y;0`s`l~%+jw$4?J)Ai|4W{TE+{w_qa<a2OP6Yw6z@vG* z!i%HDo5TB{_HFqUpuEDTq8YTh@Ml8rN2iWDsirS%^ru(f`ky_65-eTRX8b^xFx(&g zMY~=GJHq1pyv>h-?MziJcei8m%|6T9zlh(5l{Skn->ldHpW_dRfV=HC^Wi-dmMiRU zi~<8!5fpnJ%*5v3=I2998Cw(F&&KQP<@L72*$_@@$Qi$urXwg@o12#r&gNxq0jNRe zmBRMX3{&8)jQZNL(&0V7cika6wdks&GATYDY8$HEAL{aV^$13Ut+5Fz{{9uweALc& z>!%hN1kEMTEwSTBje$|(B5^T4?QN9Pgvo7XDg!Q!GSA`f-@d&XdH&gAFZwqC)y^F| zoSQF2%^Xqlyc|eNNht#1R4p-!gSahNBBBoHzZv}sGdXx$V0maS)lRRoU`CQZ_d|P> z0o^@6Jpcn2)SX+xR@jtg{OkUORxa85w3d|rInBIHSLFCF&CYtwpF1{6*ukhz3*~BI zq>hA?Gf(PSC`zN?xfG(!7Wl+Vq?bac2cs>Jdo+*)vShE%>%wI!-`)8iJ`5qH(XX+2 zN<)ny`-7;jDDceaC{c$73PTGtq@`nIM3#2mJDONT&4axt4D|G^w*^@<odZ!_Q1UJ= z-zC$p7XQ0#kdR3vDg7mMA}(Ee5_n7{V=wy{sTc*L%)x_5n(tV4Oqi6a`l6VHQF5zb zAO6D-k#@2+<kjHoLdRVgO|j!RXm0dU*41G?16s*|`SFh*KVreK&?gNVNGT|!Fcd&- z6BJa-f2-i#o+JuP@(xxNu$i=$w*s4<g^gM7+m{Pb9y@6sBe^(ZKOtF&wkjVVv1DE$ zAzeTD*dT0ITn2%&Z703b+LI>;z15{RR)E0|KZXBimBXG9FNIc3O;uHMjWl8pUlh^N zjb6dU$%*}4N(#qLzfiWUM2|)uYFuY#WMjM0lqTz|9waswK@M^TjT##u(zD)V&OHtJ zy$S_d{W|kgr`Md@=(#{JZjeu!m-N1%wjDfpFm$QU6xh)CwAmMi1<~ECjc;ZlO%wfM z*tChANdXHvsA`xI>U)~w+Om+s!d5lUyhg&YZ}nKiK60H`konQ$q%n%3%Bm&)v&DFP zv$EYicEKyrltrbb#8ij$2g)E>Sn@EXa)ZCWKfD9jI0>PT>!MT2kA;Q9KHQ!6oGTwc z_Ie(+2_I;*ctnC1cLv5??A}0wiW0i|1-<%1<(UF~z9DR)%W69|^Qm*Tc06rj&L7o# z{^!rBIe&0PXvr^re?|j}or!X6bAMmCG#t9lvS-hyiHUokB)6PteE*(>BR(S|bhLiQ z|32de5Paa)=-I&TEWyFjSYO|sDt)7ELQFB7v}pf}7ra1QaAR;@gqO<D$Y>Fb3W2Yc znsg6P5>SIOQZ?#ig8GG=&qQ^+v5`2`sa>Uy64a)VO(!8|!fZs`_m`WKv%m7d($&>n zT5{IF9Or)haA($F#TE`AL0F7dX!UNagYfu{%`gWJxIq+-I=N533Hw8a%iK>~?1Fip z){_1|ArrH6Yb;f9OOgskwc^I4<YXeZFC_Fm)wAX`pzL`6rllM8l(nm01TN|W<6$F% z{n`5wl*dd>XWo_1z-kkVtyD}*#Jw4S$7+wFx?}xZ#(GOg?;r&QDx-CHB(W!zxEp%w z<`;n0be8mGtM9f^XHYJF>Dw7WfyM<x6z$%<Z7JF?QD8s@%7R_XBk2TTLE)_`g=Pa3 zX`+$6e1~ofc^H}Dw+`Fst#0%LrJn40Q$=TiW;dD5N@H0?%60*|n)2k%VmW;6>_xG$ zuTiZ=$Hq(xkKe)Q`TUq<sX&TYp(pIrFdb2;5JyD+IZoCVc^UpF7_8GIoZ(`h`YYep z!hW&pq$yA%8E^foH@w8~7m^6Oy1<lyEAYrJ=>LRv?Am|eViyY5N|3_z-OC5CneTG# zHgp-ra$$h|vqna=3l0+QgC*bsh`S!9r=^bvB>hxQaAOj#+Wv?VrKRa;=<4GAtX6jK z3(t9|dg<m06$rNJ_Bz~JEEXrYk0tMyCKPEMd~E#ZOH;eXeua}0rfgRX&tHAkx;=J6 zmLp+2yFuCR(4lI~R6N|=YqNE`L76Y#y{!1MSzMH7K!&`y=2PvPvnEG+F7p$FE|ix` zt9-(RV1{eofzby`u?m0#3Jbn+1ZKZgnAYeA(<fsiXp^LOP)is5<>^jHPF&o*Uqhn_ z8118N(u(u%Z=2_eld||C_5Mu%3S!70a#&O<s2(WU{@MV!usfVXIR-2dn0;(?KINK> z^E<=y@19~9Sw0B}c}^{1lh&%%mPA#3)9l|q4ks@f&xdpA`mNLJjAz?E$SJ9M?7~Jp z{&U+j3F-7ySk~1YN|u~DJjZQ~SOspg&oRAKl~Ri{H{>pxwrAUMEta?#ceo?w(I{bl zN{@+o3{GgvmMxPS<h~ap*?PD;vgT(~ipmJ$_nf!ThOIop4tf>7Lx)&6>PNhuRaX<I zf9&*QW2*(TfE$PD@5${G{Uf(+K8)F0EHhOht+5G}gk${Mw+EXU=G4!-O~F8v)v3I8 z*}|igt?y?n`^huJZ6ON7{82EvJ^ec^dxyH_DSPO3hdeJ>(|Y~9b9eR~zSb8n&S&v8 z<P@_r1Zm0;zHAZj3uEIGD@fTN`r<|Qp;|llJl;!Y@9bE2<Ogd$z8<=`GG8$0N}eL- z<6m%`QirwOKiq$`g7*xKs*Xc$T!MYIPRA<G+qa&pL&6!Cd~W*bj?PKw!0G~>kGNfK zYRVL>ov|^0ejb_>2qi$jN`L(eMhCvEQ6KIpK|BK_-MMoIEHa#U*RNBEU&+j$l3mbk z9DIz1hn*vcdXyDp5Wci??QIIsC3`;Ng}Gcv9sB*%3^-$*Fqp!;)7#T?m+uQ84fY!< z+mu`PH+*WlL4(%EdIOI#@B{?``q{-L|EBODaKiyeNgTa*4wI-Q-fQvp^*u}qCyzNd zwYN-EKvZOBJZ5hIu%MkVd5s5YEdAKOeOd!zCmc+qu$~mdVTkKXmk+opyGbC=bV?2G zb$M3UQJSHmpmbuVUMa2dgTc`RY*B?8h+DXyj}HcD=q4`94BlYSb$UQ4!<Xt3*6_rG z1_LcPIs7IFTxf#J-{>8pcZUgc%pK2P2t3NgdCoqyS^bpFC4-cXSS6DTvnG>M_ejH5 z>*TA<^k^C)jBnO|y-%Hye1A6Q)FmsUkl=!Qn*|=CCOJ=KgAaiX_R1B^qYZH&E}gNl z`0={j&1aii+UZqCqtArrIN#AfZefvz?P@G6*C>n1$~@jYWD$Syu%4#oiLGVn+%O<0 z2&Rh{w?6wFAkTWEsps`;YmbP)LDE9~*sE7}VvBfj@m^3^)UF=UySGq880x*|Ny!05 z0DFwRSBqfHP$#gj0{@y=T2{xh5~y#Cpd<81Jjlsu{2Ha7K;dJ5dCO1aFt|G6&n<86 zl0Y(1va()(_lxV|tf10~6IIqiXWLiK1qOyJ&%UUuJFKU-`}a?mE<yuZ*TlpG0tKiQ z`z@rUr2J6FPoEz5dAgrbi#t_9R8$lrgrp>$r#t3-gv7mjeY4Z=?i`MQ#TE3qPn9!a zT!e;nYmkB>m`h&XNzirxo5WG$^l76fzbR<dp0Ns1lETjlmZi0=4Hu_R;~H``qi64) zJ!o8_!w20`IE)ro%;Ukvg5-uQ2I-uZESZhJGHmI}kX>J2AN-h@v=Jlq7n*fu^9cJd zFJ*HB%D^WH4`+V<5j;bp@-%rl)$G$kqy^#@q7FDI`C;Rt{#S#WNjYLQ<1y{W#i4=s zW>XM~w#{w|OP!JUk$ZW6NSyk5HIYI95UwmKF@oK%wUx|t%u7@E$<%{-ebeA_)kbmX zohZN<A^<k<<c+s)D_~zm-!uH!@1%+Ez=`(UlLou|lW`GANgwx-wF?f%XlPnn-$7ua zz}M?(HJGox%9K0rNDLbMR7y(g)PkghgdB!TRHnv|CtTPjgDqUdhX{!MDlsCCjSx-P zFM^p%z7cP9%-A>qTqib80}Oa6o+ICq@e<@Nv`ySXWGYB|jEblZ7D9=#j5S=nP5hl} z#@d&$0}jg<lRX?o?mGZ=5@iD;1Vk+q2S`>>k9_?69?necSA}Q`JnQQN`Iq<{3mk|H zoP5@P6$zcGi3zQPgfF(<qfL7h2)LtS;^Ih5hzjy3%goHQMaoQf0SoXhqY;~c-EKlR zhHDH&GSY|mJPsrOh7$&}QJ7(g&qZ<WLBi|5<~bIPeY7BNKt|&x2~-}4dLg$>hFKTH zJ2W74ywu72n~dmmdhjkliSXj`dWJ~9qQB2wRyQ_>hf?4H0B%IuS4Hw7GLHC8yu2XO z9y8TRDlZcrLuK*vD=R8;$!@CsLK6D~MGE5t0tb(&ICt(Gh;3>r!<$X-3vI3>MyX1F z33|G$9HY;t4L5?eHZ9pDU;!ZGo#JI#Vo7tWFsPyRbV)#Ec@Mc48?Lq=yf!^^Ux}rI zk|Q3qfPujjZV4NkZct~iVQzmbvqa*_<LNmA0!1fD<jxDRh1UM;@McmDgfHF=lL6?T z$1mv3;naf>5IZe|5?wI>+1lQH-gQTndPa50w1qw+Rg?P&G-pjs6j!tdP(&v8?i#RD zJ_}kAgFvmL^9l|FJb~r>BR2l1ucn{zJP+75pj+G9-^0Fk%)Lk>I?Hi&LU^-Smjr6o zZ}0*)Z&Fi4U>1a>z7UVD8Jo*K#BXX1lQ2}Wk`h|QashsRWm4?vBdQcnOdq-s^A0sx zP>`GhPY=Sw3UWYz-@SXmD$q4sG1oO}AU>jVDltADllb`LWRxl=K1ffmlQ=M3`bIE< z+Sv_fE{XwP6i9Sz+k5@y&71CSbON1mQbz|x2GXq+ir<EYEYi$gW7iHw5u$=sDTzrH z(;JKr*C>Je@Qe)%XHe-0>L)jGlPD=GZ_?>O;Q<7PE&XZM&f~U6s1zRvbi1%3YEUuZ z@quOm<`)knu=!!F#$d&dy}SrjY#M^b3Lhn9t=)q_^c|vAF+TpHxYWnqI<H+s^8>_4 zKvG#|U3hpg?YE>TotONBXH#GdXlQD3g!W;oiUfn9*X+q|6K-8Rz$!c24kJ4D7Z$5T zy*kFGY-j(6Q3{Xmz+jI-=%e;9dFJECvmjMaI*_xvy1MeLddcNCY<66F30)TNj1A?W zjE)raOFSe;!GJRvPvo$Gc?Xe!TCA3+8GvC5niV8>2z~(RD4l$js;v~^&6;1s!`5H5 zwVeYI?B^%t;cW|1dFz%YF_>U55W<tGzo90KjNHMReNyRrgu9LKyc7YM0b0L1Lhs0p z{k6;?HzW2=o0*$~qt$fF`%v+{HnRmwgl#GVz-_a2zla+3btQrcTtJvz;^S3&N-kVD zjM2^5?H8WN0y8Wp=3pJ22OC>Fq;aE<oxVdG&FC?@umW-w)e9S7;C&!kgDu`^ENyXw z&wV$m{PPvPxubWzrXQH#zH4ho<56M2yrAWi+3qX7ztlN3{C}AG?szQ!w*M;;DKn9g z>={`VC0kZxl#mf2qpSu>DSIR{J0eMDG>nSM9@!%yd!=EdkodjN@AF&!cwW!zzPq`u z^ZbnCc(3D)Hw=4E@N4nxbf1i>7Ies1pmt|t!=d{6>Rgb~cF}8(2r(|m7>J$)Sbx#; zPM;!r_)=G2JQqC4UKRi=2w$LAK`UuiapkGJGm482;6PJ}z>5ETA4pg~3&-oo2yz(Q zb0<OEN?r~>qjQaZ6+IqkGqt<yZ6Hz1Ei4+zaW9}8<$LYy=JqV6it{z(#%L9QnE_Mp z`BUOnSqlsnOZkYLTruPFyU+u=5WRwEAtzHN7?C6zwhm_Aq!57KL_&<E<qz;u=g;#N z%zY5J*KZh<nS&1sJ|tSR8=ueTJ$WbK^GwiD_)wv0JUGX&FYnVu_L`yk!^%dU#nY#b zDBB@iW9zUpKGYjFF+B~1R_Vis?@&@UHg31P617dSNmpANi7P-$us6mYIBtD7p}AE7 zXCm-X;B+}xv;cH6fX_`zdYYFvQ040j3GvjEh=psnVPH-}Sb{&^DJnE<@aJRWZW8pk zR8ThHcERZb)zV9pMf;ChsK=ygt9AV%V6ow<qKu5u+1XHOlfz+eGfkM(5sYzdru|Oa zG&JdNpFN}J4v=1XSZ5XbG(Z0hx&l4Dd$F;x&!0<64=Y9mRgc2{09yL%%*;AG>bMcq zHg%f@qdfiA*L|$4hCz;5R9r!<RQc=Igc=!%3OK<#y1Q#iALC3SvWhBmP3)knsot6; z`rIiY=gE`9$U@n=)&Ex;Er;y8)B=4W<euTIMP;gqy>{Y6e)aOpXV3P?I7A^11i=NC zYbb#dhl<?G%~3e4ci?Mj`nqfHaP=<X{dyWeG%y%!Dco!5TCrrWu`s_3YU9FnfGzLr z1nbU<1PBbtwclzqH!6Kc!>}=dCKTXOg-#v?Lw;RMnD`^c_ofA!6GJU6`9R*0p@lZ5 z3^A$`Xcc}<H16Vz#FgArVyAPzCBpa&?qO6CGb1BWDJg#;ZU+u}II}tbV$0kmGqcY` zmO*$pEW3k4L+mA@9mh4WDbayq&EglM9fmJl-(pLI4(cp?cr~7A)MBV7x&8KUjjVSD z1V@lm&CM|Jn<#R#k6%Mv1<E}%kpOH!T?0tp<!U`NW1LG{+-sq#T3uWF7*1Re%D64z zMY^>A%#EI%Jh4{_vAdyyL(zeI7zIMhP;VTa6>CFJ6Y9H<A8CTk(U?DdFXPkxj5bt_ zfS-`^0>vpzYa$i05!)0z=byrBLsXB6i4EU;^4}MF0td$d^7`^L5J<dhxH)&y(!!(D zg1!bI8ZL58N(!uR##nQ}9phV8jb7s5#H~9IdH~0-mkSQRj|~l6yBwUI+mfUy>2AOe zwX)JZDuUP+*mSHQO($+w9Yq*_Py?=UEMSc%A<Qhz3)mI@rgGEGpfNEkXz_2D<W^<I zCnSs?Y5<>)-XuRbq~+I4*cU$SfQ!sXm-3nOSzmF#e*H+^86|ZVBXNXW0dQVn@GCBM zKQH`BWhBDCjX@sXPXF-+uvTD~l-;s#e;whS0H#H=eLJzc2Fs=I?LPFB^V4Mgx6=ME zUn;R|$nK2b_n<`0SunSMT)?(842=g&Eja5(N3Ee>7>SDVOY-{I-rkPI-`+k?NbW7) z8eZuj<!p1j#LUXNI@7_64~Uh&t{}8ZB_S!=BP%U+%OgE1>RoDn$IuQQUS90Cd<Z!w zC+$#RzsY}Z&9xB9rQ3z42(k)y08sw0yLV4rk(|stqHJqibOjv-!X1>UupJ>)g3axE zCvTTfMMG0aIV%oytTBkR*5*f5jaME@x*SW+##%#d>~!HmA3OjHJ6P4?_-yK|(FP0+ z4Z$r4C<iZ;ZAC%|$uT{7EH0F=RIa0N!p7&Wi;aYkgmD1!!22r-nh?5i<~Rx{z~+K7 zE9%V(Bz7!oJ}=ZXG|=zt<F<8j`igFQUrOz#PhJ2&Y!CihUvHo0JtQmZ1zL@Y`{>cv z_<Lis_g8lUv>DWXvGJup!*LDVD3BA7T@r^5WwR!B39Y^|WO`%eC7<^C_0iz!a^KBc zcn{-F^mpiPqtpS-gzI5c+?LxrTFthtB<&@hgtwO$R{-Fw;B<b`iY%q4229JS$DTcd zF5o#(`Vp7QZt;TZEV`_cML8?~=zJ=$#CLd>smWySIAD5EDiuK=NWKH559*h7&z_NC z8~x#Us^P5m>GS^0laQgZv$8@O0G*gf#T8P6-=p)W#lg|9aLc$f`9Dk+qxfPo5xo6} zfsuv9KYXFGVFSCmH{O!<g8cjlRoZ!2)%uvaz(QBuvU8@3mbv>IQxsi<(XF5$LOK*5 zxyR@Mm((0JG>bbBjs#-)(W9;$_O?S3z4kBgQ(Ua2r&kw!v^(+ec_>-IY3-z;ai0zw z+x4zMkEeIr`=3LnjExb#R(59~Cg1WcTa^jGjJ@>q?^@Qwcd#-ts@!YCbI|nZJ#*?* zKz(d{gGc2<C4+7R450p-uL2VOzULpxc$7Y<iRNZ!@qh@+VOnc6NQ9X2-yq4nxOjMM zAU#CY1Bd|Y(E6Hx_KPPX{fn!stIM7h=(Z%q#6Dt|wzS-3Jshyh{7@&)?(`wFMdIS( zSh{#%`LrUtEjpe4$6SqL2>BY1+7w&=%Xl-`_;6T)v7GD79>%eb-d-0tywL9G>(gI6 z%r$^p0ic@m#fyW0)?z;RWeVB%Q7CPLPz9Agt_KhmNWqF;i1_pBw525=e2e64tZ{cn z+s=&&gQ7FXtf#W;H_?loIdcYGDXJJ$Ya$i5NezZ3Ch&5p;)3?{^i2Ig#>vtcR1`c> z16eneL5~34;$YKC5uD^(I73`VU<k_03n5xS&e`0Nw!23UPli|3%#d@Q{QUJ8*o%h` zl{)wfg2Kq7Yll<ex5s7ou8K2dG1|;%%vu?x015yIX#n?kI~*3!?ZQ*xpnZZaUp9nP z`oatjKx8vPry3F(s!VfQZUuNZ-9Cl8bXCA+K|`DQBx7Am4FWg{jra&T$bwfVqv?j~ zXM`-F-Sv_c7M?}@fL;^AEKSJYWMtkTFN%P9WUAS~{?g2TJRmE(g5w;u(i~V`G<1Q1 zwJ5MmhmHt;f2!@*u<Yr-|G)v?)y2oSK9OMRlr`okk)<vock6_%F4S%Dad9;*-PtcR zSa5-dNxvhq)=bZFaGY8Ea9G~4ZJQfaH7=yiPV^*(t4jr2DTq23tK(M7-F=^;BKZ_v zQI4Tyf!EQ)LqtRb(jrhtMwBQp42_L@afm@CVIROmyWO49^#t70*n$-m9_53GpIBJ+ z$*Cqy23Tz}Qjz1(Xz%V;yK8osZ#h0>{gCyx(>Sca!`DwQ?K^foYlf`%F2vN7x8YEX ztlu>}?$%#lQ#5MZ>?X^B9uG&vc*N5Q@AOl)o+VNiuysQshi*PpaZ9Y%Zhswi?lkGR z>QNZcaP^``)cf4Lqv-(3J1jY{5?I&mWMj=QFZLU%s*ZzHNBM32Y61&nAtJtca_k!o zxg1+k(O<2Lp)GvH$~G_OO0LWrO06Sf={GJ1RO~G+-@tHv`SK-yv6~QNM~@<S3p5X; zl&|pz&}IUUwKyjBqBT0g-1lSGmnz=_^i&*s_a@z7{gRm*|Kj&&+{CCk@D?NNx{&3w zgB<+v1>*<1&3KwauNHX%I5IN2@o(*AW-~=xA1Fb*2^21gH0=_y;}ZeSL%6r_6M6UU z#cyIK$H&IdpAiZ@SiS4tS(t2NJaFzUr-nfsHVayR*cH%kj@0ka*8^RRCk0VJ%O5p{ ziNa_-8(DyOP#8f@i31Cbw|YYHHYlF}n7~O5<tNwX+M$DtXVOnk_V)EbPHX4l@&i$X zyDcnDPw|Dc#NjWeq@Y;NgW~Xr<>S-lU&lL*ySzoL3y+tS!z76l4*|poiqis#H|qq1 zLk%0bwN;Nh@WS{0<E6_rczgW=1L&7)YHJU^8(Z<&z;jt}L(>AvJTX1yyOv)A_-=#^ zocl<=uLZ)}6|0!8q^r423YU>MtI0D3?HBTA@br-}gM(sWv0Ki{%Bph^PU;t^_51r* z!Rcg`+ilI8JxzPk%Fxhn^L~|UH5-a+M2JYp$kgn;9`ZM4Z`S7nlA31^`YgaHaPBI5 zK`N>}=vPs@H8$!AS<h!0*iwxycwu(|<Z9o;su>p@y@2<QkUl`f0EF3^d@?iIO84Mp zB9#uOm58^a9X)j*=)>;zb_dx0yyCLBbqv4nwbJ@J(aAYB_K{E!I1$dy#-;?C+fq6C z`6%2_Xdw(v-T%Qz#AJ72AQWrpg;7P0a5miEm)=H)f6>#kdvp1tVNr1K3g?+u^WpM& zCyCgw2Ze>i>sj@w%naXupL$y~9)3vrM64vWqoU~R-Nzp}(_eCS7DY3+=64+MC4TB* zRR8m%bN;@E@kHk59J@y={pSFf6c%!#6C^c5;GqYPkV;5q4vKGH;gk^a=%ZI=xHg0p zsv1t3%d7HT`*NDy{zF8xmgX9oLO{mLZz(jR<M*4Y9LHwEt2=~zk;(*dUEP7?(OE6} z^6Z=JO|a7%3o%Kh%lNEruXSqOKYb|r!dhJ>BndcHty}*bAR2YXP#_BTM`^UZ3x78a zTZrj)mFcNp*C5@V#lB@yM|7R`Xk<U%Mv!gLblm0@RVt!E`}`S|*rBlLYm5+bqW=3d zFmSotyq1%(#MdvH*O>JOONpGUELVV^zyEIV{GZ@$z-b0y*=b)vhGkaKT;A`CADVKz z%ZRiCn4pnDfCI6^E?Nh+B=|ilj|)>TeTw>|pxV#o9F~y26V)a9V|pq8O-vTzPfv-3 z!0-h88eNl@JSXeZsQ4$EYmut<{3-pSM-0biGO*$+Dz5wZyvf|b!_sTN{%dxZx&inM zP4_eO3j>_oX?&VVMeYG8CDFj5Vg5I{AvkRShLpAIrSqB46d_5;X!2yciEHOxsl^|P z_~u#UHhs$kZjaD_-r+`_Bbo0%rZ*BA-kUf7T{m;k4W%4@e2Km!<*RT=D(cutkB==a zws8f_&Vma27Y<*DV0(3#Sw=T6FAw1DV<=Gm7{qzM1>OT>7CV@UvrXl0U#VR{A(N%1 zcdrWKjy`>o<>t;<*bv!zHJqaqU@CwNtXWwa8`W2TSbU=zb8kJ`G%jy^(&W=Q`T=hQ zUS((~)LEXyf2gj;uVq?^N>TqT?P{NGKUJ%{eQp#t1r949A1FAQd`SM;LD{o_F#+kC znV57Bhx!){j18G-{%s8EN)Wz2(47V^2AVRaQc|=g6D#Y}M~`^FQ?v)Ym*2)`PpPt5 zuvKV4J?%73QIvK=IMxQ)EVdV|My!0}NlZB?CZ@~BSWG(>RCHjhIsQfPxt6)T<!mCW z(ry3(ZEb<t)P9pNb1Z&k3u9JA#gSW{mIg)A(nZGk)8`}p9G3f0CI!$lZR(_6L{=7G zuSzX^#dikT(d%Y?j3tlO(y{H=(b&9s-x``gxI_f^0T4juRKUTTdwFPV=NFzsas!wy zh5}*Je^*y~R#lu0R7xmvb(JC&T)mUCA3y%M#;B4ZaqQR-3X1N%b0XVW=GJQyJf|qk zeVT<v#Wr;klamdZPWw*ZcmM#T0qQ$-s2S+jd?r~!)fiJ+WWsm@n2>jIijNT@Ymo{y zCE+L|1YyQ!3gN7#*s!VJ>lJ0~(;50C)MzpJ(DNvB@jm2Ug68ma8VYHbvC!8?4~-H% zba>N9)<d3a_UF-Y)ew0KgVylNK#&4etg(C-_tia|g)s-)2h>mDlhrdR(MmQ-`rEq_ zdZ<9{yn2O%S9~~wE2g=3ei|)%lDes8+jne=F7&YmSHJ&vk(d95Wy290z(Nq;bai%W zo|g)Z6%G?2k4}>82bK}7Sreu!<5PfKB-~BJ4~pHK9IC@ZHt`vmnVC5F@spJm5MXy- ze!L9ChbAA+Y@;j6x%Jn*fiCyqM)>V~U^$}vEPCptdHjZRy5?w1%+2pUVc0ySrOy=j zdH^QD!k>1)1f#4Sg;`))SU8T18OAQtXO)(h=#!Q!VABED0T=i&b%R&|UBV)<4<`^^ z`iEur+tJnVSm~mhN7qJ`0j0A?xw-rXbTBzZ5#p2!*Hh#Z4!oHJ@;o<gmXMx)@<W%G zRkxP8|7t8_dJ6Uq3UmC(TJ2skpjUVg&JSD%yUr2m{&`_YF1Z*(-L4ut{xkv;LB-AQ zm=PIy2O24PeON5N&NB3o&p)<wq}yFml!T;-J-S`MzCZ~g+H^wd)44uMk3*vx*F!qe zn9`lc8f$9UON6=2J=PUymL{JZzazg=`s^83TN_jOm8W5Jq~5;|ZP`?wvPnqMoxy#E zz6wmH-KSjAIs8)8bITi6dt1}jd!yp>Z>J7vb80?i2+KriDaS$keD8h6Oh-1W=&vvL zR;&kdQ~JMfbSt>sO&-VhghM)yQFyxxQwnbQ>pX??-|q@{Tw2^QN@J$4uVfGh?sn-> zkn1dw(gS5Pn4k{WuZD(hBAjfds^c*b8uZPt2_~le-(vFtuPmEKsXd(?9T|=lIXRjg z6i>H_K7&M3fQcG}8<R&wRASr(_&|ZktdI~o^k;e5?)xuDvPL2S{8VkMIa9ctVEr%J zAIC#ppDLMa67ahceyAyv_Ay`$P3(+`ZdK9I*)d%aUBxe@qAA1#;mZ;LB{eE!@O)@% zbA=sYX6fw`1fV$zf9oceR^bKu5OEK3Xb*HBV5~+WaT_3)$=r9qYTHy3Xvb0L=sa#Q zxOziOQ}Nljg*T(DEHT^Br?SsFp}mF32~AEVBFP~p6DxcfB}{x$k89&)Rn#zA0Z0UD z-{`uf%xl80$OOeKzFwKY$kfztd@kv&CNjEhiIV>2Uy+0NcxKUftLtfgMUql=b89Ow zf8&e1R`zv!`p;~vy*BC-OU_;hH=>zOt!%~lW5o2hsHlifw<_uAgJsbNtnnWj9x3pz z%GK@P7F^xY)dg*kVNd}zi3l!;JRz0cI?y#z5nI#6eDhY`YnQx#)WHL4hD<o%9?z6C zs2H4rejPU%&hihXZ`MPfO`a?qI>#><$n7Z#SOq9O%)<+UV@<aa`_^3ymnv9{Ug?RT zsy=bcH<)cB!NmnyAS!zna1^vmxPPgAwYz>nXpGJvfc@j>wI*ue3lTYadE@a$Vd9zx zO;Q+G5?>6~jB<9iKdd~d8G7I^sDq)pIs%vj1k0q(FDOVPc|!UnXav+=nu}`$&^8sf zhnEn$&to`Jx#SGz#z}Qc7r(rb>yJV6if5~NQ6tuJ8B~WbZ@;*@0qX5Y*dPR0;v?Fo zPbNx?0%oGhz|y=lSjNEp0;)pvmt)(Zp*)7*rt53Pz@KH{F$2q{&qQdd@a^^-_=hYT z0Ug3J3@HlhSw`--w6sbfBY-wRi@hHhIGaW`B6i@>ORw+Rex*vd&~Gu6ZRmXma;fOM zA&*CcC6k#0!7B`YV{vn3I}y6-i>wK~ih>u@uDYX-!kZ^WR>eq%ccKhF6V%iT*8(V` zn}|d8*+WiF4(WgVs;YBSoG>V!cj+P*a)s<)?jAmVe;pI6@?oy-IeXyg;to1G;?F&Q z(26ED^0LghB&>fRJd~+AWG*>4l-bl$*D{xx5sAO@Xx!cevM0QGBM+DFq+=UktLuma zosxco-1W~NK9JEFF`=`E55s=FsG?#GUCR7PPIVS@GTh4u5J8cGbwTLS0_c%oC%8Lh zjp{0tc)y$Oi}KyeE-c)rrc;zKn&cA@fKY5F9g*k<^&X(at0cvbAEsYJ4;O*+Fh<m{ zm~87-%s9}vMT-zLpef06%3wnpw>ly?8j2^68j;g+@iN({Q(D{F&IG;c93v_<(Ckko z8jrh<RA*w{Kygr9Qu4XPZU-k~<;o!wW55@H?IdhC2mBngZu-CMV|P?q?g&&-XHm0k zxmzvU#roX8WSatCq7KBi_<?M1uS<0Z{gE5LFM_gaWFYW8k3EFwu&LiED2}=+(4vSR zXaR3ED)n?(cOGXyl&L6E<Xi6QX%Aijhy$Sd@BFC0e7Lx%D7&Oh4X_Lb6~*=Wt@pTi z1K<YuIX=Dwb9X>H6lZwBLjW0$SS{c!0R6|558eQ*M1uKwa~$6Y=)p%M#W1L#D-Dl~ zB$~Lb`}lkmd|?`a6PVkAsmX|xoL&9l1HForS$H3tx&ge-{o-W`E4WA2)}Su|W3g{| z>fgVA38?A?aH`f@E29KLwccZ;#kR*KGqCg-qh+*&$NMu^l<8F*;1<V;m?`uXpd=MH z1o(gw@iC&egD6^9?t1s`9M)i%_<@v_2*!P+FmV=ro|WPV@b)V4dbAz5<k3M(T1hw! zR}x9Mjkegxgg4{lvVd-K7T<ObyN8a+_2UOCQo$iBq!*pyZUy!apclqa3F$YnuMg>s z5rz)J*J}^?I3WHo@t5Q)9b|@;Vmp&dU|?FL_PV)Vrl+Y{<}peAoW&FD^ndA|Muvv1 z>53;s1krUH2N@Sz`7x!{j|+dlthRnuNr;J>oD54|orRJ+0AL@K_B9vh+M$jI0vYYQ zi;=N4?O6C>Vxc2hKTfPe;*ReH?2<QuTF#o28BB^VzJ}JEAVWElk7%W+8|#3xb?-SU zq$?s5F4g-yUI=>gd@@l%yQ8mjYn@ngKP`qI82XPMW@K3e%r~(tlc8URFj|-|1KP2h zDiA~0LV0{^Ttqe&y6d7VY%dTkqWy6H$wLfYk+Rc<npEq!0ZxSe+Bs+|RfOc_&23}? z%Ab&vy@y!Wo!lGeB825OdZFwT=Q}-i`8FCre|5-f{v3z0C6b~y-mCWFj8peg!VsKo z#`(34RWocu%8fD*C|t+$CA1reBAPx!uL1;X#q$=vi1S;!xcA5n)jUdtxF?VOAW0w= z$tx*|X`bYibyF&~*xe_#aPf)~CzSns)oAy5tAR~`vVcAVRtX&W)UM6Kg&jk`l&h=7 zW_B+x1#x8hZ=<26rTtRsy082Q@Jq?AA#@J-^URwA;ELfi9JS`JN_H<FtXnyv1F=ZV zm8ZcdEM|e55ew*b%HYd|J#hKrHW-h@#0$57YTFOomeC!j$xC%Dyq&GZMc+NQssJH6 z81qd89op`EE)q!pwc`<G<G)X@Jzb#y3J`RSh!VYz_N+7QTUk_C!PaL8MTLFe7GDtm ze$zWF)92<*tp|gBeP=o*3(};l=1<Fo<kPn#%z~FeUE{wgCL&USKv9*P%*?U8qDrI` z)2KLrFGt6~JACO|g1kPjxwt3fqh<V$^o4%?`J+JvUK}wd08-hxUw~SL%&6Kx+29na zPH?x{b*V?LHud%b!FuJ?<AiqtR@BbYGA}|8%r#d4bYqThTFf{gCSSwJjHaG;BjJUz z0A$jR;6;KV-r2Kvuh@B)m(ReXAXr}h#Fz72$b!H3NRLS!W!e5?#~!>ab4nQquP2`r z7E6MCLK;Lzvh;;}D49~Nl&R1JZBdkcFBZ-IbM%t6wIo(gOxHNXm@>Kv@$s#ALQ+yO znK}4fQ1+^J)RI#l@4A902ZE~Jj0g*ZhfPdHNKp~W(pfZu`1;^(TY?x#x6M!iA?N~S z`pPgsRVaRAfBE4~!lCv=Nc(>x%(MqqsJbbAc9y+<jlm(5k=&k_Iv47ISTLv{*#u9v z%<gRr-xcFaG}p+ay3#~csZZ(i;=jRXL4~w349^*41dEP_hK#hLki7bC{`(UqzF&W5 z%y(OSAilSCDEQqK=+_+)yarW+KRtvSrsW>|hHI3KO*?_U5|;VOGJ;IO)<NtfT92^I zLoS02>r65SWpq!b$|87V*X9j)!l0ah5O6GS011{v{(jC_l-M&cCUEO7YzMTD$g)>H zs~%E8{fwqQ3RK*HpV793Wx5^T!8-JFq(R{~ENI07Bma%wsICUiiD!edtK|av;>S3- z(y*tXkB1A;!^7j+kHLO$^njO}m$YRs&!Vyvoil>04vyNfMV8&WF^2{${UENL6JU1_ z;VgRd3nn^n<fwaYczZ{`U>`G>V%zJwGV7rGvl4Df8Qs!L1I#}^9>2MSQAz?@-`sFp zq9H@VE;%J7gs9)~<Y(G5!o<1s<$b&)o+qasyKxBN{y6qgU}1YB?@soK9O+?i!^a(- zwh?HDY3sM31jpx2N=(ej&V~y?0VyrVZ_aHwsDAD6(!4ChmkRReHJQcDLqr3J`WSk( znsiB}OY1uta~%7I8I#`I*c%#5o{%sT%rpO<Sch_GO#I`*_2{|=EEhbJmey8`^g`Hz z(ClsPTH}4E!q<7m7rgk;{n_#VPz}kR#Z8RI0v#D*KOZ0^5Aq5~kty|gwL4bKm!mGe z!IKmSHG+(wugZ55(GIl1&rz;`K9;_5j$D@}xSELhm$V6}s#5$<uLUBhX2`7wSLMd~ zYKwwW^8OME+=BmGKaL9vY4(pFPk#UYeRA?3;xf@50E-@P#DzwbpXc%Vle2I7_~2F| zTuhKVH+^bAA>!uY@nM(54F$d>^JnLj5y-9(zOZ3qY=w~$8WC&<agM%u^9EcyT;B+P zXXKthMqOKq74CxS2xiA*`$IJXI#x(rpFPe2Z#{1UQY)(QhcPMTDTo=E-!Sk8&7FEW zyUlo`$-i!$xmT66uEkyv0vJd!`P@(z_X!Yn9Fx2OFjC2Q&5r<tMbn5@>(`H=vmKAO zYG<K}zjo~!SU0K+{5nFXh2S6!jp>GHUT~#eY>&ToZM|JbF-$EShLGnKsQxeqh(QJa zGsG{xRN{Jf*h)O1`CBk^?yxTTQs-w#sDN0mGk-<}4{Qer8?yU;t*>4VXh*}{aH6et zorgoj%FnwndK78`EZ?GyMcGELdOiNOfB0Z0lBCoTpLb<%<f*wb#Acv=#+y8>NBCfB zL75=}0b=j(`0ePpK=*?X-BtN&{3zL+Afp41LvoswT@&0d2w+q<z>Sr1?8Y@{bTKXh zLO|37I1n-D=q%{E#S;A@t`PG`s0cOra7{DQ^6&<LSi$DTOAH>);Zf#T7hVs#Xz14B zj@uU_8Qz_ThF>_0Fvkd<NQB-7nWkL#PK<E&V6O!!^o1oR+(?z(!`+QU+|aXkcZ=*j z=+uo{;DC7<^h3<7uKSV3XL<Ys!uh}=Lb?;2bxI3Z8xk7fchffLMi5^Yhybv;sB_~2 zf=oNk_V(edzzV(S=y@<X8#=XxPJW;ph^~9@*$%$=*Uw>J=o-+*)EtY{%CpolH@4Ut zfW3smR+TDRqsI0-Ti?eNdFe!4O$cHP*O03A)Ay!0u|k-tuKT27Bn-4FXoNXDi^J)5 z%bJmLD13@*r=vCbFuw*Fm^?q00qziS&xA_i-aTZuK=5Fv@WolplVhGgF~K-26Swi5 z=jX%KGI2G*BJ}3^a#;1~Iz~EVRchq&hl#%qJ9kL`oiCA@3-b?doWnjBNG;;MN#~i~ zMpqKgXcHDPpiD91t*6evrJ@afl$UoD0|oG&c>}QGfHdC1O90$~QxSsm5h^L0^(>o8 zt%uqvWDQ8bLVt@nfl!4Y{rJ~xY<l`IYB5C7Ky0a(D%*iKvLH(0;66y9JhA5YXeXw~ z)YlUh7<3dL#(@f`cz6`61n65i8qODby15}6yBU@H{IQ<{u2l~ttjSa$vZ49mePYZt zJ$e-P(BL<!|3v1jR)UBEFU7aQM+A?Q-d}wnSL?K@{FdSs!oTJgnGA-DmWm2`5~#rN zYLDAQAZlfcxv{$WZw?SS3oAI9FrFZ$dK9|iXV+)n(>OjZkTOjT3ObIGFL7Dg`xT>e z3C>0ku@KQl_m0^bN6hI9&P~qEIosO@S#c>*?Ui*S9o`=(=y%%=8Ib51gpr&>SqDo7 zSi9gkl3NZ*-+3aM^Qi&whh<c5WlzWl&$4;HsrRwh%G?<-_hV}%xo#IM|DT|8gHlmt z2APRe+{g=c?h{{BVb7s!xjv4=3U-BQbi23*54UuhMjVRDD!X?654!iiD=RHH0MQKO zzOdZ0J+~!QZWm=Vg9<*2GS%p_b0|2ISg!FoKJgc@!<$48q(NoC^b%_@APO`oc!>q} zYR2*H507&Rdfepx7!Jc%;NLeY_(w4Gsb=4yk_x$ZZv(Rs)_h1&!8C625?X_7wtTI& z!CE_bo)a)(?q5Wo)F|d!aPuF(>aOU4V(<0!Ws%5wRVoDOAbYc^JbCPV*6x!w9AIym zxVur1LLoO&I)MFe@9KI|0Ah1M3;1y{j3R<lYs|ye-LFlFj1&;Q#3TJ9P4J#d95@iU zE?S&-yuD_WcO66{t|okri>hDHTd{6&s4?;62Rp|>UvnN;1a5i%eLo?8Gv0Af_HQy9 zXXIhWPQJwh3C$q2C8Yg!_WZo=*Y*;vQ9h8X>gsW9(pZyAg`)Y)GhQRGBTHgnh3nS5 z&dMKHlYqE<U__;1KO|JK|7s+82$C>6Q1q6l;-tj|6v-aXL&f3W=8#+`OxZE5bLZvD zWsEw&2&<8IIimDxg$Gt_{-C1(2s)M>GILqLYrW`hS)#~L&uz68Mq=_6uCK9e44<%* zH1m!tX*y?yx5YuLFJ;)uC8gqkKvb+^%$eXWNX+B^i-gIrW+WX^CT9Z|4B>5%GS;XI zYxY$>XQAXq57O|g8MQraFhWfRK+WR^_XcKPP}5c6qM4~GG%x45z{*!hrUJDtdY(bz ze-NA*@uR{M^&mdC6tW}wRrp-Cw99nJe4n1iMwOasz&neI*N^zoK&jOKO#C^aY)bzr z3@t>NP5X?c_m*WCVeG#UnJAc$6MJyWl2w^PUj|A#*Q$RQ1M>$SBy`N0+Bv0qnyF_2 zokD-={kzD9B>)ak6yp~^J==2l-Ko<peLNt{p&Cz2|FC^W`?L{zANe!fq|jxxr-z=T z)6he_TKR7iy4N+Tnix@nJ0I}%46+u`Rn4yeJi%ekQ+zg|=J!pH$}fd8Vq0<rEBiKJ zJ4LI#o0%C3^VnBOC=QYJCso;y9GZDXC%R$lg-*sKd;@yZ-@o5SL_@v~!8+eGqurUq z{I}ScnS-(}IK`J49<(T2iL<?4a)s3j@ecou$?^R04ShINi@_L`bYzp|R_fW;r{5j^ z1{lm;7WLil28R=3(>!d6H4i*c4&pjR91J8$5ql)bB2Q>(K@(IdZ^dHe>A>3eNo&9z z=*Q;llXMs%mzTfy7473(#nDZq^Nu=2MhV<{N~y#aDrljkM0)-=0RJ%*Dm>+Fyk%s0 zuTY$OA_s2b9D-BOQN>9fo9o}o!D(d!gah^so%sEZ$Oqx<dN*M7(sN(odES6q_+Nma z{cWouhZg<D{D|^m2S61lIZeByFAr&_d}m=k`I3&$&iH%0;4Th?C*U>O`Y0(WLHijK zQ>|^re(h6-loIhm`gbNR?+nYtY>T&8Fd6zY-@g+<Zn!Q-`Wl79KIleeef$ly7mPs# zVXh8m0dTTFa(vk2bBl*JQbeE8_UE(Df~b(8#wo}424(s`iM-si=3_8dqE%*ey^}9@ zc%e|SL4Zfu7Q$9YW)`+*C87R+wH)XUR6_bE1NpY|Pgp%Y(w`xt8?MH~p%(8ud(a}F zMw0O`&dkkQ0D*uEUBib{pf)P15oHE+h~bU<9Fu=^J!wNB!@S=_NuW-S*;(c+-`n1^ zN5SI(=zG7{#D5#Fd;LG8_+jHIQAKdbE#hoIM<K8}gR9!>_U<e$&sFr#@MmBz<J3+^ zvy3#n)3I+qZ{=d}UJc??gZyx3;SEU3W6v^{?{B`mEwp~`NW`5w_0O>v1KLsXV+0U{ zZ{YZ}75Ecu7Lr1$IGgfYs<{n#p;*UteVhtstWJlWfhi;-^9URU9tmB`Zi{%cm=!a@ zYv^*3djOp)D?9tRB*cH{Ng0od)ZZ*DvHv@Hz(*&QF2IKE#LG(s^W^w-P$C^w3E>a{ z#fZEP&Cb@Cg+Z0|?}kdmTh%<I>hU64^%5Q#x;tqVLRAc@96DEHY<0IHc*-@@)rrY! z`CYfoBf*XWYy1On5<rhV5W6aTf1s^ky)kN;0D(amMHjt0sI#i|=Dj(hSa5kDH1J|y zApzDw=!qy6%&-hp1ljTS+V|v|a!J>Si9QU?bZpWfOK%elbwGiO5;W}OF>igQt7smu zoLbV3;T=6~Z8nC1CMxQ7uJewTQ)jjt3WtS7M%G)attN;ohPGXNd>^>mwBo;C#1IAm z%%`XM9VI5R1}d(Kx=dk~>udCykj^5vVs!M5AVy@Ytt>oB&7hvLy}EcA<=7QKme?Ic zX-po?&YAbM9H$+M3!VT0z0@)cxdCbqu&I-54jls&>|<6nl9TAncVhSe%0<-s*oY~p zGW{ran7p+iBehS5(d%~MlCJ(Y4Nwu9fH9ZX4#`Mek!ocZc+J4NWMse0NhdMRpp+!Z zZZcv`8(cl=2GG0=8wegaz-vQQzQYj566in|q8)n;lt2G_W`8elu$`@#8KPy3N&7ZF zUfrZf`pSIEct~?@U`*N4qv8_KPJ9~~T|9|36fF4DUVa3&XKWmHCIi%!D4C}HX+f6D z#^ZFL8(Ul`*%&Wt?D!9B8By@U_a-!koRPtvZ(qdu=legw;{id@KX+9AKpa)B+Do-t zo8hIVpU}FXei07)ij;P^!yy!0cp|$?C~XScWh_b5jUOn~Q=EA9EM*vx@dhm;F))o& zetvnGhL&~%NYm+~J<(sSYoh@}V*)Q*v?e+>C^Ch?N6P;Pq!kcVa!b0nt#MWXP5I`i zrA_i;Pr<Wi?VmoGK(LA*BO}aXok#HhqOXOH&Kycd5HW~&$XP0Zv4J-L-AC$!2YC-n z{^P~p()z}Z*f#(-fH3fCrBjPXOf{occ?Y1HdQ=K9HbA~{)iNgNjz1Gs28sd>_(J|u zfo$Rok$t)^xY}Cay1>vL?E$WqU?s-Gj$$EdJifl0IN2~Pkv^Dh^v|Vg-ZK~PC_Muj zi-MOY081WOU;<b_=KTES1sL>*cfxS~WVE(AQYY}q;f}-2wt?avXBF1d2>yGtj(j@| ze^rn@-0zUgOdUw<<?_pdx?NDe5o<KEK1JSJ3JMh=Ak7==-c!F?iU`UFB6!%A!b?j% zu^ivNeT#G&>|1HP2^9Y5Oq6sc(0f`hs51ud#6$x$1gO*;l99<bhdKq-6`a_|e}BU# zFs+)h9el0z=Ps3a?ZG>3@Bj0NbBVYB&HxMuWU;1C9O?#p6Gaa#HzHC6wua+Wx@q#> z0J!iJ(YVxhA#~Idx%Kj&G{nhTM3~b?bdnRoN>d=F#aT`KQP2$;GvE7CY<bKvq=KZS zrhG~*das44=_(>OafV=&GkOYQ<N-ub`0n+8kBNzW$Fj@+DHWN70|)P@WoYOv{u+8+ z`71N@mp5)x_%*z&xtObTyi?}pOgndKK89%jM*j^rCdUJa4WE^k)?0Z427^|!W*Vc( z)OZZQ?JJ?|AN>Sf3IJ)~i;(4m-`y1F*E#hop0tR6g^Hvs=`Ipj@ThPHYo30II-u;2 zTXHtSf!!-kFs4;^g=l0adr8|SXJf=Aegi^o_wTQX@SVKi;NXQ_wR&SBcHfVMHcS)( zdsJtOuY{0LArX-e4}SLaXzhgn)*voCT<1X%i}(a;%6M^$BXAI5jM1o`8hT`6RpGl9 z3lI+v@SN6%_&TaH$8f89W8eJO&!SIlp7hYVNyJLQ6X!LC3k$w+*2ZI+niaH=-dSPl z0N7&G7skJOohmdn$1vIO!+|(2Z|_ls87N%8%!0`P-Tc1G>Wx=1v<B;G+=}VMjR$rC zGBdy+@~VTwM5>wlnqt}V*4v|(F+1zlJF!S&v7fJ}g+`S&So+#G6CeaW#=y(A_2or> zn(cb5!@@yE<eIj$n4``H7I+Y~Ay7Af)lj|v0|n+*caXXJ!itqo&p+_I3s=j)i$L|; z(b=g&h55@=)AAWYU$J`XW~C$-_DF6w47sq+@E6-*T6h^y2w`pV{igg1&GUO?Gy*z< znz*~{7I#>wMuw2K5EDjJe8XsKCUpYzKr`@uA9M`6Z{GUi?>sfLbabq9Dk%2`t2$?X z{8^ZzS%EiTFaZ$7nlqGzbjx8c4?t{ziHX70H3Sb;Y(uee1?f+=R;iGLz8TuKaRY}n z*v`x4gV=CTy5L$zFvafa8WN*2{c89#aaEA|kVV&3fBEtS9aKyFJd=9#cw+Xf;>HRu zH}{>@x#$<EkzrvU>R-V8PK1)<VXm|7mtGqzbD`7S)vu97cQ`B)po=rKj~jnE{Q8Y= z0uk@%=$Po)V;@T`kem%IoW2kri?S@A6Xvobixca#XEhatO&J!C6{d3hwq5xqaA)ek zp#OyCOivz>yhI>SC)st89spz&Q)O|BK&x#2(&;{?02LI7xuiB<!C*6BW@|#nRkd|> zk0EZ0^G9z1`^N4th4d>~J?tu&GD1{MaBId#_ec1g!qBj`xdZv#sK;he<?RwU(cabN zfB4dFis5=fbVA1o-oVF4^YYa<kFZp<7BeBP#5D}dvE&7nu3spqQ7ixYrIt>&8yz4F zPneg+$@ngE7ioTysE1|ytN}O>rLIpQs9JmbLk{g+zsj#}Vr?#znk3jj-gN1b1wIFT zNpW!!>V7aq5EtTx8^R6SA@dKtL&E+0!q+YCnAa?+;T)R-toG2c0zMWT$9zS>7&ryz z?O6Dsyn-W3b7NcGz89d85^tCJ{`ISNT87^mv8n^waX#+0h)QNqe2x>o^RdnX`zJmN z?pso}&dviE2JN#W<nCQSZWN3+qz!HM{Aq5pV*Ip<JCM+ezwy3|vOIK$-*vB>yl2ZW zss;ZMP%2d_VxlV!^qHlMG5ob7l-K{Q9h}t+T|N600V>d)L->Ll_76DN-@g?wF&y*4 zF*OR6Qf8l_7J4ahB)bG<?MIS}ilrsz+?`KoY~0VQ2I!;A2V4ctW}&Jjd~fRlrhpJG z$5dY@ClQq#h`eogp0Z<$M*9T=VgM=`e4Oh3ZHYv56*N+RW?>md&I#O}b*UpjHZTYR zmwXGVA2%Z+wxpu0?At(Tq&am;H@89XgYUid*Oq?$!YsN~9K@66;YWnG$}u8wyBr4^ zn&iIK>()4Q;K!RqXdI%6D(`M7rH#rl*q4e1m*=EAbTW0*OG%+pj>&02j~uOhK*!+L zjeREd3T`o<4VTX^o@Qp+;A4U}!D|G^(#zt)VQhByz)v~yZZNzn^*iq!<iK2%jl16j zrsO<uHSF7$j?y$nl29Y5AN3BqdlinfOd*f)+xrAb5IIgy|G{$R3c#Q=>=2}7+obNz zddapnIQO)syOb&ecD=C7d9C0BY3AZAzHf7LsRf^qMUY))Q3Mr)y4uSNp)dKVW_VM) zyYMQ_TH~^_Uh<j;Oa`CqT=SZy3#nG*M93uK-BIEvTc0*Z%@*d|fKv=GkM(5!JKduB zsuf+P-f*%B8j0*9>yxrb7Q+t#z#qTmrtEO8g{Bg(3*8iN0KjWxBnryMWJxD0+&q%R z*hg;C#)bzd!bA-LD>SZw)5vxP@*Y8NBS0dZFjr?$dW@-_53YQz9d&CM_y{=_=x-vi z3F|=a2P*ZXu8{@A3{Y`n^R2(**o0VlUGCN%zq5jpPbee&!o!<`XxKG5s1>=-9cL~x z|AFTOl&;~7$;od>u`@xC8{E9ucbITGi*<r)Tt+wcHA_H*lP;?sznzfkTjsKk0xlyw zt;R`s$W)DtVpk_3vmIeC1Z5dZss5i;Fy_n&hh)nV+eT1%YiNqlMTwiem_hrD-$=y` zL!QUpmBsiSV`5K~Zl3>6glEPE5u&h}s-J4(qQCL6pfG4W1JSE`5YYbxlIYgE$Vk-f znlK_k?8bK|Mw1W8f);pMiC4Ml=ps?x9#>Q23cw-*z?4N)yQy+rh&Pwpr;whG0XJPT zbB#1|mw`7w4C^Ty;Zu>dybWj)Q%%$4B9Lo|_YDz2Bt7D~*)bvxjSX4}O}04*Wk%kS zs~bT11o|JmA2@3ajQfXJu@SE*O5HB>$19ZiumZ@mT_nLy<~4#F1?A1DEACFWyOS2G zCKe$c9Io<>e6A3q<Blbd@-QtX#*h9wj1_?9L83|{inLQ)7SSEkyVa<$7j!Wnh>vdq zdkv@p`n$EoP9QT6H-C?AXCrCR*ZVwKLjUgtX(1m%>^y}}UTcEQ6Pb4bfBT5ZJuWVV z&z~>h#t!TX;|cij<*iQF3;3SWINSQWx|Z-BaDQ76)40x<u@VQ*?ANbS=~w?Vu1-}U z$g+%I%8_2V>la$hB^0W>0TrG<6)?v@y+|mBX3&|(nQyMp|AuGuAxfxY2KC3#D?oCN zB{T!!5uT9SkBd32Wct2P*C!=-hCUSu+R6H1jrqC3GrYz0HVvww%9{i4-;bh%AauEB zD!oqbwW4);K@;@yDdv`C^^iAMt4f)L@LJmdgPP)TJ7FsSlar*2&Pl^VcceukKYR&| zEsQH+!B92e=lI<{%6<)AV+hGxzn#8Y?H0jUYwGCaVY{_x+zhjH<=Qg$hv|zI{vPz# zE01bw)cAh45K1}lg<iH;nEw-Piqwy^)9&sI0K?EFbJJ6yCP8+a8wLdgMEUzy<0GeZ z>%QuJZxxmaY4-f@nx9=VKCH>KZ$j~H;mn3(8N4Q&4t-J&9p|mKw$|2r-xff`#V{~M zj=ISL$>w{T4(T`HaDygJ?J5>H02pkkaC)dEKI29MCJsyykji6<=%fUOg>l`wM`~pU zWOmwjama6*4uBHO8@LZ=QbI!g8Z+7p$@AN^<{9B&V`U8;{#th)(+r|bn)N`+2I%8! z;WguaF@2x7Dz15-qR$`UW^i?_;A6sW3y~YVLm(A5P`H;Ioh8eqQ9K8n7b8+-?(K!& zcc`X@{Br~8;rjgQ0IXg30!Rhn4nXtpVbWva^3~LQE(Hb4-zVl9zu@jfKoEHmS57K4 zi}LT@^a1ukGZjGJI!H}=M~q_{H%iWi;|7(zgVZ*wi>9%oqS9*|YIR-mz8iyWZFJl+ z$R+cU`f%SkNo(*Zaj@#X3!_Fl@G&8wkX7MO!_gO?QDNh%6i{(MDFsLf7rf8k--y4r z>k74xp}paBj53BMyLWbfO|$;KEq1%93}Y8xS5ye_^8<a&EzW;f<5mFrbLowJwtO8r z=)mgt`N<L+eT|Kd&;em<JQi{SWCHCgdQ(}<x7}FX@17#DHEwKx+GPv1VC4=stI4dk zty5l8HNf�Yg2uYpQdNF8Q)qSHy^53nms8>9bc!pxwjjuRmi(_zWewH|tB6B96XL zry^=)IBZ(X5JO4JMB3~oN{dD@eR;o~!IUIz)MZlK+{n#DZO(zb$>_cxZkLv!<!tG5 zHBEf-8<;yNsECJ#c^>o6w*=6;SZO6&fE_VlqS$RpGO0-sU|5MbW1mPm>~{X3DZlar zI(EcZLA8XGBDSjGBUsl?H|i<0137k%Sqm?Ox|?XPm+qF+L-R>Nwnaq<<qa3tyQU_D z*&*6oJ<PH>sQT;E{a`k+RiN$12pKqglatM$@%<ssIvop5+6Uz%GX(McLp(9Eh=8zQ zMihkDbB|uzFYsn%X7ZrB5fK3|2CEIYI0BU#bG&w+Qf>w4#|@MKphTK2mHF$#*uwv8 zDx00d&?m)<T>D0yk17=5n8%C&XNZ2`4LP5pnSV<3^7>xQ!Gnx{9c^`QS2av8L6=Og zlApDj^$5$FEayhJKUc|E@dw|P>ly~#cy{pWAVLGAhMGY)3RQdn)g$gaU8>|67<~}d zHa$+8koZ9KL#!bwj-&7?tUlWVRXRO)y_XLpKzrb*j!V{-^I9xRO11drV_P`X1gf?# zq+ADpF^`dC0zRj0Hx&3Hm=`p%rtWHt32QyPQ#~5RwTSkm@!%^I@(|kpM6>^b>Y%<} ze!`fkq<(LWtYOQ}9VKK<kQ~V9!Y_^S^5Y5#$ZARXyc<mh_9t3S;CL)g9@-(d{i?gW zDQYqRtTm<bKj`AK_T9Hab{q=0R~P&JjG`qF8V!`o2O^zi1C~t3Bk;)L{|6dT({o75 z^5jWZbeSO7=Ws~Bb^VjfOR0FT4_+XhZ{~VQk_TRmQSOwsysO~(Kts>EbAM#k$J)0i z<YZ-2W!=f9$%z!C%da3!hrm3h_o+a+9qeu};NyIKAED&^Onlb%=kv5(yS(J(yc%pF z$L@a^E4L--d1l{fTrsBQ?K1xm!5k2U37<dWfXQK!t0>g>!^6HPnOjo$PdTM9C1;}= z!Qcsq@83$i$0)2vx99fB>RDg7@B}?gS_K20vx5UNVOXEr{NpqJm3*f{!>^%?j{aA< zBnAd4s2cz%(tkif(h8%~&S#QbIwN8A_uMTON;cdM#kf|Xt3wg_;e!g=mqEFsODw|O zui03pdSbq5^hT>@>W%$;7Hj+!qrHLa@@nYqlH1l0gb@lesB%#kEF8;$5*EZe%<L!x za6B-n!}*S>=e8h*7>|0rD+=p-Av{dvr0P9DRTxGOO(seLNDM%;;DFyn9f;}-?r<Uv zc<H6MnAn43H(uc=vZQc!o<r3P)DNuOA>=`pm93yJfe4|ARZYN+o>lQyVWjcEvc_lC zqxKGoSCyIDY);twS^fM0VnS}+<RB7hh-M;GOUz`_5xv$fxdrwep<-PfzP=oip8SQ| zpIILMPq+pc4j=~AA5UEu@`;FDhGLW_Fg-#X5xevrSFWg~`yN4ttC)~b4*Z~8T<4Hr z-SWt)W0Hb~vefX25ONr4gOfBbnS7Q$jJdsBRq78?Q~9nn)u$TPozPSYST&;2^F5te zQ1E?hj1jU%gk1eKt^JFYi1mywNO)s~C>D0^&QHH*tMvPIAt+th1`MuZhmK;>1BxkM zNYPO;;~qzuX#a^!{FQdz=d&3vrXuo#sawjyhqAJ28N^{e-L5x1W2Y^lPeQrKpaM>7 z7`zLe;yQ*4=;`I*?25f7`uMSY9o~vi2nyj<Kr}d;xrk!s78n);4Xk&d7=vJhW7n=O zyyPRUL8(bea=3s7A7xioZUAD0@F9eq4;bVvj03`?QYEXX!SeS}-wF{66Co6`fBYp~ zFE7Vb;Dgiq?5};)5c$$s>42e_5KS%E6_0f@#?EfF<6RIgsj>d$-8Lp$l9YroSPZi< z<ZaYdv^kF+Z7sT`-JNLZ=0NRslS1;yA0?{gpTqn9un-85u^6+Z^Ch17BHnf5y@kzV z3uUtrntV=9r_Yku_L?UEs(4wGePq$RaY1IKR@5Of|AU+2xt1SkHs{ad2uG<KM7NLj z@J&*p6Uz|qG{Zeco&e1=yRba#&btMz3G6v`@viMR-u}K5i`8L0Sqz&I_wLp0c2zG* zM?%>@D7Z$cq|^;S&S6|Z{eu%Ru{?(kF`qnPa0+-EU+a@><q6Q?7qIkY{p8W-;8Mr< zrYMUploF^g|I-0mmCl`o_ZE0I4k3M}$7r5VrxsPNg}v!4EGQsKRrwP<pS8oU6h@_| z7eS)0Zf13@<z!NpZsT1pkQ-xsQDC2JH}aY5$CeUS<Qd1rv<sR4I83FzEG|~2f_7e7 z@EuDjUX&_@5)T!RXaekTgYjueGO^8*ddV`|xqso*S--;c`QgEXEq$Yn#qUoHZ~b$K z6vx`=*>*8>fANs{%fv{=(X}G&20I_92OzB?suN6NR5yUE0)Un}6)2?E_ICPPEhPP; zjMbDY3-UIn3K3v-efeu3eFaGNR&{ZATBWDNjWp~M|66?l6R8}9^`0nkO2|CD;ex<^ zfMEB62@(dUH3rNLh=79M#Jq+BVkgWWad}u;enDw9?}p0|Qpbi#j}G5IMS+17xxt!0 zK-;+e-kO|^-~)Mid6ScC2t0xI2Gu4^)5ccpZ|{w)S5al)SW{0>7w<GQi8{%DPh<1a z%@(%M;qS&qMnH!iudtYQ#cnBU5S3=_TRk9&k<|h1K(-QjG3-8&p6$pLAr3}>UZ$qV zplQRVz`kD@M&J4|QIZ!e#wIbv%xBjF2=75+p<+!rb!^+Yd@d>TZj!@(kju~xwNIZ? zzZz&xj;a`{CmA?puoA|i!OL($`hu^A`eOIn-%8>WuUs4)W~QevxVR_)x5J4C3E(O~ zASBiEeth_ljHD!{Depf2*B3SU$^%7oqmKWnv}Zf{Lo+TsyvX;1ZIxXj%r`nyh{F(3 zc<|olbo8A@XGq9%smQ6g&z~R16Swp^kC>18+S*ZTz@U!LKPcNW_QqX;@*3R=6?a%B zfknl{-)Th7NzYaKRREg=+Bf$JVIssVoRc7VK!wFsu}awleB*zmX52cLSmW|5_kp3= zww;|<01H~832v3@c4=-%zfbGKEmyR3@WCj=gYf!5ZwSrU?Rw%w15C!G4%wS_hiE|- zmtaXrduM0zk*gxkd@dH4yH;LKSb$N(%m<b*TMUxzCPt29GI>MjcBMy;Fu(~|UI4u# zy+J7$0Hjo@$+tMg-5L0HyY4X%cVfM6ZrntyQDC4tFbplGt)zK=O|}|P1h6%(2c;v- z9G?J3wOj1~q(7~#;*ydJXz(FG^Spfdd{E*YCthn|jsVz6cejqVXAwzyl$7IyCrD@K z79==Fs}=WTZx`_9wryx`J__QL^Y{GxyN_FI0qJA@=SeHeQfuRQ9K;&Ec6f`O*%0p+ zkkM^h9aiNzdsc`k%=a^s4OL5;=GSYlCjJE>>m1S~@Uz&h0s1B;pP*XAgGPW7{x8$p zEw|0*zjSwYqE6|<x~T-+g8X@^zz_HmkXZo}?LpVlVRy<9SC_ocF*peUSU&Ok^Kb%& z<KUWm{wW_Gkj_D27kG?T>3mj32F8$|Jmo6Jgb{SmDn@0c9eTWMv@?$Ri!RbFo163S zxSutXazyzQG!43OdLc0S+<)_nR16TN84RhSaiMuAhPZx(8XBxQkGcVo^9<_)IHA$C zel>|dCHTt#Uo&;GNWgaltMk>E$s6tN*uGLbBqaq5z2<wg9g&Pnd)<&pJuN)EtGgQ} zi@%Fk`Hm(dSE<s6l@3nSG4V^L^Rup(F8!Nq{<lbWCS2xdb;qW_)$cr_kgd*+j&=aG zI0DV&LM^USkQVeRsH}k!z>OpuaSKbKa&?N`A#$+n7or$I$l?4(yYyJ7X=vylsDrP4 zMHtoa_`g8wtSSQ_v>pr3#%fpmG_M<+zopYrOG!hmcsA(hE>grj1kz(avzjp2u1CLk z<Dn!M?R49VF6<fQmKDYp=^2m+T-9SNZFpRm)~@&2Q`txY*bC^W!_gv#^KN-yyUL%# z1g$UUInxqZ)#5uo?xp1!7x%R#9z)V5b_x6bU*4#T&>qOk6V*$X=DPQnD5n=Qh=_T! z>}DBGeDO1jKP&$hwq9sG@u2uZ8|M_aw#X_J@lp3OOUa{lY=3_h1tiENe6r0%vi(uJ zOif3sq2g%RaWHFIhLMZwj=gM2ia@kxKqPgU+?MvTs2w+seKa>abHl6Lt=VCJqM~NI z@6q@>%?hNe_X6w_6SQUfNWE9?QBECUMidbz1%nDI!p@kU7_JgzJ7VTk*2jJf+Gu<J zSxQY^eN+yG`wLtX?++c-yL*oqV{`nb)}6y+Y+`J#mpU2CwYcw(u7$)u`)n)mhpOB^ zYTvBxXhjB@W<z52=*VsM4VEJk2{e8UO@16NK`xv)o-d#|F>-uyGM+3qcrbn>bDPq* ziumVc_r(&P$g$=?dfW5LPK8w5hWl>cq*Su7ez`Z+Yr!@xh)VBWcJOWm2dC36jA$Ag zHMg@dGWt<w9aOCwprMS;)4jmW7>ZMR{)}6nH_fa5q&e7Ug%^BW&Fe|q`!UHnnJH$a zGHt5u;*}G}V_xMgn+;H2y(h0?f3TjLn<a;&Nq$GuPWhf0*}u~4W{${_58Zsq-}c<D z3pcNxD>}lnz_=x{i+ykJ&3%$iFP`nf3dy(H7!zcgW8sx9y^E>uY<jy~HA9Y4SDz&X z->!x07bwiwC=nksXzZ0$Tr3#_-H$gJ(r34mW2l{zQyAZ+&Fi@>QOo?{@vp=qD7N=Q z_KxgH8XBv@BsrD2^9(afIun}T4sBU}QAeTZq14Il@PYO|6&_`v`Olj4TQY^OS#szm zq$o)acWaCWd&TUZ?<l*O!&yc_nh&%!-^p*8nlx%(7Ud_9i5x|`b{Vk(3JmlTk~@kS zUhmf8ycrv*c)}H*S?^XF`*roIfc7_WvIAz@tB<2*1z{U|`R#l!wss8jt~1v8{#hG^ z1MOobb`3LkIDY)?d{@LU$y3abl(~Z<j*5ehloPa;lhEL`mpy0OrzfQDSf`WXvVWC! zbs#`Vs-=ac1+jSAxg2B4w)U6E+W@K+WM-<=seqT%{1J%Lvf{{)$x^h*GH{85ta{qo zD%#9)h$?{?21=r3oI#UGX_**9EgKN!6&a$d|Ieay^xi`ozRD%a8>Vbj|8L;2E-`Gb zVIG$<t|yaSI8z}cX><r}>4w}VAWDe~qpK6%4nmASo{)p6JKTig?#V<~xiYV8W2-Ty zY5Yhfw7eBs+>Yr#r39j*Aex*F8>YBb<^DFtxnA5UNN^*PzTx*;tqSZqt<!v(hD5T$ zoB7}2=p-eh3&`BbJuSNUGm2Z)veHMGi8?$i43P)$D*YH4ng0*S7Yc*oIQD^8>HoA{ zR2ldfA-+v_tMw8k?z~YW!Vh3Gnu@~-!hY;J0M5UOlIQudbqZgtK6??@1Q52nudhCw zFt-9pO?r;;M*Rq?fAC-k{|>^h+I5?~hfL!4L@I!C$FO=}QZul(>TcAYM)0HtW=w|e zB;_0i?*4y1H;EMX2Zb?;qOEi&D{%6tkJ-xT>dc*vL}u6g@87q6%|zF5NiDs`fkcdX z(R;{%F^R}~0L1`m4{mV84WqXS%Y+->?Y#BEYLtt#U4n)W8zv><F5Pcc$x$B-)O-$? z>W%ByQNG~z4g4=o8gY6T2VQ;b>q~gKmM>$&xP$BD?XzR#z!n}Hx&+DujJIYbm(+jx z%Vpsz#7qCW{r{T-eVb@>=;`MH$cOu4$vi=egoB%QQ}k#81yQ4;P(vJ5lv{31SuVit zs;W)=E8K)i2B!dsf=6qg9(jtKM--%B<@mq6zlh!9qHw~X8>|8~H8q407%GBTMAUYI zmHQXCe&V5`=pd4UI5cSSFQ}<`3j8s*>FTc;1N*s)Qt5a{BO_j@daG8aQqX7o{rk5H z6R4oX0i|~zGMY@gi}V0hduw`JK#xLV97&Hu3<O%?GBGw7insqe8=Mr<JZT9|3iE7n z0n_c+fv71YU}F~V*Z${(q@R$0#aMkpTJh&{OkCf}9pK+EbNRP*s1eK@8>l})rPQN6 zLIDeA)6FFUH$Qrarzo)){R_~W<DYCo`N5##)r4yMm)tvxOG~z4nXoi?qCf+zhOdLb zQb4N)LQIfV0L{HRSmuuZH10PM0yc!<6yW5b;6`-qXUM%cU9GLT+pY;bzc1_Soh%U! zTyL+6114F3Dm?g4oJ4B)KZ6H}6}XZPop5Xx^B!7f7*>O_T%w-*c?EMB;;s;J3jT$_ zcS;1OJj#jjEX6i~H7EJEokq6+41Ix+-PA*?4ao_-Ju$|e9zizHoZu%Z<7~fJ;D5Iq z&gB1`5PMiz_a3{B<nb<$O0~6t2PqwGPjKDnV8q$%>+2iPj+wm^>(nGtH`D*Oz~&Xl zigh?->n>S1CiixB5*X^sCB!<KV<;Gic>>?KL~p8>-|mEU!<h&m8OIER3W#e6f8wHr zOw%};dV<^?lWBMCP^Cg*+F+G$6_z(u253`hX|(>kA7^JbeQEV#z#-Gu(_>e_<@ies zYuE*bV*oS1fmrIjk|vQt{J9o4+nF*qHrHA*gv>VPUUu%{u4&<{Ro2X!;SoMi97g6m z_ms*$LTyZ>FQ<u2>5<Ysr-f{Y6?@}y1KhK9-qatgJ?pRi!-2$x8iY*y_0VnP$4|Os z)hl9<yv-c4)G*1ltrU&U3jj+{x=u|@02J-!(ed|^OxzsfA><DlQ4A{3=f2;HK~*hF z26d_Y_pFV1-RW2HE@UxG_-oe_x~12UxkDh3A}@LsjR{1LF$cmt2L-=}+cx35a|cYd zr5{L>Gh>w~We=_fgoFGU$ux?^^J!BNzv7B6mz*8Ws}snz5Klf%?$@xX+OZkF+fXJ` zm_e5}S%o8utzMGy-*hUI*3P@REm~)t^TYP84G$%UM}=f|JDBAl%W9!1#=3ZeUntBk z{jd^+WS)EemY64zFHRU-v7Ym))uL8O&KB0LF|TTy8<^l}&`tWfcj94(!D_n69=Se~ zQucP4M%G=Y%n&|3HHDzzao@?=({zYYH!ZfQ#YyuMtSq9bV#<4Z)JcC_f@2RnKQ)kN zDb}Qv8x9-|TE|Z22r=_AHyqMZhlGVm+kKjiJQf!5LP2t1w8%ApSyxL=&vBRr3ZSq_ z|5K#N=XagueZ|g0zw?lO6>@4}RFXV;GdO#LMVZ;1UL(MPnwvp4Pi-=O_pS_~u<UaB z1N8My+>5K30!ksOU8hBQIZf-1n!oh&roIiWr|Y&(J<|?~{PQg%6nRZwYTAAYl>N|k zyMM>S5Oz4~K#_eKb;VmTwugbf>ev>3HG@-{npCT$IGz?MtuYkn1prXO$^*Lb-8)j_ zgIp8N(a}+=4D9`kuZ*nE?-iRRZ1I)czyEHwBlsAIj~tBv*Am3JRpq^sa2Q{3dcx_7 z?E%f@SDQz@kFqaUo=K5<9O_Jc_Bem!<@;gbJviSvIyO5^bGXfFR;{XvnI0cMcx&@U zdf-yk>!+H0Dw=$^<cu1}&vLf(4J2h;qYVzH&r~c`J5J>um1{92%R%d0u;36NE3!xh zcr^JGc~becvV-J#U3=77Xk>)UMIR~}U2#|HQcuo!`a46jaluJmDgCTKuH|Jh_lRSe z0Ry-yk6elJwLk*}RbXOVoD5`46=H_KHtp>N)D6n)UfiXUV!R<ZvV-mrhhf4K&-ZNB z_anS5LpEy(^&s*GFm~kv(kHH-O{`G=ECL<Z)c>ODyW^>D<G;ToB;%M7g@Y0@%ibL$ zo2={=D%q>-8#zXy64^vH3E3kdWtP479%XNykKgZk{&?=!{krdea&o@ox<1!?(&}Um z>y_|ePWGBL7%Cxmc-gu(Zh$W4A<w5zgA@;Irl?hCwyE#PDq>uO?@&w;<I4spVg6tU zo!D_+37=hNp9vGo$-5hTHG!Dw<J4`D?;wYg`%TD9%7#%SabRGUdyxAjI!^4G6i?b? zW=U3dB`k)@K7mZSC*V6>u1CU;)?4c9xG;0~%4<J(7O4`-#;dtzi4@(qG=6vJg!Eky zQ3~{^8vK^iK<CSUOyNw=_12C`F?+R56!HC&C*yfPI0Rk%uhs3%LNy$FAzx1)SZ~l* z)*UYARaN0mR(u8c3b1RsThBW4TUW2pAm#prTTJ|HyY5_Xw!>qnPGO&i!>1ec&~0r! z*n}t@Kgdz!IIF_HkBoVC9Ue+^?-Md_Vq|_snuzfEJ(x5uy1LTbOBL8k!K3qpDoaZv zCOR6zh&zSL>3tOL?P~?!o1%Kf9`<Kopqy9W%H=p&{J=9NddPmOPi6YMm8p7HY^bNZ z8>SFIAP$WlrlEqb9z~N$m+9+?r)k8&XF(q`f2@oyS}h0#BG(O1*!Ms$;iKmNI^Izu zaOk}PWcECIM1AE--g1A#o(~Ly5EnR4D;InD&SOWEpi?`cGo=Wv;`dVd7ezVQ*^?Wm zk+oZ|Bhx+4_P5$iUa-{4QZSWvd+BLZnSCcsM~9`GqN+`s{v#3Fzn~qzDJLVBK}hu9 zom+pD{WWA4*@E6jy(r&0K8>sGn5QsMbdIfkUhh5i$l<TMyS?@9hc59gag%8`h#Li; z8>}<FNoamVd~ehRW*MKQ%vd0NW>;1Wx#cJx?pzhL^W52G;nu55yB?G=o+=Z_@Aq9N zzBZ7|@@La^(JqNSXr}FkF1)6#vF2*6pKJA<+?vhkS!bVxS0&*y-c3b+Cp+1BA4E~Q z*hIQ2kXKsKh5#(l4v-AodzjKXxs4x9GSWIeT`<HaWf+9)`I+xOw>bj_y3W1d?QzBM z+5-^`h5@%@3SPTGrh`tgzut>!A)u;CG`<>|!QY*-2-E;fr!By|L!xrv{I3GNO?TAq z@An=Lec1u|li!bP9>UfBYVz8hux$A5PlW)R20_AN)tHz7s3L~rDM%CQK-(-_%|+qS zB#i#x?95iF`K$S6=@U)2nBa3cc>53Flq03;KxhQ%@V}iZ?64sf+-TF2S)p-HO8`MF z$ZL&SySmhsl>_PT^XfkdHd-nGh=yDL^CWCtjeVj*LVNI1N5aGX`ZW~PRXEkXkBZ`j z!3QSXr@mP(<bi(F&ki27Fy|#d{zNMj^gUUM{r07|k8_)8Wi?zDUDw=__$ObZzeIza z5TY1h4ehWnzki$Z<CEYQUS7)uLwM87%uGXi$0)_QSf1HL#kO+^B0zfQ;j-o9FF3(6 zYUKO-%O8kuq64YiDx*zK)6>4lzk?;u%QXDFI^udLhpbDIM4jEomY>1TotEajRj57C z1^tDL;H6M{M^Gfe=d2Vx@?#EkUo#Z4)wsze-Za`F2{fmh$8c`USw3*zAc_XD)Z^Z4 zax_I+^_mn@I-Esn!FT|49)Z81ePt$iSwPKafW{G!#Q>@Z*=aEPpFpI_CzTKAtNtZz zY)(AF3m~&Sw`c9Hk9n<+inwGAz*Gt;p64}K*E~kaDJf@Grz;q$asc+v0cku0jBmgg zJHNZ6NyP>!f#%;|0(Jf5cY1J1_yZby=l}e%4?d~fihYB%052;@?w8)f?{fH)CcJrK zqMl(zMyGFY+=~o>m<7)4bF=?B;|j1nJQ*X4G(dQ6aGdS=o$0;a({WlHsfPr28i1Vv z?uExwM<>a+kO-ss4r<>(U<|9af@gk$JVz~agt?0F!nw>4ZpFECH$}?f5FZ68d@$C6 z1+cHscx0&gme8mshNg;x;<(cFCk)-sMu+Fpbgwbm8kl%J$;G=O0I3?qzCYivLCw|i z?nqHHDHAKN9PuJOLLRDZd{xqIdiJfl<cBIh({NG}g2+YFkM6_>FYaq;LgMxs=Y7VN zkDO<N|4z<2;6)jP{8-Z$OKg<t%d8a0ARuE=%<3s3F3WWa>%JRvS<TMzV$#^5SZ*IF zxBh_{IMAG)f{6Js$Ocp@W#>I-UM?}9p<w6)Y(Aas?cU2dS@1~QF8|{Jz*-$N<wi;# zE(Q=>-v?zxrg~Mzf9#L-?V<T?%wt0J{(T((CsP5Z=HM#0*|Q#0tsUiJ^?iz(Q`Z}s zZ(-yIHM%Fnl!d<fnP(Z>(DWsMCi)D_Hn3Ej_pmOE4ouwS5d3qKQ1w_*OXu!M>o=Hb z&$ab17&z4K=q`Oj(c*gicAtJyyEE?f*X@@Z;QuCGYh`(fj&G@<fF9WO1k<fMdPgGL zT66@WCtbi5M}n*mBn$|Y%Ur#7C5KmFMU$ians|jD(7+SkTdDwCfcaV{{(^4|S?Y@< zrfE3gj6YvUf;9w@hAchMB09-6dFvPS1JVjde_x;hJVu><oSQ>_ybH`-eQ!Un=EW8z zj2Q0jZNgKjbD7NBwOv9pbgG4N^czlzL6F~BY}MUWBd^^fKgrEj7TDWzbT~u16O+H{ z1z=ap+q;sgx4T)$l0}_f4AMt#uTE65{|b>vzY|xb$xGH>X8J?dI3d!<X&R1>&&mwW z<*yh4vK5Lw3|AndXq=!~1EQmo)yXii^HptENcHpC>@briWQzPFzvs16`>fSJ8eE*f zG<p0@X8UoL`*c)TgI{D5WMObaz)i9NA3Fwhh@ISKk0@zrh2g}11ncE%v2|Kl#X>@0 z+mJ{!W)B@gbzWk?26W>c=*_hFiTEaFl`F)C7~K7v%s{bH<WF!@zzZ#aoA;~dD}$kc z!^+--&mO$;Y9IJBeNU_qpTH8s!SUvjfLmsMG+7xLQ1m_vv`NQ^V1<`idCRk_ymB%^ z-49-06D@WfZ;>mBJ--JZ6>3EsyAjzIVU+Xa;xD2v80Tw_Xuf<tpL~{d0OISn|0wI` z?WBeLeZE-iMSqvWi)$&jxihKS#^<a@y~OvtD-{6VVJKMro>29lU9yc#P7eVZ+E;#a z7S&jk8Kn5^4#6Kdw4QFzz6~cYA@jx{cpIGHfid;j(E-2sj@r~}dJOs7(%zL2EW!mM zxEE8wQ#j_QT@lqhH@>Y=Ss`Y4NO!8v^d#BePM-GXn?KVa6UBb;I&!Dn741F$!3L(- zjXxpkyOl)`ezM}5wK6<0@$|3X^P*G`d^%tTL{9yQVEy)0mq1c9pAaOZz#I)^^S=GA zo^h2sp7gU<gdH^>l@ub*7;@~_MC*@FeReA1u9$lB-F5TJ!A~i<Y^YXlBrYoldDVa% zA!eYBmz5FhNHQTi?0_QGb2m5~E8v6;(ebIU`0~+XI1u)rAb&+rtR6ZaSM0a^X2~L5 zJ=G8SJjf(ZgWGe+bXoX63v;(&ZNKI3Ue}KuingwFjrpCO0BjzFE;kaGs8b8&d(US* z^m$`~;JPOh=gKsFiug%q(^QAp9c?Q9^8fM&uW98D<exTO_E6n-Q}NbX9kCogINst} zvp*t^yZ_#S%|3!=CoU?m_UMe)rRCog4*<tp$4}=8Qfh}P?)xA@gBLoYuvdlDPA7Xj z=6OEQ(a>y;x^#6MPASwHV5mbMBpLTRH^hB5P!ON90dWF=ad6m#UGqGb>l&3+?R5xU zg5>*lfOG&tfeGCcnsRk~qJ-{Q)-q#6M?EHd%9)BByQ_V0WqpL5L&j)2xh)^1;^H6* z*k>r;1(z`hcstJ!7OmFk3_uZ@gM1RczmJ(?is6ep3om^GvT4hu#Hv426ZIJVrl#H5 z=*DJu1KIu$u=f@L3`s>m95<gxPnNI8KaJt+a#P!(DiQPrrYZl3)Hv@SI0$x(x;6T3 z*w@dWCvTOsIN5ux6bS8T-_#lVax2v7c^vk9U_Q?ogEt6v)alg6-i1X3C)T0hws-;u zL3r?C(Y<>lpr&=eYi_~(t$af51F)aYM+WMCo_-phNGcH|sW)J;6=PQg#{72eoAaCK z-PEpbF8MV4gXJCK`=}Q0QQk9l;p3^<zkJ@aW!^=+^RFo~tG@qqmnH&-z{exC$FDr> zu*=#s@5XGz!}L4_Z^@H6`HmI98_mHA*`U!TZoQ1WpzuJ*afIJ^s)F&yccFG~<>o;0 z(T`HF=VMqqrB}E6#6?sN7@02Zgfd%vlqZ=#IjDa@@@Cw7p`b7CjQo^D(JWq{<}g`` z!0QdRztH%o-_QZ93%0N`=tW1W3a&#Z@zyFpl5inZL1+SW`7*q&dD|ydNmyb8s0NU3 zs^*E&xAcaw%A#HWX*!2Ie+Sgh?C%<d+N(PsZ>pcpgYKx4JJuyP9ZGCUx+E`$6MNe# zGSc7LO*6XeV!n7|ex1i?iUy%a8yt&=)NMAv(2=E@U@iVVPE`k;<4ouml9-qnYN~EK zm_7bIQbL-8fPGj6gXhl?Jrp>AAbf>Ps0$5Mcb}5@T6fQP7=k~=US(u@75#qi+Q{EU zu=jz!d=Uz@?~zGZ-T6C8WT~|Z!vra8+UKhMfg%t0O4d*Rp=jAL5Hfc<WRud=A6jv? zbA6IocP$P#8{5o<`4sh)r``2zX=R-_nvcfx=5(4+HCU!#82c^Dhd0@vgX#Gj*vrEH z<m>iRhhrhml}-8-saSoX_b6ee2W4q-<m`zbHl<kc5eC9gClkdC18?uMqh=SUyXmmX zCpjHPc;dP6`gldfF_N+q|AkUpD8CN=95wk^;72flg6(_3T%&L%1^--;Gs;3eVv&dB zbVyK0kV=Ax<eiFP&Z5^~jlq5Pt(}!9&|Ffdy%4fQJ)wvK_+ZeC(9+PjXQ~H;VqU%x zVtWm8vJ<eR!D*4FZa=;6NkP@#(>FJ~?zJb05g_)J)pTeM=~jj-XJh7)p^4zEvP<QN zD61{elnDTYSt`kx`({G`JOLh%98gC#X1%eAnRHi<y?poK>W@-JzT4Q==*y<Gm%r<l z3x>YFd<Fp>@FSrai69n}Q!`or7&#HbF6(~vyAy>|asDE{Iu0(bj_dxnd)F-@&MmZN z<!;+$eYsC3j6y*{Gxnsc?qB2ODxpF?{j6%{bx=Y~VTB#W#b;zfXK%>hqGR}We=9H! z*?p~60GGg~Mv&!INBZoHoa}~<>dc`Eg8y9XSxmAXd$*a8=oTD%b>#N#wllPo&@6?2 z==K9&QVYr1_(AJ4l7s<#g!Oe(#7{+G=Le@Z*VSe48|bz`#N8*=uyP<oFgrKr1Alz| zSo}>KF+LU#a|gUtTUWU2PNr5sMa6(4gY!~aMFzhyATSPY(fpm8FTrPth{(FS_Ac(3 zg5SFlHhYpr%7>Tz?G2L5VebKf^7$w?Gcz+q^o?6Z{%69U%vsPyf+hnfbXU*<cXC?~ zIVq4IO!x^k_lFXO5uwr4QQBMK7ulwWaip22uo?XhdJlRdO4@XWP~;Tn^)^WN)Yti! z4ZFBP8#4Hq-hOH<m2@YL=8~gVI4o%AFzQg|Tg6`l#d**@;1|&IOv0XeM2<Y{Q6%Qh zNwUR>8ab93ode2_8l9C-7OX+j#n;+3>E$iYn+j;cGeLgXBH{7rj(JhaIrnedZ3cti zw7SdjBE^*{pzz@!;^3^TW!J%rJIVfsTHqq;zCgLk=*jkYkh`#1dB9qC`gs^dSP0%- zuYn$MYQh893!s%|qdTf@x7r%R!6)IJSXm+}fVRjG$-%OX%)Y;`YB-P}<>#xbOJhmw zUwQE0zE<Dw+drYGdZ@(DzPCaq#l#o~As1ed=0J$lty<bgdz-O8L~Jx>)0}N4)_3T8 z&zENC)ni^O5$VH6$BVdF7Z{YmS)BDXZD6iQwQG#iQHxY_mxNVo6s+1Xv}%uyzL>Ym z*9&m*1&0>)DszN?6WNlx8!~BIB;dfvb7oc#z`SU+QH%*07IB1jmh<kPLEf>WiY5_s zcJSj7BJ$9O*U-aQPJhgkS535<A}u``nw&YyiQ>L!CMG6U)*!`gdjgVTCCRon|HaN+ zpDw#K(K0y3K;|u(b?I`1hbu%&fK`=;hsWm1ud;08>Rqr7CK?lkKL1RX>%Ftwhw0t_ zdYDR=5`U|iTsYpZK_`NyJe!hr;>mbfLesgZ_p2=RB^5gpnh+dEOnaT{`H23k`p(|Q z9<J8|O=&(ZlX$70x37q72en`@nDX7n5A^jb?8ijWxRdi<DCJQipUw*SnblS0z3~Bs z_B&-W8A#N>HC~?wS4Oz7VO039yU$L=xQ(kyAy21=%mY{wF`vWI>oRJ2l;uv7>^s-# zEHB^_3%f0AgK3?*08gmcAndb20WvxDXv)_5N61PLeQv{#iH`vO46!+rg2>~#2|7sb zmQwM_P>X6!M-yTC{EgYAHD-<<`|p=hwkdkvn(CualLScW4-1zIl)LesUS6^rr}nzQ z<N#ThWK0zM5lkBPPcJBP;2x#^BE2q7i1g71#lDDNQg!;6NrGQATQQ3TVrb@OWN1mE zak~=R?c1-g%R<V$*GofQIC8Eg?_;t0<(juOMLM}-Fj~p05ao!(m%F!S&adlwl<2-f zfYi8f<L!)+Qaa4=h(CBcM5}EJ<>1?YGZE1te^6!sSRw@Wfa!CZh{*!tEYM&j5v}Gb z3{FX5M8L*0G<4Akce)T%_DRO5fyRl6D+tEV$^9Ygn}o*2579|UBnb3nbaKCYs##!g z_p{#X59~|tSn$1<YMHxNZnCoC<vL%8LVx*xe+&ASP{dN}oNi>^jP8ylF~!>ImkOE} zl7?^RSfeVKTY}O_6<BdYIQSpfcwo0y@E=<`Ahp*^^BZe&?Y~9;e;>mT#48fuiYHQG zI)@^+Tz^x$`%=akdv!sQ<er5tt!1Li&>Q88<RS|eigz*w@;2j^OgQ3m4K=ke@BioP zo`35(bsdlL9F5UuUv6Wx%B$w+1KNH?$6fk8F<13F1{K5NYQ-BX@a2NDzJLYkgv%|o z^7(Z-|G_t5vNz`4q*Ju3BWt+r9|}*1z!eKGcFx#D=lqGg$CaniR26-Y+iJe*Tp_bH z_Ln40is+S}u1E%!>whmcd<X~Xfm%!(aWsdC_U}tpAM8IM(jL`s--WGzT|((;qjS<L zx=<eXgxN!HeC$<J<(GEPx%Yzl+QQreqyKxu(9zml_F`@|qE)G@q>DJxaDT1@E6QOI zI(c2KV7{;89J$dtch)CAtue8+@pY)&Ws;i>`%m+C{p%mfPo-Nv+gd*{rywY`!N+}P zdp#(#j251OtM4q9&5I=}zZ_NF9uOd@_$BgZMg@IKpxNuS;0*!(UExBKPB!uS#NoeT zpUkkoNG9B3uJI+ZB{9_x6Ry5P$N0zW>!EYrXe&C%{@@j^>Qim~nK2xC3B!Da)_`p; zvU%tt@2wz?2Xqg$HOP4vwCr1oU2I5g=91fXNp>$~&(ou(7>xx+zxP-ez4B<ay3L0Z z<gdM|-V%WFr%Y{(X5n}qyG43U_{FB9e9Mx{X@GBE<Auh?z^8qoJDWR{0*oeejEofb z`#x2Wg!pqf;k{J+b#U3{!CnTVs3WhymaMI<BF0r)#SRnrqKt}+=cL40QAlFIat{3B ztDu(xXai6vU?2dLf`br9&Nl!3<Nd}egU<0T<$Cra&KQG-k3<M7y!1yJNiE~AWrhd0 zM(2K2yh-qiJ~-~)D<|V@H>ZWgrv~JOMxLRw)-t3`C~}b*!r>ZP5!6fs3wt7EyvJ`j zVY*gQ-+RKnarq5l(qXN0B+M746%`}i?)(`_yeswWY_IECZrR{N!pSAeoFV?Hseu<9 zG&i>1$5RLX*N#I=;oqoHLU_=8Id<XfZ&9$+Nm7cT*)i1xtK|3c1uJ#O>y!cCPCM%^ zg*F+>kh-UR<HbBpD0zKdM9^up*VOOyo=yP<+ZsyCL;!5$S>c$d@7<|;7Fsgz8{nXS zt^x)zU0&|YryURy126@2{r90q?-X;d%THX!l=4)$ydJJ77)Ii9{n7b+XlhMnBv{}z zga6Oa%mjaI;sqMIIR^h|)r-yPh?54jMt%cbg@sqeCu-(|;-)5)LQ9nN#ZL&i4FiJW z(lty=XZN?VJzcE0o5}I9=z2^97gzOhpHud^%=~}15<5lm${HCh9CB=wgHgrNUMS}? z4rbm7rXtY-ivPZ!bS3?g{O9n(B)N>K%iVU%DVzXzPzRr&TqpD)lbOnX+n|dU%XB@b zyYJz|&*#rC5>C!6jOF`$tXQ7<@L@ryU_9EV*q^9i<m~>&XHQ%N>G7~tVtw-~@J?tN zyVn;-EYkMQq3&pM%qj5#LPkbboB1>ZvJ-(><T|oc^)>%CH=6irMbL>V<=sqGwMOov zv-t#vb68ncvJk?Gz{>?WvT&Y+39ttI2!L%us&32B#aP8$t{{I7gk_e4H#oIh-thgW z412{cVfXdM94^**#`!tM)hn6;HRgFu1_hSKH79mv_bR3cDLN~q0{uN<j|YXvF#vrs z)%TZH|LBm=281=yI;)NTI*TiR(X(v)gY1!2qU6)!&kfzF|GFD0GU9fV67JZ?LfP!n z>L$&-voz(CW|0NhVP_H{<8NY!Ek=<8??@i!GBfq;mG)Do@vuiv|By0>JBfd{D8>X4 zgeZjc6&Thlm+zL34v&wFj10})783R#j!2G;6?(oodyeJae|w{oJ1OriX!HTf2Js=d zJHQX$GBP3t?r%ZCuYk<~NV?XW^R^kS)14rzYkCkU9bxwKJPLG19+5V?y`DX=5ZYPi zYl1XHo3^)}oEA)|WhIfR6Uu&$GG@fI{LCl!8Ksp^{f{I00*2LDi|6oh^MIvI_>X(l zg&oPy*8-ycq4;!Ks~n%N=Dqc>8>gqazDk|Sgm%e$$4L>&IYs*jON&I%ootl;lnP^s zlsaf_)eAX1IACUBVmoP_`WAV7Q)10?41Wj5KicTb>B@Et{)uT`pD0XPFlJ$;08rZj z!2Mu<AG-w^d;{QUhQtt{5=5(4DehBaxVo90WMBFlnM)^}4wu-q9Og$b*iZ1wW?Mg+ zw|O+5EE-qo^D|kp%YDgH&l1zTBd7n7Y#3w-U|O32w`aV|DIB)1{-CqDQbLr9zBi3m zF*|Tq%D3d7_dFYdnkp{P74<tjuIvF;SmcY{X;rj?)bBD=Lz~!g+C%l#&yQoUfX<Zz z0b&QRY#^DWqdOlP>{Kf6FWE_{qzJ5s|Fr3{!bL7zMCI$QgubP_sb+0A@ns>4(eK1_ zRBUf-q6_XTLDN6(s+z?ez?VSJvj#S5$bBn=#8R6p-EPe3@EpS>P>sKHOGrqML7R$= zhvzRK$pCj5fY%bhreZ)=;It}Q{aJ_p7CKf6Q@XiO;CEI*j*8MB@uJ`Ls=AEIZJ@Kn z<QrH?cUW&^^>ivUhfoe~#~CFCmg1}8qn(-XFw(eayxFgQ@9k6er|g_$k4EC_`F3wv z5G@S*CN`K&=qAOljwZ%yR9D3<C|-PscA~+&{=Ru7MJ4WVjcj^ni--97!E#BX`3Edv zUsKRBXavN)7xmXf`*8d}Mue_%3$wQ(ycSK^bDeX|5nT1x3?hF#eL-{q@+%%WtI&*y z!E#T1L<Cvz{#~ATcJQoPSieZM!;s)>m@2W}<y$@r#RqS7jl`2W5SHoxFuj)tB3W*} zjE1O$y8Y>Ju=$*qNg}X@`2<B1ZMyx}phK^Ayy&OwXUyii>291LA->%i)U-Hy+<1*% ztNvi|hsy#tj)t8@M#*I_xd`RqbG17NP(d1l^HSokv!;xN60N0R!n58y#*^(C2Me{) zlCHI`NbfIdNd}O!0IBn0*1bRI=sqA^IchcVAthALyi2{3;i!2oF})_X3zP_3m#h18 z<I8AKpdnzd6S5mb5SsAw*uQ%(iF0)F`oZJ@9o-U7db1%%LrxQfJc-7G9FbJfZ7J<< zubdtFUPI%4j_>$*DCx$D5Lgj0-_#=1p6>ha1YzQr%<y!#7NLnFArO*hZLNAI<+Msh z$bd{gZLZloecKd8E@ahJ5+uJ*srgFux1!Mv+xLoz*g;vuAHxv6HjyCebnJl;M|rID zKcD67!U?^_fH<?t6HbwT!{|dd$6Gm@w?>p7zm$M(4OW`anMjG<I8B*;)iVecLC)t( zEx}TDbAM!6-7<F7sM3_7eyh@OWVgrt=!K_6t$Qd=wC|aaD-A)I8ZqTOP1W&uJ)rBb zxt+gw99&#?uE!qyXHPiwYj28^QYe4$me!k^f4h_1C&Oq*WPRap-|6m+0A|S|l2a;# z;z_eeb<IFUtWKUT#K0WDeQF6jzeN^yf+OAEcy60kDXC;iUEk~X*_*hCFtGFTexA5C zhDP7JUa@r_Nq(n2G8A0<aJ!C6{0WGyq#za-niGuGyQ?c#|B|9KLAVb>bf`>0nAq8E zLG1vE!Bl_c<>b!8)({iVDG-|BNl8h~KuhC$9C*isg0_B~6y#d$1q?rRw82nSe+p8L z|EEksxK*OB@7m#Lb45?<lB4V=0=cB!=EVGPk?Ep<@9SFP)adD#3b+eT92M`9k+BuK z=W9o?QP{AE=6&W}?2DZ!8L~tC{flZ27}tm;{#<lsrJ<&VX3S{q`u7?sNyfgRlo~oa zKX0Z`k$fK+@dDx1p`pCP9Gn6nZ(aV?Rk%hlirw=Vut>Gvx7_QDIl`gE{k!S7^7SM> zst&7whsZGdB9jY$sZqJA*Mi^Kbu}*-fSAP`HaGylP~$)Jituc%^!Ld$1()dB=@(NX zgp<W*qhn>JPeU*)=2LwL6PlxUq^sxdNl&OPuwv&(JXBuBs71Yk_vKXRB<qo~ZrA|N z+1|m?dcAVSO>=iQHhz8v#3E0DF6JA@c}FprDM9p|0P(gV<wh?4&KFS|A8eBED=V|0 z!5V+AXw-{x12ubU#mY+tk+uk`Xa}O1T^%RZt={0$H2`N(%VmXh2~^BlNVvyNPrQ51 zK&i6C8WSR1Y9=dv)X1NOz7UIwvqsTJ%Lcc}Vr(^{TwI9sP7aD}@h`be54%1lMu?co z%h`S>Uj3T8HPUjwle-#(gi_OV7`s#3>yvS=}s01pUUq62viqr5ta(wUK$Gssb z(_6dAwNbkv(cAv+{4lreL0(t$d1%*<X6onVbjB^<U;^bS+<je`$QNDel^3>7_pNUu z$iL6aefD0ZB!dMOV}iRR+ve>QR~b3fD6K0UR~>hKsAhm_la=fb6se-pOK~tgv#a^z zio%Gyptp`T>ca*?-SYPQ^0Q89$S)wWgrp?6W*cP|MjEM=pS<%YUY96yIGJwG>vg_i z*rZfY^F99NxuNI$@kN*99v-r2UCG47MTJ`KRn0Y+nu(C>dus!xp>y|i=C2<yy16T( ztJ6<5SI!3<h))e2fQ@AhQ1YKHO6zAXIfmH=Fb^_xE8xg~c4?MeW48$0ElUlOG@{^3 zv%+fvYAx4a#k;^US_65Ojpnn;q&N9;P|ZbJe^Sp`4xx#Vyi`_SRvFjQnw>)tx*{8a zq9SE*nsV@44)NMqA}X}>j{5%oqDY+Z2VnY_ivHH_jq`g4swA>S8(pjQ$UlDcR3@3` z-_)+cNa%JmDR0Z6gqL!etslZ<M##{hV}TB*uLOx8u>AEvi~$DBuh$$i&hcGQYgwW2 zlx?6l_8QTHy1;~QQS<0DY{fdygEKDn&tU@>LdN6>iK)<KwqC*ku|)$tJY$Te13!zo zlmuJhLX>29=dY-C-Y&qTf3KV$_G7zy5Wi(~a%@q35371y|95MXsL7P4b~FEX@jZ_? z!hc)OSH@yj`jm4Gk{V_5fFWY<I~vq?%OstjEBmVVMcc7YbC^1Pk@l}WR5?rsL-;Md zLyhM00r*NGV(U4Kt%>^9J#bh|Xf!WHzpNg}eC+3#J0N<!@S{iQ)SC;q<V*<f?InT$ zq6|lC%b+G{17aQ2Oi2`~|D;ycFHa}L%5v4)CRQ6AZG@vG!hw{|M#fAdmid-h{c?Y+ zBmUgPr>JC~a|H_arU?|6xI&gV@r1@7QI90+8_^ZG@$anXs`b`cWRcBF+e+)M&2}Qs z{@P{OR1s)w*LbUe8pjLZNRa+O5~%agVMX5)YA;Xax|nzGW~Zh!H=l+sf=vz-C2Rx` zHXaB2MU254aK>nz%)smdZ!*IjmJKvaEr9=#E`+mWII~L;mz$P~OY4qEwF!j|kZYzr z6TLHwhu7lWrxNtF;;Hl%`cxM^vsbvIIyI3yw>1u*!CY$%!s*RQ9w#EmPc9v@1GA}o zXiv6RGEn^SuO2uYx9rP4NqhGDZ~UITtLtn*xyOypS1j*$$<5S>eS`Ej#zu5P0NH`F z7X6&1<zGSFB+sO`Z$U?V-Lfxq20raPI{slXrbz?>R#J1XhDb7jZ3ey!lpW(Vzf#$N zO5yK^$+R=o&@l+L?rh-%2#}D~j#K{y)<W9M&>K@N?!}4op&RIQ?7%sP^-tKn;vojC zZ`UBgyfm}z;w|*V9jwM|Xgg0*Crwda@ZnL&eweC@UdkVr-f2B-JrYNYBl6$HxUdYA zqx2X_<>Cn8C1JGE&xS{ubWD$FI2^@&&=0&WJlAqYFBp+pQG|vErXmRWHHq9u@@k3^ zkUiKt;gO~m@g$}+6_l_r92r$GnSh^d&^BqJ+x_pG>DR96?-dyoC%iWQ956(W-N|{R zO2+CNy!O0t`pe!mTtpt3Y>#Wj!tx+>-XSDrm>~A9BhH~Ow-3Na<<5(!b7wMIz4ii- zmLNIcQ9k(!VgI0ufxMcK8StZ>S1m#&@w>0umC&mIQle$QFb^G_HAsR2;99A+d&1AI zDpNgys9@^$%AU39uPa3fZnlal316rW9GMhw(O<~f8-(9y6&eddF2vu8nb&ZJG464B z;CG$_=`_<KQawo_G$*Qqt&ct1+NUG~Rl$^O78|=s$>|?h?`<o0zP{ewW<3lR`S0t3 zzd($zE_06}&oTgUkXI2O9c>;F`C{jg;f`%L<nt)`teoqxRtn0MOjba+0G2`D9LCDI z_lDr0y3~AA04wZ!>}gqZccy4{YN{AC1n?4xd2_I_W%`|+>gJX8UOqYA>H?OCvZ$^3 z^<Cdkr!!Nq;1_C52|Wo?etV?UT52qGc}DI;JgXtz<)MJC_kXo?mgz5xB)+ECjb=QX zLk(gDaH(-LbVP6*(P+|P5%z?#yg<AlIWO-{8zX6Lgo&v;mW!KB@;>Vu&PGDGDYmz} z-BrN8MJK;AZ62L;`BtX=+<WaCKo@k61g_^heLOl<8q-`PN+4jP7{DQqT$9XHw|^Vo zoSSVlXH}eDBxdF4>Z~h)hDx1$#~lurzc<juPjs9MWiT)s@wkzuKShxa$TflFAKsTY zDPW?eA^K8Gs_dIauA>7bEmq<dHKTWX@W&Y#kli(r{DtnP<DVqS!{}(7RddLDc(f66 z9qYW-O(UM6p&@{GG8K4g`um+jGv3^~D@}5>y9;^)>a02CFny_1e@D^%EeJB~@s&q- ziBqDfsSp>9YoXJ2*e3>3zJ72@*|*9yn0JL0Z@Q7;6L1?<m>r8m@Dye!Kq|<%=cSKN zEBl_*dLMl8WqE-E+2aMedA`gcy5`<A?~49Y!GPAfxBlSkh<)H6@d}5<tZ0_yyV1$5 zk1}kFvCI?{j!1>KBpJ>nLd5&Tr>OiV1%G$V56oK~a+EMm3DXQA(aqNpX^v0kWlMOk z*8L$F3ZAkh8^;J%xysPHT);i~PzzdCiYp;3R#sFW9tOzNVfDrDBnU8T1Xq`OU#-A} zg{s%@WmHs@b1^29GYF$af&NwXPFWgD6n&L}+&jh-4+AKI$*jpN(Zd|bI6MU~<D9$& z23atnfS5%Xeg4El1Ol5>9{YLk%r!witY1B_V4&GtPX8PYWDvM*-uwVZLN#C{@JbRE zw|G{<qU8qCRjY51%>YSqiShBv8egG`0bZV+#euq-ya%htl%bS#NTQg}{VoCe>(~Cv zc9xdtW<Wn-oKnQlXlQ4}&!s<twhd1pnIQPI2dF8Z`F6UQOQatvwxt+-wtt`NP~^GU zqTkU2OJ?Kf=m;r?frp<)ZiB*9zrt~9Y;U`AeqSD=6s<^{)s@&MMWJVWStGUW7m~X0 z4j*Oy#HjH`J+nQ$X>c5P0m+Y`uWxT_6F6iMOJ#(3qZg1O_LCBvjP|uV{cm)_u;-s! z?Ot%b${>WV|C8#{h|IY6R>wIb5<h+S#tr!j=9O5~8D#9d0PlQb-c{n;<{%XT%Ktm1 zy13@+o%!zebNkOJxJ;>FpC>7DRV|b%O2ve=KEnJRPYnOp+(cXAX}CS}Tx1|YpN{TI zWgpfBsq@*9nPott{ZamLdj7FRkqU~gj?&p=GekB9T$jiE9=<Gbd`MfI9@iQnE>4vf zgLtaBzrNnqSb@Firx4oIhq~7D<A<`8vxpdDgMAG@dVMzesa})}v>BhcX=<G`L7vNh z+V7HrA|oSD4`B#AT%qTehk2k1{)I^ldX>MxsR_ad`QHa)wBB5%t2B#rUeW9LZc8u5 zltDn16CqNesA7f5*ZkN5zyVAX2S5Xz2Yw1BtjQOAgOD{4R~nsgke-23@f=<dx)X;2 zJmJ+<A$z0EitpW4qtPIWHRk7k*=&J>gl8!{*UO4h3=7I|u@U%riXtQ0y~6P}@JNK5 z=!*OTN2{5q6?B+L94>w&liZ)=sXyKX0v8hTDTujK*o0~Z^7PK-NsjhYZ1!#7t%LwF z`a8CcnH#KZY!?eh(0ARtdTy4<QDKNL<$UtF#3MJu!nHY+>kO^(=b8$2iJe}UG(dft zCUzj2s%K_pWd#C)qOCT$6L9(NtdAYNRLW%kwPPyBV-C@YAQZdy`aJy1+x(zEVSlGN ziv24>p^3pXbqxL-NYT?k!%TJY_w_$<*#@6eVk0w|y6}+&^#$4{844#3B{@$yUNwf| z&;E>~uG_r<5f7F=AgP{+CC$?Suz;nhZS70m6O-#BoNL7iZ&8Zn4Pwho<3A!JZlG=I z$BHMqQy|>N?LVuHCg~?hny>UE8k+#1k6nxde_%3Aq-+8;@`vmi8ybTzT}T<|Ib@nA z>3LMLeeZ{S{hku=rA7@uI%~UA_V3@9%c<SQFgmgX3?_T6SHc~<@jw4S8$vXnAYhs6 zW7Vc-v5Ktr|J@cc_3NM&Q2I`KkmQObY#NuexiYR_147pG`%$@&oN(vyAGj^fnV;Xx zwZ0;~p(k2z#RPeSp-Lu){J-)qiUivhS+#H($>1+eu4EP5(l$6KJmQ9xg7NumG!Vpo zARPfTg(59;PDN%qelaPDZ$9dKPWvlCu`Kqygmm^G|MV<0fkm@IOl~gI3KZ1T1O5VV z#s_%NAWe8j`he|LiRs$iiQ3NMD(#e)UwryHQvLj7WMs_KXdI&W+yw@pF&BoSi;wM0 z33Te(DzBzFeZvwG9t=Gf(_O!SFx`<C)zxu33hNCt4F94ssMn1k;<e)IUO6Lc7fO>Z zs{5TbR9{Yc{`9n4VZ4rom&@$zJxh;CN=i~pp7I}qZL7yx6&#Aq?JIFX?A2+%XwIs> z^hVkll)0R2u0=G|-BJ%kl{)$ozUaDLC&*k~g3;1s52J`hT|ki4?WKrEegzZ~Bc88w zb6tENRy^*}-N-V|W%qdybN%SF<u)}Q((Jh8b3{s7<G1)A&_q$nl^9j=UO-9m3J0}M z9hB!j1WwNByl)#sw4BeK&CRFafmXUvgHDGeB&aPa1~~^LcLEW91{yqV9mr~*04I8q zPdG*BW#%fwvR0;(*32yfNAug7cNbcCU%!lW{#d(xB$Ow0UHIAR#~#V6cYIbqK9IbA z{=c5OtGhE1zc2T9P1twzOwWE%qSJs>8c0kmv1ks14mQshFGNdx9pdR#t+dH65{6&u zS(`1f;g=(oV4vsgkeTJ-8|-U-<fOYSq~|*IN+kcf=VZV+ZVcWs5cB9&_58}$51mz_ zjkWoee{F>^BB$`-7~**7`tqwBy}y%nJ&Ne9zNy3=(%#o6xRt_FpY$v=&H!I7l_8TH zDLXNq(*de70JNT_fK`U`)ae7Wp0GNscjo!iqiD-HQ~n>%hyJpf<=JztRzY4qYydV* zF1oTArNu{ekX8+3DipFq)dC1rj&@c&06A0Q^rM!`Rhv^ukW|HDvJH2Cls_fQO2pG{ zj?*(MduI66X7qu8-=X8r^q)`tHPkDuiB)idZvGKyUcv68kolRFvCqb9rz{Qx{>mSQ zj)boD&0eV9=5q3B67E|`RvVrn-B*7=b5`wa`1_LJaE0>^zw5`7N#tijr-5_~IGW6X z^&%8l((w2?;%wCzh8Crv9JV)`-@f5r{RhWV6mHW<QRG-Li`)dko0OEZt;l+}#~ur9 zXLKh&6)3+Y>tTXwc)43wT2wVt>2E94oOG=?;`&e1J1EqjnxD*y*7GFvrD|SdT6>=U zD>~Jg@AMaJ0)3HE8%>ljTK9Lsf$_r~Xw}mC17yT`l9!lwXy20)SnhEqK{rJ?(GO0Y zn<?I3Qd7+!>ZG$yF0?5a6}s7I`Co%%mQ=+Y`{SWMO-c#IZ3sITyYs5s;8o9~kI(RH z`t-_%xs!fv?rtr+>TUH)(91W4TpRSZ`WB><BDrxgw-p<zXF?>2fle9Ug(MF!?7`Cv za1CdRca&NVn-dm~!kC3Y@#%Fjq4f*ZEg4=){J8R|G`XO;K=B54bBS~Iz0qSvGmGlQ zYgiQPufsVX%m@(>F+oO#7UEY@2_64TNtt)SKW?GWuvSLJO9Z7*+d+ve7LUnQX<zI3 z*eI!b<8?&C%OLE4`Qunp7F1@n=lW>2-o#4Z+_%2G{wqr&a~Nsq2Dl2)BeE<Lh#zzH zRDW6;0Osb)d3{x|(Q+nz663mzQ5J*zLfBLQ1U%U8QHRy_pij@#xYSnje=)#BA4Bd} z#5S6prHez86H@NUqp_h4C7p9>&!4O5d)t<w&bDm0lf|N&MUa2i<$d)tA4vT<C@g2$ z*^tH$_dXD!t{Qf<jZlh^U%<Uv`1<{<#LWJ4@|O?g8mCXGDD>`~`2^Q>=leL1aDxJL z5FhV(<$<Ni{tZDsaY4b&-kg%G*NMeL!bs`*pyyyhB*Kd(wer&+3N)iXD>Kk(k+u?+ z!JrdbQD{p}W!5>|A)AE8PTKwbdnJB}<x+P^0#ZcX=99+*m+vYPMG}fZ1J+^MjC7Dc z8A-)ny#px$`*NTKiV1Cn!4O6O!@CefsPfx_Q-B&JbFuO1v%K5=-=Z%R57nz(WU_L< zNy3UUy^%s1gVj`}1<Bvp>0Uk5c_0mNs5{r`LMtU0bKtO>k(Cu590X@0m<tt1O}{u! zHNx?Ka&i(hh9_olso`iM44Qt}mi|C%h-lJ%R-}=`qVMfT9DiEeERt~dvb7OmRt^o; zEL|M(NzdUAeNy(r^&5+y9j=o`lHzNVfA~!Y1tntQ-`;qnq5S(CqI*x1KUw(K&ed5{ zzU=6f^gGzQpT~GyM5FqJ;_D&^W3{z=;RFlKh7<7nc>_lSE_hO#Uug|EnBJaOgm35v zXvoZwxU(74vA@f-6y!~W!cUfV;54)OeKy#u{CeV@g`_Af6BBh9Lv|=OyuT6aM76QB zn#@2b-B4sRRDKM0g9;eLVXXx%6x21=L-mf0UL{6L5^KNG?PplV{cBusZ6xKo=f6Vi zB0HHG2Z}|5Zgsf$C{O*S!@kGLM4s=Z$S@AUgGbmzM5O$Ol01ggj9Ht`CiUIzN(lud zeXdP6l2$PH#m?gEB!dEzvO0#9Z~NGdt*vU9y`f6Ryv#uAVD>GjwseNOH0Nxg3jqwJ z%`5O?!Xd4<t*uS}0}RcykPm8azYc@)HCYpHkf_07!E3en2TaeZ2o&X<xB0*n*9Ig0 zxevsBH>r|a3&U+Aj$-txo~UtZ+dK85y04=n?83g)p0;H%c!_wY{wR24rL3^CLY5HI zRQBvaqKiZ|d!kwwUeo6w6fSbZ72kbhRV3O%Sd@<#5yriT=@eGFHsnTL&y)84DUHZ0 z?}gBxI8wKh&d5;6KT3tpM8$zk{C$E$@srI4!y`dG;Temmcg!eue}x`(b#I4HQR&G( zCsU0z#|QQK!=)Aqj#k|nB7d<CH%gH~Bn~k2H_qwo`Sg}58ycTF7|srr{}w!~ypGk5 z*<Dq-h(TjgE0&8HeI=_Ng!FTuQi<G4VpyOS{?&_v3$jS#o}~Ah^Z4AE>e2Hd#;0gY zme_)QIYTOK<Pu6_u`x6DWvkO0m3Dj9v}6<Y469&{1j{D8{ey$skbwe~8L-Q<oKtjQ zhge~r1?8*QqhIepR{s8Y5;!>|70z7pBjvzbAW=z4wGI<?=S<zvJS)Wj5{gh<ZMn0m zA@*oZ2E)~Ui}q}l%=r3aYCW+(@p_)~|AM#Qy*)aWz#wJu(7(><&q{1PO{@_<c3-8| zasR(p+6ZCZHSLV48!rd!X;P|goeU-m7%ad2_2*f$J~Ms*yng4?dD(!;5v+1IRpYHj zvpIY0uA0mKkqagtsC9||S~T&+a<ku0i;!K6bMJs);`#nk-QDG;d7C*#Nl)j6Pqibb zW8p}F{bTn3LI!85a<N3@L${x3N8=1r;Z`#>N6{ih?W+;fOX?U<{=ruR*JLt8E`cEo zz!vu{Q|@TtD?Tp%8)jLZYxYaS_I(p8IFoS5sjZSaZVXqyc{e-BjqgZ$`5Vd8^8AOj zIH(t{_08W$!pWUl-12CjHBoC+r1PV-=-68?QMClnvI~i57LqgWjr_M%w!(J0U;jK$ zuYl)=<{<4w#oo}YtOXY^#kC7`K`q@Jy!?<E>N$7HuM>Fg5`)PUk|WsCL2+IVQK>LS z0Ne**dA4B0gUlZIeOqX~;N?i$zfOvdhk#N9%GylNzAC_3w~ePh5dy&gEy7@}?%&VA z8g)9(o~HR;7+)**8Vg{#MMtN=U(#uPgm)O!f;aFiMWg)rf3Y_gG8{iqJQk5qEKx42 zA-(wg;+0M-N=>6z8ZDu;6odKxXQ#=s4X7OJx66%*IwCfIyj`DTJSk<({H<ghq`J;( zPHbcA*1jH>tn5z-WJM<JkZr!gl0NRsaZ2cXCE>#*t@0?<anjw7fLh<qs44ZzQKa{* zk6DGokF+AGgU}Iet<NvKBThsk$QRfjv4m!fc6(5yN{BtNvulrdNEypz@bys-AZy@k zc}u5tI~$NOW3Tby97|3z^=A17B%pheM`dH<u8G%CaP<pf#Q&9{d!5j-KtcfudD0(x zWuoi%_#8RiExljl4(h*uMm!H#&5PuS=D2uqAPtVL;OhhVXFp(N5Qgpr^ipeUE95YY zyA2qFCc0Q(sk{y(`xnl2Y%MAL!oq|5g%~tBR_)Ki2SYW6&Kk#QG!vE8mE(gQDLf`Y zYaIWql+3PfwY4fCoq%lwqauT@CTxqL4C!RX!D;HnO0%k|T;`e$z$!){eZN$iY}E1e ztbRinsL$rln?*I7zW_HReps!!+$!om73VT5i@`<EFAg(9OvUy$DtoT@PXcoIRx&=b zoCG1vpBI|#3$gz@By*8-kns>pgfI;Hur6qEqhBh7G&L*C&gHHQ*r|_rW$cX^r_Tg( z9;^oqGBYeT$?~JmoiQHpA9$qf1QUGY?a1D6C_O&1U0T~Sz1HnF82aF5^h|L3<&UOk z*i{xO95_AI9*sY(J>1)#wPksovDWbjZ$<E#-qw~5{{6C<nRH9_6tQZnjfo$BBFX6a zpweCA$UW#w!38$9zFuPI%<b(0p~&wZaI_}_t$J$|GdO#U6%`eO&uDdC0WJ&J%3-v^ zb#g;@c)|rCvuNfLIQ`?G#Ta&hYhQZpMk_RDxt<LaCJ8HIKw@x-hzJ@K4#By39>Bhu z;Gzjn`#LXPC-$y=Z0~2E+aDu8)2t+MHV`V3PuY=2E82<nceabWN4va6$nSo~GBfkk z*cl$oeDd>~2u5m?R~Jn?2ucC&mo~f^D<2phh{q5*L`W^4A^0S^H(Smap+_9G;v`5S zcAw(r%89hlA^rsT2Zy-G%s)R%n_b4<t#zC+zc}G~gU>X#LSsF|Z-ipf*I2u`M51Ss zP{j%<BVOB;#tb;Kcq)nwO+Rr{ap_K4kp_!myo-n7p)1u65!d)#CnwV)y(Qf(pt0|F z8SPE8%pay)uLGs{(G=OlT+?Blg#!1<!_v>&b{hO~^rSlW@uVP37=d_Gdi8&Mdo~eH zopaXmp-njQ8n+>$HACU_(0A;UoEOp7WdsMy{KoWd{cLAhwfNu{1KZSB+8^H<7Wb+X z+K{ENA(tOCPUnRtu|=dx>!`1Fv8EfSK1DHG#$093x3a>=L}0O=KqKz3I5+TIqI~>l z=l1gm3yQ`YUDpKW+C<uD@~P8`$qA(|k?#B*E$F+TzH^CqyUaWwDy8CmWjy8Y{=3zu z`_G<Pw?G#ENNHu}(t?B9ZLU&gi*m8ykw>;KvyDKf!+^>y4lMuV>GVHV+<vw<37Ol9 z5v`Pzl&AW4kKXRJbR9f5F-gWc6F2dqxwc>XjwN5)uu{~|Zq%Wsnz8*!m$KL65bg(V z1LsraA`-TA9?1{wI-C#0O?=(r_O0<Q{<^yR3QMT{^1arz?6zVxhEphRe*vaK&VM%9 zzed4#4w=Vbd~OG;GQ1PxiQw`CWvsA86CwFz<J1FLncdCJKbg<@26c-}B-q&GYB+CE z-$LsV<~o`P5UXGbF$`s;wyk05&qT8uvU&u-aB!M@@b~ay^_R{^rs7Ejxlc6orT1<Q zmoMs?ZfP(b33A+Gs^)Ep8&FK-Bo1Azo-Gw-B@Q0UKzI@Q^kj)5eZ@I|U~v2|ka#Z_ z5+tt%V<W{q%5BYecUdkZfI>AwQwATgVnxfLq6Pm^+(W1pnP;&axEDTU{_1hZN3p1k z#p1UHOdedpC!+^#LhXJ_37V@;pYKafsrS-E18V=SYXB(u1fM0a@FNxmS8tJzs!CqU zrI7cKJ(&bR8)<;i%=6Rx400wRp@E^y_licBsc~?`C2o6&k5zU(Nctl1rHi4Sur=^| z;C~+jsV-kYa698Z5#xS-vu<;<hZ~XAfAxe$?lO_pOzG^%-B^Ae&agM5x9;O;hbvc6 zzp5K+^3)8G%G@!f=$QSgz#;zy<*3fsWn=2M|6$;|sMqrG@9$aSnwKJTX<|^pib2E( zwc04VG|ocnb=u*-gTEtm{GiQazg@~t^>JV2eJhp4#)q8K(;uaeZWr1N?OFf!bM37B zEmEs(^)^adGh*2!nqN7>ANTlp;^g0}aw+eVreeyFKd(8$6jbc=EiC>Ud{2O3pmH2+ zP+0xgH8BL5&*XO(+TIu5A9I;pCpgRw?w6?Edsrim<6k;f_vpjjk=sIK=|tY_Mvq@< zh?1IILgzj#nSaBk3`!3`z5o3A1H%>tIFP5Ow_TKUlN`q&iNHmed$bSSsJA(fm4L2B zo3X#|6<&1DRm{#X3~K3sASVM^R?-Hw%oGA7Jh;zZ3;L%2bmit=)nS>Hddq0tp6-Vk zprO0B6h1jU==Zc^s-h_{fY~`3MJD|_o(M-;(~}4z?){GyxnuwE?<sSwzdzRdLJckU z<_9!2D3@?$bSPh^Wh*a3>3wf{+yx5SH*Qq5gY{lgsM3|eCxic(vC?=lIDHx!CrC`x z!^=b=q`u^ZmI^XGG$ac=$0`4QeD3lJ{`O4jBM6n0f2rl@<`CA+N6Cb{aO0*ed-1YS zgi3Ft%{iGZ%&g4JtWu*wsV#Efe~!lziZoE)spwJYL;|LloE%4@|6^FGq#PPK8+TcD z{51XTx_5y>ZU06hYJ;fGncCHK_bFW<(@N{(XE{+cw7KjC!DE8+NCRy+_R=ftB|-f* zEFPX>d}792$4mnuPG}aRI6gwK$KbOu_M>|H*@HNn2UKz!+N;ToF#-1?v=6G4RYF@O zNp?M{<QxWjg4kPg^&<03B-EtrX<vntwY3Js<>o#nAiePKnW6h>joFht-Hu2G(VFSM zWy80Gen&RBg$g5%WwN*ru?=@KCG8_NyytAqFhwNc&F6KukUV7Cm4%6`fco^1nep*) z#1YD<9{$v8T*FuqP^;r;bKVH99YpK>`Zj$wtjvb58jR)t!^32Ov9L`sPXgJ7;X@Ix zt)-6(>RBn_g>*QGLA)8t#6A%lv0f;ouVf{iYbYjgWhnmT#;~pbI8{}@-%d%>*>+FZ z#V?;-_9rhP*<-0M*QLKp7yIqbD?hE7%Nwinw!NP#`si^3+nT|5uYpxR26NLVSCKn* z`eY35T7mOz(3w{9Xkc^YR(MucmQw>yb9c>qo)TX-a@KF=4*5-?5VwRY?e6|{!%SEA z{eEb3b<Dj-%a151XA*UT@Q^1Pyrxav`-Rt%{f1sF*^wfN!j3PN^R~8yh9`PTpG~w( z6@NRddrMRus})g*4*Yy)z_KTzZ%(W;Rgm5}TZMqWdN!h{HL5=WpCam&T1E=9zm17k zs`7*&0=nkscKZ_4LmA;p=r>0(;`d0~-sCpBk?LZz9hlf(N+^_Cw$(#`kOdNz>|61< z8y}H6<p+V<Jc2S6m@1CH)I#~gXQQKW;<QF78mo9wOZo%vb32Ii-3hcPyF{+6E*Hd* z9ptk8s&{b5)ul)LVq$m*q{A<o&$&^_;fRczP?u9i-)|!NY*Vb47U4z5kztpC=E(XZ zfMw_4Gh(oFQTV7+Z^sr>Wcqn4nY<jZ*arb991%w=+ldZ68jZOI)adg<eXcIIpMizn ze+S;g(YGj|Wq;A|&Qj!+(qUg+KW(fk7y)T<2`oR{uHlcW+Jm$w<wB2`M{#fv;-?L6 zW_ygUANKpfla$+2{Y^^AELUD}d}wV|#MA(RzhMT!68ps*4>0coYch-+%WyK9;#$-g zC2vj>N{CmfC(+y`wG%y@@d^)R=a*y^7o<f{mt>eHBm95y@jFKoPKOEF%uRlo0m{yM z|D6U+)!v%Mhgh27;(wgZW$P@_qwFns*JC^%j>g85B2G?xYocF+IrU2}g>IC)S1SGO zmrZe*WoC}g;vmOyX1#dVGU49ON<6-3zPTq#9-8{ZF1t<=68U_l;Tw96(HpAzW8h*Y zeFPzPxc<QJ5alxHRqTPK2V-@m!?cS|kMQ4S=4fL0b1dy!+8YM?8W^*{{!3o{jKg)_ zrhjibZ0zoJ|Dd-YcwOASBp2?`!9C*<hg+P!_+>u7puv6h-z^MQIgGM7KlKldM--2y z@~*3SXCc|SK2zXpIPXr3>u*?rS(bj_=xdE##kMm?#Pf|#xxHW%PE^4XL;LI{EFI<g z<8f50vd0E{fiq}Fv4j!xE1TS23J}V}ln(Jj(233-kNpQ)Pzp_;4gsS}Ys^;<(KqCN zeCvKLM`3p&CQlwCTlh%zq8i5Lk3aw=uC{s@6cObQNb>Rao@rU{Rvm~L?mWS3jiwDC z@plT^^tP)om9+9Pa~dKaBwes2KRQddXq51lXmbjgb~8$7lhL=hy1n#dZuiA-`OO%` zf(P|qO(N3wR+Cmbt6z*i*X!bZmvGr7Uiz}l&DUY2>`0RcUrSKbe{u@~5*PQ}<bQh{ zeES?h8}cGV;tu!S3ORXsqMw82CO7!sfj8>i-#J&YrZj_G3js&!o1;qij*_AR-+v#F zGvjbBoy_@Y6ZDl_Q-C-C$1ylnwcZ-9UAIB#r1CQPZ(Xes&Z8vT7{_ae|K0j6_W75; zo_+s2`svoG9t=jY>`9ArgO(3|+eOPP4P|07a16vD7%FoHj<v9mUB>^z(^<zw8FgFu zr5hO<C5E9>5G15w2$7UV1SAc*n*kAq4g-)<KuWs1Qw5Zk7LX3<hI{z#z2Cp`lNsJP z=j^@LdX}~xRs49qPMDS=Qr1DZ@bKZ{p<fDPsJu+36JkM)4KB|LGkfh??5%*NL>QcK zD^yV)I^ex(7~(D%s<rV!*xsO7!Q*q|$O9>2n=+lCbqu^$VNBEn$K0#pY#-QuY~5zb zSECPw<;Jo`d{78ZD(L@%Pn+q&Ek!|Ve9>5-c!Grr>l&)pya!Je_uK9*rs$=Dpn_GX zc6#klhhSB`-CEgPf*8dl4Vv6+Bhk3}%@Wte?pqsAG=L+>0KyP(-;sm#YfR<);wZ*B zw(rTq5txdGn+u#M!)t{cN=;nQq!csiV-!97Xz&Y1U+2hkF{HgV{P*bQ50FTL1S%ka zU?0ClO-Tvx6|@itR{3`9@<pSh;5nAlZmw6?<8HC`za+sTt~&Nk>{|#JtYh`WTo&`O znEcjq*)wN3?29?Y2HiU=A6x{j#UO}T`6q>5!{>y;<0m<f*)~)~JAe5rW57lD$(yL+ zT}%7|dCOqwXuD7xf+fXAJ<E}u9L`VBXq{))1H+GxauD+J@{M7Mna>ljg+3;UE_vt< zQ5adH(A-#<a0C%IB6j1x)J#<OtNgFe^+w9;(gB6*NrfRVn2jiRf=Hprv=Ly?z5tvW zkfd@W?v|rzQoRDk*dJnUg1L8Y6{skEtD5h{Ck_${)>&JL({YP7@2(1W*pMdSBUI3M zwc^OZnzM%cSK5NsH?<2~|K!^8;ZPKeUfc~c{w3=eylRi1h~0lvb($pi3_<p(K5*w5 zWLjeCuc6OLeOS@E%~oqXr^IJnMc5gUJlqM5E)39xV5_wLbWsS}Q=Qz;ku&3Bl~_Q3 zjlKYdBH%HSLWNIiG-Pf(fEO2jW@d8|+qGE>{97;eoU>}v&~{~pkZctURcf9p^NQTm z@?4ZDS^DL6Ig<#Q#A7bn^kmpJFlffhex^nc=n$NDzuE>EK5&<U$RHNdkf?7SL{Vty z;nEljs$EhKo5oWCv{^y<z;mZ6j5G}!wf?Y-5Kq2%ON_szJ)#+f{_*cql?&D8=|hHW za3EU;BZj?wLLOI%(V!;0aKpz<NL*@*t~8p>Us%O+=n>7a@7H5rEg5~E8)g(AGfiiZ zLW?aY^?`G8gOaCv!E+xlOcYedS~_hiVDVnakGHZGUw2u6II;5YF*YSlN0VTXRSQli zVCV|U>RFE|djPY%iAkO)efCCQ15{H+f&SqYPWh(#!uVvtHoihsf-INxpi>c33IyC# zvez#I`f5fnI;F1Z>;3rgASj>nu9>$SwQn1xK~j|N?e3MdM^$84Q7rVcfvNZu37I^D zjvqHa=c(m#KAa}8yi<IUhF2$ksvN_BfyzE3s4smbnnKcjtyhyo1_M@~BcwNU_R?ba z7Q#^Vz$oO^->*Z_fuC6nT&VOozdU$ZyIFb@We1&rXYJ4hwB}*Z+3^k&h(P{awe)S& zMSa?#{S&7ufS#Y~B!)y3pfZCea+ZF~Mz+dZU``%53>Awy!L?{z_72KX)F(-k2P&k| z2MStZD_6|YkU55~90sfDSi&nyPI5db<)gneN2a^DazH*eSScx~4J!s$utU!z8hF3B zKG`{nPGMK<49zEwqlH5pI9|ztmm7b6{Hj1dkHXV+SAGzV<hXawWoz<KT)ZwIp!vPf zlZK7vbiPU9XifBJ$Fns@0@08=e4!nEX^tC(fdnkw+L7w<h86Wves|D@KMYO>KrRNT z<3U)Wo}0ZGPF4{$3|0n&y$02jH@$N(DZ2@t2jdB^{r(#cEE7Gw$uAlZ_U?p4hRnj# zp5i5N$8OvvK4LJ)9Uf$y^L-#w13`PPgt1$F=t86ZsW4`X^MGg%UQM=4nVdpLS7jHw zH2lc0$FR3J$ffCJ{Rid6@P_3WGI`mBI`J_fj=Rvmlk5pq9;<xV7uE#s=wHo6^gAR- zfRlzhnNxoOZL@9%>nL~-8nyo3W$s1Fsqk+jm@PR>02eYcN(6mn?=#)*YIQCs?*03! z)njW|Jac^fAJC}VoO6zLR+zi8R#Vpg^<GC@?BW~0*eAM_1rSwvlX(YbssBgM0TPiF zklHi>h++U3l$ZG((u3CyQ#nfjVgMNHl!4T|=|aglS*EfE^&j<VST9r^4AoQ&)$pOX zjvOMu!CU)&yZX_B);n2EoS{LUj!!@G425I;r$}7~0O5Z*+t}%LNUIo_58X_m@95j_ zcsMHK7K@=dM#3NFQDC)yC42a%6~?V1XM;^I4o#K5R5mv^uj|1|P)U6RL=j+eUh{JF zBe2HlYS=pd1m6;uWb=F(jU~t`m8qCq#N)rz(lo_)WQi{ug%X01(Yf;+trLRGoW${x zsflX$h6KmtAH{5$VBmKXzz8~#>mbOc;*pyoXwLHtt?H42*eMXyv<49DkJu#RbzdBW zvif-g9xy$vZjgr5I2Oz(j^KL>yv1pN=6jG1xSx=i@5M#?!$8l#LjSZ6yO35^fLfMD z)j&qyfS8BJpX~Ry8fS$hMJCdp7Wt`_Y;KxB%R4(8h$#dQ34)NA7#ju52DXV`C_9CD zHrl(gm%NY#rYt!_{Ap=vSVvdDRO){4^BK@bKu#dv{Pz6<gKl^6r_HHT*)LwNPS67D zc!DDqC!DpB=Z*y8N7fM@)_fG%PY2!WqwhN{{ZDyk?S>@jpd7zTDF{sa2a+YCBb)fg z3sQml6B9*C+#gLl45mLTo57UNq7bW~LILwRpa8nLI$(HIWY%&8>_l_EJ54~TM#%R% zFRnmhz99=e4Tfho`a6?%E*lC(o$)+8y;M7&O%NRE3Pur_`ljA0_21sb!t!L%tDkOD zC|Jg<MH6|l+@vJ7^~++)uY#+dkue7nz8f!#kCrBR<dGqNDF>birzB|D(qo{urrxJl zANPXHZ?IEj7s3T80MOVAPzr6Y9YNH(6g~#QVVZ-*6C<1|4{ZDMJ6I#0MYAI`ANHIv zf4#Xs7s2Bbh<-PWAK}$`A?YjkthovdAV^nIl%&UYh#-)*cL^vR{@|@H=0zCX1Aph= z)Z?|`p5Hj}V2yP8H<4b^x0NbsB##`G=JxUSl@`5fd#p);)z#tn;Wlv@FFOK3o==(~ zRkl)DQsQ|yfqgz+A0G1~{zkt*Yw26Vux)#dBbG<Z-8tT1hwOS2D7b$Zabn~Dz{ZPT zNPYm)smaBVef*fux8U~i3o3F73(s@5UHpl?ofr@!{oaS2Wy#QCj9nQBvF*cTCQUyZ zM!AW<DR!*<gWZLbBKMk!QTXJ~(4e~{>PvwrveFyCb$`y_{IGJAK=J@~ASMckaKp(u zNOj0<!-=~iLE4_*(Qn)LCMfW7<3Tt46~#1nlLhUkeISZB3pgWrZ0zgZM5dS%Q=9)_ zs6<ieH3x`IR>|`faX#L~=S6!tZIm_L83N#1CJG(zjjduV=96<=Nuc}-dmPK3avWQx z7}qxNHDcx*P=9p&=J|d8<#YQ>c~mDRjtdP+X7#ius;FTAh_Nr=1CA9Mw=9&5Qp<O= z-ffqIf_(blx#_)0co-MSh>=Z}hxR&}uDdIfZV0e2Qm;d}C|;}|lQS{R0f5&{{yeSI zwo;$%Z=it!dZyQ4ln)s73_t$*@;f7ZVmC(eDG=Kx%?5#wA}wXnscsD;on-lFA7XV< z$Y{ltbX#mTUx%aXH4GE-e69L37>`hM=_Vl3q)JMHN3-#JrJ}wsKl{F<H~pWynJgSW ztx6^;^axet_2J&$%c*K9rv$?CPI@O&;Qt}U$4}bd--!xgDP{bow6QXt|5slzqW$h2 z9Xe)PY}XauJV2EOqLza$R$H2C`knd-_U~ZC(cRez5Q~wnru90JYm9+Dr8zt^9}5bA z4p9L_uz*VE>*`iYZj-4@M6hGaWp!2SS&Jt%IKT>AhAAL_ZR=^My(u`2G$q&)(cY+^ z%m|^;Fg<&*nE-nEiKae%zpdR!Ria)$@cI{ba&l7AGay~dLb9pPpriOe`!h=<_oB_^ zU{b#0-h>gJN3P8IW(7!Z>RxqUnBjgf0fz3VPH0|+B^1wqi19R|hLk}ZlhY*je%X5# z!`2RA_M%@V!?=Onn>`qEef@)X&Q5waH&X$1@H+r2s}(r+75v=z^WMOe03W{=c;$eU z>CdK%o(QRoGcff?9Zv%Qq!1XWDNG623&rW)KJ%DQ%3B4(wH@QP9((gfyB`!!L_ewa z(vn%6ihr(S1;a!xcxnYDbh6Pv@@WtB_FRg+=aXF!PaDa}P%un^C3;4t14Fr>!(7K@ zn(@dtcHh*d;l0gBdzL#89D_vzDRDj1;_A8%KAM7z?31$CpYch`yYaQ$#uBzs-d<ie z4gJAw|9xs+So|1SydZmHFjXQki;*d%Q9API8A;GYYF*^fmmCsWf!2<W*OhWVe?%$) zwSXkRRRKfEqx*OJZC%&z)pt~DTy_EL!i}X5$l@g$vaNeq_m}Pj<3Fi-dDwmDTB_`N z)3XFbCw{|0Vrt=oUbqG^)xd$4G&_{{9FGYiqlxLe*er8>YnGAX%Vi6=9l${_aAlo} zql|QP9CU0+Tlo9;{(2ojLp8mYm;j~)8qNKpKNJ=8@S3I6Nj8UkMPMz<sAbT|8<5Ed zrOykU+0>7fMdl3eIx~gjQ&W@Q#CU&CtYED3Ty4Wr7F)4+8tqyRuLz=w!*a2Wo&GC$ zg5^{m?hE6GkgPvEm)!oezu~|movVMb0!EvYWtPeUYvl1A>M(6Lw*%lObq26W!0Bcb zb83C(=`W?{40a{39p6wM!R^1nJms&bu!>^fLGoT((c^s7NBg;tio8V-<>Z)7aGbtw zSgMqo{s~+y8xu0n_M*>qkgl}u+n#DTd_L8j*7QLvX{MHZU7Q>)h^%k&tvO<l;JvUu zEIvG^6_j7xdru-Rh^ccGwos<lnWT8J&0YTeH;!3!@*2&&444@#;ulWLd|*o`z{P^h zja}-&p(Zp8FP83bH-C|X>SrbwCM2jE6w+rucAe+duBPO)Ik9`J9LNZR?Se5l3qoMD zx!Q`G;kVd3FbL!1=idg}AN5C%8U|v;7%m9{_TQVUt>Z%=so-=c@H!<f?q4rUtk^mK z_ZSK3)DY^UP72K^dhxw~+i%UJgnU=N`4a}IqR`m_NY>q0E(mGWN;~|d^bPFyNZ_(v z#=ncZb;)lQdo=CFbBcULaJeUKFsoj&fyA<osRi-%wZYt&jJI!fS_$Z!Zein^U?Ar; zYNUBqW!}_g4z>9!n|WVkDasVpZjDX#_#eF)3xH%F!5s>0Q##YietUh@=j)EmNQ(D9 z+BS_1ka5@l{L&gb>T@*uGmad_W7@BK*USioTiB0&QOMPPbTMu`*lC`@Eq+qr42l$m zFzGJ_G5l7w?*u)C-W_zYXM+130CteIwKcH8eH3^W+;1cF`>9zIH#86I5wAc_3K-wq zXj603eN<)Ird2<5a*d$BUQKQ|ri;HjUBnB_6Dbxz#t^y;@PdxAPO3e(!6z6goY-y; z4tek%j@;e3qyqQgXeuk-?b?KWK~n5ItUxv-0W>+Cq50I<%lXTB)Td*!<Wfh?kL_|8 zl_|+lylU3w->y}B2?a^H<2axt+oy~|eiv&LbO3TnKtyC&n8%jX@KEK)ErTx3m7SgI zHIBtWvqs_Pt^2uy=@?Kq<+I3pnB7$H;j3KDFX9|PiIVf-D{!Pi50P@Z@4c79F|O;9 z-2VW{*#6<+-_*ASTM5F+l$OHm05gB1dIteNK<bnZbge$p3zSg`4s{b9^&I6_df+mF z=1H}2(T#hHE1c;o>2{K#=3vUfbVbL@@#33ghTlvVbq5WH>JP@k^C*`8{w4U!urL!& zOCyW4iQU{6&n30lHg**_eryV^xAfJ)+isFO%$D>&oO?t=1HP+3KZXj8-q!60_yQ_$ zz@@|Qg$#Z7#v;XzF?Y~>lf^(-b$U~I5(@CYS;P9$ZzJJ-aBxN?@wg_}h}RAfuz)NY zwCeGD&hmP=@2w;uAB&?ulyIsn0clW8hVAv<USvt*{xSzek7mQ-zzqS3AR1qpRZ8ud zUhdLuF9(OKW+`79UK5X{`Cs5n=)BmxK2>uIg2uOv-CXZIRm1X^WkCo&+5sV$CMMGW z*SH5PFf9P#3V^?XKsyYwI@CNCyKloYfeZ{>s2e#t82RA?AC#y=DkISoLh6J)MPk;4 zL(A8=j1oR40Q8!2F;sHgG{nLy(pr!iEMgJy?^y6vO9dXLzIK(}(+~G{zEhc+N`qgH zj)>qc;EX39t-P;AEaj){rWXD1ZHxCpS&tdh#agK-p8MMHB&He;6$(StS=S1J-iu+q z`84lk+#Ob;A?~vZq#t)da@H-hbMZYPLnd;9=P)}o^vSa4h^g^>cH`QAaextvL+!Hm zMTHfSPu|C!qU0%w6(l|(H>$cn#Y0kNsR~#XVlMw>0cLuTz>m0%-_`1tq2iLm;w#`@ z`ha;ZaK(;-QwLyZ<^tglKo@f9YIV!_>jR~HpcF7908a)zP~QWB-r*^_VyA((HVa+& z>RHH7aIG{L9%v@-ZEa=*8t?A2!?B<3A@J(u<@*aFKRmew!MV6zv=U)4`u&r;)up3I zB~}-<Wo%rusvwe&rlp|~1?v{DFS>qv_agAJdAnq893!cijk3ibf)Fw?8Q_S&f4UL| z7+nmoAQq~OA>Chs8VEsoMT}-W=s8&4+ZBmG*>u=)ed&1i&dBE8d@(kHT+7Swq+*cN ze?8y!66><^Np~j2r`lr&y%LHURh~7go0JG(G#mVQe*;7;oq)ut)Tcv)%A!^s9UWmH zBLtuvP$+1zVSxWrr!Lx!eDWhbca~BMD8fzwWG>eCEYSW;#9^34T$1@6WEg&tVH1ot zBC<ahWi%D?{Qm1*)I@F43!R)X)dId*s%-{#SJ?*YC>2E{^5w7W-<!W>qz^}a4$h_4 zTW!mD-dde3u+&-pvx%uMPlZYV<wb(`tHg`?2#kP}*`#x(##@zD*a!hzv$$Fc6XI7Y z#t|xr`kkQjuWztpX;0gwn($_(TIR4~XMY#yx!NXHw8QF$yVX+yPaL){>LUFv{D3%l z`pYAlrU(?vr{6ZeNhkBXngP#4MnK@-8yeH+!#Vwyu~H(yUkOg&;GkfTO>a*=a0)`0 zL5tx8U}<r2aQwjo0)P$f_=zTeos?n8m8>s}zyBlncRGmvb4@2G$;Y<^IK+T30HCj@ zmTn3}`1mTSsu3|UV=uAn2nFSTlK9ui^Tr{_o!(R+%r?^jId1be2vD?~YsO0Cf4Y!L z6Md+cnn3i5I+Bf@9Z*pooD~z2h8TV;%vs7I4$uCUdEXI~ls9GdZQ)hm83AH+Fi+4s z4i8}4l+eb9fy6O@BhYT}U?_^E5Ze^zJT<bVxwiQwME}kw)(1-r&_}>w4b;na!B3hA zo12>fxCbQYo>4yv&t8Drr+tjmmG=Q`Vu1HK1}356OZSaQvzk-A{li<kRi9?AN1`SQ zoz`?e^c$P+{_|O1V+N}gSbs;uSjuym+$hlaRaVs|UR+~e$IXG25C~3F!2;~dq9Y~A z2XlVL$Y?{IAilC9#BXKx4F^Ta@SqWx$w6Q#vR*W{%j&Z>n*)AkySTD$X9R2_Hx3-Q z&tLTofraUMT%0H%tpY>^-(?q3ElV<rE&pwotC2b|Fo1yq$D5lJ8*o~NKE+;itGpWE z-|Wxi(J-h_1Si<*)0K=HXEJa%000Ri$nK<|uq-oFE99f3rUocJVF`&l(2b<oz|>oD ziTUfgOii-HmY(3jlk>ZVpaB7xW8w|w8hM2MouambO}NiBKjMAqx=TP5iBA;i<UyAP zk(*fSTaIa)E-dQ;^B^dC2KW`fXlI)wO}GiU^!rAIhnGD$A`j1<W^gqoAKadJ6;@ zK&Q_K5H~Ym*#K{#o}Rl01`pX?vyu-a#+5*X1qR{{sqMxc0;Du_$yZlbH=Rph)CIgp zU~9+$fI3iih&5zWp}RUBH)#X*XEfNiZdASG_gSc{9=`8!F#NFaiHw3m2%vX?wvQil zhk!&H=;-u{Yyz+iDN6uK6RdNU;DdnJOSr73+kI9MkmqjFaeyNfe5aj>vPD4G{10v3 z3kP&%jX{_M5J!PK3Ldczz~62;ck#gZf5;bkc*9TdQxH>v;=)`u;gHvhuVYh1Ov-}H zJ)r2jF|A89h`kR<;hj@uRXVV_fe3@-!`e|V&W1)(7!dcBfWO<Oh|Ke(Xy!T5`~M=) zK<$XSFA#Y?dN^IK6=zLLC#p<CWAzB|&q({mrVD72Sj-iZ1+Na+-j;|pxKX)REH~U| z5M8hTKlm7VcxU+PUfKDNJcdluk6squ`$-LYtLx!)jyeb~Dm=D$S5gNd#`Vm)l<5*I zQWn$vzGC&z^!ToK$DDv{^8erBG2N<;^0BkRaBjTA-@vE1WWNrIf?fHIgWn~vZHFqn zrb(Mo_i4NTcA$=mO<Cqrb9f|HFt>*GU)s~mz0Re<7ytc53kb0vR5NXCMj29sgAxxP zPWQ;ntOnZNGm=BpF;2Tm3Sahmq>1t72Q#<7S4fI1c+}@az3f~05N7mWj+q#Sr<3&k z*}{s*`OGA{V7?s#1Xp;6KJjpDShs`2SxS?}K@uZdO3(|Xt^`pFX_g+lW0wDN)Cvf5 zk{_5da3S7BoF1K;?gykj#SZTjr>*&1tDr34lU?6uxxIb}8JNlo=v=<Dn_70QuMum2 z_%X=I0KtD53_EUk@-ZpJ9V`~W<_9{kSeTf^VRcjd9B_<Mi<a`|Kyau6QYOLD1eP>% zsky>ilE7>LqMB~se<{F<nKKU2)}x{pI0WfbTIoJDDN_9UvRSBrHw+x0{gVS-_{)on zI^cOmqwzZ=CRtGEX>o5iko{q7JPG=Q{l-`plE+6!8ft39L_}Eo(j%<Jvia<l9df@g zXL1=#t?dNoqOwM&?jDAXZK)x!1*X&*MpE1*IhPr-^@4l5S!1&L?!4(#|D_y&pn`tz zBb^Z4w5v^X47h$QUuJn%QkgNhkCd^5`cLi#8wl9^No662@VZg5(=5yaq#=`)L}J=h zm8fZ5q>?VW5KXw!2%xt&Tj$^0jAJHA2p=EcgY6gg%#+R!zaHdX29TA32}>*~?L@;I z10gfBs~JP`+MvKa{dTaxg5~H6kQ*lKQdLG9Jl;E!8L%THD;--J(!mOhE_Ko{dH!&j z$mMQ4e&;kXf!I&*E&|&_o&S^wnGzqA-20A;M8Cnt;u>!!(5+P#ge`YdcF;HX%C-76 znPy{(68>H20{<lt0JgxEmAvzz1PPqZU~GGJ<1F&_7Dwi|Qiy9l{zZ#p(KILSCOC{O z+sKHNT79%fnl`|IoAEgCITELr+YKAKcP5xbj-(_Eo_X^I14^)QM61GwjNbt5wq9bw z+gC-Nu9%^?U%D(Te5a&85hzDzw$1%916ZbZ<|UOFc?tyiC#|t9i?8{eoC8EKFl979 zYMaJwjT2+$IXnEi%rYpYXw_Xu@~gepzW?kn%hY#qB7E@~hN<Q>`CN8=MokTe3qnb) z(p|W(wi^RLT@HVI31;Xizn(60Jt1Pr(Z~=10kGNGtVkXA$qnUI#iKtd7_v&s$)dBg zRTf=@if!9`6c2=pV6fFeS|{wBB6u>!qQdu=RXJ(3mFAaMU>r68cH)zND|ojUAK!ah zo1(VQn$t6JqH}9I@bIqzI4b_#S=s;DRCB-ZEhPoxbN0xw+PAWCDJd;Nhd-y;zRH}< zchJrG%K+!&6UQbhEsV#}_bu;b=}&*u?jyeovVF_|OaI+FN&t{kX7tVms&YWgTaGlb zDGUSAq`)EHpC)k(08}?KojD*v1=vm6ePxM;DDwSJJ9BPH95jIW0e*I~V?2CV=e3&& z3OwhIoA)q0{KZuD7Lcv}28AK#Gp)MVyB>Ykk`VkcOiC<I!gK3lYrGB^sU^KHLiDP{ z0aP2E=@k-+3t&dI$|c)Cy`?3|OZ>BK-6QM>E-2dF2l}-b1nAGIexngBV6&+Nf$t!w zAtgGcs*NK4CLb<L^u<u2<D7KO?4%wq3p2s*5k5*QGK>0|4WLTWpECQN$Y<K<1;}MI z18FO%MEOtWLbOMxUhmo-f;R=72UNv#qdNm03=h`7b0cCX;*Ax%*p4aV#kq;~q)*Rx zWc;pQ!)1>CX7#;((EVAF8Sw@Mkwsh;4N<x)m+8@kw_>)s5*99gpg-Fid<V|N=U+?M z-I}XF^Y`}~cS5CnGyqNP<a6KwMxo@`*WJ7xhiJkB1q8o7MTn;CDANYRw*2|qwyD^e za+jX?L=L{|`K&T7u6&>r2azU;3cR@m(m9V<p;mEpG#!sYiO-+YKLu6hBmY1_zmDOk zc^A1vuZ1yVRv2M9ZT(nyjG22;N#^=;T4wgbYBH`(v-xDN7l7|?-&YoZg!pe0{4r#@ z42dWMm=ln;h1m*frE|bt@b&dg*_(Y-6b*RWFTtSY2D^O|P8e|d7qmnOos}I=m%U~m zrbezlug5D+Qn<PKH@<D)$p!gpVEzHJ1z#x&R$L~7@BH!Oga3FpbC1_YH$asV8y)>- zK_Pmrhh8op_7=T*vU?CKO?%#xAcOHqqv&?pl*qrme}$R*>o?III=O@VPtR5sx?0B7 zq5@qHrqU!lMST7+bB9V@u^SD2s1;1buVV8H0f{Wl`(q7Uz8)B|`ws-8Kk6Qv=lEm8 zgQCCo3@r1Shy}J?yotU&8n`jz`SJb>4J~0>gwwqpC)+S)%oP#yZy(fCK-@*q$cXM6 zxwj{%W%tW)?Oi7&y@2WAqhY6K*RAnCDgaX+5VagO#`u(5F7+?#-638`M1#7pT&Br4 zqF1)Se!1{BQ<QhfL-{JBj*s2g=T6wV;?M*cr7TsD_IqH=4tW}s*=2u6fQWo$Y31+k zoW#bV1O4gzwLQbxh!Cjz>_&6GGz`#+<5fbBBwXC)vu<gD24&68+Dvs!1UD@HO)u`J zq}-Qid?Rg?rTSg1cv=q!@*1D^R+?s$y%wB(yXtm82YbzYyIcbA(fcHVZWNZ?T($qi z@L-7U{<ZyHPyg*P?I2z3g--&HgRou~)VJi(w&Pd)ju!GIiKC*uGt%N2%g=Cj>v9Lo zE|=HVq(D+*)9a128MTN4XY9q)62JilCg8~E=%;||1h&8f_j|+BJ9@H6MQuh97zhr! zH_HPEQYfpbIR?YEsKrM5EjH0uZ3*fp7{C>N2m&KPai#WAc<pl-BLL^Rc+l~L1I^A2 z-5RLNXFz><a~=c-@7fM6orDCe?_eLw@I5-+oG$Fy**eYO*eObR*V_A|puRe_@1NcB zDboty<@~jc6ga+V%3S_<bhn8WDT2e7s(YTS_vB%`3M7k<MuxQJs$E`nlredE8=3~z zc3AqSbcLQU3(7l;!9@_MI9QSaBEDw{TV@xPyH~!9ewGJ!Vx=CSYe}>)_)zJ6uxDzN zm1=1ZPG8^ZIrAzN-6`0Ao?F}dvY9&$2Tj4uve2tW(-p=7&$YDO&n;9rUoYuDo^?J> zij`iSyJkd$>KXBP>cG4=#<m<|19AfnQC)Yd|LyONAgG>;5HX|vDdR55>NQ!qX5Gri zMC!5<iKycn9jJbtlAbvEG5q@a<W+KS<zj#Uu4KulfB76?OExsT^yji+O83#S%s5aj z2^pPJ-kIqdRPRcMG0`+qH8oU^>I!SirrCkN={IQ<6BqXevmhlV1gE`cBl2+-JhSjo zV!HqOi@QvNY%&2RqGh;F<(yIIIE<ALHH`NuS<w_Q1QsUeB<mw=wS(2(xYib%sHVfV zL@+eD1oZ=$hM7KEb$v6^r*}I`*-A;N8vvh~Zr=v+@9Q9ibbn^kot%yiNE-G)&?Bf^ zd_ghz9DsX9V%YwoXLH3?kOv^qfe*l&1Fx^Z^o)d<*v(^&`#pF<)Kf&Z0E4V?CEfSt ziE?Z{%>j`A?XelvZO5A$H{IXC(ChxSqE5^6;qv%PNu46I4|&*_vN?~fp7)|T7-^k6 zYm~zRPx?jQ4rIt&13Eh#fu~o(e?!fx<Dw_e@jvTIq_}pJAD)C&%r$cG-=hU-FACww z>SDa|cMdHSu&&RwR^(<rO8y&|KA!bHZa;m*Vn*w*EzH{WGKf~;!eV*_0QelqnS{^l zYy{h+k;rWBR&jxtPfpm7L#B^FXmxD#zkrpiC1r>3!1=HCC5=ZQ814vE?k{D^RBhP5 z`mi;7>*@g(dSynU^+2gjfOI<4iUbX3s1#c7PpqX&pF3(I#|+JrjVJAWrHJh>k^Sei zFcm!9Bfr_)*>%`8K_u_b3EO%PJ41y75As*aoF;W&t!95Dh*>G#J;Kyx(@;Sk1YWQG z;^p$WIN1eV1xnx4wm3+6vMPZ)q8WSdZ=#t^x{S<WR^kRbJ7l<dYL9XyC4_TWu)kRH zSs8_$cXgse(WcD-`^^j#^E=1D2|Q&dQej-yy=e;l1D6zJp7p0oJ>l%NY1-Im8ys{5 z0UH45e=~9_C>Y?6=}Z;qmIew4FyNKm{~>h4ywaBQ$e0a71C8DZD3?L<-}QdRHQ-y% z&Ae>=qXB$8=j}vyJ43^+ggoU_K7g~er8b#87=106L*@$QFueKCqroehm-E}EX)70d z!+?IcwW9m%SU4QnGaGM@KACdd=eU{+d6L4;d+uj$q8pbI<$I>0ghp#gNv@U*GC9oE zc88R710&rnDCBOzoe|t?|J`=5uN5ey&9jwM#t`mez}T4XE8E$y?@kDYGGdX1SAEjR zzK#%`ykEq4aFyg~P-Iwix}w+r!%DCGr)b~JDtGt3yVcI^vS$Gc=%0jDt!-Kdle$X8 zlUWsU+@_Hs9LSf)ORKZ$9V<VQUH481Y!inF$lCvYubcCe`0`>akHc4#N8eUnox1&P za<|AOF3Fk%zAo-$26c|#mB}$^#ey;AgA@4cCz9)|HtZ}ci{Ko;I{DeCWjhU$wHqgM zgeffHAB8m${OsCY;P3uufUm42hExu1lJYY*HvU-pTs?gI^$&4y@HQ(oZ^ODJ2`B$X zHyrk$A!&da%qDIcaR9FeaBN+$EYW(T%l-{C8Q7_6W;~`0%>4hF8>f65YNkfMi;F7- z@n|XiA}>ccMGG+)22Nj<G$|qXbE3i{qvb8oz4&T>np{WkC_@mA7RFL9$Y|?WJl8a{ zAIsaO$q4jW>J@~3=B_ONGmEbkLSz{$E&ukMz5SGj-D`QZp;1aI$Z*$ru#zOr)i+7( zCq4D0WRp#cyQ94BKfsLh-@Z`vL|bD(0QZwM=flF^>APIf@88I)wr{Gih2tb(AP<Nf zx|^Pzun0!`Q9nKzsc~M(pXXJgrUU&=#CrM`E|H-dt-&}%lsJq#CJK)E17k$An6fxM zP2A$llp8Xc&N8!X)F|r9vWYsXKa_FvpaL1_>+>#m6#A3B>?Qvu=DF3uMY&mCdGIHy zD#B2NOC)1juHH=2vU?`zC0JF6FZYV{lihU|?WDK_<<e5Y*+|DFVAri0{raPnj?-Pm z<{N9SHBIT1mi~BMNgQMg^lRfC?rg361q>@p+r&x>9=VH#=f4n;7YGgdbTURbe%i#H z!K@I<8L<bL85??k2CA63Xrdm$KppovEUX6%O*RVYeTqvtGfNEaJI?xnwsVT8qiMMn zLG7!B1>hyj$<A)v-RvOQ7_-36{@qkKWMg&2-bQkL`;V5OtM4ModP!4bBYTr*`Oks} zn}kJ~fO(p!fRAQeY(BXsv9g!g(O|HD$aPp)?zca>Z&<68`WK;T^(PUe+_nYGE?x~w z@$hVX-8BpLb=$vjfwiBemfad7+CAnyEiTSB`1#iOd94y#4YJ~y)>Q>6vxkt1=`<_Y zf7X|iOK5RgbWV-G<G3E*fdc_-MnzAiIB*Pz{)K$2<cgol!VLO6Ne9O(yO1}I`=&}k zh9O(_^~2MR(0d`ENYpcZQ%nA&#sLS_ytM(r^<3gyg*EavNfO+cu(9)q)qgYo3U)pJ zK!{zN<)2nqSO{>wLx4zDz(@~)SYr)nMxqA3L?4vc=QZkQ5Fa$gQY%2Jh)F`FTe@@P zBv;xQ+|tsr!^iOPy&rbc<MD}R|AyFDO`sXNL9ruvc?&^L?0@<G{yu?V5&{~~l7LkM z+EZ>HF6RjqlAQ&2fF%~xJ!hc%+?HNDVVyzq7q3D_6a%suNTr+Kk+S&LG{CK{-Rgi1 z>9=Fmm+L$fRWEi|9v^%3;ldfj;qiXFT{|QB)IxgCr6S<c-XW}ev_UxED8`KE=tDf3 zx%eHv#M-3u2gg^Y74|Nhsp77Cdwclz1LZ3+3)VM(S8Vj09=)Lc!c>?o@H5Z4%7XRE z8ft~<_T-yc<578kayQxHoXZGI)f+M>DVX=T#Q~68rnOp9(+131ii}O)UI?=OfSFFK z{USeh9uUV|L7`>eCvL@U{=UOY{Yb6Uz{bYr%hSm(z;F5Q_y~XZ7z55~PIY$@VG%DJ zMIW)V#9WTYOBG$QP$4n-x=tWF6Qf4SiVRAX@~wW?{)knNoD>3`c^GqBfOInyrJXF% zaPsMBQ`rL92}7f?j8vErILWV+M1-Xe-B=`~MYut-B9LBnyQ)=KSkYI38u&?*kGpt` zI2jXDMso6tk7gzd4*>8J7h?2TWp)a^oIhZ<C&tN{3((Ti0-a8Pm;$c6=YHSUz7(m5 z!7w<KE<h9zSA)mQ)V}@=k32C#5EI$8&8~mYtHdg$YyG!!>ildrr(hk}L&9}``kh** z`aGlxB_ngb42>QOZpW(^<~-g}M#6C*S!)$Tm*J`kp80S0vHr;>E&-Sn*j%ujSREGH z0>OR;#xRY!)^26D^HNJ+#Be!?K?3AYOe_DS-D&LNsTcEkCbn{`I#R;-&jl#$3-TDB zc>8>b{8YdV_qjL1@SSHkv!7?a#a<kvmw;D=9)&SE$)?B}dJ4x7pvrSm#4C5I6fB3F z93w%N8PCp8ameUPJ<2c7m7jG*R;RimZ5rt@Ob6~7o@jE@{8C4UxT>Bn)q2IZRa>+r z1pH)-P}GgN<52l7iINC1&>I~d&LrmuE!<3ddID!bV9kd(30$6>*>gn+hp}VhP##{H zK9!O*;lGD^c9{X2B%?y?Y4M^tAAb#R3){?!BT#!{NobeSzr3-r(fJIxJ)eRXlq%q3 z`{mD`o?LLi`_ipbAnfPw4_e4o)!c#@Kz@vgx&ht&UDt3N>PCroKg$I#7QmNFI4>aO z<%4N$(o9DpLeX)|K?&*U8W7*@@qAX>$|0hx2wNsWqyvjCt&;_z3l;GGFLtJ@6rFfW zJI>~bAQ&IG^)}Z`Qqg>7OW438!2bu7XULI8(}VuN&#=&5IYkR>C=Zic#U!Hx0pZ;V zcE#j;dW&zP3j!P%yayijIK6h4Gbcz25!tucfzGMSn24Z=_lR`zmqqe-$(0B2-P+V| z2?KAN`Q?jTfiYoeG8lmR-jJ>c4z;#{D47^Sc815%>REUyLR8PL*EVf)zM$mF6wC)b zzWZNa`Fu=5(}&CbrPE9OZT)H)GsolaYXocFj3K4PEjp@E!X}?G!rXTXwxNF2_~9@o zh<(qz$tkcwP;=UN*Sf4HL{WH2**#47H+hZxtD#P^!+9&wAT-xq)9bUI^<No*xj2t0 zQ*z137c(DJK3{z~OQu^GJ9Xb;N$E?Km(8<%S)_c8`$FkaKUjT}1mqgW+`oXXJBY$e zmyr6d#pjZj_>SdlH9j#B@5VQ+!KI|35z}uoY<WT!UsF>9fPgxFnb9;P`1oX9!^6OP zT*?=I#6vdNoEnJ+`eY4ykC0#x8Eej08sAQ9KtM-+{BI9fFCo79Ptux&PGzrE2o8=p zG8-Eup(j*_>Tgw4TU}jTXw6GYJWm5k2;ZgY;1egS($mQ@!_LmUz0l3C(b>8~e$Bk* zpGs(;rInRPsrX{Dwz}!<qLVy;smE&#Zft^3g57<g*$`%r>cdA$)OU8j<LC?Supn^a zv55Z3`(_)F_VTp7)`D+O;_CLt{>Jm8nW^z{pVmOKBOs7kP=O)1tDxV0*5c&nK+fc5 zcVU07`B&|!|3yy~aB!kT(TC$>R%qG6Ts_q&T5QElV6H$d-|E)qPQ@Ts#+23Ll)*+B z{%MiT-zu_yz239jSbF_@c}ej}plNdog+S|4Ct3S9qWTiEo`bh^;S!ciNBQ(CFG?i$ zf3h4;2h9HrH<-<+b)ADD7ee|T-v9bdw{&Fb>j1y*oB4xtKr1V`>9&AD2hc>U1DPE( zzqt4|DQR{3!7u;88KM5f>}kPJXD16mU{_?wbOC^VFr09IKi7NsU3}@aOYS!4L^8vj z;Fyoo8isLT4N`jx-3;f%suYpLMIHxp8Ni|%URGL8sL(z_L!oCo8jgHy3P;2*zi8tz zw@Aw{BXb?3!EZlQb)EC7v>gs-@d;vlOLE|8LQ>S?TFeFs4?oCsP+Jc~Buu<gM&dIf zKD}Zic14DK;-7Oq3L<#2rSR3Tyo*cW_Vjp8ea`H9avwM2=M*7KY#g%MRVF<$VAukU z)`9qN96a_^jd+Ew9Z#|uuAk!-)_j9=o~gfLMWcv*zFGVx#1<ZpMm@4n=Bv-`3qDE` zqmM&N@Uf@)<M2)lHn=xUc)vPw*?o@jGL9@r*E?1Q7DGo+I&{zK5$k(Ap_6f*zvmN5 zowa%BiC(Ao07)Zf;`Y2sHqdr%Z?r&uDuUVcH6}m2R3E!I=NH@pL=XG<U4S0`o8Oap z+AO(=T9PO9)w2=}1+2?$MtpuiTLm~tv%tv$wvn!Q;O|=D{~%^E;{U;(j0&#D`i{My zrk1=NX#zv|SaxPLJRUmEVM><rq{EY+XZ|dAbWHbN>Xp0^q2)>Bt8<n<-K%i&nqYKq zvoPl07M5F7iphH~GcJ|y7Hf*v+l&jsLt7QFnlK<*Ob&k+_4li`K3IpZySTgPsS_O@ zJm4i;hsD8KaSOhbH!gO*u5y;2PsF-SFZQ;<>pWS3t`3PU%N$_pL-Yr~aA?B}2eY7k zm|v7Ko&chys{2U+VSQP+Ln?&Z@Z0y|-t#t!Jcmjd6g!K)%OmngGY`wjq6$%gveU-B zQA;u#ZY&5}qm|707{=G}S+UJ$RDs7ELyuL!-D_G^PR@cb>WPlyOP9R<Q*rW_k(&4> ziaEyi=cEi&E5e0~m8;m}AsG3rkJCSiXm)=aP&au|`zc%r2__35a5*^d-%Z#;lVrEd z)6#BMJqFvgY>>6OGuLtr{@o2`WLDvv=CRElDf*EmX*)A!I-KwxIb>0yVejMq()DQi z4b#dM4ut))w78io<c`M^12669(+n~yzV`61m0ICTO1~tjA~;ueKS=U@z-ti3MP=x3 zn^tVlLL8{2PA5oKBNe}^8LuD;`_Q_H0J1Ma!;+b~y6(Sqp+IFuH@`nFjVxY1KPlQp z0*lPNmQu0UgqXAzaf6$V(U@ax0Q&QG6tQvZC3pB&j{-u4SJPduOLfgDs)>5?h^Tup z;D5cU(MThqp}C&#nBcRh57Y%*X6#6G<;h^2FUc{<{|M9KL742DUGLobwVN~!oirnr z*~S&}N6i<EqC5HO_+8~3kB&x~6gAag#za)INDKT{0$LU^r`4o>8ww85!j&Ho&Uk$w zIfd@;D#!FYMGBvDzGP>wGT9Afhr2p{&c=Y>3C&h@N+WRxd-B;U0}YEs{mbGZ%qpq| z&X;#IqtEQVHM^ZROw`64&9fsqbj#XTzIWw(+5VHvpKm-pzuM`zy{Hs%j01WCRM&GU z{Fu~&(DOJl+({)oBnQboQNnO5NA~r-ao4+4|4J)jhq@9u!c`*kgX3HzQ!p@P4N=No zDADmoye+yT?kf&i;Xw^Y@YeHSSeE=0!Jm2~ZlOYdcZG&gCgbi$JD1dqOB09mHU*2G zXSAaqgDz<m5DO^!I;mvdw$sAtsK`@%6q@Aan+NBltmMavnoYSA(a&s3t@Ut4U|7nd zTU5;}t+4a+#%D7~A-XpSJkDt?<*&OMfuwQQ2<Zl7RmjJRb&q#kR~-N^;OrGMqT#*C zlh3s(|28%_vyYON@exf4`~q9Efrc_g+WzXu53!B_$)Ip+g*4FMpEXHSJgw8v9E5uM z5&eUYaI6GoBU7S^-<#lqS=Xda9_L??Kfzrfz>j&H?>E;+PZ|P|SX_SYrJ2|kV66$5 z#s|csK;dh@B?w;Lx{*b@$emffV^tjB;$nxoGA8v{el1(o!1!uV29w>56EWYJgee<g z_<`JVJUuJ9mw+t1)X1;0Vn-I?Y$kT^SxCWTR)TAXSad3{tjGc(7OSiUWVa*t6d4MD zz1E@hqPY{9<<EK^K%28oPYj8WOW%s)L70jBjx#CYr|s}fkO1G{VIN2S?DUU7c^zEE zV!WKXJRHWc6eTDR*M%mEFT)NqImRD4d3dvt8+4`<zoRj#Hl&k-$l_a-LcbGmST@+G z_{OG!7f+=Cw*A@bIq5e;y)0~%Z_w|jg5nBP_$X&=QqW6eVSzu6O}*P&feDexX07{d z`fl}g!3v%SOV~1V)KFn6SS`sRKMC}Urt2aWeqf<?B+~edA0R~X7@c$s5^BXd<7g3B zzGPy5t{_N_8S_rQtog7d0;~0^BN>HQWFCD)>~Tb*!n#ew!q*<<ydQ644=Et2ctIcQ z4G;EnER+;pEGC5M<>fV^uIBXnVO6$Ett!?;gJ+2sHNe`2gnm=!An)s6h$Ednxv>>2 z3<92*KArfV8O#~~M`lmm)g5X1LYX<_abOs<ShohmVfV^0jdX5hM<y5$?R|w&{Qbs1 zN*?aYY>vv?DJ_oTA!p`%ZiYQ%Ql6wr2;TRg!`0+RXcdTr0(qM`em6Y6vULVmN&~i7 z!10+-{|yQ@?Drs^+2Y%--BWhz^j;-33hT@vr-n|S_pc*R(>a_G1qECj700Q)58lNG zu3H3Tw<ycMyAD>jjTc-<Mc?i|iHIcwN3F!r$Tc_wFYbw@5xgS6(8DFxiLuJ2m(K7w zaO>{6$RnHUOnON)wlh9}{nAkA+wZPKm1(+X_5vWnoiAjL6T#i7w{WLsYcerlbN=(9 zQR4o~PQ~#8Sd+s(KLkf*e;ft#oVNV@6*i5|JX<Pi>S7Rt4YEdn;0|!;^8i*KjBNiC zJaU7Ob$Pq$uP$1Nd`G*>kGMgn|DfX=4Jm8r>#YzCmokDLFgi<-#nZy`0q~;qa{*Za z8k^ecUHNtCb4iko5&o)&y*Y?@2y&7IJf_bo`#J<Pthi{1o{Ci-n{S5A04)Ze3gp$X z%ELo-hffwJL-;T`HhFX6FZC7y2h)}jRBf2)AmLcqfq98Ah-7s>ocD5bX+6L~_io)k z-a3sNv=Tl~2uz?`KRfl*&3STtgb1O?1wFsJDVT8C^e*Hdbou(RoCsTp;%txktzRM7 z->aEUmI61ff4kBXYgb?#(rWMu{}d7t{`sHFcpHh$e^E#Vg%G8TzD#R!>Y50zILc+B z!5|>^H_Uo5gN<0|U0SI2MGy}I)HN950)y2NkVLgh3apzzvPg}=0uEphih3)%JNdGT zQQU<UTx*am0wg_P6CBqR35|&_|8)K-ww_R6fG8$I()VBQ!@G{LAMaa)b8?89Ri-H& zlGA5n`%iluF{rTeLs;?j*g;bayxi5V1Y~73I^$H-^7OviU*|vK7%(LyJ;<kf%6ABG zfe|R^HfzXQw-`C>9@3wqw3ERcN`;XbV@&+LXa{Ep+j7E!u(MIZ{okJKW)cLS9js6e zA+NrZC)@!%<G)daosh1c|IztVnPM3}kEg<##I;3ohH)j<JK=?MBDPCZ1t?kULrbi# z+vtfj<~yaQa9-*Ovx~7eB2#g(ff)@xOw7tCeG-d$VRihy{aOE$%|RXyBl`st(-tM# zdx#jQ++BrrK(0c5%jmY)O7hCxBZiAPd#;b%zgDU}>^}<6r<TmspAYJ#Y<&+Yl$*gu zS`AVB=7R}+1@L81OA}&z@94+^bth1M02azQ=%5)C8Gm_11@hlqz@i2`cdJ@NH2gp+ zc?*EI>?(doy%KqF@5<{`fqyfIHyDmZ?t;ts^=d}MW8v0U(QQu7N~*Na$rDIyk`49` z7q$OciJ4;@=c*kK_o`#1x9?D5zAvi{27{*TJ@2o_0Y~3k8iod41{gXib{$>%oh&`A zTUC_m+&R#?$i`I1a}T4lk<p%5v)=K)6j_2=;Dj*OqjNm-j?m?I9KuCB3*}M=zy9@b zDls>e1I~2oVzq5aF74~a_TKA;)RwKwK*a|2;%z(+tT(6^jP~Rd+LHHqT?Q)lh!_KW zw+k4QA$aT5{_wLJ85iI9JCiIkw~qp>KX}cQ>er$vG&{dggdi7?WOmrZ&`@l8z2(1+ zu$WYARLHvau(WrP!uQPnUzQ+q?(#b2AvV;g-DHe7R(VLJU}14^=?pB4I{>r~bZQtk z<T()P@>442CM6!IFu8Pc&@x{@9O65YEG84sRtDCqM*nk<U0ZP3L5TwV4IZmMnHQD8 zTNs1CcK_~vrlVKschx?G;d;2x3geyAwvU0H;bG3YhE9+B*KG%$PG@+Gc)2W+Bkn;E zhh;BmI1r{U|1D0r>hCt1tEmr^J(qj!uh7nY5{%th%^-H#Ie~*0Yep9KQpq5afJ8;c ze;a929AN5%ax^j2t`?SufcwTbD9WZ-{A$kZ=;@C#Oq62KnPAW?<F{rVBO`CcaOyjq zXSY4BH-2Gef1izJR$RKbFn=}xqa=GVHfo!*WBef@9IYa7n9uJ2Q8B0)3cff{OmTQV z8Y`%D_~93?+AZdVMJ8S{!h4o>-GMvXW994+<O0WmX_|5R(2GRHlHJV?=8YGFea3MO z0klC0+?J0XCzMbK?&-Clzg>Tb;bJm}&;Z4Axfcl=oh%4ETvj1u1I(g!;KvWJm!E@d z2@E(h^D_`21R@Q)hc(hAxl9dtKLDkrSi=bU!}rLV7?7Yn1)NU%D}z|FK<JmFmOS)X z0dIE<;L<>dL~=?B5u~lH{p=YPpLZ<`A417Q(QmG84Id2nzIEKO+&#M2_`Pf4YZAs9 zkzM=!S_{?AI4|vW*g4^L^K0cZ$*Z$69Xg1N0`}l)X64*%qZf@a;jtq#?fCCbkEV5m z3;TG!(R$5;h8#A%^dTA}2bZ<K-7*0b7@W1uB{3`$d;8;qN%d<hOiyNy$+(V82MLle zaaYWcmA36zt*>_Kt9Rz^D|v@lPmxOP4NQMO)rX#cpp<%Mr73l^%XH_~w5U&v*VDVw zohN#nitk;JL@-Qmnt`HA2i1;Q|E%?wp<m0=!$Tfr@4h{<dEKSaz-5gkPR4?Ong6W) zyP9?Sf(fLA@p}et<dxlG1MOyg)E;4xWq`y<;G^L;R;l!_h^dW7OswD5F@q;mi4s%b zBvBAEKGmzOT4!H00|P?%)oJ!i_p_jAp&C)=>WvAuQqf_hQR~hpH7Il(4C8!l=iQf- zN@lx}EQW@vLIUC-inv|^RKw7~Y6jSOZ>xel8x_{~54FFsYd8jqU;d0AhM?A~<Ixl) z9HZ1~*BuN93T~CXUjL<y41rTwd0KU%Ve)eNl-7VaUmsj3$}wYB4odv=^z;G#669kx z7z04_9)g-5EOJ;V&_*vYsT=C)QI^RC_C273S*SWVyBipHj`xQC#P;tWzB`G2k~z;} zB~oU+W0MZa1fZBsNIa8W2A1DSX{ue}u1*SHLPsQJF+6Z7-^XI%H~of->RcDR{&9Ja zRV)fdv#!)pA1)sbY+kp21q4W2H&r4Zhxm_~QSSUvC3MLTp497nR?bs6soJOa&HRKM zrb+t`cRE4!ogBp`M9WeXXteJla^c9$MOe9QD8xR*Ax4bCaw;>&ZVgY$@rFZx4!L^G zb@xAPskC^G44Qzkc9ULvs^@l%fMQ^cX|&d*dxuw@tl_hXlwe!)-WH);`;!3G=S9XO zzB9?w6|rVstk84SvK+W8L<G^OzaxW^oO^Af-h01h$0VaFQjd7O(3Nz0F8wsmUh=lT z=TKzRD=dhN19H6e=y7&QdUB!m;ivMaPc3eU{a@ZOeB;giH2;^*7fd3EcXgBwRAnu& zjprE`=wY7p{YsR#NK|5ooQ~{OxUrDf?UCZACF+JTtpxCUoq;D!MFg;iIAlf+bkLTh zo6@yPlW`k7@i7~DE`r!0rqtGPvi8M(SLxgrg{-N`8qD(vevQS{+)Wu?>Crp~1TErD zuM@RH7vQBHf+Z9^9xJ(r)~+G%Uz@IT1$B&W6>Gx1*Juz|3=qv$rlyPtC1qt0IyRRF zr}zcb#P%Y5&`nx)+Ec5yZ5W2K&p9m#<BQ-Dw%=2ks(+lek<)*!c6e*X(<TZ}%8E!0 z%3<Y1LaCj@71NJE$L$5xN0m15z~$({H^KDtJLgkNo(l5vA;D^DavCe;<uPf!WK5dH zZ|679-X&r8_(gdrj(KURv>wS+C2?7en?=GQ-iW+ltHHJyRJ$_CyT?^lyrzt#oe|BZ z!`>we6cKFi?J$wZQfI3uU8MRC#rGLTH7>Is4&CcPFwk|Jfz$mQbyGTsWl04!?vboC zqVsdg)6sUNphNm;b^#K4IQrH9dQyryhxS`k!*G=pw(Ll${=14mkKqogZa)?Te};6L zH>dsIkU<0W3q;Pd#qU9|>bRG<P4ZJPc_3oo=b>>H3U5_CrFFr!esp%~+(LwtJTv~_ zqHDGav{JGUNtPO7o(@IGX~_&+<MMOWVS>Vq#pj+fb}_;d8&y45lP;d71D_4dQC1Ih z)FgjhEyYfQvH9Qw8*j?Q%h}Nj-XZtdgH@iduKJq;Kl-R*>tV-Ldwc(okNeWs^l6(V zZoR0slXr`239G62&L6KLmYM1F@nSe5RhVrd+Lj5Y6hmMhyBEnGcDdHGM^v~FqICEY zQvlaQiOYrQAiO{O;oD9alK%cn-9EZW;JH2=zbF3{`Pc@%3M3X&6}GWt3?O5sDKF3B z0VZO5qD<ks0#K7h8{+jJ6XQbCe}1)!!?Avn_Z83#rkj>K&CWf_G_EXmeG;3O!$)Tc z(W6~+1Y+uYpTvCff0V}`oi96gxz|$=Sc8R0e&=dJ%Ka@lC0v#W2InBP8%$TIe`Wi& z{(d~|=cp|1I-`)468}nA(`$*<4v+Wxo5!~Jsc7cRncs#uy0WgKHXrB8F3tY@xz$P* zq_DR8Eaau#b)+Di^tsGi49uVjMC(J>WE=ceMONBB13Uk^@F8GY3tDYwb<w0Sh}*qr zZwl;}D7Djm9GgzE?emjE7^KbW!QTjddbPpOMP&uSMV8N7Vl(=w`A3+D*G&5dBNgJk z)H^*HC9zsjV$7@@Dw<26LGv|=Og?K7JS17REK<$B5{s4o9TCI-L(*9XMfJXY_$=M9 zG=juZf^>(#(jeW^-3@{$(zSGVhkzj6A&qn?-K8k4bpOuxeP?!d_+uHEopa9fJokNn zu1h70@oncPx$HRVb(0)!2Dr8`go_=u2#|EVwf09LkltOMgF=Tbw5q05)anS4H@otL zE)&BMQCKB`Dr}}6wTG`tS-84P(gwKNc1ozg4cwBXYM_Fdxta7it%bysFP1RCD)ZL$ z%nktR3Fv8c6h_EAork7=a>MabjMhx4QZgtX5+!_ZsO7NGNg&66R)IhvR=5Bh+YJvv zLDn#pyI=tmRK}5K;@MXe1UZqBZxB9(qXGJzMj5R$=Dp9C`F4lN-OaGjCjnup(RFD% zwM5o!R)-FB#^az2DwFoN_F%wrTLH{Af!Q%*%|<Yh8NuPn=d@Uhvyh~~03;+QpAC|k zf}W?j3LQt#FU~l{9W@+FDVT=k(Wb@DheM784eZlU{(wQET@_X)@I|a{i)JI?bimNH za_N)2nQ~4M5}o|!2ap3VrN<&OZk_6ha=rQFPeA$faQ`(wph$wARvq|KAnbPP{P~Za zp2D-)N)|8xK=H!b9xE}hm{cYM`Z+LaXECJjX>lEjDD(~uBrgp1mS8|4QRn_WoMXQ+ z9*HQ_?BvT@9>WL<lz|JNz`iA{V2=h71VNT-lz?FfIni@WNv(v749e|ML<~3Hi(PwX zcMJ+<7&eP;qk+@sXtE>ITfL)|_POpo$WwxXnSkt9JlrLd*wyt^-Ubh*sg2N{K%a(X zsMs<C0bQ_cIw!^UB)#pxJQ}Ut8{Y3rxV@c=hDaW#@sT0U*^&yqIEttw6w6=AS{{8Z zR!Rf9A6T1pI+k<W<@oJK*sv@ya@1Ky>E&qA4(j6?hZ7x*<*v3(J0A}7l7%s3dh*(v zJ|Jq)%cM|=>*fF27_IqA3Axvc%&f<`XERz$f$NVvb_!+=0$RT3f%UYWtB3)2uxQn@ zXp|rT+;$5hiZ=WXVG#OFAc2Y*xxN)u3QgRf!`E`(y)LL&(!$5d4lD;iiUzxoa9ARE zNAi>lG^9#KgY1L+t-91B2UrkWlnYLaAC5mZ|3<WUI~2O1!F$M|ti!_GXpLh0Dhwe^ z7ApI5Y#m_?pR*7*Q(*oI3u_>p;Wrq6_#8C{9%0Wv^@5ZEr3Hn^5~uNOK~837`A&aO z=)g`IE$s?}8Ot=kVFM#@3-M#BdL}**5rmjDRu(8Sfy&sL_R<z8>6|%=H(v9{Z4LDM zg35>U^o1(Spa+)Z8lfG@`)%H7_5I;nG=QMb@2d+Y)+s$qCOad=9c8!C)>UL_$BeH! zfAg?CMO%^T8&yYlop~k-iL*!qY@=jNaVet#Dhwcp!_-j|un;f$Bm;{SeGF3EAF?yI zMlCA4df$;pr{W}roZ6vn3#e99ROq^BDK=G9#A;Vpu)3=Xq<T*3RE`SolvL<$=Xk2h z<RF~piSDjgyr(ot5cV4JP~k<ko>r{##o6H5Pu(>4cT)o#Yn1B`0Lz!()HR0^5itM) zN<?z8QsJiy#e|rfO)+7CuA-{?nqJSMTy&W{!g44$0l@x4NgKn!kmT<h@=zH$$46%z z;XOoX4}rR@Ht^oRH!(n$`o{KCi!1zNnIWOb`ZJRn$YNCNrQpx!Wlc0&4K-0GSzot8 z2@sI$0*=2piEz4Um~lD$Pv*_ijRhx*D-{`xG1WsdYFIFOo#2Psp4%Nwl|uxJQOsR| zd?ScQ8{%9^MNOkRI5@0VVnycGJeK&7r@$~1(u`|y$juQ|HF5mPE$gsPt3PXN8MG9C zrd4844Tb>duT@0RXr0K`+pKxGX8S1YOW7c`DYI{V)qY+i5e{GyUP&s?UmmYj(%6I5 zq0hGa6}n&#{^LhbUCWWEt#iJ)15AVYnIvZNetj_hJ~TF_ByoILpN)cqfq^HhjnD>U zoz~@%00xG?1Xcq=FoLPY?4&x|A%SkiyuXTbuU=ZAIRx<0LnpGjsT4i?4re}*AcrLo zK`a$yuxMc}Yrg6zMHhcBzvzg4Tbg6}yliCe_1Y5+4Iq@He?5~MnLzf7jC5Du^9&0c z%jxEQbFh@7e_mC=bXvY6h_of$UBSYB?_WLV(DZZ95F2a6z^=hyt`EtuaLyp1%)nXK z5W-pOq4QI>a>AjBgfziHr%J%(rMC0HoYY)Jk^}Ocz|u>SH?3!sU+=tbD1ihz0%)St z3y;*#F~smvkNP(W$$dctP6CF@-v=YoI4`i{F9}8d&Al@tLiT+t54*Mh$x(HQ(cV-s z5=8t>n|4i7RJ3OEcc#;p&72UO=J9G3ZPcI{1OpK}x1UL58RI!g?y()yxDf}Xl{8nq ze3T$PezGhKkU<HPx#h-}TfY9tD?tQ>O3NA4f=f)QVXIX-0(I0;?wTq5#tp{)j)oh_ z0`QHu`6CE!bN2S5DUuHU+w?{t$SvVg*rAqtXBU58wr8a;5`Kc!7V#71d5o_kf|!R; z|Es;H4n>Y*FUL^^mT$uSXu{sSAhKMl?x(oD8Ht2?1STsOg%UAO(H1HEql6OT6krZ8 z1b>49r@6jA21YRFijf}t;Mqg#1EuVWB)gzy_tr7u^b1n<L^J3~1mFW;0oFEM5B9ka zT%063G4SwQ);on$)FZ$O!-uUt)V~G;H0k2QKe3Un!{ps2p<!Aj&H9;$gP9xzq7VZc zJ1}arm-p4aW?>a<l>QtWissqhye1Wg6j*&^K;Qwym4{g}!73-3!A`;7-rW+PZ@VRL zG`$fB&uWv&k+H8i0XH7zs=EH(-sUbY=953~SE(FTRV7tb&0S2)U7GnhTe!fNAo!Zf z$_6hRw($uLwqbdb_s_~no3>x;Uqqc;wRGr`UD&bhAE8K5ppcMDt6D%X54}C!?%4SD zHo$+H#k~9YDVi`y40SWjuWT^!de{Lou@@tTXdz?@fR7gP!Vpw|t2(a{>o5tj;O%TB z>dg%qXYgr)G>Y>B@>_Iwzz=0UOGVOK;M@G@*1X5xDoGhW;z(!-RfkiPgtEv2wwyM> zNEcTzf0^+R2d0EItsOZT18SOwq&Vjo9?XM7my`mKa2Hpj=??zbcr8=Zf}o41Kdg@) zrY5}(xU3fCs$f0H_uNQnR6L30qospLal&M^MPTI^y6Owf2m8nS%X)fx4^ECJUyEP@ z(@l^l)IW?tp#)NdQXft--(P(U07qs!m61ZNk}%EvH~fX(|Lj^hY3ueKopy8m9`{=H znmyJT<tLTeqPe}z^Xh6GLDj&bD73%GkbCwhj+l1Ms5Ts4kI_ME*9JQASDT^s%judA z?FZqME<%`D9N!Y_9h|dpF;4eJ|Ingu4r5YOmRGQ_RuSNr;KnYPoS4b=5IDhO)QL)E zMVP0tgrT!CZ^weNU%F$SGkBPpnGK=W*Vl)3W5Yb;=REskU5X0}3rkDo?#0vOo<KrD z<Az16ed#owT08T2b+O&aq~At>VNRXzKmG;KZ?I299MeY=>hkr+i3@?obpWc_j3rY{ z$L-WgeLcnpB@>-F=A}f!x);3B@e%ohhWGOl?`c~KRDRY+Ff#`^hz^q{d<hkC+;b~H zJ|qos$$6E+9wUc!`CU(2L~%<@^j=8Zs<Nu7tMqee^QY$ay5`bP)m?2}rESg4O<i5! z`={#Crn<tW!os%d>Q7zYmRDDgK6-z}V<;Xm<Ka!7u@g{~Yv{G&BcDiGa^fOqNY>!V z$XI$op*(KKLym)1oJql8!=)gH{2Fb<E+K{~g(0LjFbTp4p?|H+LoR87c%ev`923Kx zKyHbX34v-LeZz^VE55s|x|=e7jzAZ!Vcxz03)Z)bP$f=m>ZH!SKV?ndg#48t7&H?; zjqQ^aw{Qez69DYhFPprEW!|Jl2~?<m)%+)kz!8#{*_!B)WStj995y#7NSXBr=|dQy z%Lxc|4d0^$H*)9PSfq9TJS)J=(O&HIEM9-(>7=KIQkJ=;doZ=l2s^JVpHTXTobv4% zyQzQo%x7zYy+o`(8rn-mYmr#zNSiX3VR;B>e+>P_Hbh1_wi&S?%vDIrK3b$-2Q>aj z^*(bN3eJ`}rfc2a&V~ncYW}dBQ!oJlaOgrtUl!M*?{(z4bqu$xn##3mGjpwr?MQDD zlRFjy;0Z>t<EvFvgwUh2<fV|rOHR`l1A@0WqwYvBsLotVU_Fweh3rqbZYBQ#LJC%f zgJq5bAvsaowix;pmw>D|AQNMsH0&&P5>7c8Iz6~~v@@)yJLf<ji$MYGy`mRYqb#Hk z#~{q4=Z-jHEZY1u*f9VlcjvwtQ%2GHW73L_H)_xW!J+ZLF}ByAo6s}e-M<xG)6mza zprJXTEjU?fK%Z?g17{G2xIxApI2URT9{Ryhlai8Bwy@`~6c#NbV<y4X-<;Dli=m;R zaN9d`?p2gVUdjiKy6Csx|0r`imPkwM|GDI+Inuw9^)jc1A#v5r(SVn_#pNZpkI$lk zfdXTAn?nLe<2M2Zyn0*sX=|kmBJ(X1VCL;T6rxsUoq?g@;NtS-Gsyr5XTm}OGJ}FV z;g~{DB>BZ$KXq;rDe}CW0&h&%+yR?qObgl9=Wi?pLsp5(S17|8HDNvF$UlOPw&9?3 z<P=Th*}--HkF8aOP#4QUVAZCHKP_EQM^8{&hhIBgQ18DV1oU+I=I8kqv<2s8`SsFU zDohq+C77OLM)nAE4@`E{F&#y!_Tk7iq_@oc08z=7|NilP_>lFrQ^jN*4PULeEPcr- z?bX+qJZd>Ln&OD1-9Pp`zB~;xhg)=+Ut_3kibtGI`6y%Zl9qPQ+Z0SCp0jGX_kHG< z@^og0jlyFNH8~<b(AKpK)<TQrjXv5BPiq5!@oM)DzL&clJ&(H4Okla&q$Fg$sOf^z z9JZWoSn)MGjR1Dc0|zJ)pov9vRR@^c5&%!2+t#`YZDdbm(&<J)$(L+A8JpX!zAf_A zx?DpNis!+6NPG)APxsr{9Sc=1Rj$)oI^Ge?F_D(Y423~)GE|9*Ha~v9d`x*eX~cM2 z#5-27&=XQTr(!ULamF8wh|X%m1Zan1g3;XB#}~*qolyW<rfpR^dOSkF*1~+6<)_=^ zOx34%POXZ&$076z3{W@jqU{iNfL3IqS=x&=WL)M@TgK<(S}$of&)_E+1MO-!g<cju zCs6L1il4?`y==5<lj=9F8QR@esKfEO2|AJ(^h=3JcD>22T<F9jIsAdjAp2V=x<hx% zF{dV(u_U|ax4$#^0m*a10{r6IK58z4Z7V;lWTcplk!X`J2`CCgfqY7rb2RdFblC`p zV#kB^FJXImbdz`#J2H!lv$wmIG|`0-h|ki5kr*?Hl4u;w#M`qVeuW;2ogMOFa`vmR z@lqwd%TnS)3wr)?``+}f#)u2y5+foy`tDCz{=f+c+lrwSRJ|v4*4Ed*0b?gYA~$89 zK0S}_mm0_h<0asSRMpgIKm!$+F7XF5NMffw$p7h;E2DphQ$8RyH8mBy)|cw&-tji} z1V{WpqUyrNcZt>c`O>nI!BakR9IzTsO-=3Q^zicsINsFJ?DDi3@+Ed-v_4h=%_apW zT+)&`_iq{HfPoDr&S&u~wHSBR7;eeS$a1;hRPqm#edkKL&%S;Q%c9(4b^YyxmRW2D zRxgZ;z3V3CnUE>06jAtyUSWAGf0Y0sDG<zX+*qv@y`_%GT7jcM2M*qE7zr6}2EXOh z3gTFLmtU}MyngBS-N#Cj65Exf+^5akh+~czl2CbDN)@<dU{I+PmBl*hI2LWlTH!GI znv!)iYjkYCg7w);R>OTq{tM|z=b{=1<;>$A0D{u-`D4Es&--gspEqoIU0u}Tqz!}H ze-11!|MD7s9AEFUp@{~)S>Ua9S(owEPkB90j+3T%hRyEZ&IALi`*8tBmHHkA#{C<t z)n)2alw@K^P*xD$&5R$}tfTTB`!fip&>jvn5Lz)_EYqW5Lm=!laB7_%QHn$M86qvG z>)!shkBIDVhFgQ-%52dDu5M)vt!GN;8A_%QvW!*7T=@sN;uK;i#<K(Eq+vFKayrDh zX=0+1gO+#qS%nh|QXtz{z@Y@sEAG|pKXl%|gFCGrL<O)G2F)2@D7~~TmP&%J?#|=p zPO$Rnx*q95%BB>=9p}@p?i=b#U$bXT2SGGnW|4>EDdm3Lk@(n1@Nu$9ln$z+_J_8q zN?=QZ0P(C!Ad>rKkYw4p$&c?@rb`U%8>ergf18z$Gb4H!wo%{=n1hA&%kvWdD*RN! zH6pt}n^^l&vt^G8>>UkG>#wsgghj{%?3NX{_paTKU(HesLB@3AF?WnUnmV!i*e;uS z2;3mZY4mfH_eDyZwT)hJ@AtWH(Kv}C0qM$-{yzFqC~tnO{`;NY#(A%Pz1aS$q1Wdi zSO!Q4Dlut7@+h{Qj_cd*``UE*VD9^P93uaNh<<QJ*OR{cU)|KgLmqMg0_Z1_#>^lH zr<&}l&CNsu$hMSINY=$B+P1<ygAfC>EFwrce&GwcRSzq3WT>|WP6}uoKS`+CHrstK ze-b11BDtL3uvx-qC)H4q_RthjF6gA7wA9cbCls_zp4U;2VN9!UpAVc4&wLl9et(o) zBZ&AN;BxUokB*yL<L&{JDSdfU*Z1QG5kTM$)}}x*!|2r10v@q^9M$LN079?PdK-*_ zeFSYEWy+cL{tq9DXWnRNaDyBP5EW$$!aG4|-5>kcHsHUD2L_f4@G^69s2<q4yTHRe zU)cx<rKqc`8+r|*_ngy>z4bwI?jsEL!N(^D{B;mt3D(9wlct=!?N8Hj{dgCEPnU!f z`eHCXFG1j)`KWNitB=Ty_QSk<CAW5T9u_eWX3D_OKn%h{)3>YFlrDJGJTZmiVa3`g zsXLzHp&=|VEKJ;#7_=n^=|FnMxhj>3-$y}4T*+t*>))5#|6Z*Dv>BxuBau|X^x-Hy z2v7H4FNv^nY2seEb8yoFa(2i%*5BujJh7yQl38EX|9S^x8WZW06ag|XIA`q{qlv#X zFGm$O$qvp9%I`-j9lVa8O-q?iO_@(mZ=BWR<yxG!p&dc%36yc5A^>T(S}pb<8FbhD z@7Z7cQw*H*zxe+!z=?hQQydWAe!+WldvlHMbA9vv_9olUFP16ZlBB|To%kmb5Su^e zlyans{8l1?rL(N`Q<bJMO5gKZT~4YdYK4NY1$sY^U-^m<2}{;ih&w}C1-K}RYF&Rs zGh=zN^Kx;GU>Rvf*~4K;bZqR-1K&vsKhqP(H-c>@4_X_U+MwYZ_YUO1eY128s|48& z_fv(`7eYt`!-R^V+HXv9-^;ke(y1ufC~$KSER^QvBkaGBG#nBD;bAyV+W;el)vto( zk37%y`0B?4p%EKbWcO!3Y2N)xaq)i~oegyhAJ*xndibDMO+Eg?S_(G(k!s~m=RVXu zQ{vuL{q}bq83zrYc@l#nU=|ryQBy^@MPzM(21tbuBmxt^xYLcr-%eUcsmmJMs$LY0 zI1Ml&S>YgH_hNh%?FC=-f0<e35JkzgK%ZP(DS`-}i3zWgQT=j`<Dr)eRIYX|`Z?wD zZ~<?sSyEqckPel|75n{^hUckvk=v&Ny8;IIWG#U-(j!r}KFa`iA_#47n3}7fkNs=y z+J(~be^bqAR26olLsc?71UQkGY30e8N}0D1k0?s(mq7nk9Vs#`9scR*hu=l!61F-g z>|dU&4F6VP6GAdjI*YGJ1#gK60?92clZ%O9Ncbdr5F|p0lQ=c%w&O4A0b}905xP%F z#@a^3U#w7ogl9BJSf=BRB&t5szi8>8dqx&9(U_)k2|^yfekH8A_5Y!TF=X(17A;6q z$4;=r)s25}c`j{$P@$KtI2+E(oeoEwxVS1MtZbPoPNxNLG8rOUPrW3w&>~_Tc_he+ z*qNn}193Bgtn^=Ozn#(OLKeS194bHUkpLZv+4)bcPa`eH#?ED&9G$0qpl2}N6Au6< zi88<djq$rR9aGb85M=-s8U^|JgW64ozI`)bON+xA-rh(z^``)i+xDo7XE1=?-d->O zbr&nRe*ImE)7X2-x|-t?rAsSyVqzjw^5?3mSVUBG^ncdDFl@3YLqx0Z)iH>DvA-R} za~Q@G+KJ%><Hc_mjNko7%R;n*>Z)&xAiE4qDV{Bu_#T1y?Q2k#z8>)8_f1tkWIk;f zO@`0c;5#W>*4r76r-9yrAKt|0$*%BCjk(8kZW|O;s>}%Ciz1~6_BR$><OnC8^gw9h zW^GEsj_P>XCR9O)N6rO>l!n5Ct2-qy*~!oG0$<RiSz(T;=_g65(cAv+cPF9@>#<mv z|8P%99=Rb<;h+H_C{ab)3p#GtBsthDvw|VZPp-axC5GD4fdrrxENjDp5zC*rhe2rI zdnGSxYjc0&nVBg12uEyehv;}+5|UY+l#tlU^YYcaoKz>fWT71eoSq*G8_YuE%xuGi z<lB_w+Z2SqpA-KgA>Sn;|4l-$`JA8+hcK{c=8I3<?B^@iP%Gx}qpT@(j#q^*d_4;t zN`LFWtox&Vp~eoqK<9>sE&c?QTUn69gEL6$_y7g2!ty69^zXtFuh3Rx0gRlWax85} zL#@^3A=U=L2vs%xIjlWGTW1EPiZNMWiJXE`^r{onlZ+6FfEfu*K^YB%+P11_2}r2w zsW&3R($y^7%^wX?sb73q?W}Rzt|iCg2}DuIzWil+xoKN9A)v9o71<m0rHYk4T84a4 z=ve|F`y4V1k8$56th-cQRl_Q|9vx<{YJZB2&3{a(;>wOH!?B36jCjP5)hgtT^^zUS z=j)~c02bRRC1KyVdD88{z|-H`Uwy5@V|scp0wFC(uO&a*C%bkI5^`e<j~-IB^X|Q$ z_^tJ$EfW7P5`WM5U3T=bA<wLp0M8b4;OS4Af5*2%lz<FA74-olJy$&?)o={21<&xj zuE<ljq4)0Gy07G@N`nREGbg3IrJH|OH-wwgN?L2&-$lVk#5)?q3uId(wzoXooe!Ob z>D{f;8SArxV}f1a;8A)^+|?O(Lw-XA1R(H;$_fwX$HlsovXCnOuALm};r?yrgE>p$ zvp-4&`l{v*p^Q5U(&q1pU|7+Zssbp*+3>>}S`dMVqkOx^NL1syO-Wa%JI`-?_S@hu z3KC`hv;G7DThd7J1g};P^$b%dAAo+d1f^ZpoLT|pzg7wlkZf(DuJQaixf$2kFe7~F zsA&jSFb6wR(#P(Uf9#jo!?!Y&7=$ggP~+}$fIYs^yFZ}w@(C=hU;-asiOoN?`>mE+ z1w>1@QDl@TQs*cVCJ~IvqTEEa-_Fm^4^OMZDD<z4rFnt_)@yU<6|C-#_rT|1<5k0n zTt1z!@XdBK=i_Dw{y_eJ_cIuGYwY+hoeHL@nVv1%@wu$Fx`Qt;dyE%(55|;1)L2X% zn3{Dk{0~AEX$WRULB+9`mn8UTyT}mn+Q*l;r`_E<sP5np0sV}>XFw7fhz0%w!m2qZ zolrpk(>bSi#hb==CnhkEgbeb4hyjqu=>h5lK@^$VtG@#kI+e$rXOla;Gsq-A9?#Q5 zBa@{GlV7oQWx+~}m53ogX9#@?Ima*p5qQIZn|aeB>eo*%M6gFS(=#nMz!$4oc=mh1 z>vd#gS!lT|T*!0vcgW4bz?yHK4?hdbztxfA=+`gjA6jqLnK#O-?WeDM%|{}Ww$&y1 z>9z+jFeu!Rhz|+eIL<E^07_5n6)|LpnY=gVk;HP=vr4?ZwCCbRx$j!*H`Qggwkq!L z=S$_F14<YCh3d&L0;uBfv=t`iC3f^VZgg#E*d0h&36;AI4cC|I6AO7zVVauE45&+A z5NX~orSN*)B@?QUg$zhaN2Ys;=QeG6h#2S@%|6niyHf2R3`5CT={!?fLLKqZl!c5T za}vrOBE{ZA6holV_V0i)Wfum3<JG@ZsQH$-TbD%HMgW;L&ap@?Cd>PQUE*-v5;Gn! zi}9p8AB8J`CsQg6Mt+xwkN1y&R09$en2_7K-YsX>m))M{kFUNvmxzv#3A6s09?;Hx zP#5oCHxgyT1I48wMk5UR63tds%ZVn}7m}m?!vY6*k1uS3k^+5WqBzkg(Jf}Fy;|8a zK_>bE(;CUFr`1Y&U2P9tR!fq*XIeDNEV#R+Lj>Ynp?BLxYBMXyqlu!0ntEx=RCBIW zt&r&}{u-xE*$$8^@KipWg(<`!;O=i;iL6gK^^j7c2i`K>M5TLoJ(j)YB)WSrJ90e0 zo_7+h@J+>!#v_Q@-j|F!RUBjN@yfIo#hZ(bx$3f>r<FNxP;fO8{Wx$W@wM~ul-+Yj znvHsG{J19!tWYr#o1=z;b4Ez?Laxe-A!N8+SIJbc4&Bc|n^T_K$FE$6ckld(PGG&c zG`4Fu?(_2j`NBed!I#|M0Js!oLdmzpfx<+S_Nn?15?q-S@nMUrJ*1>NpOX9#ZiXUj z+jt>Olc&v<?DMnF1Do^K$;Yi$n)}wAiO+2QrtNiy?U|n#E_{nX2a|brcE`>qWV*9- zy<xoJ#{2>2$gZviS1Umkx4&xg-w5#YtC}aQMC^F>;|hMjD6Bc{*{ETuaqxL+a2=GT z>$twTedYON$`r5Yck`8VFm-gf^ycM>a!mB{(~jZ5A!$b@I-apl|AW+vfU7?pQDdz6 zzJ3!^0f(x}i1oW8N>%sP5ey8Rtat&;+7$;<mva<wIks?iJ_702=VTx^V8dqzS3;s& zp2knxXk=nS?BGiSD7|fV-;r~dJwWbDbW~Q3si~<+>#H^I2dy3k1_oeT>VPS6%?%m) zA7&4X?Q0Bc4-O83nAg8oS2a~tBzhosqRDel^>6L^6b_ZNzM9OIXF)a@+nZAm35VPR zj#{Xx5mFEoe;?vvv`Q*9TEbhWdjx1NcTIxmsCTAfs3Zmnp}j|G7dau2CVCwL))88F zW>GRZYb_gTs}|$#^W3RN<}n_Ck57QJ_1-(WMNL|(_;gN$)p>X_26;R8x|~*u*30tK zKpRPC-M}H1S5$5SZqMfW`wId*<MOJ{b%$o&ijzT6ojIec(j*Zc2cuD<;UCN$0!8_r zJ%EADB1`byj~<2uv$!vUJ@gfKN=t<eenqAd!w^+4>RSjlR!nwRU#l+Xq$gzYr$*`i zqS5ljGLo;G;JIhPPC_aM#i)6Bh2tt+eg$TBh-Tv&v{9Y!dqDeIJf2Q(t?_MW?m^T( zr-u|{ehm5ED-plh7)RH*e6UM9ohKF=IDiRJ&|M?&)U?QPmlTYw`r}@rX&jCTb?tup zeY-<1x*I=TJHBgQMS{lCS^6cQfD=9#b}V7Uq!}H1j=tm)U&*q91O)A#s&I^mS^8i~ z!U~3IPy9~SHxKN;xH#x&>fU#HZel$6lf^Ag>bPHiqhUSsWM(&o$Ps-m3n@5pu{ybb z+~PLyg1ru}9i~hFLM8A%s?UN8W!vatb^9$g^^ASk3ehI{p=FoDw*s;*2{stTqpRBc zLzRteTurTP9KgKGX7c^}5S$(;t@yx~1Dn3DiQ_@sn=~%0belgS!e7?$^m4se6k=Ev zEh}-KbCrMMdD%P1K7X>wl-PkOvs;cLL&%#-E)*avXz!tU`p$RE`{x4pH@N{HQvpU1 zkzq=J+Az&%Zt)w?q~86PE^nU=J<F!<lq~OkiN>o<XMtdmC+AVtjXXVkz?KP}8xv9a zmt#$X{_bVyJLW+p%wCCfl}rJi<2&azQP0;Za#We*-ZzKm<+KvOhvO5^%Khv?Ln(fG zf!XcaRsYM)L9&OtVw#qp=?i=l-4FdC@)efB>^c_{_91-${EGt|C+u|RzkUjKjxtj} zW&B$E@0^itr<L4HKcSut*MAwaV`TXUJ3H1*&0SZs#yknl?3lPX1(%jwUJ8BhPQ=oL ztc7X8pyZHPeD|NdgD^Q3FNGW*c;~Q2Wb?bE8?9NC^Yz$O@i-$?P}u|Cx!eDN6~WaN z40X{^Q;UQ59GLWd|KY>@+?*fCeY=eSO|T^o^D<x;g$Jm8b0`jxUHEr#;cRaY=5+pO zim$p^7VLn9g8RFTCk_RZpscKC0N5Dx|Cy@ie|IDpEAu!c@%R@61WR1ZYGsXKqtDLG z{oLC_?g7Ol=L@pIz~;%x$^Ldb224BGOjg8=-ooJ@W)v;ju=(r_S+3vNbDA$ERkybd z4PND;6bs`wLG(gmubx9$l*u&u3Qpxu+K*}QI}1>L(A(KLFu>ICe-ytnkq;H+#Y6O1 z)O@@?O5bqpI^#??^&LSnwm1YU9LI~v$iw|oNUkRDx4@g5rpox~$4Ligx7npvI>(_m z(;5(%RV>T6boaX9D&6Mf<-}yQxWQuHIdL!n1mGn{wm?J0e@09|L`E+9f=hsdR^*!? zUoZuODDT1W>vsvoZwt2zc!PD^!wd8to!@~dlS<<7T)!ILT0ENRCo;JFFK?07#*Z*> zAByMse?&wQ)^g>qyk1~ej4q_ro+{-9i2aSRzmy5B9l>am8P>4~q37`;s>C_lQTkLd z8wHN6=8Afsj<)@A{rD9-CBwI~xsC)Vl4h$}6?vL)^*$0cVlwI6-Ea(-L;vc%^1e7c z^o7O(K=AhyXA5cC9OU2m0D@6VYvE+r_`&n?IA`0|C5u-;_+JUDik@}f6;DR2Ttl67 zWP&3FptDwzO|$Q{*z`;A>%Z08^t?2HoetW+$8lIf6TF?Lbx!>>?8b<hJe0Yx*4T~P z87wV%gqfx1qJ1cpV}Ohm9sVMY8T`XEXM_P`pO@das=k7G+Bqac%srBxD)r(sZhKsV zx0vxlT$VGa_ii4JY!UsEFv1TLfK&e?4?v!4wsrYHsqz|2Nd0@OyJ;%8{9*`3uKHo1 z>4yl&d}FwdS3EtrzSsXuH>5a09heGrf4`9^0w~1lUMAqOJD)sxpBHlC5zZ{x_XgxX zS2H3@4PKSsejvX6ti{Gk6d|idMS65f41y0t>XH{$p6q$*lSWAapR)twy*Qfs<0lRm zhvtd4ix66Hn(|3q;_4^ZB`TxR)(F^Yvt@gAg%go2S9}wE!>gJhC+$ZB&~Ada+s%fr z>zns8tKe2~%~YNkDe&3l!yEg>E7<`8;Xl>Lt&uza$cjm6V7=REi6`O!+^>SP{lD%e z#7S^a3fRb;*t7sj{Z<+3DP8P*4(o>G;;3#w)Efv<EpBTQW@7r4q{MM^VEXiolvLN) z*zfNk*@5j~LW1S!7I=Opk)WE51(grHGFCC4%E~(0zkJ0=x(O%C8^1qZLA??u5OlH7 z+t7?;&hH6KXf1jFZi6OUd@=~LA8*{4rk&6xpzHp=*Inbu?`N_z#nJ_?3SIAG^i-zD z89&*;kWAH``&rU^EeL=qWU27#l@RbYuK@8voYiS!L89hnW9rZ6kdS-!h5IwincT;> zOZQ!@eLa$X@9j0d<rP!-MqODGpN!d6SI)S&Hx6C@tGy0mU_cpU2H(-}Ut=NS@ewg* zNp)v3qUJWJRBGF5N%ms%l3lFWctWzd)wA*HZ}3zVa8!Rg4ZX%Vnhb5PT9wOkx*J#V zlw%4589B#mZ9l7=Ux|;O{PUE*|I^9szn&+0nSKfaeBuGqWRsCBWJVbj|3-1kvBzx^ zPr1iD_uZd0-U!1W$cF_K40we=p2@p04QB(cA8$W?`g-~9u1%Rk^``6n?#7CQzbVo= z7G9hpO>y_iR*CGPWUHwR10WNtZ0hq=oOU|=rKJhZraUEo5hYHE>E-G>NT^W||0m!n z=k$bMSmLnqm0P2v1(!#{#@vr$&OCBdpg}&AugPOeE)&ry7L&vPg$BjYMwU2aS54^R z0YN5m-!j~er-VcA-qTvxJ2zCWR7m_+qM|I9Hyo%d9q}%yKn4644aN5-aWB|AJG*c( zf<NL2PDI@;+(_f1-MN>$ot^BjcFf$tU6TL6&4qz+Dx#-eG3*IBdQ_=zD+?NTbNQg% zr+rKAN%~um(chggbl0wbeZs)$rbPAe_2S;fgGWip{k0;LE3$WvY)bH1EFiEKUgg#w zMxgc1(vlv?P-coa=wq#IYMPr{dfOlCAF9OBwhI<|QmvO9n!xI9V0*t&o5xSk7%;%g zOdJ);i9Kx(Gpw2isfM>zE$c{ul&+oJ0s`}Ms7LH>*`2@Q3@@KfaiP!ef0jw^FfCV& z#w(@UH;LGtUrSWoYVuqTsr>x%dB;{I7qm_Y3i`f(Z{HqtW}})Ts8u+|kKUm`OGii` zZ$=ycJTobWJQC>O@pS3D8|iTAd^>W_l00>HFkGlu&7o^5EzD(i0yXUT^ka);6Hsn$ zO0~8nJ6tzu^woP@uZoo)3oS-w^rk}IWuOoX-rg<>FGazpc$SnvEMises(=E?ZTwJ0 ziA=0FLHT}eRYP}44n<DUq5}15LTM$}3z~TP{PRO>&m=|m>HhK&a5~x2@!<C=?{@6V zZ?mx|`K}mzT!QLY2(cz%n~VZhS#XXJR{Apl2<%g#g61li-lYHwqGtM6`M&Qywnrg? zi3rmruG#~vh@0M_u2+ZaXv|9R{L9IH65jfr`l2o^jkNGBTW4x(l)x3&GirmZe_Zf} zIh!PM?vz==&RQO@IA3^LSdxZHu2BEM>WxX+@Z36e)D`)pF!#U91Vnk~{C<|^h3omy z#p5~3=g~7nYj-&~)3@0dnJ7*F5qx4_f3T$h?oPwGcf!$lkYpIDWdPtE@aYF2gA%GA zmZ}S$uUd{pHk|m70AxN2oKZ-v7!IrFos?I9>?1O_tgX!+eXYLM5EdE*fP*%~NDei< zJFSd0^nRCxSA@bq1V}TOolQNXAtKqbNkFF#?J6lqLJd`a8R{h=A)#kGjVpKy9k?_} zVkk6WAdYJ^#KT{icwF9C24|>SAD10#mYkYF`WA?k{I$0Sf=yOjI*z*Tjy=6ta`Crx zgI9K^j_+3<X}Y#B5~a16jk`489K3rwwf`oW^(qRW?h@}2efM(HgBF6GNsfi4AN}G7 zXo>2}C`eL7<FfPrbZJF`@&0y#`J~J2l32BMKg>5AS9g^lm+6jEk|qf8i1%U@b>(?# zc`qp@!ph(3Y4U!fh4^sQpw+jmsZHY?8&jRUxp;(_n?V?KKZ7%Ph?LpQP?_Qx>60X> zAyao?{z)W-(hu7LFiXK1T?%n&saz$~Be!HA;*u>RPekyVWk$RNdRF>7FK2%C@AP5p zE<6gGx=(&_z#SV<s(2<+`uSd|;0EdPjO)fHe;+d6NSjdmxHJS_H&_5Hyu{@8A7vgy zvH+XyvrN(~xvkeS1FRu_W8mfCYc47UinZ$J)x(iEHX%@r9G@oo#zZ1%hTI`1!ufne z&RNulFqum}3b>GoEqv9C2L{YG4>RXy2jL4w9y*jC$3PjlHK68l8el`HwtG@V8RNo$ zNBl6LV@znT=0RJ?9lRHrErv6gFmv$;$L;ZErti+iAaqQ_QyXLb{v4x19&~pwdf0D` zX??*}u$FCxBJ(c~`8~?V-CDYW!><(baXH$QFZD5;O}}1nCBFSqLVzhWGR&~e!^0kv zM~RFH7OenvQ_~t_XqAzvDR>Ip+Nz!`0K3!lzu%iraCWXscA`xbH0?CD{Z}9QcXqbY zXrIhB2I6iQi@+r8e;Zm5g>uV>jzdlWRNqaB-F2BNg<@JVvHAVtPfln4Eu3Q6y*?TJ zlG`G%2XePo$b>E>^9>?H%X@bm30XuiFm@7-6mT*1Nz+Pi^Ms5aN(Y_}=Ps~kilHL7 z1BJDim((?slhOP!2vxHxF?Rt%jD=pQe9S<&4MQr~?oXG;i&L6zVyC;}s=~<O@E5FU zid6T-Ma4gc!1W~lnZT>Jzs*8sw74d*<e3%Vy9zPI<8aNzmllCkLAafTd*2iRVX)Rr z2VI!ST3($D#9-LW;l-4kFE{`8#yGmEpahLTygfj1xj-F-mTx>iMHwrs{Nv`qhG*K7 zZ|rtF#g<TeqabJQ`DWCg>T0O1Hf!%>jrik5Y<lDiK05Q8O4kp!H;y91qg%M%{xRiv za;gkPVn{o*!KLlqJThEJ9y9eho)+c%&#~8(;$F}}EH9aU4Kvi!J-ZiU+=}kE(HWf* zruE1~1~SHvZ_0>T6|KmSC1L7cDPIPqf_xixz$crQWsxWm_8<oGtnVxg|Lhq?({#Go zWprD7DSIDxvM2s-)s2(~KaIO@H`L66hkh^~-vd)!_mB?&LJgg-KJJ0-ehkF-uAGlR zngGM=0UAjLCZcqLNOu?Oaav@|{NYjm79uWKT#^-l*Avro1K;S*%R?X#@PVi(tcSt0 zw6x`A0{|RE^z=eob1UwKPthKrS_%mqt+2#*f>(@8=VmZA*kIs?fpx`MFspNQxK!N6 zL=(tIS~o${*>-TI2ErK2xySN+CpNcOjEJaSj_d7>yjaHmLc=pm%SWupWCg^~jnuR8 z&FiSC8=XLsgDgm+287kM{5;nac>p2DRW~4HTnJFG<4=ej#_B=4#`<!ds(!Q~dnyx_ zB59ay)avLtS*n6A@bJd-8q9zX!+>XnbbR&-hriwbS`Nv_J#)sylGT}bGfPfa9!dhC zlc$hG+Kpj=hkb?7ZiT)B@Wce$@sctIBBOcPQ7pXWiDDpofjEiCNN&Bf^mN?YGMc(3 z+;kZP%=pnZG423zk;*Sb!O{tA`Z@(M_tZroSuWgwCoa`wAImI*Pas+g+E`qvKL#T1 z`z$&9|A@JE!>5b(gs-cGzwuPGYU{*P8h24>c)7z-daPpH2~{cv?vfFa$>@_opG)s! zgbGjwLhd`ELXg>}W~A#VuOOis*JdPmX#D3D3d$b0<Y5jpOl;sn4F#^6DT@nmF)a5{ z6e$z-J5D`2A8h_EP$cNj(Z18^gHl{eUEqJxw1&$JE3S<}j*Y>Wt$z1L5(Oubh)hIi z*xEzM$fb2AzvmexCH~KJ;M80?DRf5`2`M}VNF>1RQA9yWq_7>rSuI4#MNa@)V;(%l zj^*OH{chg^<rNhopz+hlD5tgc{h7^V+lW=xtM~Ply#Gy?pgwQ2d|(#}f5M7j#>T=5 z&3Xdu9D{4wF71CRDyvyJIR4W${0%YBYk#rSZM*X$9yEE^MJna{&zN0?Cet4ZVSXn` z)PDKP|2Oy@YX5MW6t2Ljx2bWK2%?phR?+w@-7}6HLC|W&Re}?VzFA?C4ej}0Ae2Pd zm|KyjFbvI@Th6*#;mq9dPd*#NpSVy_5Ri%FokZNo4l=90qId5bXpIDG+mG!61pZPA zo_ry%&q;}G_hT65u!DZ}1=I7uC^Ys>*4M~i&~hMK0!FRtOn3vKdPtLDoa&Ph3Wy@m z_X!D18ZKw+#i4}k1Tz)~32_6N2ySgEPQ)yv59y<A?3LGbg%B~+9;qi#a|&kX=(Op~ zj)otPP3`+#g71x>yC+bJqoutsS^2{6W<^-=1YLX_(@G{10XWNeTl%ppr&QR-iCBB0 z^`OR*{vH{)xV5SDh=LDL=<=@sv;$Lz%ik~5z=y>`$lE$LOd!yjbQaQsc;RZUO6w{9 z-p$M*Ma@Q|Kb!K*HJ6f;Vwr%!A{5z1&T|I^jxsvVE^Q{g9qdJCsqq^v!LR6DwqM(p zTmbS$z$q7yj#FBQITOWHUz#KxB@*hBq@mYbO0^mngT`TDY55=E1`J<;IS4S7scCc% zI*K4>pcxJHaQ^?2LY6Z<`&G+-i7srd;~hAV_x=08AXpk%0~yphIyxZi^&I4KqUXFB zge>0f<u@6u;4p#TNx=FKK{y>&B!Qw`=5rdE*M}_MxiKD^vRXZMStAqldlI<`UyojT zX}6T{6xK8g?h!y3zR6|9GSz4Mdu(DTtLMBGsU1-OWZq{7tTY@)ALjczIeyWrjO1;w zy<d!!F3rp3vyKYTj`@d#IU4y=jRo)Jd3&t#!Apf00)mY8Lg>5D0CB;PL$nu-H1u25 z8t$9ra+FLkFIu9&HA^1o(NraEU}G!6rZ+lij%Os;JW80<!ty{t4vGz8K*n5X17Z@$ z<@+E5w8((e^|ZNO)$Qu<KP0bS<Pj_R06N{RFKKo7jn>9mKRjb7&C{{}g^e>EUXks@ zZj|T3zvti=D4C>5&+Z$&fAzd7KbyKY^;bm9y#aVC|L5-h=a$iEZPx|Ba5Y+{xgo)g zb*2KsW$z$BQ78iE&vFAA1a5D9V7n5}GkDV0jC7X#R8Cn&THgNoM&Z2}omw<D+FV4W z$M);XYhY7X^&Pm+j1be00L<(@hR)b&ONkWJHf$e}SzHwzqS0<2wQRU>ksr72#03W< z0gH|HKeW`uer|33z3P5in`;Ayi~S)mkEjN1nN@I0so(}CdAEzo%F2Ygm%uy?n4vK; z)@2R}guu5cY<<vBCcF0}3Kc^ne+KB-_8M0Rrb?py9!e_fl3DIjoMX{_!_0r?-QmSx z*27zm1)=2^Ugy>b-(PnIIG0A}>+eqsY4ZK<yBj7yK7AtrMKeZR!+Bkg^rReZrz7bu zE3IBPXEpK0?c)-xa$Xhafq_QT2M!Mf52ka*SavPyt_hV7+I{&=V=<Ivlzdan@O_qe zi{`Sd!rx3ZYYb?^cBcNQK*_hT;71Xd-n$8JPjL&2mlL0jjp!H#f!?|GXE_F+02G46 zoM*3IP*bTsDu~Z3$L)7)`@O~K9xxVHnBi7?J<I*6iURUabxKq=%*aQM0p=q7W=K)^ znUhPC^F$>i@KZ9qv0>w5<PTM%B|APOc(zWiODHyTT=g6e0ey3M#h<A3OR5(dNc9^n zB6km_aj)7xF7EaQp&SNBLf_R)Ryd~B_|oryVoH;?4>Aso`GjPxN?DG0wUrXl`mJ4I zcNDQ4Ur@;UtazH<IO8O?Y$Oxx3^M{!e*;7$?)~B)-jhgKsYT*y#GHr>l#{sW+PX9? z13gXx{r0~;7%tAXiIDlBI}<HNm=YJqbXXzV@MP{k%bx8P0uBhwa)ph_mph&aXiM-E z0l!xS9?LCxA9j+}x(rN>Omqx1uz~D%htX8sLNEq91&hPGsdah?VPaRtYavSGIzxjh zgdNY4SOD&<hAU5IsOOeHHcaGd)l&k5ih>w2W(EcsdHKD)J<u@?s#o_wThXEUs9Oww zQFHUWPx~m~k`v`twAuykEdWGJ3=R&?EXTTAKQ5RIX4t#`&ro|%)na74n%Cd8iM3XT zIaZTXd;i*fa7MdrEYcy?t?$<~DKUCCY+2U1&E18ziKyBlN-9@Vwg<`p-{Ns`otFd@ zD4(ef>zHb)4&%c{0tpK&)Fudoy;w2N=UB%@9cYtqmLvkYz2-zCTAb!Nve?C?ZO31W z*?Mn>ve;=0qc{xVz4ThriIuDE_UIHHN+7u_d`i(mE!jiOHI0>eI?HI$pu5Hh3Nnsw zO-5fq?QPh5K3k|V)QUH7NzIBJXdV*GXFNOUQ21j5kD}JK<$3sS-LQ2pxzMW^1l2i% zR|nmO9)v;In_NXCU7dOQVIlYFEmhLc>huNfh<EVkdNDm4i54khaSaY?nwwKw;SJlA z6Coop5e@*Le%vpZL!-A~+g4+i@{uo0&SJQuQ57Z3<R*oZ=4mbC0ANR++v1^LIX3M2 z{i}91S*@3HNJs*Ft6Fk!)peVlZ@!b|&JINHh@|~Q2xyqmVN!BnhcL^~nX!p|hhFVR zavBIpZ5CMBs?W+$m+*T5-Hk!ex93Ts1wuol13vun2nnKKw2qQ5vq7knSf>`i+)fop z%IWfCW)mSJFPdsl>82OO;1D1o1|fpE!ar+!LPEhWTwh}&rITkiI{8Vh1p;=rKK>{T z&$<-}h_11F4K*`nJ`#QsdPtKn_E}2uln#E7RB)T5R#dW4%NKD8#Sp|dgKHKU`DDZl zM<!sh<M~ohAYtNL)R%|mgvf)0npa{ZEg2;iflKc67FJffAOp2Z*RlJjvTQDhGHtD> zZ~*ll;Ixjy|4qxLq;0vhjJdCaEOK=ppKG|7uv@>*bbC$$%qWA%dG>e26xgs6a9TVC zi~q=QM@R5VTo(c5UZA!K84gnRz%)BJ^4H-o#~MAz<GS7n(k(;<B?|V>np^6Q7=N>N zOHX%-XZ(y*$eG4I^8_|mORL&S1j{TDyF8N7P`7OaA+V91iw=(C;&@ot5I`{*W&I50 zh;euTuI$?H=^s|=)ju1q!OgN}l`uS%&f?T07Vp<PniyprP<UC~w<+jJ*;F&RwRn7m zIN*LTdW?T-b#!PcKHpoW*|wHPHVp^{@!GSP_2)jI>Hk%IITlDIiIhZ=kBqg@OVYis zDr@g$tmDTktq_U-C#`;sdyLV0gv84$-$_VaQ(y0m2J`5@9zzNISX?~(Mz$Ot27v+m z!}Wb3EPe-vA>py%(6%;RrLS~>UIb*BkL}kjEqXNOjpoUzMfTaW3ohIkR^e#+bClR; zSJ%5WmYg3yte~nn>+=b8mZa6J=<^7TAMA9;xL>AIxZ?q|o>2MoH?M;psLGy4D$7_7 z#ovMG$SB7wdZh6f94g@*zv{>Z$gmat)^8u*Rkb);%o<IU&|xT{H2cvat|s*X8Vwx^ z8Es@Ba;+=xD8zi6yevLh3mLQr`aWDNEIej;_7}MiSnYys++3J9SK@C^+AD!fdHlFp zZ>uAG-rT>a(2z{`ZxD4@Ag8}D0U;qF8CjX95dU;gmKuD`{^jdw)sN4FaO$^9R8v}} z%HS}mQX%>S>7T9wHsj_0Aq>{yvpMzOR<|<ns=sr;l(sMPPr;AEiH*e}BdQq~`IF{e zmnb;{?FHaCsR{H&8>~+C+rdlK`;4AuXqtliBy&31-iMjomZcu)hfQ1eq;4z-yYUR} z|6CH_5VzpF<JGtl&456rRj{z9k}qyNu;e*y`^URJcb%1u4P2e4K>J#N!T6cWIUQnn zV}k}@Wo7N_?-#}OTo9Z-nQMv$JH<@Nf54*9Ts0pbpI!F}s7L`FQ_&kLDk{de%IO-q zx@Z76YU-y;nM)|?w?sP1Gc`TM2>`5>SwIi9g^I6o-Hba00cPNe(|x-VnaAW%tg4sA zb_sa^ccAwu1yx~1eK_JiWyg74RK+shG@@^gyRaxqW%~P@?xW(XfPj<Ov@D0eUQ@u+ zj8a;Bo7rbqyU=R?M!QhI7GF6T###dj!x}Yfghr{B%AAaQSsu^L%?$)@?d&L3f`MK0 zG4ACmg@<iNG#sGyK9EgTx2P+8oK)5)Dzav+tWIWN5g0gW{*-Kuf)<EE!hgZ;tXmt= z(IUFNDN|lsh67ZvQX+N(1AzxfnN}qP{^ebc2&;0@c5$a(cv8qrWPUykP-9R0S3$U< zG20QHC%D8%opgwtR!s$O*=>r#^n`UO%kXH=(*O2fN?0-d13QzgBh&+c2mTA!r9Hj6 z^5P$wRmt&Y;DP0V3mhnV@cT2=k8i}KjP{ZqbA`x?Lq8v(q@3hTMd8l<or2k-L`95{ zmMc?e6rSWFa*`)U30C`}-P(csri+N!aW2RCFX9|cV|0jA-ZB;3)3X5UqqIsgoGU;L zNfqE3jbQ)?TsVx_>KE}fFyZb<KgV|mrBsI%wlOgN#f#!wlj)jxPVnRXoiNtN^h50^ zLmgBKVBRW34<EyZdaR)S$o+6$rQGaim=21$JDyCR{BQc3f@PRe5>^g-(-q`+gtB+R zbZn%MBHDJS@&KB5Rw)S-!XtxcWo4yfIkT9M@kRL`ZNp_Ws&rfqlr~5uIDOsJw&5>0 zo0yBY(g3D*UV#INAVK~f+$0X9`s-MUjm>{PE@_xexQOgN?ZXB@ia(Nbp2YJH!IXX> zU|JHm2Ga|T7+w!$j>cYdI?so~=5K~#D0T{rXO7$p$%<sKK(o^M#YODlOCtE-Ddmxo z$HwmhVIU}EJSk~gndwLPgyB>D_A3tV+<Zo~9^(UlVrV2elmh24$WRx_v;KFbuF%4P zDLn-F+8*S=DNtm^C@@r(9Zm*s*GnM`VXOr*fD}~6rQz7<Y^HP}&-Kd}f+TY*kNuLd z8dY&yYTn>!-R~a7hI!?lgL5WGkOD+vIjdHOS7JxBw^pVAGlm}_5>itnr10)na8yS# zDBl4VYwu25Q(g?t@k3i2O-1xsumB7$w&}gR)E^W8H=ZhPG_z4}7~0Khi$$q&{XpPY z-&dZct8kPr{j)&`c=@05hsG8Fnv|UEyJx0j>()acI>$X^;%>L7ai%;BbX)69QIlA} zi3*w|gfg2Q&0)+IIE;8Hgg^QDSQQg2ff#x+tXx$zkGSizM^=DbfbEEw@eNwsYvToO zul-r>VmXN`XY=_P135YPq%gYPfeBr5+c<;yAY;x)B^(5c04+w2CkL{;jh!pq_phBE zyMZ7hX?fmBxSgfr_}|MK3{1>FcfnWaK3QUqAI2uyWWA=U)(2-w7gG~a0B=-Tz5cE` zJq{tyZ<0tz6yyX@dI#sNr;qN%gBEQd5%@U|SFPkFO;ioX`t<c>-_4x-8OaJ8Qej)K zs^X7iJoo}%Wk$>YNV@8%D44IkG$^%ncL*rm9Sev^NjK8col?@>q0$`!(jC%W(jC$* zDfyfC`}oh}IdFFN&df9SJ|WtC7eOo30KF=B{R`4L*MC1$rfIj3d9`Y>=788|*7l3% z>Wh>qOb(tD1-8JD1dm;S+e{%ec=rc}BS9J<K`k*LjvCdYQq@Ix7|Gx$^9pzntxonE zJQ#UcEdqo2;ABTXTCa5Y@-kUz={JV$5C3Usz!;I-?h3^+xpGZyPx`$@U1W-)qT*Ph zlBfWP90Pt~EySjL=`nzkM~of<xVtUCTYPx$1Rs_AeSKdWT=75kw7}cyMN$Gb-hV-v zQN&zcjyLn7>T0fIN0M}cD?5cO_|(uZMMXCt_oHK}u`K_G4vZGcXSQPuCIDfkbx!_q zPywK1M-S?`jL_pmfM{L)iv_GeTt+1t8g}**wG+v!j*{T+cz+07oa#y8Riz&HX^ZTs zb@40No?;G@)V8yonX+~wUiSbx>KEG*)Q>O71@He(i`p5mAwd0!99o#m%7liQ&{x#V zHMf-0mp+}WsL}S?&D4lY>3Dg0IVg9QQr<wJyXm;|TXR<_x>__eXb@#YJ}2{L<JatC zs5a<v!<|G3RN^3}aBDHqs;>UKd9aSd_tCr62JbI{Qd7TwZ_FPm-dvPKLx0gOoE<(d z-(Pj#u*Bd^w_f(aPjigk-rfQo-;Az&BR<*>!CwB<^SH2YANXHnIF{uKvda1U^FqWK z<Pn|NE|vcvTXTJGEvMsfbO46N9gBf3<o^c_I?vku*2ali&K6dZqZPgsAK(AJb<>s{ zGc!tfoDK^kVw7-j#<QRc3yW%G_{e0((lQe!$rnw#W;o&S+xxytN(!{47*g@p>abl0 z1q|Cidjgv`AN$H@JL?La4l?l~_^66l!H7;Mu_g`Le5dCLQg7>^0E+n6i!zEwnzHPN zSzUV!AnMlCFWTXD$GL(GwaZ_^H7(q&CJ(>6K0g0@rP=cu5i#a&0=|g57SiIg^mEfX zQzD>@wXIn2nf-c2GzBEAw{A2a(&lwNIh{Itb75f%3Zl|lV7bu{4|Ebaa3`F}_#L4R ztiU4}QNfuYPiBV|r${~wW5+8KGLsWg%T~|M^079b*e%H1h@DYE!f4fxja;cX!oA3s zKphM4^WTC}9v>Py$m%^xD>E1}b#=W0UeDoshR=6|yVnja6%`OZWK1v|8WTEg1(m-8 zrj7?5H){Jfii1Vir*P|lgo@%1LaTAS*gSOZA3od<ADGS;C09~7z(YE&7p=>kmdIn< zhlp_L2%sDXSgLUbwe@iG>56soR0Nh4OtkD@X4als%}xWr`|tZ`=DRqYqKK~%jKV7% z0&qNPNj_fpqm-*Iwr0MWBh)kkuK%3ve|Q{s=ZCBM<C!RITq~2^(6Uo0!%EtN_o{ex z5AXUZzWg>4n{ub}Hna1(E2%G(p-&=v@m*lg?%Cp?W7(3sLeKFkpetgoW0mz*V`e;% z{n7QwgHV{Cun2Q(WrN)e;jO>;hZYa!9)9>lay=^M_wWabGy=a!4Nr$yO4<%efzvXa zV!emu^KM0@=t8^K%ysM<%lPmNPqDsr&!@HH5nDXS551=9{QB))$_suX7YbE9neusS zU5)1EFmXjH-1yucCV9k>eGVIlf1KErkDZyqA<vv%fgDm18F-NqL*uFF&Gw!}u5UN0 zLz<o&cq((D{-3-V3AytT#iKZo$>8{lqj&?tSOcPnXx>TIO5P8x)DS6?!9DRS^X!I~ zYp}LG9I$}Hz(@b=2@ZtW$R%8YZ#e`p*x>WC1?6KB97H_fiI~xA`;?cTnnU{`Wn#UD z9dWU1c7E1r&~Nth(_sJzGSYV%q(8P=pI$h+DrV+BWGy@15_>azzg_fCNz~-;^^6E7 z<U#9|<&Re^D;*srxgYA<4`@+mZ<kw6c|7i0TP|A*BZfrpewLp9+28*+#9|M5w`<^g zU%7Pss_BD}07{@UJ!y=%<yN}9(bhY5Tnov`^v!C9$a!h?@=7PG)5Q$hsxP?_#KU%D zLrfm)VpxSmMG~R$z7g+uF&!r05dAwlJAp`|si44YvGx<7fb56%9u*AE=HvsXFrW+` z9vk!B%LxThk4mA$s~D;4U@u->UmH{zOPdvJ*{oUQotn0|vo#gLdO%#4J&4%_u=oj( zsA><}%44HC`Py$URci`&Y?shkaSqh33?N1z1uIL)dkiJ(`D{@0F!`-|SZSU?Dw~Mp zI5Kv@>O9j@s&V0ucSy4GARE{s5JAeWaRV6^tbK?SlC}R7`~zdHqtWB!>9k!29?P#o z8cW!B#@iZ)K?(W-H)0X-g@UQRrb_F_T3p8T%t=LN43(7anK}Ks-7Tz*%lX(#sG4y= zn3Lbrd0ukrATMcLsV3Y+4RvQc5mdj)Nm}nH+uQJ2;KHHmT7LtJ*!yEEEp_oP-)uq# z+!@yQvwhV@iShnv%i&Nirzvy&uC`G56K`h|J-s79DoD?4h*_ty_r2$Vydc4&Bukwr zJIWII`|jSVV=p%{1e4<LfMzJ?3uZaPP*x;aql6WL5L&8NIhX>wL3+h>V4aV40=Hu) zqf7srzC+|-5^8?Q-@m2Qn-1a-mR4P3SM2uQQM`q860oK}575Svy|xy(SnCjd)~^^f z4>b76u=l~Y@!-9FMh|`}lAA3*=78Lfg)c)e%wr1vPilNRr?-~R5B&}Pf3AQ=rLdqN zBUhwxH!ghm?OSXLihrvpr?Nq^<)3fMl4E^Uv<zq|CPo7*V%o!AeR+a|xL=3UL(7-a zMfMl@+V6NQfRp6&(~Zv^ir$-v8}eG-r+@#RDL}@j$}pRPko}-IIk~;z&$EJ>vH8Cz zhnQxkKI}Aqe<JFgby@QSBc1B|#*Z#=M8=$Jo1sL84Gv1Je!ftk5x$x7TYeglue*wV zNB^pid`ypwm_wSd(S58|-A(J2(5u<PciOczZZ-{v*4EbEPb=g7thcHfioXEU<}{ME z@n@|1)Ey2cMOjZQuyX||R6u_VkXMQOvZJi6ZFyOZC;VP4O0x*HwW_wR?o!RTsF2g2 z0T5C8pKKS1`rJG^fjl8BE-o&V!s`_qn>}z(1P%2&-N*W2*O4?;#2ny`_#apXx#FPH z7AtDDBfM07-K+eh>s))AI%inQ#v<DKPjfr3?QdIR=OfmG5Cenxc6qGN{RIJJ;?<b% z`s=7NYAZA4c~i!FHFaNX=;UN|#6?AOQET%___L^8l~(Q8`X8@}0&`pIe|KUxzIU-= z4byWtUB&eB&kz4%LFYj-Fn_;b%2CzIklIIr0ef=SuT9i?Mbl#Cu~PJQc^|P?ot0*+ z@px=mfpm7|iLYhp@`S-EwGsQjuB6!2$ZuORwnle_vB`H3X(ddFgXoQz2z92pdHkY+ zA1`x)1!K9R@KkWa;5ZZ#rBpv?{6&g$&EM?u7Ojfk*tf{yB1)(DQh@vCvATp4NQxN@ z>Jy0ZFa$!4jM~oi+cc`_<eq)*n8u<A#ae_KeyEhZ)Fk!fg5OM7t&1#-%tMlfL3S&~ zS}w{`MLOn=jxVNFl{otD%28b;)7=8D#2Y*eT_&Z$;<~T6&H<+S<JzK>^KYpTS?_y~ zv|7e0$^k7!MEHU9)aklors8MTyeab<g>?RN5C;h|0<qH-U*{kYp_;rg9ssQbaP}^M zhy2aC=Ar1qPd_iO<s|4N^^+*g2d<BP*tQv1-$zqa)!MEb5ReL@pPodqL@p<$3Wo6v znTjZ30|AS<xrUjK_R5l*=_r)0t}$Lv+fjuI+wC+*+`^~hEHRO%GbN>mwGr<VO*Wx7 zn|eh?T`2sWz@d5Whqm)>hWpb^9S>W_#llfdVSYhRD9XPjlU{Tx%M<9gZ{OU^$PMnd zK!d;)?HrA*^|rGo92ezUSuDjcjBAYF1RS8CV*8&T*PcZHGu3%_OhHKr3k&P?4Q~;p ze;8;o056huAZb}#Tx@J?1c$9JNS6RRF+-LQnFLm(^V3K|MP)KCR#XtgVS>awKak{y zIez(Eu7>4oS*HV7?B}2nAp{W1jHcn$#l`QU<s~Wm;n34K8w7vo#Ta3v&6;L|6blM6 zayx+3!)$G)lQZrhrj^CM>3~Kq0m7f17#+|Ir=A=aKt+<?MovfbOZEBTevHN5=a1#5 zQ7J4DezPIGV>>oHG*o_g>(bKOy;DB2g*tM7PZT7!&+E?#3<^k)oRlI@>+Y?BY1s+) zG>llWYWFMIyi`_7$ERR@zd33eGA5K`@|4>rXijBQ$wo%7^S47Qw$JCI#n;p#-sGqd zcFV5(627(T-?*{2y*=++{>@Sp%zdmU6a9P(qCy{2NuPzcDo<M-F4BW7=nx>M8O5)d z16Eq9$>M#!Iq_@nW8)Bq^V593K70}r``3}e`}7dWmX9Hiq^`gCPs(7fpy7uX7DV{9 zFYQjoX<T<qM~05ru^L|pCi&e_&G^&y9qHKJcnV>~`>%Y=dTZhpTgyk$1I3B1q3MJa zkzt~@<$I@;Cl;1o$I+TwTU#4yDa}f<INAu%Xy9fHoLB#o4go=s=!5NeC}iTLO7a~> zQZ6xlcm7}^Ys*nJ2#akNlz&88L_aw_eFhsvA0)c`7ncS;S*@c51(UlzG$0=fN=|yQ zD`r>)lA!(k{47`mv)*CT?A~B4TiDv9f9}o#1{M`#lbu0ceJ@ojo`+A_MDF|V?X%8f zmqs#IQ74uVD|~;&0J{SqlWKpwUIJ~eo5)jOx7v~APkotc`K>Js#Grk*Z*th5Dv-&W zobhy|2YXBOZjW{n4&?fljf>uo%m^INqEm`Kr0Ci?y8mZ$0&_X8n+pjIU32Uw$7Oi0 z1xTg%ntB{2edvjUh>u#73rze#KXouu24KR!^z?M_Co~N_>AAUU*|;Va=YN`v_P>pD z*}3d&l=yb?krLN}TvvdD<NRXA`pM-H!(HsUuO;iz<B|U5c$UZ;?&%J`_ilG+U~oUX zlS1jc@-%jE+WxS?2XelEB-8Bfa(@%9h`hMg+R)LalNp$XxA;o?I6@(jS^V2yo`p}K zM1KyL1sH0*ipRtr4r`t<-n~z|Kf~1t-)lsn4l8EPvC7Q;nio`}uJWAb`@{9Bm)P51 zOIN<8>@WLc$`U59WZj5I>HaX4FrFc`KC;yYu9f>oEU`wgb5h057N((9nxm9l-jcbg zq0saS_q8l>RE6j_Yc?X62hHRiCrqdq7(QDWyT5<ST4On^zEtevAx%oiYwEDwMBR^M z<@QL^*T#ZbWVp`ip0;^+U(K=lecW9r`NdM$m&x;bVz?XKlGYd@{LAk`M>=G5>u)-< zC(PcqK2Kw<ivz{Q|E;Tlz`~5@5tE`dj<$G0K7gYjg1Z(_e6zE&n-<J)-75oL%3D>f z1HJ70yd@SE+aqpK5awG$V<2(MlZ~xku=y8^RF^z6h7rF^nca&m1xp;n1Ev)uB#Lw` zEpSwLHVf4^k?LSjP<zpwf4bf`C>4H<j4ES)T6>Xl<aIh46{`{5_O}!>_KGIw2RS*g zRzCz*8i1xhI4riTw^r=YMuc6H%R42p66@*V(es~jmjK&M0KwKy=o9uN$Y?Vk{Wdc- zm5`NXXlQtPKz79{EF$tB_us|;_jT<=bbB!GOAr$7`Cs1|;8ao22vaZ9fD;!N?}W@g zqWA-HO-Kkb?DFQO10=(;wq1UZOYq7(lKVJESY|sK9rSr~dyeYu7a`gs!f9<Vys)s= z=m0==T=-&S^hV74;&J@W)BEdt1UEls1Sh+)a%<?ue#&d@zp;J~QhvqjuYUzD*0Ce_ zM?AE;Kf8RA(k4bpZ#}AZesW_ZzSNJG5K|tU;mp>gf7)3U`cuE-eBv{(zEL9Da~9-8 z0*_+c`8Eg<ktzX7FCmTqp*dwNu*<Uj{xVpJLC%@db8~w?(a-aG5ZKRQqjrAn^8_M@ ze;c8cnVvgMH>*C*zgOYmQ7_M7pE_CL!d~gx&S1QO7;%$mR_J;DR^Zcq?R$)8q>XYz zIMzKjQ^t?8#eVRmfVCVgWI$k|(Q&K&`QxKsmWLBC?-VmtgGh<7CBlVa$J27aLnM?M zxf{lqI1yNJ9mlM{+dxLTyTRW3j~a)OnQ0Ee<{l|&Ss?ovd0Casll&Ma4y&U5TXS1j zSO{UyagKNe$LLhol9GuK9{zznjvw2EhKx(h)!UX$f>xcUC{boGj{g<KCT_M;6ox*! z%qvNuFPo9kTrrPS=|*cN!!4CW18J>B?F*Y2bhznV6p?o<i&tgw!>kMEPfOno{TxT| zS?)V0GkH_4LZ8F-_V>T02*2-JjUYJ2sl7NhLs3nEP{ICu_Q$LDHi`<*T;JG;Pfr*2 z-}QXVt%Mo!M=z~Jw+At3P#eQwJwW|osI2_oq{+g}OkGoRxccY-{hH=IgQ|<mC0HZw zx<k=GhTnGjR}|1-ObP<Nu@h<7$9cV+sO7N{;z=WReb4P=Lc>~@ZY9zNn*}{JJ!9({ zO#jC@j!q(yFM;qOSd_lk3%enqLI?RTvj#-;!rxk)N)Nzk`N*BOXc~SnG#G=JKObk| zvUa?{+fh^5r{_t}w9YXTpQK|LSU6h=u<y7=iw0IN0uh{51b<HF<<oS?@azP`fVK<j zkLF5DM}=5Z)PT*UZ(zkC2G9NnW~tnI*o=s}(LI&hulRcTx<5WcH+QO^+W1E6T9I!I zR$W<nn&H0Y2#%7^H;*CuLiL(z>X=9L{>1qc>v1ZyvROXY+E2d%(3MY7qzvU1Q^m|! z*3NqwEw|8c8IgO@om>?lI1Y4T9sc(e4>!?%|1Q9-ky>S8?`alX(e0e8$}^$YlE6I7 zf?_;kgpP#;B4mYj)1ASPFf2)xm>zzSNq7Et3~W{vc~QD5;Lm{ysmT{v+PI{=VO5Ht zD2}iE5C_GuAWN~&v!~2TD;3Lm2a_e+R;>v%?d&oz^teRfv*mm%@g(t-CjBGRpdzL~ z8({u*If|uWN$PX{E?7y7ydP#LPU;@m7xR)LT`fK_<No(u{{HdjqstJlFsXS&8p&|9 z%`^lK%!#c>-De3|Bor9kW>BXxEY9foSVV~}OmGs98s&Y9`-`@RJi{x!3^qPR!m$0f zF0E;4X=N47?-Co49W;ge<O~eOKVPo1k(Rx@fV*wnPOTj$R#j8KSH}9ClQV-Kf%_#i zbr-ZfL4vOZWC3{!!fQ{sEkaQ1tg!d1QMuLy4h=56ju&W|cExzq)YwC6>{{H9dQ%Tb zGD;}O`B9DzRfETv`%iqn`1||%oCv@Z)m-A3A}b`{1_^PN6Ct7pq@JwZOley{9MI@U zv89p(Mw)lqxt>1P3}3}1Ysk=5L*J2=vu2^ovbOzn=%?)HxEl&)i?Y}Jt}o;LHPK~` zeoTM{2{Ba9<vbYN2_ocwls+Kfb7JaIJ~fL39$mUsGO=2|u7n^&weP*tbZ2HgfCEI+ zw|x^66Cfx(30O%EASU2Edaqw1ZoEi-OQ2Fn#06m-Q~8G*uIQ+<KRxEdHvur#(7<9= zI@fx{H_VL9_4LSnxfC<HQJ)rA2GX|6)x##IrLg=xaXQ?qDvc&pThBXserl>0=kd-& z0~THV{l75QczM+BLSelMnUD#rOI+kv{Fe1ph@Dde`mi8fLr;|s+k6Vd5K+-fXHlAj z9|m+(pVsHeEM1zO8faz{Wo+Y6#l?*N)F*z~LpIJKV?XwN?Q(=(bewxCvnH-Yv*$j% z*!X+Q9(<jqQTzDv_pSM#@B1ks{-N}if6}FoPb|kU?|5Z1Y{k>G60qX~ZIIA9Wd=}A zp4C2}N$}TA+`M3PkVB;MBKe}+^!PVZXvnE1?DmhCzSzm;c9$ID{x^RJL`%#l4o;lE z#~eb2O)~Tj>-icN9^KFj4V&tnxVXb+qOT)=PQgAUwC!wgcf9dwCvKYi*H11wXMZvO z!|l)IO~i>1TlBld6$M#z!_QTJ_M4s~d0gpbTT<cc<|=HJl5rqXUx}z3{%d7xUeLE8 zO`;Jys=fb3-0jBuk-Q}U7m7#9w>x$}_HS4$as1oHUrRO^2tsp!M_{L;!R#U0qC-Re ziVd-09V_@vb<6jC?>LG$ER0K>jt(51fjz5>+t+A{LJEIO$_2^7N{m@)G<il)!v2;V zR7+{_un6H47V*TW;(JB=!=aDi`{+ty8X0v4FME>EY}L%5_QhS+25?;8zag?zsUe2M zlJLBc5WKxWUR|X7iXVI2#&IIZQ)z-82CH?6Ypg%!-yZKKXa4#7j?O}BEHl^Pj6h_4 z4%W6a+{s!(`iR(1qP^HCME-{*6ydvQx=pYzWnvTqEZt$yEMcKrCHS|i-~gsJy@Ur1 zyChxAD~whnI%XmWq1Wu&uH3IN>H;f7<kPFZG1zW?*N(Fxrx14A+18qh7HK`$da(@} z^vEvEtSzUsEZaN_PJAad3!!Sy(IhZ2;j)3pg1rBrGYr*DAkiD~HrBwG2||>0+p!rX zVysG*EG(&MUBOyEp-Y2si6F~r9!c+d@<k-ew{`otVeD!57&6f<qS9i5V;Y4(jj$<+ z<qN5Vf3>Hw0mCGwCDn{rBQ#{pbtKf6EDc4Sb8~jJ`zT(WRup8wO9N$!;YJym{f@w? z93h3;Baj=^6&>C-&P6webq$Q}xMv1)w`>YZ%%CNqrVuhkPX$vIL7L50cPX`usfqg8 zyGR(qS1YlQ*}#?jy-U+LI4X;7FL(jtG#YJ8kZR@UUlCb#mbBroSHBR!$?0{KHys|x zE3GZ=oLD64{DSRRACCD8Y3c5B5jmM)V4&c<c(7E7()b0i7Ny9zuKjH~5nyfegy(2? z-mRo}^~*xF@-fm&B~<js{gy1jWPB+M6(LmuS)mp?X~>b6Y9&xAaW*yi^Zji%WLb>H zYPAjPAoJs$poVwRA@QH<x}F=~c9J+O627V$&cC>BMm!!r52{{dyZD9Z?0(pr$jO-d z7TF2WAEzp7qw#uxLFQZTq#OxmjxPm^^sw<PmJzcbgxGTkf5!U<jZe3K8QZKOj22Sj zl<y%@g-^@tDmZW!V()|u`jRmGA;VlGDYD~I`ZV`k#8l?dwXMzlApUJy@M{msgq8?q zGfjkww=OB*6^Z?^l%O@QN=(DP%l55(O;H40T07X+)APyCu4|`&bba`cZ0z<XbOIr# z!!UtA##~8%oCXS)arrck1Kq&ILxjk>+syDh$oaPDDtmL1&hN^QOGF(1++5krH*j%X zjSbD@HWXvivCn3iaV61+BxOW&-N7#p-A6ZSl*A=QjD7u8geF1tUh0jzS-pV5tRY01 zT<*$_{)gX5czq!<#BJ4&g2(&5_RweVwx(NC2)9&eJ~4f2CJatoU+&Z7wHSozHBWg> z=(NbNV@KGrU+U=^BLx-_9^*d`A=*ksDer`FgMTY&++MyfpkD>a{O9lpxKmQEik15X z1V5w)Uikj9yCxw+v>E*#T{97U^07g{K>#s$alg>S9}Pi=cnM8@?<^|A!x0-NMxFGr zC<U1${B=53qaYyyZmuzX$upU%J7(x4y<9?J>WUHrutZZCPrq0_z{&6PhKnJm(=Cs7 zMd#mRtUXbv!oSC22RK%Vd?8tl+ZMIJ-Bl(tAw|Top&R$HT9;EllRrHu1zB_XEaQPu zDx?rceB=5!dmo<CL^m(ATZcv1<~obsty4T4QKE<FFjYh&z+rUb1Tq#pyV=IS(c)N| zql)p4Pwxfh#0hHJ5e|wbQfYf&O$_n!9`BGd*2&|6Gvw{}8Y;JGB8WI5PW>PKFN(#p zY(MT2pD^Y2wGvKF`qlls3ceCY5$)j#3HEce&sWT$z1*sw9cq=@JdgWWGBIbenQv4y zaNI7mNLZxrS+deGZ&Lnk{SO`uVs01tQuA$ux4@nNcXjUYZj2t+UrW9#mS=VDJ8z!u zin4MzB%j}up*06$c{bVc0}P4ag5--`CjGf!12N+Ks+SRu+xgMu>!>-bR;Qc<ZOSiX zjR`~LEARJFQ%(UNH0lZ5u=hVB+zzp16UmSfVVwIZgC}*4`vGm7Uj~oJiBji#)q--; z*Q?RsN-{hYAjODiaP;VROw;$MsM(JJRUf*KxACuN{H?@>_x~V8{;b_VRc^HoMKxQJ zo?Mlf$H7fX`*Er5niq;)ArB~BVutYV84?E=(-q%sw_$wfzUV5ULTKEOY?MvMm3Wty zQlZYoH1z$N)(9R^+$^sja;NyfuklKnFFhD{ju8&-;e6~nCp;IC#p<Qf2lZ8KI)%=I z1b;f1HdIg6p$Ao5yz5aDW#`>)RFG?8o^&sUwCA;N3>7i@FR28jOHBLSQ{9(uisf<r zQ_1<omysdquY?8g7183!j(N%?Tw4phsOYAw^|8A+Ttt-MDMV8`8$DpJ7d_!|v=622 z?h1A%vKAsKb#50-#3woJc27aXVmh=~UW!e5P_m|H#+BDW+zJsXw9WQePaH+ZNF=gX z687fJ8v_G_Md>%yp=HkQFA$)lq@-}2##Nn6bpkhMXV_oodK}+eoUl&fQss`CgSK>y z)@#L6bkx@RGt}L5YDY=BGc+tN4-fc&x)OnlGPanLaVl$FwY#)NuEJZ{J_vkVkjTkb zumj#AimK!!#Jh5o6h^$WRt*f}RO00G_Vx}6p<;@Ehn-zsUy;)s!9gR*=4V)AnC%e{ z$@c4E7a*{DagqFP9frC}Ey2JRIVB!OR=i=!p<Ny%&e_n@0}Om=Bu&Nr8M{*>D}k;R zPJCuV&)WI>;IOLC{h#!vNVL+D61f(q(h;>svatE-X&B7c*SBJ9_<VhLw_m{C%IfdU zjad6jMIhba2<zcw4oM@mLk*KcvTZp8fqbF7jvRfU4LM@&thq|FM^%+QZ0edf`D!ek zyQJmxg8hsNUS+8IJxnI={1(eOzrM6of9<n5-TRE1PCjA8+D1=7>#B;lNq>J3FM`{y zF6U8=zY&;Z{UV^mA>)1YZ$`BUrFs<R50vm~rl%;zpbF@_9sj+6r;osgqteU^D=C3) zz2b_4Xi1;IL7QTzL(nN#L(Av5vOnOcp>QX>Cew<%)xZ85A;^gNL-za2$-<nHPc#2Q zV{KMgmkB8kKPC>+sqvA0!Ec!qvAht24px8u@~Z+<%=YE`{Jn~$Sp1|}2hJrHQO4?` z{e!0FzsT@plHWchFR!sry#14%P1UERpb!nH*-z~KA{kfMFf~I%tp5VA9hhHZEpjr* zeE`PMCMJ1OuLLwL9H_Dj3z4DHsSd1vX6uU>qVVoNAg;qyD?0X%yib?z`pQTte1107 z8^F_r=<cg0Hk{@bWl{3_eQfa<UBQsh%}gDIwtfzj6PVlf$dz_Kw)I<SIFav5GI{nd zPW#?)1UKmWqIJL5!q@Z8adLaJXsmH_Yy5cOupiyYTK>1{mg^)^ywcNeg_;vT@kB|Y z4bn(+O~OC44*%UFh9q@1Uk~*EAih(=ET`2OUEhX-L}{6*Hx07XdoN(3qr-Zdn+5M1 z6f<xupU`QnEG@-*0Iy4PciRJd*->9#-_$g}?1FPbSyQv02uM+!TxFK`WWl}c>|9gE z#p#f}CazOH%bK|qZWe=p249&$zy(KzVziPN*$k(oG`_QA&R4Xq7dC1mFaOfyeI?Tj z6VZAmWruW`0)wdMK7DC(ZhoI6cD@y1_C)Fc1pnQ91ueB+{@KuS;7sVn8z@vFFq9-p zhP-5%e9hb|zTD&4*A$PF`yZkj_oAPJIKz7c5UONnTQ(vzucfn3PJl=BT{$z6mSzqr zt~G^L_x&D;n>uB`G!dpIW96sfiGxP}q3FwrL@P0`i`Mm=b>xj5t(!2%BA|fR*E6#< zZ`(3Tyw3#Z0!Y*9_pb0ce0h@B%>I1SU_jn(q+)Y7zdD>V^@f=1>wAr|nO}E3(I*le zpQL-hr<6+wvYvh7ZB+EcS;$fBZLcaVeb*6y7b;LOwqJrlQ(9aMI6hF)kSF_`!f`D% zwP}z@2vkFDZTFg}!K&oR$;lu<4R`A@Nrltk@<8aTwb)vNIgczm&O3&!&{Tu;nkR3F zcpN{o;+sX1Lk&aMh3zaKa=w4)(d|dqYD*exs1O-@C2B+yLerm2evh)IcY7I>?YbGM z<8LdNm`Cn5mU3!#EG;@df$_!qA=_|G4P4qUQ$*MAbNC^P!R(|_!>bQe&#_>hu<gm< z41#<ZDbrndJEF{c(=x<G@2|Zz)*R}JZOmt_4tkPj_kGw5#USgb<$^C7Sr~Wkc6f=< zsi~>Khrr~Ou)D+#(=sp^6Nrt7aB?+>L9w^D_w#!OTDaqPVtB2JDry=UG{zntjb&V$ zA(1(hs-Rt&K=-N7pki#%UlN?M;Abw@_HDx*^R?SI5|S!A%OE!Z+5&)y7w>n4dB!Wx zQ4DTWD;XPea9)cD3oGtvgoR!E+}GjT<T%Pvm(Y@tm2>Xl&{M0C1iae4xA*hd^93x% zAS&Wf`8BUKHfCm%t9~)Ddk<|lUfOk3hML{{?{?qr8kXoGy{Sl<=^VthYwhaf!s0Ln z!?i8*+7(8aY(w3kkY-y8Xa_MnVQ~^KrM-@a6~8LP_Fp(6PEVQ^QP>v^(V#BBinf2v zFE4;a1@Yf+Sc@07$axxUNO^5pQi`_|7@6hA^V(Ib;Ytau^Jo_f@}^F~Ni}g}ewP5K zf25_QPv|@M*VFlUdHed@<jRm;39{Ej|4sagJ{-m(Z~i-qm7TFUCKuaZK?Slvo100N znZ3sRS3ie3uTD&0laVcpp=drAus5TIN@0N}E-|sThQ@4((tG#a6JFqZ3J&tk&CQ;y z;;xy02RI-b5D`L8PhT-M;19psT3gHg>eWDhfB$|sS74H`y~JYIg^f7GNc!&IJ~&>V zSG$)i=D%F*i2dvN%J(SM<4$8lwh<b7f_oZ1*RsM@9*qGpI{SO@?k!(Har{0201eJh zS5yHbQ2+TDcS8jI+6I3Kv^V9WWC3Zypsy~mva=vneLenZ(1?uFVzuc;gx}^#k`$Y< zwDQMt!-?}f!YfZC7Um@hIk|2^gW{x}MisMIguDitocd{vtm#P1QF2O3`#PPn($ZxE z>vYubqZ%OajDo@!J|oQ6AF!c7R~Q(=obQ%YD_%L**43%2srCGKUlz6g4ImW>@_kQj zY-wq!uAW@R#WUd_W{m&x<;%kZmgcqS<n3|Rw10hnFKpk8LLdY8P84{u3Nte^Cs%V! z6Ftn}FR7~jPEHiol|PKvU!rG67da%`i}K$a8Vc(w=gnQ{ALrxF7iMgsV<|KBGk5H( z=o^Z_s?e&x>$8@}IwC~pbhNSkw0OHmYq;uBZXP2evQGSCRH0lU8e;VKuc)2al;|&M z;ba7{&o?7M&_lbHf(Ii^nma7HFiNgpLIZ~O>y&AnNgT7}3ZDr5K~CM7hV|QbI`aCq z|DJq$wZ8)U7~YP*2_BN9mJDp;dH0;}s&A6bk6Bh*itdH6;NU%OUzKV`*YWgw^1gl@ z<!msg_}q=bm|b6=;!FXBI)1R{nb9D>yRv{#2)sv=Ejj$t)^!gO1Hq^rt+L4Ol5Ekz z&dSQl))oWM6`hiLMSGc)Xrw}e+3D$noqfSbAqK0FFL6cY<40-}8}PDwEWLL_g5g1- z8@s#imwPG=!+wmpKYsiuFSiB%+s6F^JDcA*O9D14Wg11FDezb*cC81_J`*-=fs3&g zR*!#g3K6MxWb1891V0l&yomU+3v!^4*3Uk!b1_-jPVRe6&JQM=Knt<^aO>l<0fj0p z%rf}Z{;ghofQO_#_tdDE$n3u>E?hP&qK~hX^J|W$j(E29yT>@TTX-5#daA{N07on~ zpJ!F`I0&TCL~Em>`>0&aJ5e9!SkW4jLO6{>LrbeTsY~Qo2m$OC-tTYd>3e601vtQ< z@C5`gXinaij=|Hs5Xn=`MQEH%74MM<L|(Ar<%>Pi!&U)aMJBHW1@D5C7X8Y^>OWul zj>dn<yXVq5Ac17ZHh6c5m;d<jzGX8rv<1Uw2Gpp-Sg`rXd3=Y@O9x{AO~&+`JL1E! zhF-rd2BqesEjHD0UG#zAzq8*CH7Rbdt;H#bzO#GG+9*AXn?|4{uULzUR@+7<h-1B2 z)iGrA^|;k)p7kMuKYBQO#Hws<thhym&?#p9n-g<;-cCJcnf1N75kawdJd`+|{Q2kO zqgp^-jT0P%$^-e{@NBcpZ>7FpOq2pjeBRyhXyCXG*%KTTa2KNzR`NhX!O-<ExakOo zKx964M7EY!Jn@hB_4VPz`?j`h;Ds?Cm$p?dW^r{qhUnTtY;Ko>$te!-NnkGiQ&S%_ z)u+Y3WU>*Ei&sXhR%%QIh|?TOz#JVN!7UJqMM-eJkc0Bgv4~MnLk)lrY3bheUx96{ zt#|4-$1h+ZvQb2nQ&WK05x<qXxFRQ*`&)1$ol?+cz=oHRk@3c$AQ?dLLVkMwtwLSa zM~7%lhq!O_yf#l=%G*iFP=JqxA#V_ETSnX(vzHv>MXR}Md8Xm~f61R-{|QoY6o62f z;8rxrDBw2up7Bx*Xe=EZRt~KEgoBK=-#>8-S6XH*mT)}E#FA5rShe2jH<~$ny75BP z$b@fCrY^o)mkK|^vp(Nm_)9oieN{B}{kaqdxIS{~pBiQ?>73k42Zo1Pn3zg(b0vRE zi#*M(Ok}6(UuuX}zuw*6_Vo4!vaUwKSjLcEW4X6)U$L;@DyG-fbgSB(JD~|;P#D$e zTwGi{K0J7Jd&ZL%2__^YV5<yh_Gf9XnEX`bPg9G~vHJ9>q_`M3+zaJw!9#a7{$W5M z%M7P_7f?t~6zM50Nv`O;yAB?pyn(P+P|uj89DL32C<=Z)GvoqJJ(k>k{ry?&@m(T9 z{JSGYWJ#hVkY+}O__LbwT$?q6V|UM!UlNJqt-js%ek-ls3qq9o_gmuuj#d?6kAEM2 z4~<_RE5a}z<C30F^PTJKxg!r5vTz$|rrWEwzy!K+8@YNgYJN|?qS0oCq$5oWB2H%> zC;1`dQ)N&={=w@9rJS)rBCe>813}380MS{weMiBHbw!zhPj_<I0Ntl^uFAAluf48# z@7vo52FsE%fiY)rZ-O6vl^G{Cxc<;~-ylg-aIR~1YnN4?JUL-Nz@rG3kBI`IS$IOf zN?`!gkxFGA2bEC_vON^A1o6Gb`wi3viWmfWhvKlldBE^kT3iGs!1)~~nN7`MG57${ z^b(N*Rep((5IVWwv~d++AT*YjE3o7l$VGD$J|2cpWMHOub#;O1m`a|ET*9<BZQ18% zQ5wfw3a4xGXJcg9#4l-Ri9K1U%KC9A6D5mMp}c0th%WamykCL!Uz&&#b`>m;2n!a} zDXaha>tMh9kBJu1&n<O1*MZ5ym_HuBV4JVpbS8<dEz8$U>r&nOG3xn57qe_O9<R*F z-&nMJKBb3Le>jbsz_*?aDag-sS-d+N&2KE`^6-v`RB){m8M#m6Fd;Gl3N8Mzq-_JJ zpycV1frk;E-_G_nK)o@<Tr!QEd%G{;{$no?Kx=Aht`b}C^Us3zl1AYDmzVXvkMcTh z!fuKk^JrUJTLDF2Xn6SW@bF4ft$%fs!iSt1v-y%h*cgkcp8eCOPx^8&w8El?-WtBo znuh9d5L{NB3WH;O&9r_AD=X&R*6eJE;3c9vA3tUgT=bLDu{&U4DJYCi<Vdw_sum0H z0@DRLIyv*$6Laae{qJ3<s~3l`%*z_)^ADe$dixD6)qeP?jYKV-n$sDq<1gGNGcIMl zqoE3QD<ysPz;M|3=GfdiPdOK*rgtiNd6od*$9=qfQ;H*zVch$V+=?wS#O$7v-Zeky z5Oq5fG5gRPyK~Ph)$0yaBg1mr9fGwpE_N*scU#9pZbH<18o}p(nh9fqE&W->4EB^8 zarp(;h{m2eI^Slj-Y_!@O6;tdbchHFnW=zKGpb=H9i7GVZPrk{cTUa`T<$<m?)i;E zum+3S;>P9NwNDG&oz~W6s~F-%3(i}&6Q`}fj#^ho2aqrCkKqN`nQHR$^MN|Bt4lH` zyl_t1Den-w?fPt^+tt-IPbRur>ov*EqMw%o;V&YgixDnRs(>pb-v9BFSP-_~P;yzr z#=4T;!_xeG+V}6IL_{84b>)nfwl>8>LUeS)XVV*y3CH%oFEA&addtcC`B8F=jR>`y zO0OogKSBe-jfW<9P|<YNzAVhSUskgOmmB(gTJV!C+V*`W=h%Pf&-&)EqR^%$--hym zlpp|0%s!l+`-?N?KttR0(D&U@yVq<Nu@UWe7tg_kZl59#we0Wg0uRKhF?wDwyS}l! zt@>D{1>7{j5SG#Hr=1JAm#^VNMS1z?_&C<fm$-H`*=rZ4VSBr~eBf*c&~3CV{Hdah zYu;~i|AiJP5G^etQqm=SQY$`1C7=R8hB!Gn2~sS%JRFBm+>zkw;=^n#EnhJ)g@=a= zH1VfI6nEGA{uQM?!+h~RllLW_*$4Vgk1QT3Jv}`K2M5pu0gqRy!^2?Po1h;#D;r*+ zkuaCDb%~q_=iGN&Ff|p2G$P<0B<@bCuOg*k;*?B2vcqde%YHpIZ1H?3VIFtMgq770 zM91(zt4X-Sl%aj&ue@kPr_xdeNryT;BEdCP1o%TI!+EU2As>&$?CqeA3UQ-8w~m9B zmZ!VHsir3>5{(KW?9y@<)8A9E8z+~99yf;}5MrJ=H8bCHGi#|wA;K)p#w#oaxyUSU zv)kO4>3`o~MM`ta{&wVvhch}`|3whF4Ytg;^MF7}pZ-X@&MKDty1FY+EI@JwRzd&0 zMDf2<oeMMwLU;k2ma(7s{_a?Q7g<<RQW72;TP1Km1~>&JPbO6zuvGfe*7JU7SliiE zq^4?uD(y#_o>@?HK0H9bd=X{|h{FttpH5fX%FD}76qiM?Re;3J&dyF*InKaJ0Dq=A z{1u==0z_wKW(F`3Ch}NrXjo)X?%PRk2d&%Q*82Z+$Z4WJ&HSu~1tev{X~F3bThtFd zKWk&ws36u-fhkfQdv71#K(JdFWZo7dax&xuEo<-6(<G&Z(xbW@U@@w28>4<+PS%V> z!iRo8v`(9J`88}G)q43t80kKF0+S$9%3sbz;|HF)E$!+DO~Rx&k8Q%WJ4WC@U>zvg zOnGpcvSWTOb>20LfUN>l8Oq8NzXDOLt*rKlRLlfdYBF}Pe+%vEkrC9_)g7<2XeQ(X zMM{PwesGvce+&jX`pDqm<XA#)xvCxAHL>88`RdeEHTX<53&O4kYL3170d_7y9UaeL z@xhBEA|j&aXoE_)akN!1xZA-b3L5`<7z8jO_@m)6xbRTpl)%9!?NYp+|BC{N(y7IZ z%3UOGG%ong{RsyO7SMIN0{`(>d2^0z5k`Laf@F>bz}28j$@pRWW0;z%S|{p59<qdc z9Tq;1={cvwCv#+4vqL;yX8k{q<EC{}SXP`ey?-8ld35yg@!m13CfP+dzgs>n>W?To zc$jIzd62qhtGm(|)*6Q~<n!4Vq>oHY`E2}75RHU*Cguepx@i{n#^0^!FO0(YPZkfk zUoJ)~iCoTZF38r~aiuB98~9oDAj!jJheqX0X(ddtE?WsnWC9%e@ym?W=-?ontEF|D znh=F^th-1I7bBou3|0#Rb#KM^QrIiLVebwd1W4d`+751M<iHT(+@${6UjJyTrAFW{ z_D@s!_4V~2s3Tg@vGShrr9$30fPSFl{!_QB2cA+GL+UHA4c-t8Yg=T@EG{+!W8Uwh zvlpgHEMeO1IXNG9$1*^f&i>GTtVeN&(mY$FJIWXttp^~WFte~+(c@19>1bNiXGto{ zdtV=wR90qjn!N)h?AFF7s@cr;ofbmOUx!psAStWrl6zN;Gur*l9+u?w6;>+}F95I2 zk%}O`P9AK3|B2bZsDo|q?H^YBX#clbk5$<{J+~!XFlo8;(blbs>EKAH$LY+6(*Xax z9h>-bwA2d7uP$1+&WQ1j>&O@xcuD=B&I$xqvFWvX9dGPp3Udl5y__H*QAEjX0q>vh z-@XY({3IFOAh05*vXV&;JzZ|90qlK1bpt!QC`bs^)}O0yOyovy67Jyeur5$ap;%-) z#MEAjV_%siB8(f&YG>rDfk8wfrF&b`24vE?FNWN@N~^l2Mmp>|#{B)`=K}{cGE9Df z-KeVN<>kA(J3!t;L`HVwq2|GWzukJ|Gedqw+^6Tj5l3tNJ2j7whK7cRr!F^_Moet& z*LZlh%@#755Cjb}Jw5$rdmAm7V($yHlCx^!^5P3f%9--ss$7SNF2KFY-|CcP0&juy zLg@fpL(Kp>i1mqrK!5!<t@ogPcMao~h$pM=h9i<dSzACQpcEU!c7a~U1d5c2NyL!Z ziibFYl`|T+TKi~gYnvQe-P;?NWGek2l-x?)AZ4U>wC=pi4nOAkxbY>S?S6DMld$8) zaWNf9Ctj{(^+epIl2=`IH^^83N>4}E)89`i;#J$&I4>dH{f5`&1qzna;uWoIOj2qp z7BMG){_1cpc2WK@=BIWgl?dxwtj)Pwfo-yzk=F|E-;;4$Dg&&Dio!Ss%UL@mxx<Gk zfCd8rK7Mas9|Jvolb~#WH-s*}u7sJF_ZoQ8f~#o0-N##3_q+FtLqY7SiVC~_7;*@^ z_q7e+Evl}R=g)T%p@#rnC(v#kt+ut85NS8?d%q6bsn;oQaXT)psGtC0-r$O}x4uq3 zS)vU<v^24dAmMFQebbcJ;)V)`2SqSWsw05HrJV%^Ku~eu2Fq>1M3QBEZ1UwAIlhX> zBLZA@Ie05KGkfQxz>8Je>Q2U#r#pur6aN9f0HKpfaMUV-8XepJ@qCOFLIq`Hr8a(w zu|*XxJ}A9}=$wA~WCelHaO!^cO7ono22V5RosoDmPjHN3wuX@Qe~|(HlXbRB_2upD z|M8P)G7XAMeo{)}Ci(dISd3?m3ar&xr|v<rGcQ_rjAM|>eE?W-J6T?spZD1LYT@>Y zajS3t#iRu&`KH~>$S@)I6TDxHWSNuoNp`3%!o8+Z_yhz5cz7@w8K7rzZ)<-0*icYy ze50Ag@%6)a#x5yE37T+4=|AA;9}*I>^XCs9A>oqq;kDT$v0ym{%*M(JSoUF=904xx ziE%WKx>^`zN+;E$icdpz!9#<wVPPQ-l-ngOF7E3XS1@{OQ*Hz;cDx@fpMe;scHBSj znvE7hM+<@2yBBUkiBMr-^Rv?)55i7kTphPTM9`eUVLU!ZPJfg1-Jv6d>g1Qw`(a7Y zqE>2>ZaGcEVJNl=GEE%Y{q4ms)$u8@Dd&H!<v9{+Nt5@8ImSWndBB|!*<0=R{B&?& z722|%(kUd4TUz%U2K!N5JTNwfiHiDP6iIW+3kW2B1eI3xcRyR3&5$}D1I3p9eUsv; z5x9>DBI#*q^FT=D#ntJotSA%Mi>Bu0faM7^l{XjET%Aii^z>#^`EplRSHOm@{IpB1 zkTka=B{|u4tv$n8)M70C=TG)WgrXO*>kx&6>+9=GA@_=2<ApYFcL0xyB!Ylrn8}Z( zCQneg0DsZSL=lPkwm#X}f1){EV+(xWnT7_Bi|n2*cNl}GK{14%sP&Na3E2M~+m(qT zlMcy?Hrnj7?7m;A*{P{K{kNO<Ne)SucgcBGv^_MmLyT78aD%Q;7M}m|Lh00?_Gdu_ zX7C-?JMF{vV%FD3!*P3UaAO-wEvNIKQ3e67BS}r@O9q}$NGGu<LEUPe(~Z%Y+ZTrF zTPOhmFW6PuDGjzu3`bbY-4D0eyS4zG7*CRk`91)dlAsTuFdviM;YWl4^}aO9e6wqr zfk5us&YHS|(ahn&0pKrBO-!(x4J85H^j`m)6PafTfDZu31RYbiqxs3j#nKLX<P7h- znY_Hb?%dq}8d#m3;u3^z8J-eXYat<CWj4}zjzj8m0s{@K#GPF<J;qhw%ScI0wf^cT zZJ<cJN2)lms!`?&t|qXy`k&hh>NS2Am>Y^6JRPkly1iM=V)8}oWAyOyWHPA7r~Za3 zzLF!X7_m`ls1|jdyEu=ICYT(m^0I3(^ZM%S3ct51GYn?OucM~<;dN5BNuNSOl(~;> zSXZj~$z(glH{p@?KN$%uq$rRLAFYqw#21)YrzNvZIwmweG))Cfa`|)k2p}Ey`zWB^ zf(+3A?m`ij*P?uarQ7Nn8Yc@i{oUOr*GCKb;aMecDl}AsmT9i{B3w@o4ek5W<ctI# zTkW_>fPI3trsi%vzkoI<y`#mtVI%gDZ#=`@-Fa&v)3`*yps)B4xFKY@&T50>8|cm) zQM3iA`FBC^MvMC?7;wKNcnz#+jy%6TVt_>f{{rKY!NI}*3b4OC20;H)Wj(!Cvtfdq zM1IH39?^dcYzrN!P%81gxDDjQNzud?C9#&z&+W6B6ji1rjb?l~NWj#zT-Q+0yR^LI z{NVYK|32VZ?{1Pr-eI6$({S}eQF?{Yo~#EFvJ;}U$yRvv940KO?xf6}t>tH3iKubU zfb*#j1VR)5j2qXyW<*CbzlcNvOV4MoW6H{Q$iR5xeo7-(kuy70;)U;h0i8*u<h;PX zt}TXw@zT-$>1huQ@Z=fK5;Gj&22brcGh)G8YiB70C_X;E?Lu|I{|oT;_xCeIXP>np z(NzE^0x?Ixg3W4;g_4Fw3c*z`hREfrKCq8$uv=js{tJA1L~Q2SANBc``9;C2yHGKM zSuux1$%$TM)DfU<plt$<4x<@Db2jxgMvP{>P#jXf(WNrY_69*Zj=_&3H2ye@<@OtZ z_vrWZ8DM^3C`KvZ1Zz1l@QXz%-{|>h0PI&rzH;T|<~BchS^J34uKQ>D`p!RIEh<85 zr`2ZgDe*gKLt>TNY?hLvpj5j>SK?j4@N}bT3!+RF!iXb_%a^}ZV>@atALe#OJj_m_ zuAXlw#{}HYJft8pN^E(9h>%gnZ*o>K1aJ^pOo%T>l@})oG#K91amSz>_OayCwe)e4 z-h$SSrs0of8>Uy$!vedys~&AWjvhD2X+L-9Xkddnnru^tUd0JO#|SP=NGCAKVpfax zxG@qVxHJI|W>er617P23t0%#*9Lw*$giXwh=2WYW-$q<uWCZjz$#kE<wFQuM7b=J^ za-hm-ZT$?OVi-R-0~Is0ulNK$ch;BrjwdE1)ml!{0DF1_6ig6XPx(!3S#&gZ@udF% z?j3{$qRI0DN-pAc2{bospm`o1-UM75B_$>G5)xODY3^=sU+XnG%>VodzVD9br+ZNR zNOg#hpTe%IR^Jv`x1L!g#K(W+CfObR&gg>UEl)z#;#b}GH)3aqxe7g`5JUB}%=i^t z!(d0-Lwe)M24NhheSniZel~V?Rqo$zeEFqsBy69r^z%}Yu<1a=a6ey4YBJ^W+9xUR z+dDXMd7qW@$OVI`?G_E6vvZzQ)iNHdks$o6a`J{vE6^bRXjZ?~=B{WNR+QZSGF6ep zO#8mQ?LKSNb>?{BDh5fV{Nq(=uaosKqo!f=ZlXHb$G&6tEazRHElmRiNSE#a_=fhJ z$|!K}$ZehV>7jDSQbsoExY86fFJ8XXtu~bdP8PntPp2Kv1|L4;{^NF7wCHJw;TRX{ z!8^Dte`3E-Q&+cLY35;J8Sd}j1u;3Kf-c2n&eJ}7hg@`Yrh^IeAf^wb`~3q{?N~Aa z8e_lxtfRU+P0{?Z-DaZ881i3Nf3-j_7?_v?R0IzXPrzpIdO7XVe7liDJUeR^wBx<5 z7c79;v)I#ZUUBi>En73UvU7)WtYi;(RDi<Y-Ps8V3VN+m`}RVt!cXRT_dG@Rk4m?! z3_}sc7V!?w(8%1J`(&;(IE%EkwZDG-N~5eG_Enw#D$<7EKP-k!pc=%1(R>r}uII&f zhrYpZ4SNOs>W%YJaxU~;b#?7pPWRMw%X^;)IPtN&Q@CU;l9Jswa0;hd-U-DA4y%V3 z<15d--!3vgpB&ipj@->ji9O#;g53h~*QZm>U<c-<2=L*i){kf|I@S>{;2<i-h^rFU z<z)n>q>v#s1uN6nHkLzj?qbp@#|&IcAM5vr{^ZSM($@Q(T_1?)Q!m+YY%zjJTPQu^ z{MFNUTPtzG3Hb0sd2z-Kc%5|pI-c2ZF(qa-IW4Vupjua8_zfJEoSdCw3&Iw63p?K} z(_ZPa#x)8OsH%N=Jq(U$Vq)Ue)m1PmHrQP~8+>ZLwy@aKTj*eel8`hzY)E2Z#fo@e zlkq!<N6I;;d+{r*dsLS_4GIu?MVr@n0yjfUQOMmJy^c@&^!!=@pe67|yV~?<zG`%I z6d=9jR?q($x1a^nxP&5W`VNu#4XngRY;cB>%I*7GpEq;7+}z+{@d&ID!N!&90gy&$ zPXhfdfXqy)g(F#FYyJJ8*}n^9&4WWjfa2m9hKz7<-smh8&cB63ewgp0k~edwRXuZW z4%%%jtgNf;KKGz<O3TVrKYU<q-lI`?vl3p@VbV!Bqp4FubL<ESdrz9PYO$CoB>K6i zz1W{0zVqmwlC#XB{_cm5&rP|)b{%fzV~wVA_O-FRKE^<6Ayr5BE*u0N7YCAE|1%q~ z_2HT_RqOg$<E~g&eEt3fvpu`f4%Gu1kiq%nt~sSxUQvH>BpWr&n5Vq$Rc5Rv)8w1! zUdd;(D}<q@DiLJprOQHP<qy64@s2i+S>lei>v!@#c_bf~CVe%^h-tK^#o*x1X8S_i zQw<wWm+HiimhYdrj(2q7sQ#r3_)dNVlgb<4YdI57q5jSMN*49Sz8Lsex8S!6lQ<CZ z-T*KtOyh=ek~HJ~IBh)p`#+MdIx4F6>)wGO1SF-TQv~T2qy=dK5fJGH>28qjl<pKn zx*O^4j-k7|=ezIkdlrA+#hT~d6Z`D5_jwAh^$Ms>7|cLJvoWjVJv=xFVj*@eB^#&0 zZ%y%<ct&#(9<mFpZc&|oelNj%-&EVGoe1KT;I|HLK~#d62srEk!S4TV)rX841XMsL z9Os^J;#gWR%>H+8L6~H?3Z<6>0ScKr5F(I_Ji-?n9QjvrK$3D(Y)guh((y$~YAVPk z;Q<xCKy@FmojTj-W!0$cf)yb{tT1#PzI=&_iqfezjfsjHeSUgyKAcn1(eW;cncg9w zk{b*BjjLITwDUdf2RJnYK~pgFmNQlIB4GEEmErjWBSW4PTP7A4-Otv$K`abZYFcNg z+lW8FHTHcwSnI_)L&%qaVn~f!;Q@BVV8`;Gw2oDMp0$-JEw$Kb`K?IZEO)i61xO2A z*gDng?AD@Ap33-Y%W$)Lf6|TUN1wSzh(FEZ#Q_1Vi%Z<>pBq5=u*5R$148_d5`Oe@ zXyIY7^8xhxj^8a(&=tsYc#@<MIXYM<h+y#di`32}U`pEp49j)0k2p!uw8`>h6JsO4 z7ALzH?F*4(jI~a3NiY4Tv_&*iuTEK06-+l24QDS29?OWXz-{o$L~l6fo7Wr{OH4w~ z9{*~1Ly7AfYMo|#Da_|jk`yJNU*aZACRfDkJ1;;82+(Cq^`LGlMrEZ`Pdq(61>t+p z1_BJmjvkW2(0fDtRqAV+7&%m+w)MWWr8#Gu>}$*U`T1}vFFH~ysK|EEGE+U6k;5CM zzc}YhJ+=^e6_n4+#&-G>on_3y8C+J4ER(ZOY0qBG5&rV!%YR7|{MbQtY;fNi6Af+O zc;7QJ?zGO1QA}7IG`@)<PX~uqF)<Zj?*ncI9v=Px7hfqTC_tu`bZn>Q$kF<@6f{+- zc3&B94V}x*S@sK73}S)OWweC{c5i4Wi1{pxjZx-cg1I&iWM<{%5k*MySw@CX)6lTi zul@wVj28DBuq_8?SrW0d;Df=(`*lz@n_Mf403D=M5b0o!5SYA?6jt+n+D%q{-e4&r zxBth?;o7tdFiR8^(2JIWIy4|cdU@$ET+*{AIovDrhl|q>Ad-=ImBO*K*3|8O;{h*g zsvnA0nh39w`reEoBH>Md!9ca14fE=Md{pVDl>hGf_laJq+xMOR+;`RGy`7JInAF8X zBWQ{goum$_zu-AGh(UnxhpV|jsb_hA_S{~b^ASeBI$ms`(pK&J)x+Q@PQOI?-4$W4 zb}R1Twjc%&Z5WC10zjhq%jjS#6EpRsmGyVH@#-p(N9fK*){_Q7$}%zUKp`baq9E;? zE%OQjHP0+hbJOEv?jjsu8>-(J>7RYpXzs?CNE$3#IqmZU+W*!vTeq=qP}D)#{(61f z0)FD2V*5m+UsFK%uxSJk%L>aOS%%*9fIpV(w0S?jryTDMJs5N8>5pM;!knC(pdkV; z@2nw*nXHeWq&csvp#*il)6rWts6sIA4vz$FEQAQLWT|Q6G(~l7awIg(3p2}~!BOTV zADLJJT@GmQ2SyMOLZLoCJtYEHdO>mH0P-cDOI<dX)79HsmvIRA7J?^S5>z-EcLv^w zg(XsdOT#9zMUeCtI}3#jbP-cZ2TvXRtnuQeqSi<N;ROj45eblR2Cg-NF5cj-;iWmx z5|OUWDneH#m~9BPUDm)Hz`?-*Hhj3Gq@-kIWJE;2g-d7NOsL^SzVu<oOfwU-%Oqb3 z)<-+q0I4$IOb?`Wfq)ITtqcCQ8LL|9pR-D5zvmTxKlGg&Bk6XiH|2T_7Lmjh6!1ms zHY0GmaBHi(tIIzq2z@qFUv;9a&9fE==@d-li*TCL2fsQH)Bw9ensu-*1*4_CvX_$T z>CF9WiJpeTJ$#W5b7OB8U*&{8h0=4-psH}k;LuU+K{{ARg+$j6(<<zb8x%b=-%d~> zKpwUu+oluM(mY{L+M>R|_aP{0_TPs5qLLvduBo#NkS@BGW;DG?NZw}g5Ez7LM;X~? zevVm$Wlv{LQ4VsJN&fr^c=tLZ1p$DPF7_wO{iU5bW(kdTl5+kf`bKo<8g9Mpe6y_L z$+uIwgzNO30%t(#1;C#Zos&;N-U?4F%!K~ayC8Vyy2Wf9Eve(QRZy5oYlWz<sqJmH z6#7SrEA+f<CjL8rhm(VN?;&jebNj+SF#uITW;~8o%Re!3_VMn56TAozKLUFgu(03V z-HndMURx5ukGN-P&aT`e(0rxfj|>$tVJaa-Nwe=@4E8qCU}0qi3vZA-!u>h|R4zF% zeVmmZ&Z=accB^;u+fxgErfhe2aT!YGwT88Nf@|=-V37kZrs?bJgH<{Pa_1h%G}yUT zc=DS2Q42O-pjHnk%l`ksGbk{YSmLwX1H6e59bKfxjVUbL0rvyJh{a6Q3BHHmM5@AX zq77k${-k<}h_YxWRJEyYkjJ9`T1T@pH_MN0{0}w-_%5TOp@B&<EF$71$S0a}Rt!<_ zP~KIi?on4(o&dpYa5?~Xce1jwOkg2AIC#~n;@-#Ph_?1S%m=6czttQ>Zfn@g%!KLS zz`LPgNL&#s;zFo3F$OZ&lz{7L;Mv_Zwav+*knoJgqh=f#Fx2nEMknLw(uTLAKi?W$ z)iC{#mzVoj9+OKb{197dtK7vLkhk<SE&yN)n1!l+ri{+XUYb!?OGtkSP=!c0p1k;l zCf0R26+=&vSsNG#a#N@$dQF))Vt(wX`@Z;TGuUKp?XoEf7{9=3yL^g@&|U#Z!G$N0 z?;aE3_8>0|6Q|f7bL)q?u*>$4lP4A(vRIiYmD;ZhBWm3#@zlu)&!+RbA3`T>tU)iO zU7hxm6i8lA<=8r0=7>vBXgk{W*Z%d1ZoT|j<lUm`9tQNhYkMs0B~P&A0p_k}NK~Hh zo&A(>T9GsYDRDw9!{%U&k9=<f4x79Ackmx>Ao`{QHtD)u>D}}e`5^!BKZr`m!$n%U zKZZt1MphR5vB8S3re4vF6=j*oEtp{h6$d8-vH;M<@=K$BmyD0krGbJ_>o>TtsRi@$ znE(YxC}<TB^RT+~DOG*QxC&fJ78CoICF%#}mu?}^Tz)rhEKdx}OE5)%%^ennP;*Ji zJJ4|u<nTBE9XgjiYZcdy(2*GSa_{{7%imMR+!DR!%LQso*&7+d;H(V_^$!e`l#-H? zlx)<RZ5S8deQ2hYj-!`<4a%W{9|KsBGcht^fUT8o7D!Y8$8$s&p2DMCUsSie&TRXF zFZ-16Q1MSPJ=<x*h(!{N{!A~-&8cf@YO1Ip0^o!QoRi4O%m1R?^Y@S`<ozP5T+(rm zKWX;Igm;ya{{RQfhh${wU}pomA%nDr^z<Xp0S!EBYkC~XL<XMobpC;6X9bymFpaQU zR`uiRtaZG;IlKTXR#{oFMlv$Wx0x3P!!ua;U9}VV*Gx?#?9fwKTV-W@ic8tliLU|G zSD^;FS=L{mKD$3Chx+Y!JnG!1QPMu^vz-ODNkot$jy;bd&iPu;7?nKz>x6l)hgv{h zd1+W#nlrqk^=ZsS%AgVj-9eS9al7PFJZ^U)j5IV{mYzwmNl?1{V{~Wktx2NDuR_A1 zs-9FAgWNigSCX{!zO;U%LWX>RZcym>c^K43E@miuu~UXPAq7p=c6;UIq>1w+QC?<` z=!Nec^eERf*#@Y+j%>4bzu=Z2eeb@4RMyH&g(w2=3(l@GHhHopqtSLe9qYIfrcHO` z`N{B8h`8s7oW<cCXTQ&D(ZkR0S@bjg^JtwnJY>rA|9j;GT~0wr;`#)pqoUGDgpPqx zt^N+Y3^CP%JOQJ+ju$vad5D>%V!3*|Kf4=$-cVl(n5GWX588p;aiS9mL$22#rHS2q ziXpCl>I{F^zh)IGH!Wr`fQcKhAF3r?n2CBCoCL~>Bqh~@but((!8Bt^);>8oY0Bla zVY5CJFt-o#ueZ0i!9h-OF{4I8grosTLjWlsmt?@bJUTfAVuHkR{Pl#FZ0su%l0U-N zge;AhQT&O*N7w-x2&<Wgi(cispMtH&wwTnYA#4GnyQ%l%BXw7?e-J%wWE|E@2{m-M zJRi_pdD+-Lp9BTlm)@O?&(Re+y&!J)`2>W20=MQDFRz&vogNwgDG#Nyb5rx<-`Bn% zeS|gbqe5_)u8nYTXhia6cSgxQ=eM5EZ2#6wBegx&x)1jP0IHu!TFc?|O;R1oZh)`^ zP|m|+?A3r796<k)Wu-}~Ml0ZPxD6);N|cs1ah40TV<;c`OQU!{wsP51K(ZUD4Fr_@ zXxKFEFYe(>Z=Nv~h<;$8Viyyj?S-=)7yq%J@$N+}nY+GFf$yyCk-ewxKHMmL5x;Q# z%LfN{&P80cLD7co;H;YTm(cM#FAT+J|4}?t(#9l3|45IJ_2%!>d0zp{5E`QXm{+A# zQ%@+E=xnoF9<Xzw1rFA^;whf4D&QowrqW}p9kJsg5~#7?l8fm%7-}_N8s)D*ykh4& z7IR};_B$JD3+RyrsV$ROUS(g9@tGfpNk~Y54Ct@;mG1;hB^`3%VQPFRJy5E?7z_yx z0}MV0+lb{ycV~*ZYN4AQ(Ae@K1i)@iw%z(Q7?bQDL#C_~?k0MchKUk{K!%S0`t|GL zVxbrFBYQ@(e;+VnP$5RRC>YZL0m8y?!<i@;i^pz1I33-qGM{y}`-|vsf91P?x3o)Q zn%)b79^kYv?v3Ke$Ou6%4~SAO7<>?{7SP~2y8UZ=usuPxC`-#}gS%7bX$;Al4hag9 zQdU+5^XZQtCEBcIOhrlp5e7ZJL@Mue%E>G@*AcS~@KJE&=~dj^?!hVtq*BF$VHE5Q zw6y+CE5n$Iel_2O(t;~n+C_Vw8vK}xpdM3neSLklco5h|hK4O?_@`Q!qjn7T!roH9 z!cjdMTx$nhy2`m|B~c~9sVK$vj+Zl^_spp|r~{+O-LGLM)T$b|BA05&KwH}t<3_xo zb7@DX9OakjHB)2b)M<0z5-kc6|K9XK^l?sFn2Kxmiz*>Ll0-KtQ;=`S*@_-jgi$^K zaCpO0j1pT~7C0HoU95W|qgGa)?={nYV7%l|hp2!0hUOD#J=rSRu4L?!m-K=oQr~NA zPuNB;#AV%SoU;$GxvkR?Zr!hpZ>T~6c`PU7^@M%xFJ5X<vE!RZKb>R<)VAKe77tHn zGuxB3W~0YJfUxW1ebtV;8vaJ?OZD_T5au`fUW$Q{&oqe5JtJU-k%n621@~Dd5#=n@ zdL&!WT^J{T4(lNBm)}hPhYug#C}s$P2G<}=`3gLQgo%lX0uJTmPU9>)((CzBf1Ypf zcba<+nF63RSL1rA<<(=gbFs8wW!lx<O-E1vIzloiX5}qa?$3F!#spUDuyhuiuKxr$ z3t<a+NKmM5^ou0%E2Qz+f^x~A@aBJ+&JDB`9kb1n;yYoOMx}GGb-@P9XE32qP@ITR zWQq}$(^hu=o{aM$Q#1OIi*_Wfx+9(*9Fk=1@`|lQF!oKWf<$m&MpDI1b1Cv^!I}E; zP?V}oPm-Si`VKiGgHQ~_#bPi)_2l`!Cyd$g3h0aB)Ne@T>B)=ul6gqOTjVBdV!5|Z z!YB&IpEqavP>%)hA-vK4mHE(#c*D6$nl$E#DlPYZgS9TQepSqPtlDqd0f?r&XmYIG zMi%LV)g1Me9(_9^Tdu+b1Q8J5>8)K`*Rd{TovGM)-Ij9MM-{j)W}k)!4`6OrPkjY# zY2mF!9yg_@m*bx(Y1t$`rPxO5$o;U?gU}eP%?NAj2!=^dw0u;huBl`F_Qksz@QtW9 zoj;``e7x++)zI-?R@U@<3e@?h9C+h``?(t9J$J!D$qo&GsOo*&SIbPwkAU4NKPnXK zb*2n-Cn;>2KZaUx2tWDLP|A>Gy8h_ojLHY?8Smhp8V78d%MMy=*UY$;^+l5=D_$po zQWOJ^`&IXqxrxnHZo3Ut(@x5aDvyO+_L<?Udk4b1;hZ&2v<}<fciAcgFf2{dgYaT# zacts=Vsj8iL7sU-s`v21?M8<@$!m*ZA_%(#HN3AcC0B}sX|NsxnI^GsmC;}m;%eg} zw)^qt%9u};vps@XWLG<?oz_(pYg_r##!bU88bIZ@UhVl2mTc|(x$(s1rh5N{6(1R9 z3Mojz2L~MBseCs(HO0ll1M+D^VebzSd|G~WyVpJ=+YM@{6e4yCsm$Vc$J6%z;L&_X zF#Iv8wX~7Jf`1_gFTv<!vF$9#mXP@d4FegN-KTVZr&dVVogx4h9w220owXh0qJsma zHx923ey{<pAXoic5i^V6kK3VS&+o$F?78E+M@L{~Q}%-D1Mjm%NiiT|&0Q|aODA(x z(?}zgl4{|Pt?ou?KPyFnk>Ofv^4aF&akdsk+5J^OVV^OQPnU*$Li6K$PLc()<Iq=; z<jixox#2(Nnm>wRiL?DeT6|`s=DfeV4-`O-rKX04zvj)5j(s<1l$_j46+`D|wvY+0 zJ<eFfj<MG~yVi<&N%5mrJ;lO;E;?MBKC^rdTq?~$g;a#(y(hEijmTN|5hKwLl@jn= zruwO^aX*L6RT7IKve~!hy%=Z4<w~~Pf(Q`JH7?Zm#i&193tM|#A%SW#g)k=+PIpwx zSAnRgXC?|*3Z%+0?mqSzO=nFLB}3)$UxIj?$BdC)33B9MOC6chUfTy1H~WDKX8?AJ zV98=m(M%i|ph5p@kdFBui33$9#Z!)wTC}_4@MNZWn2v|h5;V1KEHIcN)RBS$as7rB z>K>k+SMN2`N8st#(N1ZAXuq$g@be9OwCju_Oe!zJ=D46J$Y#!-IHCufqOMiu*4BPK z01%TT2*xt0X>v}pcMc8~m4=RA26St8`_RRZW$8o-ILh0l38$yycRP{c&?rv?|E_6l zEM^mCV<f<L=TcLf+4C(OIB4noi@Nu*cEPDkt7@;CaDSi%b^8@R?O$4VSgoQ^l1o1t zmX6M^jRSPkxY-H?3B}_5#-9pt#UsM+c<Vx8em&t>3JPXLMLc)6*kYg7qd^vA2&ZxJ zA6DnjU-AFJ)*?uJ)K8<k4xVq~+=B4N<8qY`!eoO+G{(%3yH4su@E{d@22nLN!=^lr zwSkD#A0vqxZo6mwnQ3vMv~Lh?!~%<<J)myxFJ7h#Of!zq{y|Myy}Lz<l1BZzY<Ut3 z*{~I@%KGg-J=ke*ZD8YS-YcpV$J5!FtM}6-b3|%fID9o&rdg~UF(1e?>V?*dg#)5U z-`cH`;FjM0nry-6v|5UtU5T-@6w^$j@qZ~j{{1KA`p-9+n(hbkO=_OlLex)wMzUzm zKVA~OGNF7cXq0rWr8+hq%e+*J1c}{YW_$gi+NtZ>w$VK}@}fCGuh7v<*^`=cRb&|7 zNJIGV=*p@1O6~A>BRN`3f1fmf(zT~V2j<-gl(@h~M04L<|LKRniZy6_DNnnb|8KuQ zNksRn#pE@X@a<g<AxMqq+7NI1ozz-p((-P~7L)Y!=vb0sRo#x;;2pS3q?&CYLqkIh z(Xa#&*uGct;%aKs>^Jnifx6#_0WOe)X5Wd=tXcyO>vtZHoQ~YQMGEQm9nfcD)K6rI z1Y3U8SQ03Xg3xY8;f(#I2XZMZGZG+cQ(n$~U~IQ<(fx4Ep+PMPjD7ohH$OZ}1H7?) z#X=*K@$4H{+G0DP1MeY1B~bn#s#b0?+{?j1`RySpbxijw%^MX1jUtR!++6u_Q8bXO z@ktuDq54N*FV^9aFJG|VLr`@063h6?*B;WYV4PeyI1uZiKZsqc*?xpAw==VKOP}-i z1Dd()?OYa4jZQo^NyxKR5(7afO<N@zrCls2zkpTS&2%y_oK;Am(V}-Lh$4ziSjlyN zvv}f|vG;J}4fRG0u3~abNte2SlRdgK9tO6P*JF0VHaKA>6?QEa7bdRL-)d}n?#G7Y zsTrr?L?`jBEs*qrR+8?ky;9`ye=UQPxGt9F#tp9FC#m7A!XSgTZF7Uw;}KD$SJ<@K zO<IzkT87?!sjFX$KX^Bkl#U$re}}KA*nz;~H@=8IZ4ffj8#=nni}?wh&~)lz`oFa` zSW7QCOz2habI=#btS%AZx4p^m0CXC{ol$%nBARsbtV}W7+dVPrgSGRP3W9HpPM1Ug zrT^hem}29jxtf~X8yi<pL+QH~OG3@s!_}yecCzy)Ln&kyK?C`Q{l@9K<*DylS4VhQ z8P4!rU@Xy%uD3$u@K>=)?7G{DR{jGAm)1f*?=!dS3c}M3>9VM9(>;!JnDYsBbZ&1X z%7e^6<T1F?qKtt`lko0?LPJhZIJ&~862bT;_yMbAnzx>bEAm-Gq_YxedAO@&kSi52 ztuvm%>FUa(8jsL^&Aaj`gA=}A_N=D*rTp5OS6Z^*-qv6_9`fEbi0scDHf=$m_e|+S zFXnj^=rWUi={En)@!2(tcUr|yBvd$D(!kz`4lwk3Hk(Sat^2WTaeC@<9nSvWFq@a~ zHzS{YYO~2Oqa>T%S%6zIxf>;tqgL89e0MKA2mp-uAF6nsZB`4f@*g+_kfSEPC$Pua zKGLZ@R_trVTB3O08IAo8!8CGa{{BH6^Y=eorEU03srPnU4P5}>BS+fc6I9kcNglGu zeeYKo@-~*FRIG3@4^L=DmQC|906M<(d1H%kE_13@0qr_Of7uUiURnzAueZfpAVa+h zGs@Eu7s%mpf8d&(uAZ6&d1?yc(=lSec~m$g@V=a4`A`1D(*x8G1Av5tIOfyM^hk!V z%YJeA^thT=HS*f?4y~##>X|G^k?i)E1p4Xy!4guG@LxeOLrXIcuK^dyXq)Xzg;rTw z+>msx2HnAJkXc495QPDR!(l6~z0yi~o{vTQ(gICY{FP1RU0Uj~K4{dq5lNqi)`sRe z(=*mE$_kxVl1FR`chXHpAe_k9IEbhWq6u2+>gu}on4ALH2d?m4wq-n?Xr5aSVJ{me zkPFrbo_jULC-R`DCAAgp=cu4C;fH!F*$V7v9=pv=be0T{XF7tQ56=6SF3TOURA@F` zB#&jpfQZb>m=4U{eMgb$O@^z&Rp3kE=LfTo3{lcD<E^t*VQ3K}gTII9WJOV&R`PXU zg|9I1Ikk>1mp&$QTj}4j%JW?`pL72SKxNwm5Quv6^N4w+Nn+qvI`A^H(bD?(sS|Q< zm&Lk4P`;OtFf|^U0!h#20IfcFOU1i>Zba5~cZ(J}@INg{bwQ!Q(sB?H;MmIQSOAT~ zp(<3}MizQ|_KVQTdO=t3@%Lbv>;N%F&*O&{op}kU+w1BDDV8+TM}m)=E5Z~DCxsXz zgNzI%?^ddxb3dxE)>mU;KD)J*BBS+0W<4fO%Vv7G+%!76K^Xu>G>*7;cU4jRmxt(T zZFlE^Q3P~5nCZ6j(^Mgt|048j(r<oohc8PBU|Nj@WV>C^Tk7E}5(}jzTPWUTHW<B* ze2qh7F;@}6o*;0?X5<dlMX2+rfa2g)*$2v{u1Lq!e|*1Rut=cgeb+dvL)Nw$-qJv% z0eZZ9DODMv1Dh1~OT?osv>MDKmzT1_4-+o$n$*gQm+G@GGI25Z{w3ilM#}QOL*^>j zjfl>j&-%wnMZHNMxe%@1_h%L67KwQ^Ts-{oe>$KSI^K%JC9umu<BfiO>}tW4^DTX6 zEzcir_p3CK6KFG&GFVLe+E-fc%NyCkpulAD`j*ZwkE*=s)!U-9tZ2H$fywct<coDq zl$XhZM!kwmVM1_+ks4mk5E2zW+$W@(aml@RPNf=GTN_xa_)o7ZKTy+~V2QRw?OV6- ziaG>YITfQARli-2jRUZu)iYE4c(@O<9|>nVf@@A%RhtiGfh3oSJsOjtnPZN9Ip%Tx zM*5`axaBVmO{L8xb+S|9VkG|N(qqahTUHj^z+3Sk-^$ZJJM7hgIvpwN)LZ%8R!zqb z)8W$pb_fB2RPJ-NAz``)MErwUpnZ(Sgx1jH-~@iZCne)f=Dd)+eZo}45$_vK^x@<d zAMWC?$gA@J`h}gb{QazF0f!`gOnC}gG=Z-<waxYtaT1)&!QIOT5y^z?M^e<Zbt!pT zZ)%sf-mkGn(PEKYZ=Z}P5GNE)J7X;&e6H(e%X>b4d(TdgW~1Nn;*BH>ll1J&MDU?a z0gcmZjaU}$BuuGuJ`0x}A#q#agj<&Vy}R<ms>w#jvMT1YMXlJ&{Ya`eRD|B7Gt#oM zs_WBE)MW}Ow{+xg(W1m#E~VzaEifM3wtl{<N7A_e{gcMaxuIZVa--8HNAWw~_#Ja- zpJ%8v`snkeZ_|NHUHrQzYVYHUcB0E8GZcO6F%BbD>*dPBJ*nDvIs``;g`1e$1ZKy> zb*hQ4j_zHDdEp*Iv&YF752+ZhZFe~pZQj+?J)^W}@n$#L9Bs=FF!k$8lPdws$C5Zu z13^kd?;t{;@{PRGiV3C9MFd6j%WyKUdDZkoxuPLk^bz&vUGYUVkI65soPzYuZDaM8 zf8GtIRZM2MYF8FNm2>xSE$TdW?+6QBNF+At1Er#Vk`&G!<(5RGd$g~9iq1iQHTu3D z{wrskmBDOy@`I~h=<_ufZ{2YzfL$nb7M?>%lk<UR<Z*~5+BUyQ^Wk3B=P~$CsX$-y z{0+KH>e)lfV8&f<M#MpNU9xVUKVw`_!B-#<2)Ix*4v)z6-jB@u$^-6g+&P(b9Ojy# z&QU0BTxy*9D&5stJ<Q}Q3RN22&33$0(ikd!AN^)$(_f(%8)}=i8sb+80r<EM=MvcM zUR~aOqM-TqR@JYlI7dDcel!Y1Cvo1+EuJ7xuU0EEo9-=|hTU)mM$R?3scwvrwP<Cv zylo2<S(SO!opII1z%+y$L5`jk_|?H4gKWVRo2YYN-keKZ>{!<*_@Cuh%OnN|_Zicd zrDo2q?IeKDVJ9YUYuna^B5`|`w2E>d7B68tgX#I9cp*kA`=7(6EfS$`4t;k!?9s0X zVG5C*=5<FA<BVdC<C0LT8UYrUn+?%`4IG;_dsbU%{9Iy#6{otoe4J=1>M$N<No1hH zEIC$Ly5wfVoyeyxzox;1mn|kb)%olpQ$PjxgS<RAl~)%2s-zY`y*_f%X1S!g9WFbN z$yw%%-X?4TX*aj;$}a$Y<)^J+GmA+3{3%NmyQeIT7shK?Y=5reh2ip*-vIw>mmsd7 zPo$)uB#w=G(p?tn;9kXlOKUfqwva9&5$A&T^m9i4Wi{B1){P2Y4Hlko`i3JVrtOm7 z{e(!xqzOPFC9y|oh46=cZbDVi0If4@bm|B5`>p37{aEGB)WAj&8P}HC9+Q^uyxF}f z4MnH`pV)q|QbLAd$`=U-`dq_`K3|dVZts8JGr*c}<9aI7=L0qhw7ld^+&`aZY0M3g zSZg|LOt&@PEgUW$gN>U(Pphy!_2Ei$41^YwT>l%Q>2D~I<UIR93cj~8;*|TEBPd?V zR3jUS8cnq#R<-xV6+=C)2c^GAd~$8Ey$*tpD$>gs_OEsMM4|~luH)Be!tpIuS{f6| z@^f-756V;|F;m^TYo50Bv;~Ys3f|w$r?Kw{Jv|O4X6mRacM%~*(^2(@vqyJkQb4mf z-<ow@Y5;7<^>_(_XXS+zdOQ27NL5kCN8;4i<f@pGBFGtmjn>akQ==y>=>M#P#ibxJ z3aVRVa(%>-`dFf*T*`KVHo6F#jg^&N2fzr9k)qbJCa(??f>*z>*6o<Vw;m+Ac%Pt$ z7ue&vl(@)Pdg0)G)_zq>u4K8ftX4H@7eS_fi^vGf-5<>Yy3YI@=e^J>YUeT*>ZwS@ zQdn&SJH3A&krpaojKVJut|qT6SXcl)vdYJ|A&mi_+E146r_}(qv!x3f0ssOSBI5#? zj)O-=FlP8xO(K1!Hx<BU_|3)fQhe_Y3H#KI#5qA46<x=}Xl(8bX!nVDf9(Pt%WV>B zyNT4%_QaudaMjpVq=7HzU|kdpi_m?P%%jUgAyiVSBu>(GI_N&}UXzoD_$1}UQw1q< zTK9;$mp<M_sPTW=7~xM`Bx_MWMpVM@ZxCPHFFqKo6>UqA`0~>;zPGyU`D}K<G9O^O zxliSkjF?Fw2F4g)t*?qw+p!wd%qw`GR@6|m@;^PwivNU$_=-wdOoqY*o50`1s4R#x zF!ZS+K{bS(-pBqkMz4$A3L7ZH1l}s)^Fe;pahvDl`e^NA`6J9E-D8Nkj*#5BGNDC2 z0K$;07p@WbFfOkoZfZbySyRV*vV@uT0(lP!3Bi@uI=I7Q=Ih%(Hvf*VEFk#ydcIy~ zPk2%6J=?<1v{g>adsL?tg_#YH{cU9)+d3Nx0-Q!&sK&wJp93S)OSDhyPWrMcOgVwP zD3<VYtRpaCQJa(K2A}_Nk)dQm?u)<l`~FgVEx0|Y|2Ev7#n<0hYPCh+odKWg^tL<@ z%~R>489v{G6P>EO4-s!yJihnC_QfNA6yQxu@fr^V1BiGJF#_9ha8%o>4*UUTw8L}A zV8GD-z2&!P8F98`w%rJN6u)#4sZ|*Nk#8@r$NkD?)hO&C2ip_5Y_?^;Ceh2~IoW5? z4+DxwKNj5;!w&tT{EZ_cDP8ZH;0@|}JJmadASQuA*U{4ZiHTP4un^>d)BTrfwO`cO zdUjw}J0<^KETE)(o<{je@gU?D8MLNS;1v*@W~p<v;U7nM8McPPU~vc#Z2+-$f~Z8N zcVUUF5TD1~NIilNU-B1&@SHe{8Sn68vZIL&%<g2Y49S-)+5EJp=-+sFy-@$*Mqf97 zwe*?<<~h5p&TBdmFFq0>c&>!;98ZRk?9^4h$2kB(ptX6l%)&Y~zvf_tznv^XP${cE zbz-IZnqS#ng-#Iok$a6B<wm8#rd=VxP#*>Qezdyjo~9d)wnp;{fFo$9iDM$-Aph0R zG8`gAMT^dDMPUcpH^VJkwO%%K4ir!zgWb;XZq&lUDPAnI4xKG$6c^H7peO|OS(`ML zYgtu(V)#M^xUDyeVLt#NeJvOW#uRSq$Js$l-oMdZcVq0bK0goc*Lit=l+sM4zGhr* z!mkHJn4eYjeSWL^oaIq<;>52ivGAv(le=-auW#nVU8?_<UZ)FKJ#Q`Z?ku~gZO@6R z(n=U&G{m}#YQh4>DE#LA#5Aw&ulk4)KB2x4m$IYJB6++0nF5W{rYCTe-|gnU=3vER ztM9=2ytc;6rPJ}MX^`dnrQY?e^zz%6h|%v7I5XXk0+4!H8u!;_g`Q+87cpY`zV+Q` zt5(@L!&Itq01k9C@i=vqD5<-@3ST#icD^eayyPw_l`;r_JD-V!2th^grJ=+U(x&bc zLq!HEwc+mW>fbtWhz(S`QvpgE?`nSZ9J9GmA1b^*&lgJx-I)X#)w;Js4Fv`V7nbU# z*>DX1R)CY9?y4Ddi`mPm`o_q}S1elOHjIjCPDmN{;!Q@0Cm>!ZPx9XK^(Ee3+OGd! zrUd3zc*b@k8fNTJl7AmQ7W!&<5%N4EZlZr$ynrC>Uj|WZ6pRs~&B*kz=08gmry_0X zt@EdQL5_5(d^<r}HvPA83NKl7jT?FKm!%se%d$6>?%1V6GVTkGnAGI>?&8V)kFPl- z+0}^k)&dm?9jmK3dU{C(GR+J&$T67Je}DLBdG?jXFqs|bBjx-y&&aoF+|yxVIB|Y~ z=rgiuNGAay&ccR$xcY5ak#<?v%O9m*Li#12A0Ty|q^R?5TTktUJM~n-jlxrV6CQ$! zb98(wrl`b|J98wEDG{KF_qO131z7A4>sdBJ9r+cTc-#exsxn!1{r87ci8|xQ4MfoS z_04^%W4~)UcOpV=pHvi4np^L@pM>3&Ij&XybOp1C_=s-MuQjpe&QcFn(q74;G#H#T zws{<-%+JEI1VxHP(H0Qtub#R(^s+9|p9r{Fq+>$4yjk`EWDGwneuv{>XLVA{o_Fm^ z{4E@4AM(i!utlhdOi+WVnXMTROKHUo0H5<U6Zmmx9l^_Fhu=sV^9$VYhSe!v>-wBx z(-t0=^?jmo${*L0+ZW3!QNmukb32LxzAp>`4nkqU>$;%xpr?~tS0fn9!DAD0nTQDX zWLb;ec|c-`>s|gEEHe0ha^V}p9qqfj^XAUTLj`thB>=%Mydq$y`ShES^myXUijjI# z&;wt!ie$nS_@=q;Cm~FJ!nrcW3FnTC#9gHPSCHnHz34_;i9}>qAg_pm688OtE(Ft! z6^d|;Apcqgv#|6xD$ZojtCZ!^VRz%t6<(ccaA&oZOBzM@{bbML$rT?&JRiwIJ1F4a zRXt=+?%6|5h=u(ndb-TCCO(bVVQenM+@AYKF4AA@r<YI(VhFM#DBp3J3(!LPL?!6~ z5!0O{k^=uE5$M~u0(d@tbLbC}KPlZp0iRsBO>eX2iQsi@Q#R~nLbVmO#igl~^8W8+ z`)w__R1fWjJOwd;_bPaXhIW-ED(M9&kN3r|x|)`{ut}}zH&O+S+0=brw`bjOww_oN zEMliFrG0y7@G(=YDG>z%;PZRoGHggh4DgwXF&Mk0Djpw8$4gDfU>9t2var>Ze+jVp zX0CY2%6{zbR}|tjeT4QvgM)cRN_kx*NO?Sax~fK&FFV|Y+wKDsG(-+z!O4xoZ8E4u z0Rb5N=4h^CY@drPv*W`ZZAT@iS__i~9o2q}BT8NOOg7*VO<A$vB5+*vGJ2b<me7i_ zN6PE=*1<gBmo&+EZz6<uJcvHM^;T73Cv|^3d$V#j<~rI+dG=gL$#kT@Wcy|qKG`yI zYq+(vEBa;s>Jy^OdX`8`pC=GFq+7Ru)%hu8B&m9JsQGOWYvV=22a;Jc&KtSJ7dYep z>RU%Xa9gAPuIl=JBd<Wl@%Rtk+UnZBPN(?XVmn*<7sj%De^j{?5?7evJpNll%3c}) z*`0lSdA6MI(2VAMQgV~Y7H<GsriiJ3?@*x+8^J`5ZM9Z?N7~z+RNXX9%=sUILzqNh zwDabWN~VX^ICmns>jqir&=(cCUhN<@_R|_J?&Bf=Ir+{Y;v)yMsQy@fRfN7Deg@k& z))W8=bWmnNNrTATCD)RYrZ%hf?gAOsTFgI6(venxa7B;0TL+OrY^F_NDcA_}+5e;3 zX?{%T#;H<MogXw!hW?tQMQDvA`}5WE{;?{@D07g!uCf+j|3@=ZAEz*5&>QXuF8dwq z%${3g9-UWo_oUmw{Bn1Oo;IJG77h*oA1XHT!?hUBf)8x=VRS+?D4#>3Xi?WiIw6!S z+>Q&biT+qv_Yk?7uksY!_uFM&Q^+q0#6L?$<xx4~NkFl~r8fxED%K{kjG~-3b|@6I zU9@e!%mk50+w3Lbz8_i*N_<|fw|E1{wQZV{V^kb=*!+9}9l-`ZKkwb`F!GeZ?ynLt zL;w_Qoh5sBunp*^ktB6{?v`8MpON|K_?|k$erGwXwCy~9Qeh}XFyCpAV1B1Xcf1!2 zLtmJ+p=wB5!SVQM#ls8IQ9|QiRjO_kdAH>FX<M==Jw7!=z4>EzVcennxkDY5EYzYV z!W?Qh+o9c|A55M+Ron_i(f!uoc46G3exD>}A0hgwHMTZo|E9Esnx1Ck&_pL*eRfdf z0dE13FRmnxAY-0lHXEv0Z#N$lpJ_(EWoRNn`U>okJj1Iz%uhrbxKRkeN|nWH?Jqw3 zX(tpegy;(tZ-4X&rnEhJD>A2bHWJSTJbiuhmY4sdJh|uP8I8%X27K*7`0=EnU|_jv z=I?TimF0Kyg?c<fIlisS>Snzb&v<t~+acbobBlsNqn3klE$s@(xQ_2Q!@#LYAu1b+ zez=ZJ<Fs*@w1Q7``r$HCs1HVQXc$DKQe8Rd<w^A?EewPysbDt3jnJ!ugcW#UL2+p9 zzIlFNX7Y#WUl}-w{JXa(<O4)nzbUr)SzF1gN7y7153j}{h|WgxQubgqivMcYo&@Jc zaC=ilYFJ=_oTSi={bsGOM&Y#KL%y(Ao#VV39gO9ww${wrUhSKkyFK2$$C?hY^JCHW z4%*)Yj6d`t&&aboK2l`dJH<CbPlvt_p^09lM3jCh5S25juXyLQMwsgaMHE7P*b;4$ zb^J%(Y8lE7en(&ChI52NH(F2(<k(-4bKI40cDTOW68PGBzTSmoA{(0*Rp!<dzKnol zQTNO1A+r!d`Nw9-KTcs~a4pSvV!GaBbX|D4^hnFnIDar9o<&n1R0}$EPGq!S>47q* ze`bT{r5X?YU|3$av>trTyAqT1<9U3Ha6ko1yi{?F1L)TmIA~*SbGere^YR}4rQ?NH zbok&<xz9@o5&71UwEHWUo<(2FsGrlLp0|^~Cu!JtG11^fc7AbXZUYW5fhI|;Dd7^p z{5)w1*z`Ar;RRv%vK?$fJ_-vKm&VQf&i(8bOo@qnC^F=X^AHT1JzHU(%|#{kT>MZZ z9{5uOCQ2ap%0fc%FORPKqnGIA!cA?h*W;{vsL;cl$FV<oMUpDtaitpU#IB5*()#{< zQnjq@OM{tTtLWFY`hNxrM4m%0LX!O&w<t@Rch~iDHNCndZj=}&7gxTjDC^hEbMz9B z2dB0y&9s_W#BBHVa4$kTqD>-Ms(bjbrpBo_dJud?wgRuh^+u>vFx5Z4_Hro0KM9Ty zmQa=oPWYGaq`6o7i%CZ9-C~1N1gcAo+qRS1kLSY;`t*8AlL5V^*{Ab;?lyD>2cotl z0o(JBtj+VT^N-{=i*?`MXfXG}ymZ87viv?rNYvqkY7Y?wx=00HT)11aJP)>rCFP7e z79Q%UL<ycG6UOrvr5?3~lYeLgxij_kd>{+4Zcxl2%&NhI+}{FMoJ&XLHp%Q4?%qEX zWP|SK$CcDfAsb$R)ce6xW#s*6xl-nCy1Wpsp3Aq_aQBse1<PAY`Yo5!&YTzMpShLi z+)q}0Mk($PM;v0FvS^kZuXF@$MvJ207H#+dgxF=D<XM~V6;S$cyfcN<3DFg1#`wy* zA4nz;+IE`<4soqy`)BBMfcD$T(eTlJ+x&b*b(e(FVsxqnb93U(`pfVq_0D`9R@bei zNivpMGEHZ3moT2kr?uf(#g@n7@bO&7M4mvzw@RAo!B(HNbXon+7}<?F@Jr2!eX4bH zqQt4~GDS2TONW1iE?6#RYPkpkafdS+YA~1E2141d=tPF=reh*iiNQ95>>0l!6B1Od zTPyEt2tP2(13qcCP;3VK)qzRS5T4ZeUs0jZt<8;h&Hiiz6U?i@rJv9%O3K?FY}#pz zhXykFc{#nqt%7k%Upvny{M#cz-1GJOnu(&<oCEI?)!Z0ULl#+Ep%J|kAtojfRxXR| z3y|vSS>9^$(om^2--`SNtKpe4I~feuAT7O(sWOgA=JlQfm$(0Dm0egewRs=(Fd3B* z0`Y5WFPxW!UDx>237ghuUykb7yhqft@22n`{9vFc#7zrOO>hFty8NHA66U73ny`z! zOBOY*hl+Z4y<g)obNKh0WVkPp!KIuJpD{!Fp3pB=-^kUy)SjxQzODN?K`J5QwSBp< z?_?PzE7P=p6lD-M`EM#;Na?eRC^pazTl3mjkR6<TdgsUY9CbtPG}91R&;(DlWmU8$ zO~P9%vc6q|DYBOjH9leX+&D7emk|7|=I;JT0&~wqWV~}U!o<MG5=e9F=B_Au+ri2t zU48@85cf&Z;kA0aee$2W6lZPY_?IECCqvaH#MabdDoTr*tvHNQOQiKAlht{#hv=-9 zXes<KUbw;eHp_okGdg%lO5=G+g(>5KZ~)RlX?Ys0F$;U|Ho{J&l_Ao71(RsgCR&L? zCF`l^)69C;>biY4UDkHEXJc>pb1k?tO7IxVyLi6gXyf7JoSXYCvFfiuo0%Hkk@~|0 ztH=7ig5#U|u-0eujW-lObgmG^ncI*>JdC$bi>d+@(%&DJ7qLsfrTWN;T=l0L%ltE< z{n%I`-<X<d7ZDmA&V^|7Yxf#>$ebI^?msFVf?_sP_0}MODB7a-2Mes;YIb3I>tMEe zX2v)AS9M@8B~bwu8NYr{$zyVreUE&ot~@2c_losl|4GxEbr94oEU8UREV1kAb#%nI zy~2y~fKODBLVU3JFHa4uTi$qfecI6HF;JqJ5ne{R7WkHm<1_TRPK@aLCmcD<t3|JS zh|zd;lSjXS_t~9?T$XOT5p-mG`LfrHP<v*vSK^R~mimS%{z_G}OchXxHtE~l^}#Db z;WeNC19RIboP|4g<tI|uohP?wIU>fbegd)$?_!;;S|yQ59lM6?GoH&DMKc@X0(l9b zs4h!oTHbpjnX@+jFACoY?zOgEhg6bx$;{n&CL2dlV{TmE6IOpF_f!kiMIyI^qkQTJ zpNkc+Sn<?b-xQe=SH})KZW^whMX4eRB&0_<N(c?DvuZ6U$omAa+#U$`kn^_HSwvFG zfmg4_7Ww@bW`6PS-6|ANa>(q%4k=C*8d_BS?Z8jhUVHMb2f0~@G*qyh=vYK1LaNBd zf8Dy(ZD-p8@)<YUu`e%|rOoR0l6W8pWSLT|I7`ht!_Y!(p*?eNu|5bLC-w1$?4px{ z#>V>JSFK7GABQK_^TP(e{uSf*2{!NJEFXFt7pJF4;Jh2l4w8$MmVx;GF0jKjM>h2H zC^+ODa+BT-OV!nlWWvM*qX0v7Rj;^sRE>SO56ZxP881OAF_+4eX00}f40@D9A9Y?R z6u~6NYqqp_n55Wy`FrcxPUvvkfHsBCwgD4pH_ORwv>Q(oNG{~KJGJ+MSYtr^XTbu= zNSXNuXuIy@Iu_yb9SXpZ<i124CFtAN_{tT>ws-$m=906C{WLih^pnT>i$YS{Gu5Kb zz|=u&!3w~^lKgYLQJ|X@nPtCTo`?;OzSH<;?dP@Sy2JTXP5_m~_nm_GWoCeV6xr`l zvo<oYN>enoqvGiBLGgIrpI9GyWRLB-|LL08`dJdVU-%}}x-+tFq=V2NyjL~qdf%{8 z+T<I`Q~wd_qj>zZajz&O(#1au^XQ^eV@$!+H&pxM7ov=8<dF|M&@5(LY1|tqUdIho zx4Aq+ho3{g0lr98%c9nGdrulj3r}hx0du2?7MnZuPuDc#y*(&{d?@cjDnz)m`blGl zkRu~LmNWiCUhz^4;_k_ogXg{#TGh>tBCkOwfbg(Bt%F}TS~U-nPed}e^%^Wgcjn0~ zP9FOKjDMb(bWAJ;xIQApGhUY?p(dF>ivB`?NH&lAm>nUq^_<^Zo+ii|W0aV<4|s7> z#nHa92sN9*IHdlX7Ur<lt^NAEO*29*{@dt&s*A<oAJeI<%ul_!yGPi7TI-Wi&+qZ{ z=jOFd^DW5dAo}~i<FJX=qe6T-rq=oEr}OLk_jKs~`sp1+vcw!*AR4t~i-#PM8qebZ zO-#C%L*f8T<U+>Tja(!ofF6e{|2dQR$Qu!iukpr|Km(9nl7t96J-(gk`*6*%x0g+J zi4;jy^^S_ab-aX<#8}?YJFB9kTK`~sKQ?xMJ;FUy#^Y!hkYh`J(Zi1tkK-a{?6eZ! zX<s1MpKkMMAsVMKmgu}m6fO$Y8kUSF{$xSeQg!RwL?CoO`g2~&*^_VJE#j$DecQuL z)gNv56^hfhvnNw9EuoV@O`7i4skwiPE`(1Rlytjg+Zeu`yMm9#5;$4UQmWJ=`Alal zVF+uv%-n+Cqqupt-x*oI8(?JMvXm(-p%A0CYZH%>(0*L~Al&v~yvE+keEXo%@{N2_ z3|V5X1~i0sey+%O!^-(IJgj+pD?Aw(wSQ#(z)b03b;4;fY`vm7LL_kKD@C7XBg3X% zleivpMU=aWO$s48e7q~Xv1-b0X~hI2DeTwHu!R0Gzq=$}1D4d?gt^??0>T2DqH|w6 zwL`^QZ>VqzRIPf(Q|{ZzNqNx<P=nWOiyo@}4RxM>O0nx=*z+B2{AlfM2PfN56g=8| zp!k}Bj=3-M>glWtJ78?#bJOM;3Xf-nI(ti+WB)W~SyM83TZj-Um|%hV1I?#vCQzC( zJHLRQN?_+cDsf-WIeYZacCz`tH70HGS2`j)NbAg3O)-zIBZmeyht+(fsM!QdO^4Zt zX*#+(czJ7Bo{3Dm=I3+-fH>K(`3b5Og#*bd&NJQF|7G;YYw7C3Tro%!*ZgyS&Rb1` z^kk#}4J3oAo^Y}+pOZKY8BWXhOmirFeSG?SXyS-J6)09)t+lhxzONsa@}I9uF0c=$ zaf$z^(wzZL18Nq-EM)4YtrnG=TE0LZLuJ#+M+S-F4%z1o(5iamNd;|{71nO&sxN<| z{Lz`EVjrf;L@4our;95H{#q<q{!J~9h5{hV<GX(qe3%OCrU>y7W;Z##qF{~qI@$tv z;2l#crJSEtYCL~fFC(yizDIBC9VD^|yBf*l`S=uiE<<VaRi*LDPk8x@R^=8Jtjv~g zW6yXQMupP=&o)y0_L%5C+kAlx47Hpk(6BUf7=~z+t(uvAe;$3~<#wRjLnO|SChYyJ z<z4$;Yw9B@D)n{C)s}#E^QoM({fD|a#rlV5aRu$Urpj-oc7pyQ?NyhVihsTC_&>&^ zdG)JSl{GcY8sxhd*)_({a_&2K#=bT^_9|yZtJKR>!k6|N@L;>@uzJZuZHPu(?(sC0 z3xl6%07;(9%u?EJNYo}{?jcZ|uWc6#vx<+)J5Goqaxw!y-QhwWJxVQF(oh^?+!%La z6_mek+>~_}1Q2|yd|*vay(gSfuez{a=l%G>^N+VEuFvNwVH+2VrC4ICv~0fiym#W{ zzi<&6IkP=U;c7m#wDFT%GYd^6=IdBcD}fNam{%vot;5LOvkG(DjboS_<pTp7rJChR zxy2K!!0dCieJAV6J#w-i?az=5KqS;Q4~vA`bo2L=64G8S+JscN13hi3zOnSt90jR= z!!dS+`jLs)5HoW7E}NJi#sccCz>=fD;J$PG^e;<`Ii;_42JW7&8d<sGap6d)J+!6O zHmQ@zF*?zzY%G6lz8gO$P3d*=?*tAu#3l3l8Dga1%R$AHR$cebsY6}NLFAdo>v?Ug zvjFS0z)D_tDlfhGCgMQtiQ40Nhrptj`tglR^;%r;C@I%Q=)oK2VAF4m|HL~HyiSVM zbdtT;iK(%mU><VbEsiJ~eu7;nS~9>`plLR}Eh;08S#_a#O9Zv0>en4w-iM}^P#|^E z^^)Qk1jDn<(Dl6yf(M{2i7PF~iE5>-Y-8gPfV1rWDV(YF<Z7|VOOf^IY>}1x-d_9; z6DV)eSFFGAt>{gkyQ}DECpvL-^Krj88e3vRh&hsC7Wx6tR_Y%opTJt`-ygZP@wwsJ z?mRHH@I3ohWj<Jo(EjL79?lUeAcFKF9d5%r_2Ip9%DEf3@f+E2RGM^4Yv~#~{ymlQ z9tsv+#5oR&<~lI5!j<nDXHQ{pX$tmA-Rq_Lsqhi!PlxE0?-I+N%od|yzn*Tjt`dfW zD}_+`wr83!g>Q07oh!<0vzC)cc6*A-m|#kG2Z00fB+l^0R<}W8qY?}~gT$n~sVP12 z$)G5?VUm~xUTS{pPacx*HxdwaCfi<OK7M@9mPz_Es4%>AY;t0**<EoXLks*~NCup_ zk60|`YO4O0@=Q2G0hEw8CRhp-U!!@<B_yABhm?>)<{PN+@n1h1gcHtFyeS>@bVzSe z5zYgS!KfSG(O{dbfim@HlUG4jej2ZLWGvO6d4}6~gdJohkiR!#jGHP7!?vdaf`8L6 zVVn+L)Iq>V`Ev4?dY%2^U}6SLTL+~*viWjAV|E1tWiaY(bFSCZf@~eU9s%dVWcb7L z^}~1KWRaGx4pB;*xcaXRW*Zi>Iy2)_!NKB%<gNoxSPc^#*GIh9MIJzNao%pK_mjav z-C%s39X)yFYDX_F%9g|3mhYrL2Bz185Jni^Fjh=#$6?e{&{6SZPzNGgXjrMnfw^(D zVCE0X2uAVQ<f+6Hm$jU#rI%NfXLwd^*5|}K*E2EH>%BKiGv8IXABsurFq3oI_(fQ> z_1nP#YMW#W-8-+%4(_rRQ~-GAzT}TH8THz$D@G%?*Iw3S@@x9*BdIx-^~}Z*gnRj( zYEeb&_H--Qp8QbKZO$JvZJZ8dfA&eT4~KQ}mfEeCOX<R8JdaSmIF&%f%w%DMuN`Ry zs$|(ZzQJO__kZbrY04DKhJt^LvY{=Of88QmqKh|pq-30|WL8eQK(`coJ3RaI*h&;S z<1K%lTGWHCYw!LhTNC_r!@>C=yQ@1k_%VfMp=fQkR14OhV>jhRB~Dehl>JmDCKAS* z>MyEXs$Z(V9GVyZ{;^awcw(iJ9^C2Whlm(P=W3(<ZKXUuTU_NrGB2V}ktF5KJlWH# zpi`8QqVWCl1>6`T_98Gcg~z^c%FI;-^JIynaIo4dJJZST`F$oNqFTen=@1d_gNvbr z<!;A$ry+$C4FwWgTH#N};kEzQ-d9IO^?i>HI3ft@(2Wcs4MRu@5<`e|*HA+^#LyiM z4N`(Mh=6o=3W&%M0!p`ZNC}cszU%sYKi~D<Z>{&|`|r)VGw0knXP<NKxhMACXUD~C zf}l-&w%_3E?n0yT$)J(Y$o6pf+Kt*?<EVaBt46vzov<U8<LoI}s@*ByXhT7yq;6AN z74ID$a@xtNfU{VBwk#q4?c?@~+m@X{pnDQt9RWwl9&=4N(klKd<vZw%`Xz33!l~~X z<m5^CQ<t>G>GtK#WWWHrPrv25y0QPK547mF{<DUESMQNOGR3o6#{=t>p7o8OrR7ai zp-t>lgL2RH_xq=N2q&shRN9|>-t4UifHH|6xy*WHHWhGCG`HjFfFyD^RxjfUoL-ab zr4xL)d&rhPC6ze^#|Os|OHvR;veTxKe9Po1P^n9W9@XGySrk>ujU?GSdUgHeTvv=E z`e;r7=$rsn_83;5!DV#l7se{1ovYPY9>cHBg5TSFr2tH4zfZsrvxyOP)w2ndu@wow zkv?A*(br@5teGfaZJ1NuX-pl+zHe11HwKo#VRRWb`C-^ECgx&jNRU1Q$oe1*Lr4S# zNylor)!0I%B+^NjXlRJwk)T)p@Avlai3oMkP<bv!bvVS(%|}N;wro;1HJEXcp7dKP zX@pXv;XJ*B9dVrJc&cjSD3&#R1W)p4`O2{yB^pXu>#X&Ma<FKk8RgAOoFs3IK==jd zx_Kas13c`l<)5qSYI|7QdwAG8HY~34PiA(!gs){WGdXkcGjpMoOqKVS@}WK)Ax9)` z5&0V%{0yeF7r(;-y@tZ8e>J40Jh{Sv*0KnpRC4H=&6v#BUeoo#Vu}$3J25oGW52Bn z-ZtY?s(oHNftr4V`t9sC<@F7{x*hQON4vR%P(B4wzXR#X0S@Tnm_euQ7*?_qJzeJ_ zc@e<&^gNP(pL>N<=M@Bsfv*K&0H++jt7rO?4m`L^hw1540o6LSbK?(Uu^I^~I?1`3 zuyyIsau#T}O=RL%&L<$IH5&j`N~)ti@a^>7<+EQ5M2LMsbt?|FZeLu@^umd#qol-W z#N*^OY`G+;gPAakdov%_jwYNsTZ>+VfQg7%%N$3kH-|s$mZp6svm*u9bQXU%y}&-E zY|xv6;fcK|G&!EP57)FeXiUamb{}~^mPWHxads4RzpAK#!#{Lp&O;g^83Ig|=hfX> zzVAvC&7P<7@ZF$M@*|JHP#jX+gl=7@fDC?D9VI3y$?tb%7+r@4L#EhWnxV=;Gv5^V ztYWDPq>1D6?&S}T%2reA;TeEHIael>47CXx2hhZM$c1Eu+Ptdj<GCgs3UWXa5@>jU zy~jlG)2CXnp9W*Y#26X-fB?kI<SzfJ!?3}+>QJDOMGiY*xFOE^lg4qK$)D3B)$hwY z9Q+VIhTYk}HYEMP1Ci`OylXf}^B6q&q_>Ctl`$&%z6$;dg<O)|$teu)5{Xl@H&j$( zpQ~xFrs}E+)j!*@xotG|SV*mXk4o+JX})d7+&7vO4pjx1ZjFm<-jPL+Oy{JawV*jv zD}y(+)R4DZuj~f`t#K8*<v@G$g80|f-I1xcxxy2c_+>xE_iA}bck~N7K59!sgcO+w zK`@g~+ug9x`~)Gho5(FkC;PIhqj8b?$%%TAiH6C^hN&r^?H#}w{oFRE@y>S3Yfacv zAIJ*JI#H@73GNC7Cqk$IOJSny68v0j{A_Guw$8F>H7z}~tX@iwoo+IEPxId3a)D%I z`~K7MB=o|~s>qyv<^1m>PP2%wxQw8`?!`?1{P@*;Or|ZXChs&c8l0*A#&`Q<C?xdj zUeK(*eVteM^9P@F7TDnr4B}{Bqqn$Xn4&Yz=z?1+CHmu8LEd|Ddj(%QOQ!1s)km-? z3vEdO&|BE){+EH?05*bW#09+%Vqtm!g77b$@dg~{>i+ydLi)yiRsW0Qu)+JVfOC2t zs@KF~TV3M;9JJAZi%6UG6h6wIyfZ>S3ymYx#F)w%bKmD|*)vDp3PTl#^-;~W{+i=^ z7+7uLM-9S24nyv!OI!wjT2+ftRU^bogX<Evj=&q4+!&O<HC1G2J!5AtqIJ7%g|Cy_ z^fYX7RTJ+cMa1gsH|p;I%hr{HmDgPO!CM5ln5L=8cE8Pg5|cMp4bwN(ma!8IqykoW z_m@|->ZC39PjNm%XxAQie+j$_9NT>7cyr;le1tgPjc$pc?@F?@#cvydz~4puoesq^ zY)tr%Sk|&9!)uedyehA99Zr;^zj!PkRf$_#o-Du0EAqCp(|dW4!o?wm>I2;1`M7Wx z7IxVmllz7HyC~y;OINhk&|jw`XqZ?Zw}?4hS?M%2v`A>jScRfK<`m{!N7D(-aUb3F z*Z$LSF{B^eaaE7DO>fK9gP|dEhmn6t=EA26rS~3_2<lh}MUh{!)%*;4bY)r)QCR9y zUMN^J!HMzpwQ6Z_Rqx(^d$PW+O5O(S!x@}sLVMpwX6FaPd^f~WA-A_mnQ)nKZDsL? z#XtaFVEIOiu0N_WiA-P1M#VK)@G-M6R7zNk6-)l`O%e_5PuzYI&qiXgXp%t&j!~1? z2P7)@TC9B~WKQtnh(v?UK?91oREm?<!OHM-ej7+ox~9F&Mw+S{oe(>s>eQe#T!5Oe zg5e!+g5rTutY_aW^*ElC!p{sPx2HyaAPSlvPIgp<2B^AoUQqMm*aixHSTEF;nc>ef z1i1UzFAR?>+&IN5cp)8)1CWYta>jBY_~4`sXb5*uXrzgwDG>(x28YEe#zGpi<}A80 zDriDYeVA@YfSNfpq>eHSSrrr{xpS{pJZn}kP5Ad`qKNREaQ%p<qh)tdY<H0_;S*ce zfllju_D#U++%0+tU_mR1qm_u`5=mZY{@e5U?9qp*tkxTa@l+f$bkJPSa0S{J4dFBU zk=762PVu%sN5N8(aX@cA&gaD(kq%G`P-}gmV}*UEVe(%PBF<~%@KED-XpdZ64YV4z zFpbx@4EG?XFy1)0>WWZH_d6M)P$Y8hCU?x*<>y?u!&fIhLJ1}I0p;8wo=Q$KK-83e zEq6&LBYX>+L`Edj+Md7FO#egCmwA?y`sYLIZtuhBPBV%Zj<O(7U|+DH`iIS~gBghe zV_jddZ4+O@y%_s0{yxSfv){w^TxRF$_Hy)0uHfO{OWpS$O73h~L_AE-5*dFn6%8`a zMoI&W8?14ZtLurMH6tUZh~s?2e$lUqvZjg)99#hb9fp@Hqhm!`F8ga?n?21W#WIl3 zH$AWc^4f>5I?hG;*(AI^B^_8-$z01^kLA-VYN>%4CzDfunl?2aN085Tnk~CDx$f=Q zKDlt{%4#v9#?(~G@#5#H1NiPA7A?BG#&MBz(Z#6D!#ii+I}YEUoqSaD%i{7luTFw? zYex_bangzGenaKH(o-T+@E){jy5bE%<V!C>cvVp^fuW2MfE6lFl&;WOXwYj3<MctU zI^t3ge%oF@oki*73K^(P!=&E*tcr-gT?ih<1*ByXveE@#?4IvNt+KuKZIqm(HjEQW zo?08s=^bPO1rO#vEYOOD1ThfpkEJXGNs$xJ?BAlgHL`49Iy<4IyI{~z1e`Rsx3-oP zmKL;@HWbb-OqR2s#JI?t=nd1~c?1Gkg(p@TJdc6qaUV_tpU-5*va%|{T#uwUu;fna z%C6WRBLu;)LFy3s&lnHG6_ep}14R?MrXKk52fZh4){pXY_&8w{Ntu{TdDC^xYOaUV z8Wlsw#U+ux18+iL6j-X_vao%cOy$Vq^2niA(gU)mqzx~Oj%!@8Dtfo<`WjtnJowcz z=|<lLtxGGm&HY53H8%Lp&CNSj)E2c@l=LiaoHjo8Gcpd~smPuzjGLtJdj6)ZrQv-8 z!8MK?JZ_s0is85y%?|}L+JZiUaWS7+sIBc)R8+K-WsQ6tT<!dQeI1MxOni;}?Mk^M zC8QqDWWS~}D!}WaZ*ZfCp%iTOhesX~C{*V)f~fI64|cj3J#Tjn`hphO%#vVge)`gV zk)Bq{`++FFdB0doNyw4bFM!5yTdi{wR3!ggWb0vh$BL+HjO<N2{Y^N{FjcAtt$zyq zK*~H0E=;LH5j#Py+ICjIJ7Z{8Q&!@yxVq079(4P`lawb8>}gKAOpH(44$fzPIhM3^ z3*7Csicf!y5an$%|3HSkBS(7oU5UWy(RIfH<dO&=9U0!VW2Ba?O!pbh_b#2l;<I;R z-=;}DS!CGM@`b+Xjq{w7w}##e;k&u{coF~otg#6fV{R_9VM~RKr{{N@oTo*r4bl+J z(q#(c;m5)$t{qs!a=t~}+0LPaLJn>&W_kghXNiq{4G}vIvJafY#r)W9@Vs0TDWJH) zwzl@j%37RMOSab)L}YD!DzxMY;N8MHNg{i*hPtf{zRz6{KPYB)$U(umU~UXf5tqf< zt`DiYxTMp7&fX)!u4($!>jcKgb_IH^U>7luZ|$nTpW?!%TekhGrZT0N7L!w;h9T4& z%oQKNAP7F7G<ceAHYxiJC(&>v>%Hwmi62RVc<R|?4C7B;3s8~VVjxMl<S#@M3SE;? z34T@x3sWs2<NJN}=IP?X$SCF`wHy@VCcOrV%tBmUm9>yQ5R{Z>X6!Rg;XCqq;=)l< z(~qh=PD*QLv7(CU0!O}}Kv9^=!RhMW-)2G<fBCY!tzPd9Aq&!V`k-ap+R&a`+1}XL zQk&OaqDgH}fJZ5H`3vCgpv+z;JR2}s`Ss^XgWm$*vlhA0@cZhtVgks|X=z}6{bcm9 zkVZ1uSeL>tygjqDyg$ctY@tHA8dK(OtQZFQ;<!%<IFy0!s@f|n8(Ir1DqGtdD+@ZX z3)9~K|8++CtCdww_6`S^vtoEZOM-(~q&Mug_!S?8yvBsBsgK3DP$LH|6S(<nCaH=R z)@ysQvspEh(+2i2W6RD)S@$!U^<LFTWYweqsTRo&{E6K*b>an7Z3_%Ym+1=6Hme5U zV7O^UY}JmXR;K;&vnJvbJ~;&Ss%mTT(ZOAXI`c(C7FWo-DmnLat4@)nqu&8i%V+)H z?{|Ks#0TRtsDIo!Z3*az6YebP-t@ebn7!V=|2K+GmNade;+fBmyYKaJ@3gVWS3=zT zV8cA_{I)s1fIbl$naC{<J$#`CgL|@@TEIFZ%)ukfKa!rcucGG6TJV{rpjk`HQcEkV zzvPeu)i~W;9d(mKL?fRgG^>19nl}xqG-<Usf+{%M+!0zKF41OA$P&_B*Z14G{BwP| zQ^a6V92%Hes$V<H`*QQmc$d#Ixj`FJ0-2VU06cbV;b@obEWQOT)_ctyZ_;@#eQB21 z3OZXq8rx_3uE*{+L9ow3y;&Le_v0Ich{)bFG!&-xmHpjAx1F~U@BD~Cp(>XIGY=2& z9EPbXJ}-Cu7>OBSrdoh>sw%-5FrkR?^_{@LA1if97I;kJB&4f}+Kz|3(LF0FO4(kk z70+fu<W^~|4yRD7S2zzr&Y{iuNx5S-WP{lvyM2bjib<haZ{bKtd$@Q6K`>N%{U&3y zg7)d9^U;)<Q1VZ(wRw197iW_pl61_0U)VTC+jSZ)jc0fcyo8jL#zJ3fEPcHu?~7Ay zl2wjw#SMD#2J?;ic@AxsXdVN+RYW|^9hqIWn6Dpjed<r501=|!i>#Y4Y?}0N!SwiG z8aP!_n1W?L(qs6;MPYfcEUee<Jb*ra@X7e*o;fap8pRx!_V%gY_db*&tc-bWs=p_A zEB<xllO_Cz#%ZYpw4}b?G#LPmKAD29TF^9VYOl9YG(?^-M2va#WIkkB2Y67FI8;g8 zzpwU;Usj3c|6Q6IrdPDI0Zk7rH$bAT7cm?Pf5Q#}fljRFyef^6URWdg`{+8?=wvrg z7fTsyn>n|a=%@G`3&ol3v&E!#U^xDkcoG;txA1+%$;GQ)h|S9S?a5l*>Gb*QDu>G- z5mQxH^ca#q?77^xHi<MhAgeL$$H`~f;rBz7-g@M-jxQ8zt?wzl4TQhEzLDQ@3H!lG zY?a5}FmA}`ls|jaGA9|Un!SNN#rk@=)fLrrR1~zl&&_>b&@(o=g+~2&fjSftaj$O@ z49ewT!l4R=`9O9!9S+Pv%_MI2+@LXAWirLPU^vv!F;TbHfIhJs%hGRI^9;B#Oz&Yb zWR146rigMOM8>!gzQMQ=IuDE4#<)b2OT(g*`IA_<kbTX!)1(b0Jr_jf{h+ss3uNI? zI3omtlirVGm=d=80F0|bQA_s`!~Lc9;4;Zk<Ma!?)XR@te%DM8jg__&=DTH9g=U?^ zn(q@r+%_07{AA%8=42#wGxUw;-nJ&e%u>U|v_F-U-J40?9v*t80`stE*|mqYXx4;R zU$*w~_lcg5N@?Z3xqkhVDiunEqrzxv{s&s#&oMZW=+RN#LU>Tc<K$%4%(5nQ3E!Nl zSx0+~e^XI`%(Dfz9*KAP>-PwMV^h|jFSZ`u1w3QWSB5qxktxbrs>lWlN<pQVuMY?- zBcCb3ZZInZt0+{(OrzMED=CJg$%c}`HB<7*4np<Eq{q+piSP5{fPcI1lUw$GJN#mH z9_O8il;F`Tk*9?3_Ad8-+onoh7ymNiSF-T5cU3bT&DpI__zfIXBufgbEp{F@F-@xW z-3@v1PWIR_a`8Su26D?PJh9^&85sp6k0|xgvyelHF}^l5p#2!yX?AroilCjexlf-i z=4mo}Kn&W}65Hm#AlTskhIfqaEV2B0I`MSZ^hkRmC2@AIfc*}Wq@Lj8N?aUj{6a9S zEV?+Wqy&)N6i}eBilu#OwUVEfq=VeB&{l{*Z!|ID=P8B`f0w6XpZv>cy$Z{ow7JH$ z>Pz6Lk%TRO)>iXbBJO6GaMGo4DqYaakhC!w_-0|{rcML{P6KS=-lq4GpZTujQ8em_ zES(8piRu=+c(|Smx4ZX?1;+OtBQv($M+08I^&a?SPS8*@j65oAq1~p|7C>8k%gFB9 zN_YF}eKm8C*by+M%ev@a;DD_koVv*73s`TLLH0(_b+olC5A9SrI5|YBDti_bwh0K3 z*13|n*1oBA(~2N!65Z9buTo5YK&;o1sa569DS1p8+*P$8@hUqU4xe!(b76bszGZKJ z)Y#-v-{4XI*sH$Ydv5l_-oVQ}oTj$-?L$-F_uZQO=H@=oGj#USZylUVqTjXMTL0Kp z`BiF?Dyf$$y4%9#^EAC$*_cIaR0CFY_kPi1EXqUNkzdWPe2iif*yLuiYT}wjjkCsx zQ_bD5;wy+aQOeYENwGluue?+WP5JHYi+B6Y#+&Remqr^n?dGS`$TWR)P8%Bm?ZC#~ z7J$IId-27d*3q!zxPrDyHc70BojGEu{1#HMvh}8ztMY+Ypts%4;KqRRx_USf_4Xo- z-_<k1n_mXrGG^@;E49gsVGO|=)Lwgv&lBAuLg^BUT7LIVnN?4hKQnB3W++B5)8c|E zSx)C<#yWd^w~>u~+*+)=B60^n-?GtW{rel?17;!<`|OT@IL8aS?HBeb*PrZ~2HSoN z=XZrL`}n6Ht!ErDQ3Xo64<h^S%f3~4h^vX`$b&qOO1KUR|3yEP+y<C!&L}GrH_GtO zzTY{=b9tTR_UPHXr3bc+F6tRS0l{H<2!Nm_*4FL05NHMt?w(U7t|l1a$?PgJnP}uP zZ%aq~)rrj5o69WoY#1NEFrG^?1~pZu>t9QmWZ>VBi}#VOMJNz~xGy^hSIkM44MmP) zv-1)7M~G^Jy^+R2ZuSq>GZ~GoH0nq>;{Zo{M_pq?fH9(?t)rj9{_8u*JJMh1bCX~3 zr|4=l??pJBfS$E0Zs2DbGu<x&_`;obI}}OnDz$TT{K7?J479fKZatrSZDVL0w+kB{ zx;|nt`}Ir0Puowj)E{%e2C@;o-Gx7W!;L&SX7}|i*7W?s+-Z|=X71Ip%d7w77y@2C zyA=QM7Z2&BJ@B!1is<ZS_By{ZjbGe6@sj{n%mbfWQtx(81_EDx+)TZeV*RCm`rCSj z54RQ{z-wrjxkJryZx67)hX{}|e!-D8#D|80f@JZD`nJjHSMbYoJMk(9H(ju=gTjoP zSq!CDOcGh1t>{Iw7|N_9vbaR60=KmSQG(H*D}?*)l6O5bhiqyLTZYgLb1Y?u+8G{C zi6+Aey|#&s>RHEmn<lJi`7l*mH^&UUvSoLOOw%qRFY6i|@TESWv*Y+Qy;zsBL@Q>* z(@v;)VST_kR(S8*!MM2H#(dd#gh`vDy_>4FpJPQ^?(o9&7TSLQ1<F!|=5YW8;RT8v zA1ivW1PkGRq~UC?TwTo))}t&4!qoH*In5&geNoF5(!EM5TmQs`<fX{?rZyA65RB?D zJxL%O7%^^@9W`%CEiO8jo4%>d5h1ya*v^d6c3^(zt<&UP6(t6#0PMjJ!PYjU+agIz zkp)C*gP?M5Yp)d=1D-mAi}NQ=Bntb7lDKv}4II3Zefdpe7O#OQcsd^5oFl6^4j3PB z8=M~GNBXrkRm(iO(;6Ig^FW@7^ioBr=?>4vm#O*DeRP7PY3I}(CQPI<xAAPT<|~_p zuv?1mW4^)Dw4daN&k79F=@IXL`?-tAPF9=LL~Efs%eYJKes!`@g4BQQRl1stVqmBg z;U433emsn;aoW(b<C(-M%=w}j!cAeUAcM0?f$x|_W~6q^#!iyXh#w4G=X-!sz-LqQ zz`m&?Xqb(zmj3<>$%@0_q4F<nc^i#7n;#qH7WP+Z(&k-4hB9(61p?N{fJfYNj5~ID zd4jCZe<w}~r0?Tdp2qGEgemxC;*8l;NT4=+eIQnGiOa39{05=9*=n_ysf^-1FFg5} zD##(`uN*h+*uJu~eMy$whrkSw>}|y1`}4b{76YRwl^NyO)PI@=Y!#GH{lL5;e0WcU z&d{U5v_!TjW-9RQ)nE74`alU#8lLZ>w+i#g$9g2>U&?{kR4$*7(2idrF-n}cHI$*; zEwHODxy-WMdpqp?kmD!b+q|%5<HDgR#!z9+uED1jR-=L~NGQGzFGo0raojN}ez0fa z%dJw%icrjK72!G|QJM`Sp<Tj>Wc4>W=E(gV_n(mhOm~8CgHvxYfm}fqEw~uV_IoCd zmv)WVC0xgzVOcL<otL=j9ET;pf;0ldZ{Zgr*uXN7f3DA65pb)#win7|ws!X+UAppj zshz>;P{sj}xq-%mNQ?^mO!0(&;eaAL*K)cHziRXo8x`0(U(#(xjC5rn<qL%12=j4z z<ZBHtM`c`1J*KUY){0s5#Ov=%`a}xYoT#3z1=qseH$j{~?R@K2KwKf5_XvSQi*D)5 z2V%I2OSl+jQljQOVnOf(SGo*%5xS?^W0#J@=nNW`W@JPTSjB5OSd5lWl-qzu5XTU6 zEDIJSy84l7OhrE}afl{JaMeAGLXA%-RbBoMc`@QPrYl_$A)&`cNqk!l45~Eo7*LH6 zq^bYU!-8dwNvv#T+({SAbVJwbR&tcONd$6jCdSN-CQ<S<w?Ni1f=mLBO1P4Usk;vb zjqv-@KC7Z{Wqsg|%qDhM;lI=@E~Nk|<zy&P(Xo&{Ur`$}2(feR!(!Li@IR8V>W>EU ze!3r9k@3U+l=?;4CAIY0yjd6PA6#;BTAZN6YNvzOe06HvXac5~7vVi!@ft%z5!^at zdg4AHY?|-tH|E!J+6O2<E2=?k@lX;~dt&hk$-gh^826Y(!JU-h^wTkifO&?XG^7x& zD64_70WpqOTWT<~GVhJm-;;(ttRWemnQM?a78L(FWG$QpLXhpNeb+>+-CLw;6I-@` zeUs+Vc?e2kRPoS%n;KfC9|5gj^o|WR;~PIBmBf>&tI$}^>Al#gV+@~uiPWh5aiRT4 zi717<^j*h|2&wOT-A{i;%&kJleF^@~)4!MREnh0;(|bfdx#=J(qS$+JmEjPZHBB$_ zE1l$Q4>lt(KB4iW$jTqGq1KNi^kGWf3yY5DSV^J`5w#}w_M`n>p3$Ak(qP8C9L3R0 zqry`rxGLVNd!(h6MXitK`&GlfxbaS(7i><yB=erZ|E)CA6tl}68Nl4^y?9_6xzr<m zX}RV#NKv_wWt-1PDp_bxoN}g9u=gGP;6?i7C^~BKe!`Hh>>_?9)?Bl5?u1WaLGa%h z0Cstu6T$y)!T&rHJ`*Pk6Y0Nw|DVyL2_^o|^7QXY5FB|os_%c~g6k;3AN{A4e+$i% zWfJ&rb^k<&$w?Ca+lBvRk1T#2sq){E`cDKN2DkdRl>gr}@c;W>8~Afe3!ggwQO*c( z+zk@7Hh5;EstV!+;`kt(2o#{`1p-v+K_D973j*Qh0A|U75cuZ~Cg;|_aj@v$M1D1% zZ6IKEmp5>?vT(N+N4i=A0Z0HQAjHEjz{4-70}~Q|{8(I2gbM}}hry1VLJ0m307oY) zl#S2-9Uxdhq5%M4|8EWMC`W5IcMC`7{|O^14iosNk}GseHULBN7slEfWg{*R{HWX5 zxLLb{1cbF|^Q?hX>i?!{puDXe4B$YyXg8D-8pJOq0K4!h0o<wo&rF8@TPBz&tnovx z)xT{+A(7%pCubj5l<f<5klep9Mj2;k2W!S>Xe2K;BhV`XYxSL301VCF+W*2>S-T-! jQO@pvD~6-ooE<ED7&QdrecC<%xj@h4)!>z~=E469$<z=D literal 0 HcmV?d00001 diff --git a/resources/probmodels-time2.png b/resources/probmodels-time2.png new file mode 100644 index 0000000000000000000000000000000000000000..35de05e1959189f9778cd32e7ac9fea12a647056 GIT binary patch literal 148855 zcmdSBcRbbM|354vdxVg^G9rYGtjJD8viIJEY)(c-NH$p^sbptmZz3w$*(=$5ANT82 zpYQlR?tkvT?)!eHQx49#-q-cIUa#lt`Fvg??yD*g;!)$Fp`j5fDavY~p<z3qp<Q^5 zgAUKQ?#Q^qCuX*H?%cOEH%CL`h<*H`{%-4i@^-ZXjjy-DiRftgBkuh8j_2{nhKpQ| zPZO))!OH+#M?Y3hjYnkKoQDiL&AKin;hHXwTu5ZGFHNN1;;gpunoQOlW1j3>I1@>C zt1)PzxqpRgADv@4DORQJb;XZQ^S;4hnGfDumA%d3#zUUfuIzl<n^X(ey;ti&GOA{f z+{csbk%|5Qab`G})%}wCZ0d(}^c9Nf*oZ{ONZiS*^fzocXWviP^>hXe@MMW)CR(H) zCh2^~vkR?O;?5V_^}|knW?5JfJTjRzsGZzS`&+%&l#Gq)*?sjuOspBi>A-WT=ht1e zP44r=pmTqgRk}o0*0%FC+mw|55svil7u9Yn0mOwT-HwhMms1>F`gq62WH3ZBvf~HG z$GkA9sL`B$tK8I7_?^AK=-PCG%a?*4y1`Lyy4b?x>5Cxv<vVj~POwRb?vc1t%+j|; z{WL3(>kONc)2?onW)G$qjnQ0D;~pBC4;vcVlMpntV|ePxFEq5rd}wIDP0-M8rJ$iv zx}<+n7l$ugG`p)Hi*}Cs^Qt~S9-hH<QPg#Ve-;1ymG8Efg#Tc>E8UaB{zX8Dd5elK z@s|la<>@Y`<E~-q$>`$hY-Q_U$>{FwV#z3CX6uNChkC?g{BsHN;R%Qc@(YRzTJQ<N zpZ{_F_w)QW|NH41d=`Q?EJVyLL`AIl_{{kE1T95H`1nLcMer=mt>C4EE%DwwXnhW0 zmF1)Pe=~$XaV8R-_(1ph0w2!l0p}u4%An};Dn++*e1geL{=x&j3B_2lCOP#Nn^i-b z)+sM8Qia~I73BMhCob{oUTtYMBMnOsYYi*QlgE25Kl^)v<gc<|JV!@2P@7&k@bvH< z+>~_+S>s#Tb4u07PY5ZDt8B^Ja;#ZM*+k+|1ZZrT>gu*D+PaNKb?fg`5;$^_J;KK9 zHDD467)Od|rr8zt<3E>rD}j-!cKf{c{&$RUf3!&T54C7S^1sOj3~RD(4-!+>ZDPNA zGdRC{S|;%1eU72*FTSySjFQHJ11tJ+rpgVXx5gjs8HxQ3#E%Ux%x=D&R;|ZAM!#ur zd64cmHQ|f`({nLwA>7nLZxdEe1TD_VS8GE?TJs6^2B8zvhHzIMRr!YSJwvk`A<7uN zn&iZ7o*1_p_WKbQ1Mxk3JeSD6Y<1#T;w5}u7-t~d+tVg^#lrD^{B@M~1>sa0%6ElP z-0f9*5x;afWh@QM?ykg(&S1J0vL8<H=+IfF=b!uAD>|;LJ$7uBvi-GsYfShhD?|&4 zxv8oL#L*KpG)xir9IgwRi06IQ5SwU9veKGfW2^O^ezbBg&y6R@1an0`i;l(RI*6Lh zsgy<EXzpO+#_wrCuj(mV_K2xHS$E#>aK@k+LF*(<s<WUl=j&jlp>-jOyUL}b)h7@q zpWB_ia?n{`#N`ttzpW@hEwLfBYqzKAsr^t}Tk7mxekLhL9;P(O|Nih}3Khe^31a-8 zAByuq%>4iRDV$kK^4LrN`$tI{Uxi2guOGw-I>eH*_&>g@jhBO&<$u0B{69eY(v|;X zBwP5;y8e&v3OBwlEB}9t_w@h4&=fyPbLJ(4&Wq3R;QhOu5PCs(xQ!Rz{=Ce$P}J~4 z{?|94rP}op7>-EMzbxx_3;jHf0pm>d`ZJKNo{-V%Rhc<|xsPLi=i&|HD{9}gpdiNk z%AKv=ElZ-_&cq+@!q?a+|J?MURr;!JRtf%5`Nka$+MxBpzjye6V6r43HE7O}VLN$$ zKlOGkxipD|YanXU)#Y$7nAPeG#fsLc=GfK#P28o(s(W1Vk2?D$=XtO1q~3-}VWUIG z!-JPoC;r6r@4NWfIviW39=6PW421iNy0VL!y@&vriV?=Yx6l6$mt?{$-9)=oukd1U z^W4@e1V#{Jmxb(=bprT_5Q4DQN1b$@R0N@Sx9pz`%6-&ZTc4<9XB)qB=Z^5C7fa2r z=cR5-eQj-RFN_yr73fFHt%)6`JjNXlCOoIw5{UjTX#|M@&+yG*gI453rQ>*2<JsDy zJ)AcQ4QKn~h@&3kzAUM!@o_GkAerpywaRfLpXEFk?Tau#{#&S7X7!<>qVhUft5WbK zf7?-(v9+~DmgJb+vv;(VwR3)a*PAo`g1x={=)<Jz`V{l(ELL+G4Yyo~SpM8$mn^dq zsj~-<PRWy~e1(#p1--_Avj+c@5qjl!<7-Y%PK)vPp4{u=xzzNW&{3%6@-<9C2TbV> zVgl<xMn%mTM}cS?xo-0L8?ph_ZPVLjJy_MB`mrj4Idl8PeG8VPDcY8(InB95Iu;cE zgk{9-(<`<mQdDHmHI4_ekO|r^0-F|(MXrQNChx_M=41~V1xx8~KBVq_c<Rp!6Krtn zS47mGH)4+-a>X;b5u7c0G2_-D*K=iUy1~bmZv@VT56LdR4Ji$LPWm@gE`>|6d>Iej zwZ4KEw7FW|zwN8>;6XCCu9;BU<69Yx=Ke2VnhQt<N7SvJt+e@Wmt7+?eQTqICs=t2 z6PF1UgQOC#^YStz{q-v2HLg8l9<fLha{T@KchFf+GB08_f;}bU+5=ZPbynk>%-)e6 zviQ!L@pB2vS8FkuWb-t<v!c~V#7`ez#={z4-XU#%+gc`=Y_`0u-Dd0gZ+vnlJ5j>u zXIBdf3IwPKR;SoAy=DWk>8BlSXL}rnmR>hqy17ug+-ENN*}ACC-s)q>waSYxhaf!3 z{*Lag=KG_arPfL{7L|g*vJ539rOTHuBWH8HvqD@*?VdEXm0@1^F5rG^qC1|QjtDzX zGxr-SD=P`_nVuF2y;9um?fq1;%AMrK(*=oxpBQ32pFdl$Zyga%?}(pfHZ9;e+`)DU z|CdBs?wXtkP|Xz<7srU&!TUP<ujsST)6c)BL2l3WpPS3dFAR~?+3(o28;pi^+wAl& zF=^gSfpyzNB|3-?XMQ>dFNJ5Dlnh^%y8W;9mF3FQFrw>JyUe`BYhiit;%tGHg@r{x zz>OeLba9goDK1tQttaUCH&-ynqYXKmh|?3haVp-s_q4`Sx=#+DzcRSW>-SDR+6Cdm zXvXO8(_e;7?0WO(x@;!6(bHCJtY87JxtK~|O6M>r+bRwvY`zl-E08ts^V8v99*|^1 z#S>~F_^(g}S6qBf^s0*A{^yi|U{(?R1zIur-iK(HZ$4q7t7G40)nmjQ9=b!qs`-i? z^31n>o9OcQ@84%;((`!_f6yf(Bf~h6LLSaZ`0jtKtn~2kKn^3$hC>NyMwl4mjNlgQ z4<=WB{kc|GSwmj`xq4sTv|kx29LQHY@D@$(X)o5Vcbd2*X|=UA*NKgdolUN7`1o={ zUVi>kqPCH!@4kbzb$+*n^1XY8@PavVkwu?=zi(@k)h#lq{q*Tmc{v&KIu8%e_3M_n z1Q%Q1J;-O&wY9Z<^ymhYY}{)YnBU<{*xK4!eSLinM_;<A+qWD!F6|<2US8ri%7#3{ zMTWHvhqIA=eSL6O>g4!%cof(5+#!_&s|glZE5*TQ2}wy5nfs{p2p=ReJTI+F>OI!< zD)jE*EN^Te)+&ZoGsQ<oM{NbEAKx;RlWU)Ck1Vd+{`}*I=I9kk<e_;<4i^_!x14=> zRn<Yfnq(m6qeqXpv_8C`YghT1A?8Uh>iW92*4M>_PeMXMN(!;RI$AXqAckN{Wjb!B zG!~&Hk_ng3)vforx#})L>s+_h@hw+DUtizX*LTWyqkeVOVRVLFHGQPU%^Gs9np#Zf zT=$nRU;6uv%dNh=xtCU#e|*8Go<7MWJE1S-M(*3U;Uu$LUhppE*8Q24l|p=J@b8!2 zMYM`94v%9xci=rylji8?2;*_8sx2ugdHeQlb+y;Pn|q?7qAZyg-WC-FK>D_~v-9!s zp(RpKRaFfLK$cndR62~#*0Vw3?0TCG)Ab-UE{=5Q#Brpg*|@C6ZK=#6BO@c>d#*xE zUxrw+@HZs#ps{>6j@5sE)Oy&^)6m5BadQyXQeVbSL%LD%Qv4Nyi%4xNJTjU01qF^m z<NgN|?D~;0>i6$&!Wa*^e;9gBw8u%DZnmDP)q1R%Nlkb!!OO=;Aw{I5rfPAfNw?27 z5K~T7*hRnDv;4lF<f7ldmMDeXipfx2a;%!@@K~R$7yDU=D%a8^te;EA*Xkbb2Q!@B zPMTg!bGB-PLN>hMdUn_;Wkr9v?w%q}cURX)g?%!s(&?2H3|F**>i6%JJq*KIw^|vH z_sQk5u<Zn2V$*vyExT`rH9d}&XAyf{T}>6>v(-*%Y5G%7Pw&vYKTE37qMJ0!n+!9% zq-3+OYI0jQaHIZ!{_cLXvtO{r@izsAg@uJ9u|Z<Q;howEo&x48S$^BNWYzT%5fL@# z$dj~}FY9{x21ZA{7ZSCP#gw$Ph6dE6=+=kA7`t9$x9UQac5QiypEkmeb$@!i0+aVH z>z!M_)cGmws2clWp5Ic7{7mz^%LDd9AKtxxPwmzLTW5QrCoACCwrZTv_mB%O=<Co> zrPIWxP6kB!T7GVN<DzQ~J>qn0Z)Lcus>+x0!XzyM>Q@rCF2A_=>JCA|_b`TlLrCJk zHZ~4KC;Hbs&euH~$4g9udlp)5Q~XW*u@R#V4Zq(P1RT^(1!nO!$*_{i93LMS)vkX! zM{b<&OAck>;)U(7vxW!?2^Hy-&ca+^Icg@QkeF4CqwdCWyt2lCCsn$SnYTO=xnI>- zzfx4|<Li4in#$XFy4~^=KZZd{)laS<H=(k!a?-WuI&4JcC!ezuK25B5()&8hbwtzA z(ILN!AOFftHuOjxwA=H{G(MfBq!DuXwZ6WutA1ZwO=9my)D?jgF5x}A&N}<yqG!*Z z^-G@g8b3YQ-Tmn~<&QX>W5AWKx=k`qdK-mF=efFi%Q`wbR*D;qtd0WLun?Xblm6#t z2fj4#@SX-;$CcrscJZkXfUMV?=2Vt&@YAh7RlpjZJ&AQ$>U>8kEHw0R<zgtYsORD4 z%m(88WVc`@s-E~A?6TF;&N_i<_gfp)bI%p%z1wPYELJCK57w%t=*vf<|E8oUE~&$2 zV#s3nqpGQ2*l=2k1NI7rhP0>+UYY9hD=%AT`B$1W2a&O>dNFX2C3vp?ta-emWu&m* z*GmK0#QA*RSrUOo@3+}3wow-^dgoB=a^7yA*oNQHLNbQM@^o|X)H(9tsuG?-bYfy6 z3Xatsh-LKI7uWAwOP!?lBHFD30KI(?o+9Yu;NL+~HXgR`4IA^Ojs4mYmpYvxX7Jxt z-<`QlV$u5t{BK|OT1Y0@Zo(km+(BYWb6mSN_R)3#0+lgkW4K}eX4UwY*Gu|NHJ1IE z5<c~l%kG~HipIvqP^)y~#*NkV=;-LlhKm>YThD!GTChe^#5~s{c^kZrcWrAYCI<#~ z#_Wqrb!>weQ&iq4F!&1|GVd%n+S*>Yqm`#|cG7r$0#E*!m~gBbSId&D_doGysmVfx zgH^e1(s&kfHy`ecdYt9iY*oWvAt2b?yu7^P;*AW?$)m}GhEB6bn^?P)UjJ}wDxX(* z$-8&BLdwd@ncj=3=AF-VxhaC1OUyfobPR(H+`G;Oiv!xDJ^`Y2j**17frpF@zpy+d zMMbaOZwlv|VNy-T6hdESTu`A^r{w+R=J4uBX>LWupo0(smZ0%?uy}TEPPbzcaegMY zUVUd#vKM)iI(q74@*u@Ggc0Xjq8%jjgGpa!Cnp}J`ErQWsq-^qj}Ll<$o})we%^+| z78^m2$B*kFd6=xXEU+pacL+BCDpzd?IJ{f+@#B-A4_XEOFTX^gawA2g++yC=e7sr! z6oI<V?t8)$yKQ7@>5~3q3$7Iv6=#rBmy$Jaq^bZaG~2lp`1$i^)b6!1X3pV|-2Hk7 zvdD5%(-WiODJU=iuv*hbrH;SFpr*&AiXXa=>od>up`7wR!n{J}J@i3$vfk3eV;@SH zb*T=kl9_2&lWmZ0JZi>f*mcv(h^0<nNDac~>O23<%f_FMX~w)`w;fC@X;VJRk;msx ztg(M^Q2y09h_N?QLO&@Q?MAHB;WUP>X}(%k!0F*5EeelJ#Q6bYNnocLo1r9LF-}lW zu#I<xl8g)$D_gkJ8&Hm5MpvJmzWduczSuI+yb&7+v)yXJUy5n+jgXjl=h#Y5@8v<o z;nUpmvNBd8kM~*Ur%Sz+njGXY68kBgbEdY_8&B~mp~vV*d-eG7<JD_tXJ?X6pZD<8 zt{!g9@gzrPd|7tqXE7!TDJv_BXII-^K%exQBjmH0afMuT#rW;P6e7zIopjSmpx!3S zS3DC^YKri*<qATlP%AvRcXu69fUK5_^1Id<9e@LfOf|`)kp7+b4+}<=T;1G8XE{#a zK`6w>#x|>JXlk}i1-S?-!Gx3jI(o{8!`$f`H#}6R52#z%d6JffrUx4_(uk0%`E^BI zU43hg;e5oJe43C(C?PSi6an9*kVfe9P019>KHMNxcu8;JZIY0Lgal*cb~5*k5G#Dw zO6s%U?xO1CQ&4!@BPq+vN_I{G0%}7b*8f^<nq|9F2H9r_=5VE9Z%Dst(x>2qND!j| z;%v{k;b;-_r^4UH-$JwNLucOI<c8Dj9$Z}9GEC^;PV0n&n;G%lRO)_)U=fWB3=QqC z7@xm1_$YV2HicY+r3|UqJ2bzmtn9J=Gxg=m&njAz$wT8mA3}*gTUH~c7q9l(GRxEG z?%M~XpI2F#ln0~qq~I~=%EBIL@E4QKdeTED;geweEhJztO(*+)-N|}wuLB$9nwvT~ zV!u3VEApg!mQ8AZ#GFs~(&}$0g{SONM-d;ULr5z0&SDU!ES#JXbX^4_kTJ#rF|emu zb2w0U;2`IO)La=ZMnKuu?bFxO)A6z-a0~=c^ru`{U|RL19|6F4^ZIqy{sU!5b3I7I z8rQu3)@HN2_wHHx9%9{=e=3u0G7}n+eAr{%WWj%=f9NE;-f*(Mz3u9Oi@au6;R8UH zdluW7uy(>p=L5!by^l8E7Qduf9$C<&2|E|PeY;t7_3z}eMtv<VTH1o7FlqexGMCoo z`L-3)f>!(V+U?Z(gI<CD5eK0W0MIaLh--IS`(DJxZskjzMQ~<9=ExaXPOwa|Jb`*} zdeo2To6Rr9L?CyvbZY{(<Fk5G1v+bgG(m1erL7l{8mm*tePKl6<`?IH_zZ<4w`lot zSOmo0PVLm$^D})NokLXGUsx!B_j81L$h}nSxnYHkgts=!gWIbeF4R{z<yI;)Z4E_L zqv9j=DgwBTKSWa9g@VY@cjrf0=iPn*%i6;SUQix?udL8eqppChNaI8CG)5fQ_L4rk zZyl^(q|Q756cJSAX~~`{<Vbz)?CiW@gHObMI#kurzOmJSR}j+BAgOholE+}0E*`O) z%iz5fFEx0FSVFK8?=LYS-9e+g47bUo7j&Q&@&clNe%_)ozDnGG?D3?Q<-L1^<CC8r z+pDNVaT9JN)%u_8r=(DgIP+0?g&9CUaXu%7yyIag6W(ose)lr}c}21R7cs)~4LZ-C z(mcOw0JN0#ENt@-ZSkjBj{C7nGz0*mCb)=ka)3P92y-SJ<-UzHpI=Be4p`1hM$sNi zS%}Pur$DHbI%+Xz4KU*}-Dfrd#EgM~(R>pVSgP|o-plzw_C!dglsi6pw1vXC=ptPN zW!2RplB!rS1Ir&^YrlU#R_}WN<^RTP%NOMInKXpt6~;W7>`m`!o8p`19RymFP1-Z~ zgFk=v4v!!2tza0hytFSewcm{{wE9nuY|UEe{vbQaO&cuN8QBHBN12>#T|`Wb^^J^` z-@pB=9L6ghdy9jFZBi%k1aIC9T>DLo^Q~ihXkx<f{{5z+7CbTYjwm$t8SVJRm9WA@ z!k+;rYk~Mi2B?dBd~|Hgu2e_I3ZN<Aa7(U`oy`JDfN=n{AXAW{2)QRH_A8t?<){J> zHO?0b#;d1xLTNFyqOP0M%>veaKZb^cgoS-ixDCvb4zW}^B0hc;%up2`%Qf-0({e5? zEuH)(Wnp1$&6W81tJbAIY!I~09fR8+p%X|t9&SYL6(i2<H^a)0T*MQ;_wY8RpY_me z)|uSH8Ljhn+k7var&&BKa4D6zthty|VpeIy!`z%@T<cn*x3@QU^lC0k6TObb(+rQ3 z{k7&{`aQi-8t5~q{t$z>vH<}B(~9^(jOoy&0x{;j^F_Gx4(WoqG^TU@^VA#0IW;w@ zN0RePOED=%<n2*WQAI^Ox|@F|pM=$5lkG}lrhb>LjSba~tb~lBv2j*^svGjd{mR$$ zBvC=V-1^caes)8-?-|s|bwj=P#JRX4jk(6fh>`nGc!jc*5Kp&{;`>RNaDp%|{vlvR z>uNgmbNC-zMxrvoae?vK=lo0DI6-=anK#TkAO>J!(F@pPC_EO?nAl`+%FQgJydH<O zHupXd8sI}q(1`C2Ddqk<KIX7Xm%HyXDaADwV7fi7H`*8w++$~skuF(G#+<)HRj%?p zyRKwnYN~&qos~6;$vlYhc0}E9G0}YzU99K(pP*g%!-Zlpi;1N<`WDx0p(sHFatYBT zXRb|xViF398+`VD4?=O`x_%uP04)ykgzwINb2R2;v6f|fUdh5w@b66L;^E_uHbNiE zV$^OUNJLDmX7TM`_?l2jwMHFXh3<Y^`v}&$!R8zD{zf>LHMf3c?^3{|`%)|xFJ!uN z+UlsfbHG`UR+9#MZ3@CYe{gVfTgcQ%m5&-T;#V4L<)8{qV7sTti@chJB>gT~(RYkE zq&NSdUFI;)hxgxUBI8CKDmVO=#7gdQUY6TJaZgY{%tz5Z+lK9an6sEgi%XLnVqK&o zQczI9j@(!jID>|nt*IO9A3;i+a+8LVQd>u7WNZxY+z2YD@RZ+9cvuXF&#}OS^_Q3J zmFDK=3_icIO<Y&}MUBD;`R`7uWJzXZn7X)pwcz*0PMGUocE1JvXMgcxzQ#L?9{Ne> zsLjKbDN7kBae`#oX7jSpQGGDZ_w-wje<utqTbxVo{dfTQtE4K3U~^!oBRy5Ia!2{@ z-6I6N_m`$+W3L%3%@_Z;s%H@&#l20FiOE)Dnwy&^Cnwj}*U{o9Pg9dmD?Vs(=_j!? zc~8s0T0o{a4M?>U57moH{c>`!L2U4XSn|*W`Vwe-;Q}&GC@q?V-~ZUXLQmp7-s<x5 zGQ8IMIz25dZD|LrU)>)qz#@uPDj?mFi~L!ke%0|^PNnZNtzn%Wms9gwy~x|LFxubp zXd4&+v>o*}@|t;y7IBYl0J;{6?w5c;AjG=JEzr5uI)Dfn-8Viz9&U=X^AgY8-rina zT}@9<hsTLp&l8o!{yG&kHMP5U&Ciig0*M^L0pR9~QgU)}neUJ*M3rAsX;)1Xif%lH z?twiE%QOsLF>KAa!B5nSHZrG64RhC<H1qxYYi}i*9E7loZa_VA{zF@T#_i~$NsIV7 zGSXE^MoJnNA79^(;Ty1%Hno}AHQ8NvCo{UHPMSLC^eXxXJJQp~iOLJWsP*)@0my@D z&^?uhfFi8JP2ui`qW3{`aF6mJ6h{06MxI;4#om5}Oila}<5s4G?=3MgQ~g3MUKrKK zD-Cnc#YQqA1bLwuzTkQSn=6{G)^$Nyot#%)WHBN#QoqLa>d67L5@O!luRZzs+Q-Mo zM+u~)Ns8+C^(xOGEoNK|0Qv#gKy-`6nx#zh@kom6&thU293R0*{@oqhW|3!!KqcL@ zP5|53*RNkuWvuWMkkSCV&sMFa<~(1ju<7!TKJ2JWp?_^*Z?|)zkWk1=CryH!IzK_^ z6((hzrcIr)rPQ4cURC<E(QuOK^P5vKxPkaDpI~Y#E8sw|avj@wOkJ6hTgPRku&PV~ z1rUyQ2h>jLZ0_FefiCX){sz!sFuMx+-_H-uk;WPtqz>b2`v7&*#XS40W6yy}*oqy! zT|l^5&lfs&xaN%LVIQe}#3I!hYuT~vJ_++FpBuY2`q7r`?&jA!#HBYC#p(MAg@3xt zcU{U#9*3<u7bDe&T-bAmx-^Z7&KJKr^DAi>>wznB?M232H>yi<i63(U_Kr@>!%Lk0 zaM(t0eX8;NGgomPs2mec!iZ^j83P{e7apRG32rai6P6cG%K|3buM}#_J=q0<aq4W{ zQ<oYTIzSPif;jmurdnU);v%LM*@QIZx9~X;T0ici_w)aV0TqH?>RsE=(u^R+D4VCx zbrmg3e?SUFhGFejjITknaelq(r|Wdn1&YuSt8$60HnIY(!r$xbR$&MTLE1Y>AR7Rw zW2)8k^5x5`cau<E^5EcLuNE|#$YjJ(GEiMl=n_*?yVDUz1yQCF5)D4d*Y!cb5%M6d zH){M#AJtV>QhXQ5=!5q|00HaQHm~noUr|?=epc|!CIAv_IRYTER-xV=+{7u6QVugo zu-Ab|M$|*kFvIecgp`4SIGNsY5fV+pOdlHT+`|@qFUe>tXEMGnTzkkD-QC>|rg-q4 zmOT_1s>#X8!%$ne4V|@r0qrHu!eZY3>@rY<%q((AI5R&)XQkpU)~<&SxlCh1cH0E( z{v2wXwOj23ie80QbKQ_foqT6|8+eD2#@y>{f3X3-9=d{r72B0Oa`X$>_wVYyHpzOz zfI++NJY)z+s}Z@<h=f97g*)j3fjH@Nmn5X6MMl|HK_QG)X_YmI@${F1)Ti}ND?ywY z!l?Egm6eW<eGZ4M%Fp0S%po>{FK1`X>Wu(D>JV|}=@st7exDmIHeY8!vWaaEUiRXd z21K#~c}bs}LL{->%==e%7!K2|4AuMr=*@48Ql?1y-%9K4tOjB%6X?9fC#xQ{sAdMW z-yXcvyn6Mjd~Rt~RdWA(nQSi@Cakf)6&0j?zQb?N85I*+(;i)5KL0GkgXy+dU0pqF z<a;msK1ts=gsYaewx_4(&hVG+?js-p`Wfs6sdaUPB}-cKM6meCTpXM(xoGlP9(V>Q z+q$}LgNC+VyCInr=S^FF4ZSl7AdUqvJ*ztZQH9wE5b`X}ctOT;Xsx8H!U5lDh|B9S z6pKP$pgK&5Wd{R;^j=mc;PV|F_khuyL6tm~7;%|~-#6BHeJ8bl*j04KFf_tuu;?6H z+aDX#d&AgT3SHRtXRf=+JbSuQ&ApuSYx*0zaNq1|nFe)UH%@TvdTj&&7X}CQ{${;; zbpg04H5HXzkDie#=PA#I9Xd%6II9hcfSH_}G#bqV>fqe-?065!54s5{)v1jFiN$-8 z+s6rK)OFV@0?v-1#T60|c<|=FfHAH#NyE_>=S*?$ZRlot`ueOIee}nhMHsRBsES7} zir{WZ6~7=sf9dt)8THmjptGQZpWo@1%1TONb9)?!04WMZ5}|^BZFSW`)bzr{Ke+N@ zZr}&)qtU3Q4t6mm6XEbn^|Yvd@Ik)nmo(vi<0Ou}_V)IE@tt0%a2*NuhnF=Cv)B)6 z1elm+2DOd-kw;4a4=^lFAoWVP&UXQ;!#XZ?tr6R3dH;%$b4S#bFe19+D#VGfhu-Mw zZRK|w?|=}*MzPg^i?W`6w-E$h{jheUAuTR$cE_WMsX)7U5+>~IV2VK`6E}!a5l!C6 z8M-FcTdxu%PgcvhTlCb`zX9Li|Hf~<W=ZG8Ga9FA)8pOc!2VSi5mYY&&C*R_;aUTp z$abjpyIA-X3CYR4hM&k6XK{mEW?G(t5U~Zc;;xrCEapUsDTcnr(N-rz)%aQnNwoaV zbTIKY`#Df*eVG#Y<KtD%yc`@jFXB;@V+qr<S!m<hxLOoq=p|gH(Hx468#80_h4}cI zhU`Hv+Sk6`1TX(+whed0sKV~@Mh4T)!$-9fz6a|PKD#y$=LiG>NIhxk=F8d!k47z% zrGub@Dj38Y*DAP7v2f?_vUJ4cXZqNAc~MmsgDmyz86I*N1Dl9e!iT)F7+7s!c`u3# zLJ>ACAH99xHywyQJ3D)5j4GzoJ-~6OG$dg8nTSm|9l&Op1bz>=GyqP4fq~Fy+5)x( zifwDQy=uaPhCwT6#zlnQclCxxi!<V6+(hF!RbDm_lR$)x)cbmZz6~9~7ptEB{;-}2 zmsY}Fqr`7hQ|G5U{Q`z!C8MXHg=dL-lU8aM8`VR*gy39RS%DI827MrKgUfq9(j=(& zb6f0P9>{lwjS3)x`zpie9S_pnZ`DA9L(&nxd2?@XFZIhJz@zWqzr)Qy4gH{B)mMu$ zH^^h5>=-JB=v1am;)v?IqDE0VpPFz{lnBrcO&(TOR)C|b@c~OiJ|$f+$a#FLxnr$u z{Cn=F9M9Qsek98^0RW=d)g|;G9wpyUAfX>T%Duet9o3M4j1jyBZ}-z{E*kkfF9Eer z=4TV?<Kp66k}v+1aE@zaSKNc5$0Mrp6ducEUAo35(wcn@dMri0zrK@@(C5#e!;;}u z0zbq-7VGUC4z&%4*JLdJS{P?*hUZ_><j>=25dI4EM~vBl#=fuLyjjGSIt(0Nv+_*| zsso09ut2+2Z#?7$SQ~(-6Zz@=SK$9Mk~Ur{GL%~dmykY&T}({BcsM@t(Y4P#J&jw@ z&JH6bOv1udpm5H2$HTVs`TZ^*G+wdasICBU+KC7e+xQD`{yhHk$FN$gj#q6QuM`WX zeK}R7s0=cWquB?lE<@DqBE`3Vay2R{S^1k?P=bqMmrj+_1OyhW)M19h$2bkV@dS-L zjUy1NHh;W(@RsqvEjEfF!I>y4jbiu}YHFXez2Pk1^%@|vFZGdK0p+>y?OU(;SOpM6 z$=B1F|9fow{D0as#yL4{ZEc7^=v`oiU0q!vW$Wsus^*(VuA(OJ-v{Z@-&Od}=cq3n zVwwNHWcB&)as3^~|A$;i|GyfVg@z0#p(h0@^kjn8U$B3e3dNtXhfebEPGSv#MGpx> z%Q`5_Iz)_CGUCkeT;N}zN@TlCaRvXO04q1<DAUPZit35y*$-QvZr%)3AsE^E7i14G z$zx+TNv3y<_Q}pSY~(H|a|TQ>Ww+EGl@2XT^jh!_VSc=$%$e1C!}t=z6^kI;pQZRg z)8+RrQsp-bMX9hNUvm75KG`b}sxwSa>U!|q_)|e@5|k`u#Q7B!8WPe(zojDkqT=Dc zFzdF{G<SChLDqFd+uiaHIcz~u;r(G|ZM&1R#Rn_5hmKCjm(dA+zj_;{LWKg3D250a zL<iTu3#RxZm_bibwuzN*(rxGa-qee9OzG2RE`vaQYTmx*h4;$rx7c@)G`*!PR;1EF z?6+68o%RFum)}mJOFl58k!MTMEw=)IJvcN3K$$F!;qTB%C%}EdZ{#ILj@={{Vu{9E zJ}vMh%T4j^=ICik!Abb_=mTB)aXCw;z12@F*SaP<k88hrRo`V%S9=0;w2HyiHD93G z#u8eC<HF?7)Fm5aTK%_UfAJ3OSyz`=Gh#4IHl2EH=}JH!6O)C5eGnF73P!MPYxAMB zud%k!$2o~J1_lO;Qyh}CmNgI1B`zh8(cGXW6*93vr^>%C_b*yWQ#o2QF0dXiudPWS zkacIwfJqlzYbKneNk9`30w>4p-qoR>KTm=9XkB*q$+|8faR$6{R7AuU@?B-+kXfls zg<iCL?x3A13mcm}`J)od8di=x`k2l&kKmRCk6J?>%JJ4sFY&LHSC!&eyXUqPDFYqv zcTPL3vTyKxzR=R%@*;}kSsCF-=o_N*YdkH^0tw2%X#)L{!|`78+DNYEwL!azIF_H6 zV^kzV!@|VG#OR2^CY-899fZ;dg=mR7!CwL-x<bRPZD~%R<yIlF|8f!e=_G8w_LXhm z`*#5EJcU|4ef<U-&~}*!QYR{3bw30@2NZL71nt7l2lI+lP=svEza*!QVTalE_EC)i zupVsjwqB@<suBzc9nmxb{QPwTQh=3&(!MOcOIKwN?<)J61o|d?Z;5dnE3)-NVWFdm z2_sYxkM~JQNdV*qPe_9p+d4X&ChNQ*N~orpS)=T4J|F1j%;QPM54oN{fJ;LZ*1F(2 zy5^DGv*3Qq)T`AO<Ky-FzMZvavOj`Mf*9XwUQ1NY(<(S>ysd(|2pTV#3+WY7>_<&a ze+hr|xO3xFU4<{NQinVE&!w7QURP%TN(#{<5n7b~3oS)|5=@!2Y|^q5C|#|stz{3I zZ{G!{j!`jyu;~FZ89jY{z>DVlyp1KV8F8Q+;;PfNXflbB&%L6*^*8<?LA-$iqJV3z z^-z9q!J&LK6M;MemUEO;esj-ASJ!)QP}`RwF)M58>sK^tvZkN($vlSF?h>#YfLfxQ zx4j&Zo|Lp$$VevRe#_9$uWr;~Uox%T3@FhQ0qf@<UVGG@J*70FqNfLgit4?4_x`Xr zci~Z0Res455u#<cC7HH5)s*ZeLaS8(p)pp6wxn?XSu?&y9P8)|pDfd}9EVpeQ*yz? zJkmH98cm+cNaLt;ke6I{<zq0F+{Dk*B$w+#Lx>JBO7~c;ch`vt1fQ+c;D~tf)BQB| zv)+FAI7S1H|5LkJY~u6c+lWE*n7aJ}SUj+aj6}8pVDIRVxsEmU37tDz=)Kcd-)qO3 zL=L~p17KkX1_lHGtbR1#w?`n(!5TT|PwF9z%Y^q7-72K%o^hE)M8AEZaiiq*>(M0W z8(8Y(srikn`E!>o<iUsqmN*2WaeQsjFeN*JI$FMg+(oo@0y$zHLr6$yTQN32KMx4= z$B!Q$KYj#eIVy?(xFy5WM|1^$i6ltgsRptyhH3a!F^_6iTx)!I0cVvtjPh^9yFY%6 z;tCjDV<WRxAmZVA_wL=Wfm^g{KK=`AMBKf%$_ktdgLe+?EA*}^>D75Xg0<oH2k`|+ z5}uxmAy|q^O1hui-+dr`!{7X2axo*IS35glY|W#5)M17%?F+1hS?Loyhf*CcL!C<c zWEFx$+=`I2`@Bk|)kE7(mCAYiY;2)xrUBI?STf7_m04J^RE~~Om2nCWXFilL_FqtW zZ+_zzBQ5qx&(BiJqS5JwH5U;-`TV_i4|>S0C0n8I0`ecWEXngHj;sc<?=+9aUwG}I znXhZyr`TQmS>uNC05pa@jFrhA0b>F@F{<`q4?4`58PiQA>!Qz-gDd`X9e(&GnHStC z!8w4EboobbGv>K_c^w`!o=Y&b`F>T*zR#^wGTlMryzA{c%e5^cM1`4h(_YIEbxnZ9 zq$Pv$Z;iyfV*Hg%^cZ(DdwggJQsmEx3Bm>|KZhYvx5c*3&Yq;Y{=UA+N=KUNbvC%b z%*e)e>^`>lZndkS^$xSb=OR)X8VKMA8XBi`J?CkusWo7g0S`!Uvk4y+WV+O<H%7%$ zF4MP7E_usZirZ<1GG5KR<jj+GJC3z{v=>|M3O)TrLL63em+J(t#x|p$8IXs{s#`e4 zaDPNUPnI)$LKxn08(mqi`EVP1s4GY`Jt`nVJQK~^gq=MkJm;4{rWYS!lXYxrH39up z?_Syz+LTLVJ9_t_FSaK*8$@WIH#bXXUCl{=z&|`Z1jGyuKHzD*E@h~8Dm2om&*6W~ z$(d6pL^IX_6UW5F#PIO&__!D!-z&{)0AlfOcC+{N_Npi<y3|f^QYt}XhT77qL(A@U zoi}FIIjhrqig<hzP9=II-Ncw7#SPkZnLZH&$JEqOpC=fvqU7hAP}gnP7Cj3=H8{}6 zAc+zjF**JVYblZg2L5)(B(L8W0mLDYpFK#+AXNv4RnY%XywLRH)<@eJ1f~_3ZeU!@ z8(uj%Iob26|7MeZ6O2^4<#qVg0GWaNZfR+O-4Yapo*Kt5C-`)lCbZjv`cv2DX3003 z5XLcx7YeFC+l;S7mXjZp^GNF+=(1u)%VV6kywr1`liPlH_UL0vj)V2|{+yc6zURaX zF@fjJ!Ujp!TIXeLZEAkOce|wszK=LmqM}jI8o4-a<pdSPN&r85osOq<yi+$%<AyF7 zt18X|KE1+I(hO6UkfuBl@9lZ8Cjb!)!#3TFdAJBJB1!upZX|27F;7ZX-TBk#(wpqM zC$wuElvx2TE+xgq{U&_mmoG0YF8VNRgK24Rf1l#=WoQx$U%zGrBLB4~LF(=wYba_G z`5)g_oBt)f*o$S{MRKlQsI>!>bHO0gnwU<oB*dovxxhjM|0X1`im|t5nLBS1y`Sv7 zc!!U=Ih=YbeC(5Q-e>S)c6Y~G#;FO2i~Ifl!KrNP=C%WEjG37kII%#egiX;K5)z_* z*^YE(r=jPgB1t$HN16P71H}wW4Aa~>hwDNgDwD0Kq7ou<5fT*1XEaUorg38tzRA9g zNv9e=<qgcTrZ$#JQ>5<Zl6!wAU6PyxeVU)>EYqZ2Mt|9f_;q9LNz<1~B=kd*zT|jV zm>+OlaPodQ2n9!?(s|(w?uD1B)vK;Gz!JfwBVsF}@8IBIXJ-f9&zKyrYDZ6}<=sOw zq7J#S5<b3rXWRLlZr-dl7%wU&2DF5po*vMx7S#B2ZmpI}crCRpmA0*9#~XUKSvM~Q z3(T%w7*%^=ls|Blojo}*@u;q7VA;XhIhhr3(mtf4AV$amDvgQ|oE8j^|0`$X((lSX zmq}N(e(>Odx%nKJq_Hnv)X>mqI6vDsIhCm#U(4a(kMK6Qk{`3yWQy6r!VdIE;fD_( zb<F2B;|1N<(eVO5>#@NuFP=#vo6`5qO&6#>)6=h-O~BYEOhq7{`)$Fs^!+B0KR&uK z=(MmXz^1n`E5fC$3<7|fvNH9ZsHcnq;*}Y>w;XNARM6^%<mGEpW-yn&`sR1eL8cK( zRpGO_K=Y(OPvj^t5SDUxcel5<H!AY&;P0=;p<(qMr!{E$+(}EBzI|&ROCSk>=x%Lo zZD|Pw^P=SC8bMQudE~?#-Tqi@7pQ;Med)G#cC)R8w}YZ-gn5h`#90?)*m(bAbPiIX zyD$5k9+nAA?5Lvzlaqb5h>p(AbCk0)Hc}xk7b`bBR{cEzQ+f*`A|Ee+r&5?GEEn`w z&b<=AK7OFzCTo0DY@OTMJveA}cdj=get!e(Ct)1Vrhg_UB(yQV4RYbeKWk2zZer_t zo6_Y|+h(8o#R|t0pMDFZc{n%$%8v*uCnxSAgN3Cf+|T9?9~&j$Jjg?EX%*}x={s#z zb-WWkH0Zk4Z2XieTAnJy(asLt^YGWoX6%hWTKB(gc1e`^NwHRBJ1HflaHYVH;bB-_ zM402|sYbydfC@0If%7U<5&yKJ#c=j*4j4AUDV>{ZzBX2Yg@u(}IJs4Ae4&FNG&B_4 z25^~tD?}m#s9tP7m%EGe%|?&}L4geNSamLx!^FjhiD+zOFjyqKh!GWDZNQTi^F*rv z{KcpXqPVAL=Zc59!IiZgC;n8BgW&p9TRYkZIsg<ulOQ+A$1hlMwQ_-`V5=+3WqBpU zFZ4$MNA-tqh^WZmUU>UamP*jf!4bmJ{Pfn|l`KJU!~-b_6xfc@PPAHR2uV1{+J?5W zEuc4fdDz-G9aHz@r@b1INfjxduK||@n!)NSrf!>4)rq()x!nC{fS}-#7RmIAAe5HB z3qV&@m55=*AdWTn+Xzr_a19J#1YZpyQGWNuDtH-dvl@0ACB>hMoZP~~B1+_f48?t4 z%_Fc(z;4}J|9JL=&eq-@s77Nqw{lh`2L$lkupPmGL9?zGV<oE|5__>SjCgm|{T9$6 z`S;Q&C@I67_5W3Q=^R|xpE$SK4#6K|UaAA>48)S8loXD;x8?B+$A*U~X=rE|7-Eq3 z$!<@hF`gDf3nJ?N>%Ow`XK>A5yLPRv-aWX+82l<6JUsMiVa2PbZ1L}Mb93weTm=Qd zq%Ous<fK5a&>R~V*Ah8xe!uk+t3lL=tRas!_+N(QU>np?h5&O8lsE(nJOWwMT#Qc1 z3S9K-f#o`|CRy719&_~pO@y8M4QCvrC)6EE_<BGg<y(-GdFuHP0pzg4b6WLxnmy3m zRoErU=i(}DUS&0tR{M9D%i{MFX4lsy<)h$6HNH_{2HyvkjQO*%bk(I&^UjxPX~i{* zFF$<X9-WbvztyoZf_wYT#{jTIViVJcBrZS(MVaWo9ph>!qfC<I6cnH*JtnxtkMdkp zfo~lsw5qD$P1a}3=d1RDFTn?|W6uRGorFZjLHK-o*))cRx%r)zp789+v#TyO22ilz zAOJYf3kwTj<CS5=$Hlz?uMpI3u&F01w`ZkBJuYhEMI7Bt`|?Kf8tQC-&z_x^3`Y15 zNB{*zMVV0NPmgvWs&FqpOyNKu-i#n)pY+|3&@q4`CLfIIeL!ZSnqhzTUq{taZ@mhq z<@{JtA#t`lP^VdC*8U6})R8&R=n^wX`W<eX<_{=w8h&zLMzx&=<W8FSzkuGzcQMx0 zJp#s-hTvi~FRaqAF+$>(Wb;?(p5Z{xvz%&+?l|E6;~9V4km&+c1IZq0JItx05Y1f- zZ|HboH`UbC@C``ayqSne`wT~3p=0Q&ERi4ARq2ovoD%t8U%%dm5WS1KB8`fz11&kA zr7C;<+5!qJw>Zz0fnbvgJ<ytr%L$g2mYgR(-Mo48ahsF4W<eA))9ZqQ6*$UZ>);TA zaC393au|(^jlHz)$25ojpCfr)KQ744Z(=Z<gF*u|^MPd*3l~=b)S8h}b8ZbsBcn;s z22A_5M|jBBXXOPh*p19>X=-VqJogs-mt<tsp~+hS?!Ebx5F_0Ks%O4xMvw)Z-7shj zsBcVwZ4P#CXg;A`hAx#qPbq%@gun$D>%xMiwKevJLR4l~*L;h0Wa8PaN&#YGV&iI; zY{31crQgg-OV03~=D^8@oE$T_U$E1C%y)ElMu4K)<bQb|>JZ8YnUpl<Pzkm15<X4b zcP8^z>kMIG;f>Mq{POY#B$#m22^8=mgBt#yqH;3C|LeZPpJ;pnDWNrt7z_aJn4_My zN=n_Zg#oy>WazST_<hFXNw%MA@HY-P${Sy!z?=!CangZKX?mx6Vtwj#QP`t4qv9E8 z!=zfq7L=|cw4m<60zeZBK2mRGQW=o5A-!m6qAqCV1TRVx-sEJp!!b2~li=a$ISe$? z@Nn>boD;CP1Ac|ZSx-lY>U0$Db_WQUJC*SnJ7Cwxq2;*3@V$i3tO9tQU~J;`@hV~& z2b7-^s>n>=O;WS}k*q(vSfeq8kVun&<=#@&tuDbpOUt9@detV8Q}f%4Z@EL#rwe{q z^Cv1l1~(w8^#N@HT=k(NLxKIe+S*GlB8QkTE75R{0l0QZNN~o)($do0JeO68I}m(E zLXLX2w#(oKhr7dAvTK{gd|>2Y+x40;BwCjQ69>z!{jxRzAt9uq%0Fj+24-9|AEGXJ z6+@3vO9%kvg|3a!z`zR|84kBgVa`gz#m!u3EX1iweJ<m*!xC8arfh*O`SQ!+^c|}I zBBx~;e?`!8!n`+@>Ts`?XL+(=eIFPAeT#lR&PVabCiHam4GojN2vbv2H8tX2Jzq5e z;#+}t6Fh7=Im`jN;uf;ZOH9ww(@m~)qB;#Yilmw)NvLj*!vvisocGcB<Ze4nMd{pl z<^jWff(e5Kc?X2G86IYSBiSvtODLl6FXsnX8j8G0!L_4Wy3KfvcRx!^TP>3fDb`P! znOI6(OiFc7XDFIAZ8q+3<mGTcM+nkce})*uCuQ;oH4QK_kezFee;2f7#QvIxb<k-H z@aH3{iKnA@TGP;g?22W9D)QtENGp)HP)C;P&0n=P!r2E+@E>j6^y>mR_X$ct<g;fM zouRc~yWVcq2r~04{g2cpd#-)<`W2jv!^LJ~?h27nij!4$uQ33f9boXMtqz(Bz3XDM zjWX=KfzChSv{C(Ki?7)@OgS7y`c+PVMatq$%&9H|^nuenD$2@up7J^S(nW=Zk40#O zC*0%vE!T5!wLV@Eu<A`0EeEBmDG&penj&%mG)F1WFu{Mp7@0^AMn!P(a9CfO0`tPG z9z+LN&fVakVk6wVbZpG*%P6NqnlRx@|M=(^-9c1vay5h`XL!ZCkyR#~5r?t5ByWGZ zm=Op3+W!9jr!$9_Z+XYs%I`97Zh(R}qNei1{CbGSC&W4O&6_u9?6T<QRpTh@Q*g5j z1bT=Vulfn2vF}<1I8P^QJ)OyuV=oYMk_&+C0E!-1o2H><!C~^LM~+%&P1O5>erXkf z%R~{`ZdHCH#uOPvFb?TW?D22S>bnsk1goY0p~q6WU$MKUTxieE&sPwNOvQcrit))y zpu8$Q*2ci5^w#rN+O5s)ui$!uk_6JRNesYrkd1|34##!1Q_OnQ8vE}Jf(}{m>eX!z z84FpCJQU;w#3$rDnVy<@rO3hE!=qud1wY|?*6BREUB#_q`ZZW7UfnVaNKUshoWNx~ z)7N)6D{-9>*xDg|XE;jX4cUCp=M3I<d~D3AcC8Y+K}B&szG+@^$(f7fxJ&@pQFM?) zg^C6LtcwUr00c4fGC6t4w`LCC&Hvn91V4}-y-f-%41GaU{X$Ujp^j`%Yy@}$w|Qay zqQy2mg*v3BZRBlfVuH5+gr<xGxx=(KMEU9hI7+}yR8w1<_UgenhbRK+=jgZwiH?%j zh_=IlfS7oE%|nMJR(3hJ{?S|qFkEob4s_0^V!U(V2hrxffW7FwrUMsxlF4MCCx+8S zN`UGc;V8k0czOk<GAC^SWVTm9v~;v$9u6Cm^>8j{Dnpgsce6Ev^FMg*#ce3>m%3UW zY=V&hCAy+q9RSk~&wf>q-@C8u=IY8gvV}Z5Vak!Sw7d#O5?K)nH==RP_&251Ut9vc znZa)}kmDJ+EY>iG)1;zPCRTn8#6G+>2zE=(JU~JOo<<#)HbUDr0BO+(JJo?B2DsZ% zhX9b&qvTog61<t?BOQa!F3a5jZ5B*Hwa_%dS%6kUNmdK!nI0$?YH{uE{1?d)3w3Iy z)2tLu6zuap0Mi*M>hu-E=`?mECGSN~O@n@kXG-_(UFYS+UK?3<udJxJ5-mSFB@yju z1O$vhnT1mIUA}G+_g~Oy-&R+TRm~5UAbT@@98c}NCUQ)_30focb1z>~$9I#j*F~|g zROUdt?guaeo9+mV2#;$gV3$d5_(JCja&yDU#0IGMz7E4O%t;U<mR44HK`z_#-7ZW2 zjE|saa=cMinOD>@v~=o9_zs?whXq>K4L@muk}1v_Vi__2GWAx|byRk>w1iqJ>A7wI zrz5BD$f|R5bEC)tpk`7Cs9kd^ycOfz!LX&w$<W0dbv4>-Ed^`>L0I_v8&e2?B?U#F zp7EZv`3A*IT@Ds?gNlth`vNh)x4Y{HUViQ%!k!f6yiX9$+J$;~-)wlc^b|K$bRLA@ zf60<M2RyXAx=Kq;4MiT$bGh|CxYVKvS4{C*oDRYd=x8pICYrR$lkj&lguG*BR@kNk z>$*AqFJNO6xwLuoD^&`$Vh$c>&wRG)u(r?qaZfx&nJT8uT*MTN!ZI=~o12>e@!)6t z-wfMTKm~!k$ic;h&&?NoU7(Cxu3*O(kld)lkc}YHPds)DO?G~+Gp5+ER_opA(zx~M zn9k-(BG$Pa<u!ns+CUIIc;E*3QxaX$CK7ez_U*H|`gy$siQ#08(+GnJBAy!nj8O+n zNMKF*5y(@V8p`U=4E&}h=5s4dKWmz{RcQm)2m{W^i#aSb$flLD><DQLo*rr_cnWiH z8M;$?I2>xuuu(pcligQf6<h%?jZz%^b^tggs#Rogg^X-Yz?rH4eSiE(o$N?~%_-Hx zZ!$*2W&P~ZB-=YXP|JpY{&c7sKT3cs1Xcv-9bh>v?yg;0uW(=f(rS${O(V}L&Yhj} z{{1r&4I`tz*D4n1iomS&_iz0A_4dODgO4_`jh7<t&lIcei0bff74L8rRnJ1VrkWqW z#>vS!TK&jeON-*@z4wixfPrSePI*EWqPTk&v7qxnd(^Y=dwDrk3K39kH*TFFJ5{K_ zd;t-C{hDu@$!{h+NtVtgO|D|K5gfd&_ax-TFMc&GQRW?t%xK!oH+!whkzF_z#7r?6 z&f7A1hR0!gWVRdj&BmbKXYX?&7Z`Dl&d4?~<uxT_i6jd@J(BTA1ZTQT_^3nZ%?jAO zz-Pe0=hfX^cU>Y&VIIwzJ!EBsq%l)WCoI|>PB_|2>}m9d7J7MTXrLs5^%BoKavQ0b zcGzoSW%VX6uh}OBST>N0_JC&gTXZ?y3@FOo@Lq~|n}Zwl;^oV+i3tfoLGmO5m3tTP zaq$Cb#x?Cj)HnCS4Va|^{7mtsbI_3GW4@~{ctYEpIu@Cn$o0sVHEil!%std^S(WO} z-!S5M)cV`lbU6r#(GpdSUsuwoF1rP6Vxsck*RRv%ICBTDBXZtq6;$Xs0xxC;XSSYX zGJC}YDWgtb35tt5ROo^5Holg5Xh29rB%_KtXbqrGI1jqn^742W{NgRHl5RXXoJ(?# zK5{vgCcV*k_rvb7gTn`q6>S9TcrAXoA44Zc6n2Na9eTfp-#NMNm+*h^RgZ%Hq3Uv~ zJA2t{Y}p;e51>XX^x&*_bp!h8kpV}dvNQ=eS9lsvUDLjJEcRXr7zw3Y-|%jfl~o62 z48#EdMVoc;Z}$lkzKlcTXo4}a<}oy*X7P?QkE1P+ZfKsc)SJ-v;AMsquVpxfce zFMBjaD%@!wiU|zuNiVg{m&~f(5A23|sD59N&WXBYEvn|nQL{O8$DL9j#pg-%I|JMh z8oA8XhnFgt%T|l{utw*$2nYyv_x3=F{M87<0NIj*eCBih!EbN=9{v(15i3@uvQdZL z<(ra{k}NED@(1qyzDOtT7v@x|18^K08+(S`h8WHQrhlZ_9<1%2ngvD;@^FT#ww@mK zq5NhRZQF{a_+k_spiTQCBq;b}a1b;=kRV}uCn#GA)*k_+W>wPQAfG-Ul)bmiO!3x~ zWF7QTqvHOqu9T7$()CydTH4jMwF(_>k_e-Bnk_q$lcSsK-Qbf1NCCX3AT^;y#|cSR znXBTfgii)M1%tOlL`FtOVY6fOi`DVuZbX<|g`+yZ*VgFh=|d4m7x@DG8`R)5+^&zm zp59n>gOf!f91NibmLB2j3pK*Q$LH4WvtQX!A+%JCV0>{%4`9x!D8cAYkjZ{xN>iwH z*RLj5e#>o1Kp7*CJk)i~qqcJ{@Y_$^^{`fbrs=O_z^71BQWo+WTi`L%(6CTu*@H|X zlxD~S+UQGWwObesB0ynIdlP$lwA}ZT32!$GB$DE8@G(`$(`avNv#A(^g3~=Ys8AT* zJ1x~hc=3+4HM_e$=xZh&axK>h=3G5MpN6R5rYIj37Z?99Xa~PT0Lp5M;Z?Gb))^an zdx2DygzunwfPD-|{;8eGmwjHaiTnC^xVVA?qf6=xvZq0@wX1;R37+om?w+1Nbp~T_ zMm&3@S#P9<b76+<ma<?3q_zhf<n%H5xw$M768=GSUsc#1`1*=PF}Ca!4cf`6r+b|d zb#-^^g2xe)e|ulj%J8em!%OJ{b6fB$1iY|-gm~=fximk|clA--iUo6af*yAg&?vyr z<H*R!ppT&ODN-bH12y?Ur<7SpNXQ^dBZzTR=r*tfV23j@GJ?9Ma}5p_y)q>xBBCY; z&Cbr|Q$2~~(7g5#0KdHa#kbuL2&G9rXn_-L3QmCbEa1Vc;%*cI-Jg(|nVFtWYx!>> z;K<hZl|3Mn=e9z`>@Nk%WPe?Dhm7?=))n~S^|iJ3i??|K);Y<afl>+Jt$Q3T$3WI< z!z#IF@W&4ep|s{RKG>)^lV6c+J}OOl@XJQRIYEU4g&l+okdWbbYDh^j<S@%>$~`6d z!y0O9Q+9Pi+OOj>qrxxxW;313#r+bU+#vTGh*7NU?7%mJ?+)x?NF)+kJDe--HL|d= znwM#i(Ltp5n91?vAj*M$R8Z&y=Arv=SW3_~rgLC&(ut2sR$T=`LPcfXI!mRud~xR* zH+jSA@YeIxcFnu$<P~~_S_RO$L(sz!1_yil;3dOCEw$SfDg<$?(in^(@b>Iiua;gU zF;bwiL7UNdVM?z7!SCR}Er^!;&FlZ7>b>Ks?)&(0+cDzUqryQ}R+NzF*d(NqBrBwH zm6VlzA~MP<goLC*Rz@YWL`XD{krgQ`B1QT=PxtTfeSE*?kNa_5*B$ZsyvOVHTrb$1 zFEv<NSy8@S6;C1L@z(6z#1Sb*7!Ky+;en>%7xDZ72Gjd5$IfYHDxc{=FYxwl5)^tV zDbh!Iwmd;Yi)(_&W}n-&M{9S5?dFHF*-qhBtmooxo1k4neHUk#l%9@Qf#?si+>C;8 z&CAO^f;Ex;g2Hi3ZlR^y_ZO<QKy?9m!L6Ubi7z$8<CB$@1*h9=VH_32#`ousiLiR* zK{J1Y&G$ni%_kamVBU^VF)_G~K?$(>elXmZ975WYf}=kWzfVdV<MEo2*9V`|W)&+- zCdS9#?)e5Tt<U3@cF@H~Os30zT6kbmNhWz#t}ZV6#@i(1UTcoiG6}|F(YQkv0m}~v zz{?CgYp;F^X|>GwY>aD0+aL2Hr^~&*7%6BPd)(<vW&Ok*oDUPlo`|w6ZDucfAidYl zfS7>b5UB|-B5fU@pfgoX?tOkn4^w&l3T}W_k&*&2KwaN)%}@rSBsGXU_RUjWc;iMu zYx*90{^O1JuZ_t`O-|+&71dEzc2r5bO$&}Ta#wnb%ZpPLYCCqo0iI`-h6NuVue?J? z*q@g*!nWutsF8j9pu0EB<@((ZPzfyWJ>C!grx8<vT`1Usr(|kohQi~(Deb2g5Uv>J zg6D+H#YJTUJG&jQtK#Bfq;Q<ld?3*k*7o_-nKM{SywtjX2Z==6adtoNA-O|XGhSXQ zh3&MTdI0N2L_{R@XkIsX=OU7UyAqXmjtu4JWgso1n`?dP1%-v7s@!X0A}c3%(~h&n z<-bC*t}L9;c=Qx8>^!sk+3Tg*R`<)w%i|1><4^{1edNfI<Ri+%EZuM303bvL49X?t zk3o(MWMdGrrz(I%Q}JmTnNS%99=l^@Z535jqM8@(RaRO<RPl_*U>k`<0=kdZn0P+g zLK*Q97c^N&5*Lq@<pP_ACZ17S8UTTUtgKVOz?q+-e^-o_?Q3BEfXL$>>ri+10=%;e zVdv&*7R{p+=>po_7NM}Ey#fUTJ*O5;`Iz*=Y%Hr_d05mVp80_zMISC-W~%DXym3QK z$mpW9V963n5(ftdEL&9gl5rmOH*Wy`XNm`0-ds-<DqN*JrUOWL5qM8+Fm$k_>5h2! z7f+?JK*2R7N;aGqxW4dZ3)UGfE&x?a7lRHT?g5;N2Ohq%J)HPK`Sw;&ZOW-Tox+Bt z;Vb-d;R((d5X1O@f`Y_9c!`7I%AP>m1*xPdAj)T|cHuPJv4fAY{qnB-gb33-n5^DT zT^LT#)Y7uEwSDEh#X|8I#rM)B`#}%2ES(UfB4C-S&c(6Vs0MOpAC$vO0MGa1;-BH+ zVUTu5j`T@-4MuqtoN;&mg42pMLLA5t-?(GwBzA^|s_NSrA1cK@v+Q|7E;%nZ83h3d zWkl8x^+xhd-W`aHNKH*07_h6b?YJARdfQrBURo`E25K5Vh*fdg6G&hM7AHHEwr*`} zX$j@hGD!rTgu6Y}to_>6n;mYwQ@b@si+S;Dp;UV3z8#1ZK6vPWI+8Z0CMAL0^-xK3 z)b=B^f%0&$wS8bIV<yFu@%Q-^o<ck2jhiR3_2lVLLOA_&_NX^fxgcNWTB{qZ0C|Xm z!`yd2tV#cT+egRfcmxDe($fnL%Ha$H-RU?v{$QKmR~YGz9m{O{OjqjWCG?qxvmgT( zIqF0*5nI{mg9e3R&$7+`Kvmi6ui(>&=WNVuXfY_Vo}8FK1r56%UR6uTrE9FqAC%L~ zfTwaq;#Q%LHHk_Um}NKQ_qhKI0vbG{2;FlKtAn=ooMa=@k-q&UMejd$Y;)drpmFd8 zKz%m#nG+`hsPF67p@>7;z)p2_!m9MyI2H=>96e_TG_XMbeKxR``R-!zHE*)k2|rqA z%liUV9E1-hiFoF}S68L?{?RXwf-pwWt{T#a276M{udoc|)B&d2j6}&D+qdf<AYPa! zL+s=_bf{O3LgqEVU!0VbYjq#oO{zI-PW#IH>_X1Xn>Gc)#D+6pe}8*ROEo})TI4O9 z?XR4H$^JL+!j->&LjH=zSag2qI9}4aqhw_F34LqU<+D~+-7rl2g+*#(b0j1AUQrRF zk?o#5D+QYpnp3j7c0Ij!PbPdv{EZtvZ};u|(^j_@V_S6jf%f?ccJ%{#pI<gNzfRxD z$!(FYrT}6>fB7l1z6%QInwFOmOav0c<pxO;Xy6lz0<JncJIdtAU1!yHcG93-c)yXi zbwljuH=n&4Tq5wy{rt$4QETmyY}TqoAsr<pi~9#rvQSDQmM$~sfzrS|jiZoErfokK z@#06xpA`msGhF`E!>b!rvD&-MjP*z9?|x&Y;3g}6J9T@Dabo!T)OzTb(qF%R*%npe z7|YG27ZsIkblUgMQ5okiInN60!eW8;?VpA;sPKTm>F?J<V=U=C==f#nH;$R>rq@$a z1VlwUKLuSFln^+(wSfO#G`4<CO%1jaw#&Dr-zML$3s=mYt?D1_?M0%{>(^J~m(EKu zihU#M%H$Ds-c4OVa#q7+<j*?=ohW2*p}n12IWnVt{1WwOU>pb{6H%`F_&^1PE5Jv6 zlgrw-Xq~#I5kI6TfuzlY)p`k}l!A<mV+Wt^CzbyM=(PRDJk^JZm7z}YGQ82Sa@AK# zn!pd^qBFJh8^$cr*N<Vw_<oPM$olC1{j}Hen?~+Ec;I~f?cm_E6P+Tu#(3*sYx)S% zn*_r+W!b0po1)T|uOfw8eeCW1;`0=3g!A#^M>w0?T*@}+-<^Ob6V;ybDW?GnSK4){ zbeW!a@5aCT0aD)~yg})>f!l-xD{=jx9N&dI;BP!uHjwGwbai$0_oH4<PfC)oV|b+d zL+g6O>HCgesD^oT9V_js&kLx?^Y7KuyCf4mAJP8kxCf`U)7U_=mD;sRG>yf@oCR!G zTy9TsaBzSdY??kaQAn>uXOj3PdY<JS96o0D_P2Di-90?Er<o<`8vbZ@-(LCX5iD2u zN#hLl6giS#X*ZPYq)(leGD);8f(Qljp_6CMs0qg<I2fSyt*WR%^OQQGEhO6LNxNAn z;2my1B<i)gP%2tz&hoig;X*`h@lO+BMW>UN@OQvm*)umgABDS+kPvEjND4%41@leE zELM?ilx8NS8wEfKc1$r5#$w&&rKQs6sDiaEzFg2GZBt)ns?PA;0za}@w&k9iKy#X! zA#vHO^b7^?4&e^OU+pmO`X-YHv|GS{YoYxi$M>6HRqX5rkgb>*A1}65mqGi^@D+Ii zU94U#Pl={XA@8Ir?M;=T`7nq2;D|h<-69si%J5`8*27S+jEsyxn3bAIY;BTDV0mYQ zhlb3Pw^P$!z7Tw`#v7kNaSiUP;JvOqubWvJDT5Fw8o@QU?O>5L-rAVY(`WfK=G|A@ zK6~LPBI-Jt%ADqF*V&xV@F1ci^HpnW*QpAWA?+s4iE2!ePiT9HsdOCchGh<=e}6Ks z-n=XuI{akB>v3ad@&1%XxAGloYI3~MV2CR(->Pe%pMDv2SpKA+kE0lAp{dm{KS~Qg zg0eCZ+GOlFC1bwXz<t7gZ`Cw3j@&=!bKyeu;F<NFR>r(Xj~^f5eE~3KR9ca<GQM6p z2KvIU7c^sDI4cV_EAi9Tn?rTy11C`R2k;<(Sf0(n=(e+edGZQMlaW1rjTajR{^0rm z(XV?0U6-C-69^vFPOanHh4CH`f034+zRUc&5<wSTEa)q-EJ)a>BEP{w_z!E|pNhM7 ztqyKDQoO-)?OTPH`x?n(0&7sxcwe|spU4<?z|g}xg6%Bxe||~8D+tc2vcExR_Mt<E zPkS?CaC2-JP7ySaHcMLu{K?`1$juw4Kl1MO_w;kzo9Bag<uy-~BQW8kOOkz4W=CoA zz5DlDr!K&7)BOCoa(4LRdlu1EtqfzkhghPakXC*iZC2SFYPK0yA&HV<bw9bovDt8= z<f#hbQ3<f5qyc}S9oU!2-FWz^7aHyVXb+~}^-G$c{hFPF)$M4`ebBACTqw#!NqjZ7 z6g!thpfi?xzLkTGn`Z7e!^ojTN&D>d3(&BDNq;-#xP!B=I6;(FjC**{(6Mw0QjPEF znUYW0Pzzkz4L%4V9V-_V0JD}H|8u2<J&P;eNWKlJ7q1s81Ad;dj2{~v1>SvYZ7q=d zYqLao{S76D*UNLgrDOPys_7k?nX@?X7(2fipLsI$b$sPBzpWcYB6aFL;|2Crgr<NT zmb~o>3j25s2yN=JLw5q{hgD-q>MxnL)7X7tVc7#M2Qu^8+s9M7k~WMuhHPy*Dt0$n z3epHkNkB3U?+Q%1KEDdp`uX!Gx(u)#shs1B=^6tXaq@xMVkP?Iix;2#(`Rw|ig4+3 zJn9G58S^4BBcrg(y+-GL$zsaLW|wPRs8cdB<kJ~Nexb)dTJ!-e1VKQ^F_n1i=gR1! zsFdYN;W()sJD@{0tX@!?(z#c&kC@czQeoQ=q9%VNaW~&klTw0*&aZa#hJ|Q@zAd#2 z`FD2>4k|?BrHHfS^xrI5<#yRAOq$WZ`vN`Xu1s_O^$<IyNuQ?(<ZuK#m=f{m#(Q?Q z6STG6+7@hNWdf;8u$YV@_JE}&P0waQK}TW5w}pBE<u0PfKmZThZYAiRJzG3@2KVV- zq^4X?Ow<)0YD=s*&;Nq*STd6T+RNOYZ|E4T3qJ4APa~_o=t$uj`DT=Di4*MUpf)hZ z*}%Biw$Cbp>`<6Dmj2qx%dG|duB>dUhgz<x%4ibK9Ed|bZ8_sT>^@oM?)I1b!L;72 zf*VDDKf{S}<CaOm+sTzxRk%{lMSu5}6<Yjxws+Ew*}Vz6J}|3b?7DcBHeTUiAfrh| z5rtJ;Yt;Bc@~cAM<dx2rXutx>Y=LFre?Yeok*}?xu_7#(-@dXjZexGgSX^feUNoSd zc_$k2cr56E!$C08i4o*ECZ6w%s%NuY(Ag*cO<7jfB=OGo1MDyP03en3Q4yXU59`MU zPcnTml<+T6B$3G3mS*kB2-TK2AOdQ>`S0_?`_G<LBIy&uY0k8iSSgR(X?GkxOS?j* zhq3qQr{5nK0wuN`pwCDk=>R-HfR_?`T)Zcz8iNjhW2089cyzejMzn0h?FO|UUz*RK z=N-AZ?hcTFmm!REmq_Uz`uUx)+Y|KTHgW{qmP&D8SE1e01Pv4~gVS?HX(=)3hWyy^ zb)n{&LhEnnP9!H)Y0#68cp^MQ|Kl3xoXyrXQ{}Q`t|bxZ5p$DAV~LV<@NR&iL7~L6 zT(eSRIj&Wd5+y@@g68?>t!xIv<B^hi?PZfQO?X5-kG=Haen+N5lDi~~J`@D8`|W*% ze!bxRgM$w|)2@^$dzNLn1c-M$Sulc)S2vp)40t%+*v->3-iozt>-X?Hz3+XwzuHWm z`}ikY?dJt5uE5_`-MoIH?Pck1$XA}9)`W8a?Q%wpY##BKtq*sohV<_r`pY{XHhm&! zs}%OnT&|Fin!Ym3?1lU}zb_>X!+&1z1s-+Xz@(L+chs9A#?HYJozt>uRCj^cnj=1c zoj4rdI!Y$8&)0Bn*wA_-AbJlI6BBgK=Q+f)1(x#l^=n_XPs>E;X1_l*;wn6AM&g23 zQ7!#HcXt_W?OR26wkL>iYo}DtvjqHiB}edAhdKm(l*<vjB#tA&^JunZiU08g`fqPn zXx*|tIeUai*60&Ra@XawwSyfU9X)uah%OnolX1(-UN;S4I}$n0JrqD!93iq_V$X3g zZEZlRhJ{h`>3w}YJ^9uJ^cDs;Q{}&Jep<&gT>Lq_w88I$EU;fGsk_C+7KwLS9@$7m zQiLRvyCDNMy)VDUpXFGySbuth3L}~Ss%mJ`NrvT%B^ftgIMXtc=+1xP6g*5tlrukW zGIJEmYT``jJGX}e4?X+h%T-;s^0XNzi>g95AYOeu%-g11rD^E`#1}h@J8ynML=z~w zUJXF#5H(2ETZQGdBVp|l<RWF6K=?txgy$yMnF^j;{zK2|=YF^+K@z)LPb_BJc!#LO zDe+w4O*dnaohl$89i7wXakbr?1v>7Mcar@)EDsabr6j-W4JK&hw0m*n5|XWIcN*Rm z8{&L7JS;{E|M};q##gm%znmUq`D*uFk}|P!(LSSvXR4-#Sh0PEFW!Je@Tgo_@w4ts zm{$vTla0>tT@3xayGEft>L!Oww0P9Q@T*WUE((s-{uz(;PkwfkzhCB;#S^#C#{^li z^E2(qwuG1#Ay^Pp&ep7i7B6RKlTzCFmPvYQUc>(#Y!hdwKN_mv9CPJ!bf<y`5TYl8 zXFzYJ6|Cq#;p1ZuJWFRG?9Q_;-@?*@ldjAboJ13q+VCN`H!6`4oY`AEboE%m2UD7; z<g*pF5^9m_CALK+%G=l4e7B9o`8pWNdOx;Xj#1AvpGa+;w$&y}uKq!q?0#P9;icwp z@5~r)3^rineQ0fzJFhi8TdrOse~+S5<DCUd?p%M>H7iZf-xFTmh>tuMw5fMzJJbXS zG!Q2=qV?~4We~|JD#f$P|6__n`2l-qVDUk@mt%|FK)yyRvlVt^flFZNl=?B^QE|aq zHJ&CoZhX@B;GQBdHCkGmG^|s0&f66nd|({EfGp*JuJXIOHBT<4cT9Myi`U#YPJG@^ z(~|sRHB4Ag5bLY`6>G5)XY7{6<w`T5@GNoDO+OCD<L!`%Qpd%-1P?=z{ljN<gT!zr zV~A@J?+>Y=k*&H5?Rv5iv<oJ}w!|yeOw7z_Sq*+a{??oqIa=D$Ka#xkcm5pL$<8@< z+AQP!yb>XA2wsBrJ6#$p7~GiRV>&`b_um#EC44ltxfChqx<Ra4yS7nOe7Sq%8}B&F z*{lOMyqs^grJt>3S)cTLv9`80(_gjtYYhP*;24?v(UjF8EuhIJjGSX#Ae%SL!*y~- zodz7C)dM8Q44x>?V%d05%whA_UPuw3sO}5SH1|dN?V^MmRkabgqU-`#Zsl(J8CG9~ z--h=OvQm_3&!_}GXAc=wV$heO`Xe^;qz%FhQ*=-cR_}Xd3MSq7N<??a<{@!|nm3N{ zLtjJ{QggyI5zq;e^5uO47Rs>C(@#hUw6UH4S^(Sj#flEMf})}=RJ}C71rQq+y)_D1 z<YxgFFGBQ9CX<y<gxYIDr>C{RF3stm%xRzK2M-kl|9y3k(msXCY(+VSD$qH3GE5J` zO&<hIMyjbgK^$Z0CNZGE!N1x0v|dul$0%x)$R~%6%w0c``$ZDyXUY44I(O>Jm(ak6 zuqje?ArEyl<O_0SbdyW=8zdR!u&k$zx*kdIU|OKn$v@S2YnPA4P!ewrOY7R7BNymG z4lsx_%MjA1`G)o+9Y+uj8->Wj)70PZ^w%y@>g!t_F58&teB;w1@l9xzTYi}7-<6;C zk2Db>g>?Jx3J-iQ#@xHOw?>L%VUE(uc<|)7#b3%Mcnc=%_<U9#irC*RJLh`id?i<y z0)zHbG?r#GarFd+E-~>%gss$ewFGA>v$_3R_>BGos1Lk^#BgB!K#YT5bmRA_KnkYO zH4BUJs8d^Le!NboF}q{YTjJukPjCGeM0SvOP~~(MSzYevg@zfcb8>Q?Jkb=q813?N z`<Gnl+a@IyV+0b@B{F{zouhaeoKS@%)D=rVe_qNrQ--Dw(G@)U{SfqdLB$##k5EW< zeHYypXjnAx!q1&L$Pqb)iucTa|M4-5Af(|~rH4@7g}yS^cv0OJNNr+bVw&FH>2O;_ zlCc+36o5X68Mt`nw7z;Jd`$}>fXlLijf;!<wx!MnXz74I-8%^w7noaM%MuzFkfM}c z;eAdC+0GJceD#{`#(t3yxK@^zFJiTcTr(nu1AT?SHME3IBV*@T5qTpCg073tQjH`t zkC=E3t=L$k#awXeSz2=@k4gPk5%aEaz;tG4G(FWVK3aA4@7*2g9aQOV)^_2JukQ<* z?9wI3vWH}NVQ^t;mJ)!$(r#z!JzjgpJ{OhE8eR;Q4Qe*Eff|25AO#m*n@j&i=$0Z@ zTkTVfe!G#-J10cyb+}<>O@c(9*nv&y9nFTbt|LNvx_|?ay0@!HCK|#uMx6!(lQaql z<!zUhJ&C6^oga0ReVg3v#qi191ODG>l}>;3P^)A&@k1jIEYxxAB@ju38GJsP3qw@U z@9o<!1H?mirIGQ^*YO?6P|#Z!?C7SPrRkCo*OLfUS}y7FLUo2uVBlKACFX1{C=QE` zJ-xA|<<%?a(TT(@d!tfR4g418c(l7MT_)aaT>nGr*J;ogIW&#K1|QH@IH&c7K<YQK zc>)KJKh;mw@(pRS+sX8eN{)3Y*GoD671@39-O<t=X=Y59Xe)zE+qFRNqxyqtxxsGm zv)3~mQoz;4!l7ni;&stAMso)(;_1^{Nq7E-RavjGDFCB|m@fQ9_0BT`gv$wH1oSXS z&${^RmX+<{!$2KV0d_1DFgK5V-=yU?4@F(B*S@^u<>h5o%J60{Ny!pR_pu(M>(Gzi zxB;^kqPn?tB~2bYd}xn%^>}3#J~Sq><v+O3F{5l-LW{_v=Lu=znv3CFyM;1UtfhK_ zgEWo=EMf~F|H_;ky5NYrbT>WB%-R8THy!h@9T^mr8cPvWd00;*6jvv(2n;fi1vhPC zsM}Df3j7esK(5U$D$sb|DEf+E(gsd*BYEK0Dv>F4^rtzDUZ+r6T|irmRivUNN3cXm zNRjnvZ|@!HKh%(0IFxf~u58{XNS=PaFgq$%pJS*qz&+~^s6D`b>qm2M-@aW~7<;S@ zaW>Z0D*17E^-X3+ZaAuZRA~RDsWSQZy9iTztJpLKTHp(Ue=i`B=-2B&N5{~(ooGR* zE9G?nE8OCFRxIai#XU)pQEhKhuVfh3-zva1le_*mdFq$ijMrm?s~z*Svabu?eNQJr zqlI`oG>OvE`k)ZX;p|6`l8e@{?w;Q*Fi!k25-G~T&TeUnWRA^ud`}3n?HE$kV<Zo6 z&910e!l8>uhD1p!ubG`aLd_L|Mm}w6cypVs;r{(xBnG<I4Ccr_Lm(b2D>VWeNhEUX zht)ppQ*4&vP*6<yhU7>(Mt_9mi5*aJyg(ZpD`9js_LVN{6^$j>uK^bxgLV-L{|)Q+ z(1}GUtD1{@5!eJ%aoLsgW#Ccw`PL4e`BZwGx&6vxIG`IvB;+Oa*Qe(kRYdtEO>6-e ztO{5+GN8{uW~Uxuzua{sW9hZf`$tB%t}I2E3BFls)jlg#o12OtK|Rjh7sldtmhFaG zazZsJGcyRH-uhcWxlOX+<kjDw5i73J{wylvb`qKZ&fP!WAS|<?#wm52p>MCTarOG| zZ=`e3Lq*jRfa)8n<?0M*2z$RyaCfcQ@f@e(T+mzqlyWWs)cqz6pM+bMG44KkM*p&E zZ3e?^OZ}A}N@siGl*^!@r~cuZ9;tE$0x7v0O4E}1b5K?#d{P_E<V$ngqd%}9LvMRW z(gb`E!t^PbFvDbLhY_Ky^qu+0*!TwKP#ZcIQ(7Lrw7tUWs*URqOfiT{DcRTfA-84Z z^+|ouwpKPaE$h2sTBBxrQ-heOLC`?)aFD$4EyjTm*2yG}98l-iZQ9w%$POwiElnUI z0l{~80aw!&DJk8*_6H6~?CQ@ec!Io;uegN&OATlXNj!A$VEu*tx-FP<VZ^7pRkGB% z>c9SFm`kW*4%VIDtjaqA$nuCSh|;2RlyH)f_d#U<_k?bBF9eZasi`k&9=(=!cAI8B z#GMRzUtm>&4DpQIF33K=3}ZZ4wyRz4yawkMCpyNqU4xosV_%FJF&q!;PJVt<9Uv}r z;PRyqPW*ZePc{k_4&R{!<@ogUqgGbBgs{)7U>Q<lO5aXFH>Wg`k9GR-C|68i5y^QZ zGFhrxI7pFU^X%_E%}_o=II5Y+u?~$X*1WjDQLt*nmRF#mrD8|pZj}MMHi+Rbofn2< zN|~84b{<sy*RQ8+yc|1j?kJ<3YyBd_V`!<*vAZTxr_S8`(4p&Zrvg!`ffynuISY%c z?2uJbI#K%-k}22+nmBdB>n)HhbgbNMLxaGG0hExMZoB764#}pUso;~v-c4N*xcRrB zx92tBH|&$9h}Az6bBIfM>3pX?hP4vK93smm5o~n_OyK5Oug5-Acf-r8$ivMqD(W~@ zA)<NVOWKKBzYwl0vnc-k*AV3#qvPN8KWnjGx>2BEbwac=UXFOKA%N}=gs(4^deybG zYN+4gQ;;vpOPuUr2oVq!0^02sG^%|DFF!OJ=INK8Ci5ns3~U`GOcbjpcOyKhWHd|T zd^5fo{<1G$zj7Nu_ZkQCjonu*VV+)rA?IfOTU$uwOKp%(rhsha=us%BEe{?H|D#2T z<<DwR?0d5-FS*0EqR)ex&iv+0yi7C#(2wKhtX{kt&Rpw{5O87ZqluDJIF-V<X8-4r zSctq`NYq{HiyQmF^yBJr;*ziGZx5Caootl)32*XGbH#^Wm*Ihi;uMYvgq-H*<$aGd z`m@=n1_y=wo{avPhYufK_9TKEEUsHeZ*{ofJseh(daiU`KUZS6cJc6Ncnu%sdOvl+ zz`y_$Y;rfg08C_qb7@pgb?~2yKghRU?P0qT7l%tj&CC<Q1=Q-bu%a3Xp&&bA-^x`b zB^MSJQu8;nLe~9JLIBjVx*z_g8@n2#MS`I2BppE#LJY?yG5O=jt%3*|NWPd`jt+!r z&#etkJbbgJff+jDN2Sso436=>z#phve7#F8z3BFBN4zOq)rpdrTEeXQeG==OIp09n zI5@cWr{5HHDOJHV(Yuk$dP!mH)&QigAw3ZH%1_7|wY1D+p=Fpjefhsdr#{z&=k)K! z-Dgx+%nR<_OMQ2F^Fd>(oXy-E@|8SDc$RROtE6|ZMmS?XVreGH_-NrKMGH4&CY2;< zg4!0Dj;Q+Nu75>K@~WfbMX(6DIkqq#&t@5kSF~(h2M-@c#Rg|(9n{3wycDsL*J);c z!)^$bHFd_FQYcL#=mHdNb%~CP8!SDJX(Jm+<47t*U3hESb2>whP&eO+VhDSO^_$~j z!cV>6$DRTgDe7=EK~GCb6IOpb+}~W|zsMn?^~LKkDu@RUY!TY<{!|doerPy!vuQ4| z8eZ-lSy?kDJJyUKAicz`3CUB?Z)>TmuVBHXQe}HVSTKv_H^^mUbs-6kd$|1V9BZR< zWI%rstv_)y(DIHW=<W<KcWq|l(iwBE)YT^Z0MtOR0D1lxF#?pWhy49DmR;Gc`Gn)# z5aXsYMzcPHVMe<_wA4s`oy)+%47H`lp+i*Bb&x$rB|MGK4!LQQamhd``{$TJwk51U znwvOGr&j0c;Cc-NwTXtIWPr&H#IN$#*<yKc|1fhb95#c}@Zdp)Fl~gAYarANT4nO4 zJy~rI^JiW+n9U1a@`hedOv~7DCYXC0xWm`4&HZjPY=4Z-460X_CpvH@%x*h^Fz=yf z0Z#ocDv$@mN(ohG4kcDBg;JP*=>9=CM~FA;XM99=Uwi~pileg3^;hX<p0MNyt!SZx zcG*0QGC=3|7m3~wG?mZnVR$tsK<+w*7xHFagwus*ia?^q^rM%6a+X6}MJQ`B!8exR zx&GzNO$@8SWS3e5Rn@cie39X;Z=_D|g1-duVOB(jg7+6kpI@P#D;ykP7ZCCcvG}$7 zVI!|qxXoqq0LtP9g)b|)8)^r5U{LEn_fR`s@ezG@Q?l!jLv%z=+|7J9I=svp$GEbR z5@4&X?%Q?gpH1964MUzeo%!UIyAMUbvkW*8Qqqv+*wsZ_{0vI{fK{^DK9?I=Rn@J* zDrsiJ4IN57{3|Rs|2Y$HHaLRY3!h9FS>(=rrCRsWQ8_dgSI`2|GWXp-2ui;-BZWSz z;lz;|1+T0Uzs>j+2FhGxWTNpSml+G=A}g!r*Zzx^MgD_}@{VcMCNU>?$+n&S-f9j# z1yuY_E0I=D{1@Hkg^ctVXl+zev89k5=@@iuKQA?<Ad@e6MyzE^BU^~FTF8$t`>(x} zFzL?LLqH>%j-!<xVI#XmwpZqhVa4^;h15ZH;;nR>mYRkSEw@-Le*;son1^%<#lyBA z-xkS$NmxGq7Sf{mdzov4y3U<PRlkDFA#a>F$kvXj<!9SMQO*XD8@?Oong&TyQE?XH z7^WlfJL_B>w!?z=dj=J2)-GQT;rjfnU{eCdPW09W1waxSNQiU^x_zHLx@C;<TMacI zwqvXNTO4B&m4~Mn?gEH|fJ<30H31q<!C5l{Rtei+Gv~|7PfMh+LRyk=gv_EE)%0JG z<Vko|q?q-66WzV`vL@L)u`y&+P$*^uoXGfWu=^^uH8S?c2KF{q==&)Yc8!G3^H-#A zi4APh3;8|<v0X5t*BJvA*9HnP7QxC?>FKme2%q{9$G$Vr%JFTy9m{kH!*YmxF3-~^ zCZGX)A<6R0zEj`DLxJEWJ725-LGReuiT2d}M~|`vygRjoT+>8IEp|Kbi9VC13whgc z_|N=EQ+vz66Ys4@JuTemvN`x{8OZkv3i>NfV_Ly%MUQ>kGV_?yChq0g!2qO(qa4Lv z&-x_Fs5FW=2NW&8F}kCB>OxnQkIZQi<c(7C6weX50f0Z%m{zhyLZay@%dfS2D3I3q zvXYV@scV~9$CDVsu)C5c+~3w*ON*oeq?H@s8F6;mP>M_dSWM4UrEgJ(*c-C=UawOv z2k&AO6kadve|8?q2x~#i;?=mg>)xJG7PoJtMwt<uZna2Y)7GB-RExYz1QI?t<JfTV z;A&qniiLlwEr#Inmw~zTFK0t<wsv;@6rdoUB;;30NWw3v)p72p@}?(o0YU*49ISnG z*6}%Otc_SdHY|RKk<)Xyme>Ro_1pLo_8&R&*muspQK%Zu%bUA=71JJFqoJUo`tzTm zVKaIi$6bgN&wBc5YfJB53of{hcJjhfYZK4o!8sP!KNF0pMtB!UnRwlw$8&cWDpXLe zRsHl&L(Qz9#E(XjyM@l5?Mg~YH~H-om)@firh3w5po{}s8-n2CE4NOyh(Q0zE+yXd zQF5(V-O%q!Y)v(fiun4F9xTa#&3+D?@ijMpjoz|PysQ1u2G3iLQIxQ^vIN!Zh#>kD zy!zkMK`2jaE=*aiy#MDgE!#fa9W{1b#l?+w?#iZ`D0xET$BNUtMLMy=Un&)#;ZC;F z4h~V?BCN3fk!gj@Tze7suRU>IafsGy<8VG|3)H{VYbUYN<wzH9Htn@}J(EOMR#rE} zaElj&o{YKi?O@aD)$)g{U%GO$f|iBykh60Ew^V$$qw*fH*Lxo`P|VH+nj7r~_Cq~E z(ycyz_~522Saa<Kvz)C{kka?1un$nWQ3sY}!rlt6{n|*_#%9SKj^g1+m_!UgF^s1u zhGP4oK6IWyFmv7dMP0&k|5UqUcA?%!Rw$^|e#7NA{Rxj548dIE#lIVeGji#q%k-s& z6eh7BU^58&&lD(8T+_(Bwx`!_DJ~>9l0vV!vTrQmmsGzGxyxB#Dy@lI3SG<9X3C8q z1%?fp`T-?WYaA4``}y->^3Ld1!ay11Unp8JFDvivUFzf|j|gX7<3oq|<fUI3TD#7w zs<?DG%57)qyVNB97swdnW94n{x^W@lnR$PClMV3c+$*_4f~d_$k^G~EvJnN$LZcFX zF8dTqb~4`qRxylrRN$XUKvg7S^I6AIj^#NFLeu&4<A6ybw3F0mWt?^8kw1`a2pX~F z#5s-)8>qL>)P>7WKi(y3AJxwLfk{CtD9>c`Q20@qdIWyiT&%snQnSh*gBc+{aJ>O7 z2MV{rt(gYF5rIsi>fT@9;VeM-kWK@^*?ocex0XrhL%}7A34>~S>*1NLrWo4X)PJ@P zO+S1Ey~Qv*PjYew7UxsqcAH}g5u`O-y1fBJ77b|T(9`0rl}wzkE>~qu<?C?N*%ma9 z_k`gh+wzhP7?UNZ@bi}`UwZycmV;P$_R$KPwEE*yyM7Pnag&M5GyTkp&h6ZwPipR( zm8jOapxxPG=Bf@m<YZQexvYYm+>@!h>2OMb5l&ZrVHY2$<^U6a`F?n47U4gnmb%od zpBc_GVBmGIX+qi-&mK@<!u)g){|Iz=!A}dt5o&N4jbM$&SI&d<EGj6V7j+5g>T{Xf z>+W~py#3|=nc2Cy$QdxWbx5GVI`4}z+7{!2s|nZ@e6Gu&9a|Pb6gV1m)Qc~u50(LM zO=;U=(j682CfC4CgHfajXh>1f47^hy9Y^$r_wldPtCR!{*N0&?hSk3|)6RF$8-x#@ z+RmMai46OBcWG+wc{<5?f~mAKphIUmrB`s;XBE2$($NTf6}Q3o6{BUlz_sr$Z`;Ep ze->>}j?4s9eRuCt!7M20C}&<y4$e(Y`Qu?w7f^1Ojf2BqY9K!jl|XlShP2U={L9`Y zSPJWygoGhg3JO6;Z|xPP!4s1A+x_e7*4QJKo|y2_=f2^n9L;Vusm<Ebm4^=<ni+Tu z#r^o_&ye5*;eEehhbuo#NaMkI@!V0oXCMgBanzh?+20AV2@C0;$Iq~t@GZXe@Z?S9 zBM<{Vh9axZFgMHr_bh^)J2_oKBq-T8|FmWqB}xWAR+F?tOg$h)(Oo{V#4-R4I0jQ* z9M|&x${TX6reDwlDIIRgj#Z*GvF#g8Q#(<?zm&;?78of4&rI_uf53S}roG1G2`zsW z9UTXL8j(ck)-aQ7vh<}0=F-6wkA^zg3et02h1l58q2*b@Ne3NbeXjxi&PFF+W`1w{ zhjvt{jAU37`u`0<VIO$uzc_Ko+FJJ&sw<R?O$y5*u}if*f$w76GxI)kMmA-4xu;gb za?;(?;|u#dlYjO91W?pzZb6th1$^tY`{IY59%++AtNZND&ej;7ATDr?^#cvK$t@<( zNHbhZCyo|}{W>cA8GR^b9sc>)Qww{LZh8{S9yf_#WE}%rk_zV)5IEagLcV{HGOLVI z`|4E=nH6*xJ;e^4qO)&DUHBMx(`Zens5Cu%^5plMY&`(K1Kw(U2@&Jq45&lP{`*gX zUCqw>{UP}d+%G?82iZ7R!GJ;uCw<f`gNVs@Ys>v-pAOC<(VWkXy9N|K>K)vpVWG+^ z%|^sfp(g64Ku83EG`z$)xPX?4Y9V@BR)#^bii`F~uMxYE!3K>>-$^`12(j_XAyhFo zCiu!G>>qynb`5G+Smq-v%E4ek*Q97)vw}?UOH${)zPpdA<fdrn;<Cl0ulbI>yCeZ9 zap__tANOpmz6P2EY-MU3%ksz5(#Jo2o=K(CTbPft+rR%DT+0NC^4Xyp;Jd68WOP94 zidN@k^WT-nHESYXU3p{NqV{g(<X#h9V{h*z+>F>5Y&jd+w3fNYB7K)APrp+stMxU1 z-4+ZE1ai57hZbh|y#&k!o9xVjEO@N$(67!%_{J#dfG=B_LRf{)3IXw#mn(H}Y;D6i z$;_w$wc?X+5227NEQSmn6_#P{{=_?gpV2-*Av5~<pi;DRNQllFn__s0@DySb0|Ejt zG7sArSx~KX6Wp7muXwEVnBZ;cUw-et9fdY@X5-E})D#qS4`_a5VNgKUfP%dIk6S@a z-!4om74NX9*l7)=98jS4Q-16V(bfgepu+<xr+2Fg`kno}2vdXSgXXyNM0?ubC5OKT z)abvp_0m4kX`;>Bvszl(V#guqMc;r7mWql)#Bdxi)SyF<^k|{b83z7F>4-!kv`OJw z(md@Tdss*W6;;&+<}?kilp8mo;l31l)WM<d)O$G_5gvByKAu;##w?^n$!$NY_WJt) zf;e^h^x;CAgc~=Ofvmk6*cSiYu#)#HwjCmG8kYRf(3(9F569%QRjlBDv=(d&m{c>c z+NJJ0oAGuE<7L!jV4S6zAF+z@azqh`Xl%S^vk;kPKd)2!1i*UCPQ&g8?G$mMC?{tW z-)jC2bqEMn>DZuBuMphQwHSso_o=S#$rGrOsa9DlXwwJYyqTXuW3kXGjRBs6aN9N> zvy`-P(W}dm5mEP~*`$j3T$l=)b5M?v47X~`wQF#3{hN8?13>yzg{@lYwYcdr-)9~g z>eG>z!mQv-Eb94o-P9EqWpz2vXE?9`wcudgjJOm~ku1JG&2%~$XsmE2hoH$O6Zz$B zXtq#hppPt%+72B1^WcuPeF@3?1U9B;wmaMd!v%hczAwR>qbA{6EYHw610;QdfQ2Gj zCXX7-fc$UCqd>8vTEgQoCb2z3BPlbiX9LE%{=zTkcH#teUUhOe?s004I`kl*@OnE} z8JdoSbC>t60pQ`*72}XKs~A4|3y-+<h4y!pSM>Dspw;-<GOSK13p%=Qh2DAQ@co0h z=l%&(8gIoLb?Y~?d<g;=L<MH%Qo$5~Dqnc-+Y1aMwQ~XI_K%CZPm6>H$f_LWr$S>H zW9)vM3QQ)59YW2jcPk4<5(LUnZT>Ej=Nz&v!}ZA%*hU{qob+1SUZ~(y<i?o0g$4YU zrA|$k(N6+nMa)rvz&Mq$R<ZV$Jg$<4hrx90qP@MyBKfidVlwa^_i*_<9mM@7A}s9u z_HIqb5o1{sZmk;ark+?xdo$3?gFa8$_gzm)r1}y%4=_IwA`pK^Wr<l3_7}WYW;Y|i zkA&w8uUBHwB5-A*E;ReCFQgT*LGUoFSlJd)eu)(-4Pqv^);XYA#GOpRfSg>jVt`<w zCGq&kJYxUqpDU-)mKPixoUWi7M)13%@*e`1MJ7^<Z>Tk9N5zkmiQ#`%f5L2HObo}* zi1AijLxa@F>(+4Tls0czJ^k1gzniTr63wke(%Tx74Tua;hBuRvn)pM>&DRj)q1)o8 z{?d$nx)m5FF7ODGW7H(AIa%Y|Z>O*a#PaNmQ;H65GJ7<-_np6N9*%l{;92Nkp??1L zkUnny3d3wJS|1FW!|EcCV5+yrD3#L&5S}}lBWXZW6E4ddomZ$>YJ*mJSzo|no}88C zU}@<IPzg>1oXEoLOw(V3D7RX&p(^Sh`(D3{X3M(RzUcia|6Sh9w#Q%4(1g;M=#vkE z;s76jaxJ+V-xePj?Wi-5#tWLG?TaIG!9Do-9#3l3S9~JP^LmauZ=Aq9d)2-exW1>} z|3(NyXXmH-2qg)Lgp9HSrigSvHvg9Erc1!1Q%)YDrtWMR#;*r#_BVz$BUlDHO=yxm zK&Fo<er6acu4rQlz7#0lywpdXJKWK+xhX<7u>hqoKJfz4t{x~L8^+&$66Q?;<<7Bu z@0O<bDI_JGs<`>nJzXbc9T#MM6!2Mm+S}UtF`I8!6RKI{K<=Xo<naVQ<Bz~xf>~e) z4ZyMQe`QHxW2}CoF_6ip>9|N7o?MXqyH)>@qk}L0O(%Fwz3>geh%E1|YYeO-L{C*! z72Xi+CNifw!{gpTYHE5$ECads(aEItr_NLuZ&p|FiCEaiNMAcPzcMJ*`+~tpV+;Wx zI@tVRsmsa|o#mFuy<1w!l@UN7;lSH0lR8~+3S5h_e=^YvH!{%X7Q===4HirW6k0<= zz1r8Rqdf8LFvAU=$$F=~3ESbcySrF806T!^Ew`${XJ7_G(=s|4_(lx_*7ug?I;u4x z_bA)Cz#-(1cg%~%P7OUN8teW<$r&8K6&2Ts$bF;MPOoMgaZU`c#t^-bn1F`#YT(i= zg!ZTou`}l9CBmUq;^*ZB!w2x!M{BJ;hlV%d<<*~u?a1T?P*=Uh%E~XK-?(oFbV;X> z`dFaBBCzhbvLJzkLkjanNO#~F1@lR4bdlxHVcS(`LUwbL(vjAMW8(}YeZ3gTP*=-b z?t7%h1N#eI9QyXCjtB2gk$hgg>*A$jmtFkJ^vf>xQ@Ng!)8Npy$!Oo_w?fZ2IkWPS zP@R>}9)qyGB%sz35FC}WBVA!6!w9-21Zm1Lh-@lF`toHR=9Xev5#LB*XkfHf&4F;F zvXuGm6n#M1@Ef=ub-wh7XGxY=CEs@G4~RC~@ktqiSeZO{5~+zgcH>lZnJf#`_a?>w zu3~@~AO<WpXsUFL;oZW>j2nnd#h?r2`rh;7UXL9UMHxaDuFi?xsf^O6t06Hsm4%@O z{&JF*OoZ|iASDOwc1)9^PK3+MMA~&=rC?eA43iUu2rVrFtg+UR)PR&{oK&Tv9NbV? ziIzZlTEeVz>?NPn2PBu_`oFwu*YQa2ITVD5F-gJiE(4XRsVRjq8jKZQ{t_+(%(|mI z0vGtg*{RzJfg2D~&dzG%Z-hBiUdQhWc6`gSS;zY;jf`&_5LDgnEf$WvRa7v2e(#|b zK*xBZs-IMbMAVL!78|HaHadq@?ZH_eG6uF3#RB$~rT#KYbj$IV{THLITsczWNL%;v zDUTDAVwT~D!O*Do{xWzBOQcRZIgOxUkLtPe!1FMZ3ZjaTJ;h)S=`hhzhR?Z#TlWXm z!8ugsx)<vUGpRSc&1gDS+af;AX<(zGY-{8p>G#OCs4(EC8>0PagCqFFWb;suSeTeR z#t0-}N0<>Sl=eYO?(XX^U6SHBkxm>KnR|!&<j-afm2JNs(CnjLE%W<%XBSAu`ZUj| zlbm99&?*W~A6|Lt-jxHf{U#r9>G-tcb_!hbciEZ%nv!Rhk@dixLvnl<EzQMU!c0@k zIoOz5l#;8kz42aq;mbvUDstA$^nEllQR-quVv^)ZSQJb45fFz0hHzgso94;TLw8Bt z64O@#H+oxz*g?@{6OPKyyZcJZnz$b@!9wZC`Ojsp-}sg60}(WW!J)_|YNBEcbTKci z03yTkBl`!#cfZ5^5q1~xS!!xr8q@10QS4Ojz8rvXsPaVS7@J{c#FycGr}sq;D?W25 z#g4Po`^78hXC)`=6JV3(@RgO|<xObf6xFgPGGK|#z+Eu|cNVmVQc0~dKCn69(xPg5 z^qwalGyYEw10Nb3i3}tuDK|9f%I)*iL0$?Ye6#H0gwc(Dx}<{$biw~~6pCFj0&<i% zFHFVXuBsB)<U>cJW_j*hsbOwIzV<7cjWm^MixLCpY_fPHh9w9z&prWi9aW;e@BsA} z<9l_QH>w9r)1u5|sgsu{?}Ekt-gckF#i8`W4qAgDmX+(O_{lJHnml?!AI2>ops4^m zOA<R^Z~+vGd-9)${?!#jsVv6(cgbZ~(7kR6CcsHlgQO#><q5j5Kp{@|{YMF%Cas#< z?|}K^0=>_K$%A;0A#*GrX$L)8ak__+G=+)JE>-<#Qea+9Lr&fB#KI-BGF6L*H#4jd zYr9)=c<eEf`Jg3P*)?#g!phW@tG^+sX~t*QrmHeGo3zKNA$}!3o#G<Mh6JLE93cq1 z*eIU;|5c3?PReq~KQWd)hKao4ZFiCztA!pego!1vw}cSC`Jg_ZE`|H!gpV9)96~EJ zrW}DHeg~*iOsMqT>>>?IEP^C2X1<*Y_n`}09yn7a6J0IGMPX>V*G@ttQP31Do%jGt z2?$t40WX^e>hCDxysGzJilxxZJ+FV2(5VM=AVLkq2q>I@mmG$pA30vtHTz_3o*{@d zw@Y1JT_)OjzyLS-pUnoc5q>H-bB{-LviTwn2quR#v%9^$y~yr?y&-C1r^qtrE``Dm zjO#@?GU!sI@mottnMWHZLQMpY5i<Lc*Dd$LyhB$exz;ym#g5GR;G2{(Q2%Zyw=nsG z<F!g}(B!UgLR}Z3(>+(d@ffxi(c!94@0%w!j+*Hmm&MC=BK@6pI+LMP9x{^0Uarp0 zISr0}&?K^uaN+>^mU0MsmhG;d2W7vQZdf^cT_H2uS>5@FNHH#I!1>EDE`tPxtEM%{ zS5etA3d%{_RdF_N(4O9ZStfe=^Z?v~-$Xvpp4ZGwwz4@*JGYC{;utg*#m%|5o@u^* z{%-PYZ|Nnw=^MytLVbm)q+$oQ$F~}US~tx7=y5}}5IYn!bJ~HP_S`AOQjD9vDzf`G zs(nnYv(9tuChDTVQBhGr_OmLIPx``?{Q(LvF(P>%RGAl`M0s8oYE}cbF``&@)Lnd& zSI^2=l=Hui<dU(}n#HM#CxwOV7cXC_V{4#4KPc5@7Pw4v@n@CxQ->^5!km8l#9uC5 zYBCm*=y-S}2y}(4ug#rR((Hql4rN70w=-)fDRoY^Gf8^Qi<}%zPnuRN-{Rx?>A+Bv zpu5*9gTc6Q*bdhcSGev3x8l{IsRBI=3=5Vq^dg0>W8L)!HhAjsGvI+=4_q>cS=dI= zS4ZoDqI=7h`|nSE2xyZRiO}VGpd{|1(kPWe)SdR(^>?3Zd0)#5r6$i4JY;c>G!2H5 zZGw#&8L!OT(NRA6gZ_a!D6p#k5709R@FH~g+t?U;-tBQ|?mwImGP#g@Vf{7DWncI+ z3+?N*KeR|*@gQ>J={`B#qe!SgX@C)Km{AFJKIFh7FI-A(P)@HEZFEvgm(9!d`h3Yx z1&oZGeEMBW88j7W)$!-hEo+HfvoHQT8l&{E_V-uI>j{IV`EP##qd9DC-B_oYsVFV| za_sw~sw#{^jBJ8QHxo78h<F*K0Lv$<`kgjR5{#B@TElg+v|Gv^-Z~kw_Cs5+J{2R? zw(CrEwXe(ZvIcAL%ssp{Gm`RIUwp&dcX~|iJgoCwIF4w*)sA)=R+zyvk+M>SvSq_w z>u$DY=jM;^SSxXFdE-LXpUAhxjaff_A5JZ7<i*QM!W9Qt-8X7xzRqvwy~D{t5pxRD z(4Ws87`nPY%wqJ}L*we0h;a7m$8gL@NWkJ~QQXsXLT=zYE-kNf-T}#vh|f2s{h(pv zYWr=raOiOu5y@VTn{S~Eo7c$1ly8)kh`EI;^yt{fRc_<)rhxwXeJNXpBl!bsEmnX3 zW*~>U?Wz6!c?aK6U2-=kMw$R14=r;*vL&*3kAMHoLW0D62vfojiq)-4I%J)x+Gu^A zWjzP&9+k--u7?m7{B+5C4xq9~G28LXKI_)4*OQWxsT~uj;cIhqFA-sthsdY|(*tCp znnp0K>Suz4kxbsa_*IwsImk&Oo3_d7yD%Lv7<M@8n)Z`pLOQvHTTgh!({1suUnbWw zFaYmwADoJ{`x0IhO&mIY#7H4Mh%N-?1su^w?+7?<Q$z+yb(_GIVN<RVBe&{3A<W-d zLlNH4Fxm)+CNPG1RWMCcnTvJ(x=`8tDaiv(4-Mi?jDRYU!cDjv+Ix~nZ<Q=xN2#Pf z+XX3rF14*#y<b=N$wLjAKUABE!?tV`Gg+6+2Ri%Wg*xT8LD-$~#u8rHm$%f<iPvw5 zZ!wy<vdPcBrZcymN9YEL6mC|bRE&{neo*^ZN>_o1I&}Ehmbd>=wb<#1sqN2i<X8`C zh-tw=hoIZ&{+YYUuT!^;Vea$frBF2KKxEk{@d)YrIJY^aZ3!DmcaswY5ubv7Dmc_; z923U~1P$%QUsue;o)o~-r_28<_KQeE+jI7H{~z}2uct2P5{=iJj(mt?K5l%xO7z!C zjgd+cjasjzxG2{a4UIG+ozr<6wy@$#u=}0@in?SjjrJDdXK=Hg<D9p?l!<^;Xfdfd zi6euThwdKW`SN;&mdWvfPz6CnD2yz&yjHefRIL7jEtAf@s}hD?ta%r362g%Mq#nxS za3UsEwn}FabthnWzg&_?P~jt#SaM&|$XGyZ{_eFl%@YVGqH4rICXJ+6Hm$2Qey<%2 z<5}6;Y+u0<N#7`o(#@jb-Z?la5x{$i0?L^~+rYIx$NzRC>e;NsO@X~kvf|jxgni}& zD50rNTK)aWhXRmiLkj;T6&VewUDO8ILEtw?!!2V#vQv%>=6t{db?(8UCGA~0wr~Tf zR>9PE+P)KXeSQ|9di4qxyasAXdwlrL242-Szn>qRD870*(Z7ewVPA~scZ%bz^2oI< zXU?9@Po^AZ9^G)coS<5`4|YDhY{7#}x-CF$0QplvyUa|)V)^_3!Y<rm^6~Nc6K-x3 zmp5#*>D71nN>i-oCotMwN>Dj+I~m%N@;)>5NW$oec&$|A8q9tBw##cAX+%!n?$sd3 z5_dHuh%gIKw)t$jn88b++<t$Gs`bO!RtIA#P7t?pjZIep6xg48!RN=!CFvJvSd~0w zN8Ap(E^hGhEPh2hYLZM<e-Qd{G^*iGHyK;{eVVOjG1S_~lRdmyGw*hCEedfWy)Dv= zp%B^?hx~*&elpP}oO$k4<eMB?eU~BizKYWVf_uZ`0c=u?ir9$>zrF~im?ISj=r&0j zu0ieV68{pm{I)83#S8hBL~T+Mw_qJ3rE>NU=YMb5PC>HBaMLXYRbTQA?S;Hw_e1Nf zxyA>9ed9+3)Bp4-Qk>I?-9T2U-p0{?sA4sN5tkV}_=wue`opF~pJ~p#5sMAg>T#}G zqY6!0?j0Tj)d&=-?^UmTM06>`03NIRH6X)!Gi13>y;a4~53FYeo`&V}h>t4<(v8PN zqa1pD9f73*>e*n8X_Iy!dJ$G*u1SvHHdbT`?ha*VR0xb9@TCI+Xn0vtU2T*9Rw%9+ zs5V$kq$LgCym5f_OY{-qW7+EA|A0*+AgY%gu%e^0;#|UDe}7vIrrKVh*V3-hdk^|y z<P+ixJULx@Tw6hXF3mS_UP|61$FW)Sx#GzAXWA=E*^wfw{$dmH!_VrOj*_<z9AVpd z@tHlZ!Q8K>*^RKPn@Rmknlh7}nVPzf^wpRcB!v(!^QOt)JNN*67ksf)8jI>I$ol~t zGPxTF;c<1g5VOZA&MtJ^h&{Pd*BM|ct5bCOg}z~okLi9(%TQq=#mo@F0;uslHpEkp zY;dY85o1DY(xS^ETpaB!mr|bUX18=wKPg44;b&<Xgy;+BTr<ak%>a5rVTq4y9&%@) zI&grdlInbPZM#8LaudBEj0BFWWLK>`uw{=F!M?b?qa%XRJYN{+a|wyih}yU>IC!62 zlq+pOeNd;gZP5n|Tae(bdvxt*9c~-fZ%zxh4viOx-#5(zNkIC=aCtA77qlA<A~;5D zY`$c2FK8U$&AUJC(`=h;b-%r}RaQ}vW2E)h>k$Yjt8C=MiHJ9_v>f(&EEXG#>=zIh zO~*F0e8K(x8#(Mq>-~esZDji-B~gQhF<UQUmqP+ubPE@)V8xJ#OQ58{obvoVF$;3d z31@Kv_ejaCu%^HL3&PAH7q*v8%YJrjLejko5(8D58!>>4i@=bkInV#@`eA$7jkibx zi#tF<;o8rAv4hbm>oE8kd`6)Ex(E4V9Exw4t<$F2`myNanXKP0`pVhs-(XC;{^#hS zLyQ{}B^hs=)m>s?pTu}0$F5F#JKxc|+LwVEQF{AiGb!RK<;jlv%8%x&#*ifKxFNO2 zbN>1^+4yGzvUyNV;uA>sqlcYFu~5KmMI`d?8A*pYE{?j!)9DtMKg=Awq#%D)ti^@= zq2QWB-R6}5dI$a_Mj}EYMgsz-e{o5ME1!;DN-LATI>YX3p5UpngO4Gy$!WW=(?%)s zD;Ec4>3W_tB0&B>ML+it!cuM5gs-oM(tM^q@o%cyh6E$4UrBogxO)%S*-^&|sEo`w zwV!X<qtDOa#2VdF^Fim~&zNHbH`?F4p7Buz6Pc~EH$Cd*2l`^|O0Gu=t$WL?wjHf% z?{$Tbskb(tcRq*JSCPmd#5PuBG{5kulQF947_D&$L15(PurduLoOQiCOJg;_H_=0i zc{%F<kD7pssgp`tZ)N9~hbk5>X&cL?oiOKMJf~2I#`Hd77mxpWv5O;Hr6r5u6<a`{ zp$=zp(v;w<wo?K4>DDp^zt=jfITsZc$4j1M^$||u=$j6i^UrYiW@dVSFRDI(!d~v$ z7d+88vAgl|zQC`cs&BbmR8+Q=i_!aX^m?0#2M)<6mlDUj6M`_s?&@**UPg1ebV^I$ z*?eBKYaYAcWjrB_F+AHp(Ui&)NSJ%gKoUo4;oaI&#xQzOZn**&B1#W1+Hfn#8@{`z z_=>xHm}I7ZOOyY$nYmEU>DJ4FY3i4LA0Hokd+gX<`P{GE!1*K?=VlGnreznOOorT~ zEO#U`uBtGk#SRxDemCBD&xehRPA^?$pZ&bOLCrh$)X$qrO5wLccf-1vf8Yc}<Es}w z8@S9}WV6zr5Z$RA>J=Xu`?#d+K<SpLK>IVJ8#H_j5X6Hr$;G+)5(L`gD|_!3m_*9I znW?_@DNEJC<|Zq*mdeKZNwtQvRiWsgADiu1q(-_5>Ad0AB{C#%wd*fkxl(dP%qjeA zKahP76z)I!R*vj(SvbViw<^>%bs-$?_i>-6^e*tmiqJU_buq-JI+(FdB@N73<q>7~ z5VN&OXiEWs|3)6oDrRFc`y&mXhV=Y|-N|uomI;MWVe{}y-wrxx{%=m@|6*`k4oai^ zY26A;v1E4BHAxfv1EzpEyHcgEU*6)x_W7NBw)blwysZx(zMkwu?wgIgn-_};F+@yB z9KBul36=b}N07z2wyJ!U2Sf!`(GNoOM1}1oCEkPkanJjm;3UW22degeqIU@@?;(g| zJjRz3R)@%C@R7*Fnps9}5ClC`1vsO@bs|Co+O?vB64Cxx7qC<jMZb@|riL3={(%$- zs-ML=fDg}pbngxM{Wi<q|1;mHPEKxB$v0Io$&g`WeIkNUzY-?|l(@<vAT0*aIG)8s zc@RvcwY9f&&fmK$wXztag~7L&<$Dx5GN{BIU(^4BIsW!4^VLI`9j@Z`zbV`Q=O-VT zg!VTOO580b+y-5a%4>6f*OjK3kEA(hdg%KeMt2AL0;Pq${&FkwO@Y5767OH&b!W)> zB7Uk1nuCZ7MsE6aXGg~~q>4Y2NMAil=yG7cu%3@-L=f2*p@l2?i;H-7(C-UKYC-%e zNZZ+2fCdP)1mXczX+sZb*WajwLw^j~?%%s-gM3#p0&Y49^63vyZIOqBv9e3U#Q*;c z^?ym~E)5h$;1%e2#e{eeu#+QWnh3t74hh;+%}Tt=&Yix`%lQNZ5PL!Uyo1K{o^EzE zsz`f4@A2sfk%EHh=|e~qpiKotFcWkc6@jPd-Q<T3bweYbP*9Yi7yDl{_U8k?d3|K_ zaPj^EiUrPm#0zdieB_T{Kp<`yn@1aNVI+XwV+4mGev~?095M;aQ==MisQ!}ew9y#0 z@b{IR3wxKUm=0oyZr>J5{tvS>$Ho7j70lb1^<ZoCD4a3p)>giQqgwv)!$$rFNG}S7 z0#pLh4Dh};^4Q&$D$xc7A?pc{jl}P6H&@pnB**`O1`2oao1Pwc!UX>XQ)q$A0wy;; z?viDM+zVt!Q}yjRGOs}lBe)sn>F}7z;b&@6Sv;PFLyt}#_+McQ==xvikgV)|gwsL1 zg7>6tU{4jl2SZzqP;T7p%*@O`=RR?!U<eEQ-SuB~{tnLUBPud^_?g1v7Z$uCbhmwM z!ns7D{lAB>rg^O-B|>u#qYn3+1NuuxJz}^c3Q}HPumW%(Lo)^&3PbHf-E45U?;jj0 zFpQ;ZpoR{%wb64e0}0JS4~!KFv(AeJ{&9au^yvKNe!oiqBMQZ+Y#!DH>S}m1&qD-C zojMN8a4(>k9-5FAlq<4%fuSd{sNUdy{a-LY^?%JsYX)OW=1omG8@FCJ%_57qfX)HR zN*$OjZJse~;G%u|`Mn<p<{XaPfEvRK6P37ik+_a*(3h6dw2CtajF5oB&p^)Y8o;4J z92i3w1b^Wc0%B(2E3dvtIv9aTew>>w9ri+o4C36JokyWnYqs>k&*B(m%a!(G_2*^Q zaN}eLo=~E$toL3Klf;3<=akv43=KSXE7>M51)J3%9eO`iqCPEEuw|f6lo0^;*9-2O zd?Gr&{y81$qf%*m^OQ{{N8Wgv-9EZ2!o7=Z+oomm+@9i3rOv1cT<={_TIXP2Tag&* zwKH#3)L&TS*ib)OvP)}r|7LYQ;Y(tK92q%-{jzfU`z6B($(CWnS(Z^>^9W6{6fuFw zQn^Vn|HXvz)6E=JZF+->*CM<BKbFoqE~@YQ`a=m4N~Z`6ASob7Hx4y)3`hym(vs4l zAR!-Gx<R_Tk?xZ2Zt0Zz9lp=QUy8mMz4zR6&)$2j_X<g_JMw<bkw7}}rvv};`I%hg zx|I!v%Z0Rbrb<b5{!Olfx^#N4F!a%bDe(5~y16aLM))`&rRN<ctoXk+yzuBO-ztqC zHDkpeA*QF@2^1%m1(n*?=K5^WV+4aZlYCC#{61T_(>+aV^alSOZ{2jgcG0^@zVo!m zmzFlmOKwI__6M+jc_}5i?aWRjE6OqGYSZ13oQg3$ZaSc5<zN8m1=ix?zO2feG+7Eu zCP4^(M6i+mUmRmftn9N>TJ*xtyE_hMFKqd#+Q^@^x@L+@e%f)K12joBBxfD4%&mD6 zaq~*Rp@L49<i|h0Sngi3y3{8GC~<7a^y`M-Uc}^r*dsvgMC9VXEz^#9z7V6zjQ@LX zGsxo|<7_i7NT(77#6Ms$_}u+4Q;0nhNP*L&@NbdrPg<|(OZ)efY%Y*anm*FRbSb9u zFG9c;dGe06Y>4C_uYUty60bSFSLT<{?QT;XJDHk!zHG<zqht$)0pRhsVgi2h90Rk? zbszwVDdxdL$(>^L){l9gK%%<%lF$|Jhd9)+VFBFJn7*E95;SojF+55+A!#0A_|2aF z5>44R5LpEivj|@Fr^}3<jwI{X(7-?_q9B(#xTE_DlPd(cyc`86|M4CVByj&fk?4Oe zC5Zw6Ckh@@Fl_tw4HcQkhY>dj)6b8qg<b*%n09Ug7WH#F|J;id8@>laBZMBTv@>8r z(7Np?MqIS>@`cP0gL>ud5ytFBv(>ED9Y;*RRuN*qea*X~*TkJizHVPVvfFA%E9%=L z%^t1u$Z`M|3Z^)rUkC|DR_p-Mp-6)QfX4Nn#)48Byy1WhAMlk-$II%$cJ@e)mfS9p zuy+Egwti66UCXT<e?eZ-pS=3rd~)BrVXsxBA%XEt`y$p1p4V%Pj|#w*9}TrZ4BUqO z@vu9`cll(qTl|pcuNm6(kwzeK1DqdY2vh>U=~kMhQG<=*n~VY0(`fiNb0b4cM-XC% zwP{AgNZ8i-b{|#0%q{KR$Rh#w5giC7Kl75&1WhSD595aqhh9EOht3UQ)ss|KR;13; zjM-2c8;RfcF?3H+(LUG&wjQplX!^(2Gek*$tuc7z@83;FGc#=!e!f;j(r%6)KcJUb z=;eXgTuAl<F21HG-mb@KyxT^ezOQ1UCveQo5?%#RzW@E#Ep!FP!k>wH89yx8KVg1I z+j8b%O#GS-y!G*zl_iAy<j(l$6M+Js>w?l!Etk;P=EDk6_6E}|U^y_J2g1btL)c;D z^d+LkLRZ1AvQN{$VQ{R4;RXdmKi6fk>kNCkuH2TkOJRU*T|D}jJVsUB992b`naGb0 z*WU#t3Kc4~vqrkE?%A-Q$ONoiQMvl~s2>ds0FA@vr*y^wijkp#LK~nZ>J|e{49|O! zW8epB@B&eH@a+BZA7JcB9U{gA$Sk-;|F!K4*&RGxNh<y4>-Kwtxu@@O;3DX1<fA$} zH)qMA^_E;g)@_o0NXBRju-~4wr>W+#%Eq#D06IwRY&dlaau4>y)2^*SE1sHX3Bde! zHt-@|>bLhFz)KcPdZbP%_cDle`)ujusRJojS~9LZ;O_!<W=)DQo!BEU72Lp{h#~{> z-gOHZ5gei~2fC54ymfnbtH}PfXsc)4*Na2{7KffkGiVSF>T-L&qIjDz{thOdcESbY z1YkL}mDJ#78AAMHA1Z~A^sUf8(mym<Xd<aGphWb(f!}Z=FwY+9wI{zy-``>7GfRyr zePw4-2b17HyDI<7H*_RhNB;_NmrmXYb)TgU`dnH*b6Js4=5JJ>rI0ju$3(lRYkE+s z=HFo4qYmR?T)lJb$G>{P`teiR-S-Chwf`=$*y6U5?Px6`mLAYk-_3--tE~|IPZ|0< znm<1rg9rw#4Wd&;!xLf)v#T%4%g??J);gVx8G7Xh_rtpg3Cxh88~=(+Wv3tk&5*gj zmS;j`#`CRyPQJwFY2Io@163I7BBIYRqua&jwvd4NQ^VD%{SuYw>0kQ7{;}4S(QrwB z9WSCD1iWZESx}~~uyt$$ACG#$1TM3S`Vxt8c`v$AyCA;ia)%W~n-<tkzzK&VpaOU| z_G;ex;#F1JNdYG}hqQPe7I!^3NeBL00eK4eC5Iz#mfS#?sC}g>Ek;4#rmtD$<x{3? zvjH0&xiG~%T`lb)=MQjqAa^Y<w;x&U?Sq?bt@jINSpH|#meg_qpk^O)>(bOCiT-T4 zF??+Yx)|-bf?zJr;tyZ0<K*4~>DX5GDL6cU+6B1rU{C1<Zco`F@N!^LA(xJJb|V&5 zKVyFS3-)^*{|{vhI*$M+_`79x+5s=Jla3aI&M{)BgX@bHp(>k}VO+!CF!=6uKnhag zbwyW2_w4XeqxtpOxV!`m$_PWgCx=nv(?>0<y|s`u-u%jnM?#aaoGz_R;hZeIlJ3Wd zFA*KB%B&gzj}(K2N#N6&S5fo%y(OjuB$LJ^jia5FGBfXXy}**zXlmjZKRby?d9IWD z8*g@Z<|Bsn@BZz29pMxBb3a{|-r@B41>6V)T~ecJKk0$3QhG=cN&@0j&PvPTb*8aM zzuikx8rsptYxgjGv{TA{LCgNGa472JLwjW(HNy<*bv6mkh_@6eF1<gUn^1HxGEE09 zZZ_Q)RAxS+^|jf)$=|+nBziA1$8dX3hk4T(Wuh@jG8w)%kjfbU=6<>%N)gAXy88-N zxV!IBaFVu+kH2cjTpq#|g%5TSG_WaAtA^19eS^c8Fl<zC8J*N@c+AJaPKzH#jY)Ec zhjELen;i{w@^rg&$TV%+(8ljnzZFm;@MB$AnY=gXVbsWYsJ^fpd$ijIDMB<^`!Eha z_hUQ)$p~C{kes><%<g*`0vr26Wfh+YIs0sU#|Y@)K}QqUl*UdRRfUnYuWE+nKPu6b z_!t4e8aNO<i!6U@K2GqvNSWDaZ5(Fz?p<Uyp5#jExpUct$14gV{Om3o6nZv2dm(zZ zYr6<WWq5kVZL&D{=t!8q43q!G^4v>;`RH2k8`K)cwzsY}j;Xj6GagqxzE`L~NYfv* zoWen?fs650Muo<e&OFLD;E0JP8dga=d-ePLyM&J><ZeqJ9(d$E><*J)qW7Z<eEH=U za^vj1l5s5`Dm3t0>&<b&qE%FriVqoWuwAAkv{qaLkN%BRCi7@kY*se;z+^@8>$}Mn zvzFWadVV?0=mEl@L^o8Z1R+{B2N|-PWLe+<E>re*?LC)NVOdmWRc2WjZmvuqOcGA` z4IW92C+hWU)U5kxc8T=A^K0I*BYvVl52qo)5_WeMIChYZ`5S>FvyqStj4%jx1}fPi zOyg6;%*$}b0II)7dC%UJu$@Y+Jl`5dL3YI0(v*5-MV{BP%(Hm3kXFM+rSe6P8<mmp z@McXI8PBQpj8!7$n+#@z%(A6C8gB$lCCyJdBV%M_?s%+>y}8UPRJD=RPa*hdLpa<H zieaS?=bbPTttt_1CXl!&;2Eggc~&@Zl7y^67(|E9{PdghZ(2MkMg|=QG+kX)6^aLi zrTWR=m!#69VLj+)U+df@s)`#}eqp@7rV;4HeTs)BE{@S?D0QZAvlT$6B96Ng$b4fQ zFy_6eVNT@7;fEqpAeQ?=0tQFRU9lq)j|^mFeoEsf_CqRa)VyzCKv8}iP0d;2QM#m4 zbOE}@vC;BdU+sTrA+n+q<V_`D$!uu5r-twT1*b!0)zg*np!w==l-(b&r`}Hb`z^cA zn!m+^zGBD$rzdW`W_om+VUjr%8dx|TGX`dA{C9Lrn<lz9ct2zOUI@Dhy^?Yt<OW#2 z*LB7!UeO2|u?j-TjZQ0c_`@(+i^@&l_g~9?5UN+fA;a#*zh^~hVE=MHkugRUj+0DG zJlv>$6((^}{AYSRoVOpz7#OVz&sD{x^Tn5SWC=vR$m;AaN#<|(RZ!7f<8WEG7P<a` z-?NzdL(-fu8KE&J8q7FIbw$E^DW!rzQliy-BZ1*+Of{@~&Ax8_0E2StDbcNRm};JS zp8B#g$?c29-i=HKtkqsZ)kEXO?lyZ55N`)t6Z2C7&~)&(3MN=HIs?DMPQ;KoosM>h z_SCkcdk3w+;2&s9RUR;xeKjGh<I5F__ud!xf+FQC{fDUDTk|BuFJ-c74E`C9B|`g4 z-?M6HB5LY&n4K)ORVnJMXGRN6HEBOd&+46<)BW8qG<6mklc5d$Wuh&df3Raw#WKfA z+{;WH!WJ*j*;Lab4|z(m+2k@DFM1I2{W}IEXaE)0xAlftRLeJz1n+X87U*P#g?~l3 zD|lC)jPt|UPxN5xSxqbk<=VuxH=QQ`4B7i%npJ42B8YJF@U?JRo}SJBU0J$0x=Zys zi#M&|F>(40Uv*ZFm9l-9ys?$o8To0A&TFLtjHr{=A?f>UTySLTcb99Zy<+jxXimPh z->V};do#Nw`zEUEF8%9rFb?YDMt_yG<nMB-2w^<V9RC+MAWM7l^$TC<j~}@fy0dJH zDRe{>Pyt}j24k8%U7UkM_l1VSD&SKz&&}7Y3Dp*B$+!Htuod>-e?V`Ut;+^}fsE09 z1d3>Oa4#f2f;r}AH(3ZM*@uNr0g$#8I$me8`eDnxudPzMQa`e*tX?LPmdn{p{DwZ7 z7S9aNh1i%83+r2;7~6XCbKBXOWR~0Q)g9XxqUFVzE)QJ_RVjt+<x>fjO?dHNNA5S> zmttM%5~`|I^8zvQNQZG%=BPsREUah-jX8TU>s&mI?CY%Wh%(rM%=Auz(H0R!8p+pj zIAliJw>+_^WfnzFyr5@vkkAi3C@|#}qDPA}ljGSk2?esMU@j^OqsbnRn#q8V+dqA* zc=jSiD}OsSPel_BT?&ba_84=rQD@FvmNoKGQe(F%%ZVG<*CkOvR9QIp@9#!C|Df|& zFV=V!u&C*>Xe32)qI1)hR#3~~uJSIr)1v-eDBWrOH;BB!_X#_iDBlgt&G)8C!otF? zy-1TU)lM>J(M{QiL%_FzN2Y-5*kJIz90}R4O~N77Jjac`7?6w&l5I?Bd_sZn5FqEl z1gBwOG-N0B>a&B+;<V2VhZg=QSYS0r$%}t-fb_g7C&vuPik$uy-n`v{aW93=qv!vd zHVQ-9-r12AnfWq<oI3JFuvawn4Y*g}3;4K{E>t;DAY7uS16;ihXXq_eH`~GPoPA-T zp?aX+1vF7zwh|9Z%{Ynl<;@%6m>x?m&7yj7&~X6(g~tX7HHM*s>mEhyfmh;Fg;!&# zL100ETxeh!0pzjhj3XqP1|x&g)f+0^hNG(Ii?^0{qNB;f`D6K|)J8a@5yxG1YXmVe zLQHQyC9#m<2V}z~VVqjS{iX*Gf*Mp(u)>m|hk9kkTH*D!alnq^>^=PSnk2%$juqOq zX2nB6^33K!fmM_Yg3&%w@+4c8DYk#mrM^@{fG%4>_L+gDb)Bxpg#4s~8N;B>LU4r2 z1U1II2UxTYldiT?y)SLm){w#hIP2O&XK~*nH~$bsVpgf<@d?@+1vi&?dl(-s6T6fb zk3Z|iX6lC-Q%Vs!-E3a3Wp3m(8+NY@&c%ocsL=<A1NOUgm?xiz^LKSl|D@ibG0{2O zaDROHu;_sA-$n1QrbmjKZY~acO@)1AweqSp3DKhR@v+UFtf&vkOvd|$$D33^=0_6W zXW&_Y?8h6v>HoFSRuhZqGR==jctJ@CyyW|0`VTA8RI>ldc*s?CbT8OGo*o=#s&n&{ zvPl;Zx1Kh>`~GY~xb9m$3`8-2>)$ptKw?zW#wzmO8VoVP*sq<}#+ME#aUBU0CN_!0 z)jxr60|Dq`E+KILue5*H`zsAO;4@gcthqYV$97^W1;Ha>fIM}&sQ>}k%lEAH9LLTI zbmm2rR8%cMa{<6IAd}A?D0_i$+c#1o-JRFwWePcEN|MLM`e>@#`ls=7<{FW|Rxk~O z@BQ-aaeP?;S3*3Pd@wq0Qo9UKPndF4#PX(BRg*{eZwwhm%yyFfy|>fWGgj`AR9Sp4 zTz!Jxp@2Jl`s2-n#l)qjk3${5qQ<1m_pC~m<2SWj)X0p4m>)I|a?Gut;F(lt4WBY^ zSk&pJ{P}ObI7;}F_!DqUk8o75csOyZ5**yHkC!(E&H82}I|swt^`ojg3f{U|eAwUk za-NOfc{|e(y3&=sEfLe@qb^EV2XZ#q*X5wK9K{p?MHq$i*`@W)YeIWPNnTjB!nx8G zDId26dGnW>f$Kl9C3^qX9fn;l&j$P4d&;`C61Bs983Sr28IHAucz7;0bwtnPVtmh= zbX;t<Dfc(DpN?FZTI4&Po)q=R20XemK-*XJY^0cYz#}2D{9E|ySWLh4e~o5E2lGuP zTmPju-`hYntRJpLc$~Lx<FSBipa~f1)RctFoKA_6__6GD+^pzcx5=)JO%!MX1&E&I zUtk{qb9}X}gybLOwilGFIG<<Vo57kvA08yd0r4$}J(QAkym0t3H_{W7d8j9HGq(6$ z(B4&>J}7<8wGNs=(5?w@UV0xR0sB=zL_b6<gg~pw*{tV4?thYG<f|Cl4;}04b@@qw zc&!P~;E6gn#5$R!A+wJg-U{t*){keWcbt>Ch~}0PS~~TgC$FULCN;wB6ry0(gj=&e zM6I;4g+BEGtA-@7LVN73Fm>p;IvDH6&upCMH^li~mL#DIA>_Ed*Q2AQ47<rxJ-)2j z_m(&l3Gkeqb!aKeAZ-9jRTAIz=X62uqq=kjcOFMVd$`JMcUovDhWx;MRk6bofuIZJ zEcw6RdnGL*JZ?HW;uYn^0^|;y^UeIX03dSJ?0uBi^gTtO)TT65kHfZs>OG!{rrGCi z-@n5k6V1$JWxMQon73nF{7~kHG3UkfoI*Sq@uxFh7xVrui=Lv1dtZ)EQ{DE<q;Jsc zA*y;<=Q6n^B{xAiR5$xuBFXH;i~mO5&4%^-svRSC(Tx>LIv!z?KtR!Hc+B9n$^g{N z@%8en<_*{{Wk~;k=Ah_#o|5MZmj02@;UMo)qsKL;h1oz;-Kv;biGQQRbt4N-J+p_v zoNEwtjH{hD2#I4j=@XZaMOD6ry%sd13vOwNX_Ol`D4wNVRJ>7);ny0_^9AIEh0L53 zgi3nQ9`HEK2;m_LCioSY3nVJDvsir&Z<ra^LjY%9G4a0{f1gR@p}p$&+dkwZ-$(a} zUt`IV0Xnni5(!>xUtSPDYNFgc4O=+?m`>_Zx6bJBB2b_xDq}tRob>cT7SRe6KJ+)E z8zJ!N3L7I2Bs`{-v-l{IA^qK#`|~&J&)B!{U~$v<TwLMl)f1w$4!OCIyF`KSDYMUd z9<7UPv1_UlmeTipnUR9paR~|kR^|?UcXqa(7gOz@ruojAo6Sz5Yp}f$4&>~h>|Bi+ z7M@+2`n)=jCl^~>%SEI*LVnb#_{lp?mo7LTK-KQrjSer*oxKjS&HlMH#A(GKp^=iu zaNCGdW8xZ+JxRO2Uo{iGk+)S^*+xHnzSQ_KhT2bVb3~&+OwR@r3LqYvK$HUnaLs4g z?EL8K{2?=ygBH0C8)|ysXUDeOZh)~IuyfivI=-!L{7X4ctr7O20d({T&n!%4H9n!F zSrjWR;+u#WZz^_bTNa&{r;tAvt9_-|y4jk?0PAwg4`}DGa#yOnrUr4y{_o5AGxL4u z%<dBytLVfA{eD3x1~)Sb^9F6S;eGg-z%UULYFaLoxrGFoFEhMJ{x&Qf9q@xbkqc^A zWbGXC)8E*a(u}u6qo6B}{||9h=)C|#ufy*zoo1ULF$Gn80b*b<%N`noBGxJ;OZ|7A zpXpNC{@<6L6p9vW^(mK2Tx?w)>vW*90%yb83SKTpbFNkxi~|>;q>k`$9yIa&GWMpd zJb33X+rbxOIb77kmIp8EXF#1gM@f(2nnj%f;y|de`@)3Ea;8Vq1Bi|+5Ib`XywkXN zTH!=^fgfLZ>?&(YAAfzm7$yP9Ybx4ivh+_NBKk=BlHZ;#s^5DxO3Ae@!%tEo#}WlX zW~0`M$!LHIFU4fn+4k6s8aBnO1DASuBHGAFqJ(mctP}og=t2U^Zy8v;`b{g?8;>OP z@W_)X)61Fnb3$ko&vZ2ns^i!j!4$MB&SlYkYL;=Rq@;q^XrL&lEX_0~`lnLm+>n&9 zn2nMGMY75$Fo^}u{^&lS&y2qyExZiA`HPsyH5SUuFP69?@3>@vl*cDwGW>g$F*Gp# zlaGp;;V@3dUpR^ex^y|Uxi9lcZl2ZIk1dgDpboh!s;Mcbk(TpgZm-EHWd5Q`PfmwV zrE5U3ur4i%RFCWPhJawvclV^>t@yfwab*aUOZz2?u8QH4S&=@W4X;4sS05XN{@!@K zih6Czg^A^po^}MVBB~QbH#MzXFQqjk=u5dfW~;N;A>$cTKO|%V$Mc=foeSq?xjgnZ zf#(hh##OLDA2t^lAw?Vo^wEpJcD+~pTG(@;gZlG3#=hXTzjGA%%o>OoL?8y7hSBoN za5`oBwsiM@4gIRJiRJm9*|Z>HPaa*4AY-tbO7J}+AvP<-WUG4Pg%gc6+&c4PkjzI2 zP0WztN}2R?P=5i-7nj3ohxx?Z#_EqQCzeMyCQD2oNL(77nF*Q^EOZY2;w;GO^qC>( z2HFmkdSH!Rovn`pC7OB+q1G>nS1hfAJIA>?+Re{3?hN!GczIWdMAG<Cq3TIe6wV>h zHX<w=XQRZg4iFVXp00EG3Z3yRMO-8UA=5w4x_zFH5skKFQJ-`E-A{@ufATpYm}1Oo z);X;HOQ6g|{k6@HAO`ouc&=UDm-E(LQtQ*sjlbR^DP&y*a^FjR8V=8k41?LZ?o!2a zQe_E!c#WjX@iGDlmX;6XqK^aInzDwGcv}CW>nXm5d`$7Vx<1~FZ!d?G@$c$BP6<E( zokRB|!Iamb?jr;q(fLTV91yB>ugI5>)qPFFO+7K`^4kr9?U3x>84lUrJ0v6Bu5<fq zzyBjCvfPa(qvt@vun3R<%WTtJPA3N;8T&XY1_bFE9}4x5AfyP4!SU_ca%&Kl_lOlP zs>-h(JR25R5=1=uiOkHlzzo?B<yTSKlWq(6H_3zl#m=7so36IbvA~HW#HH`g=Qlyb z`cLO31La`|3d3p|eTYxy>>eE?aIP_U$PZ&wo>%~?U9rPDAD&Bwx62@zD0|Vlw)$^w z5lhgdXhq(Xi)nf4;=|yC9b~!Op?brkq=6QpKnyW&xzWRx9qblXOo4V_DC3wh7gjf$ z!QiI`^h`Gh`d&9JBIIRz`sdG|qiiot6X?A!Amv$G7ytX>$(BZ(%+UD3+r+_(Gw1nQ zSK*(c5&PDA_7*nk5Pa0%Jv}|kT`ze)5TfKj@TifY7F%2&;+s}+CG%KVKd$`}xBOeA zQ<JdJ6&+3gHBd@Qs*Pj5+FEYm6f!bvT8^IcYK2HSr6|~Dp`IVZZ*)`z`p2{@w|*`@ zE-qJ{8F<|@>NxfIW{00tl|J<s2Q)cgA~rN^JC_<F4cGAFC{}-=nP{#stDyx7gi?pl z?j9U!SCa~gIad4@FP(0DwgEjf7jT6@vb|PnIp+XPvMS3EN@jkA1z)xvX4=m`rmw^M zD*0vW<vMaLIyF>u(9u3kWe<E0&w$b}m3R59a(s|iP(WgI+)^g#AQ!c=?Ehr%|JgNz z@_MmRTV6?NcviEfibpX5&mWw*ksL3bXy4Gyqi7hsrq>U%O(mjia)p8<8u?Bu_+u6r zl0jO_mak}@Cv`@%Q&X<ff0@?us!pm4PjA7gyz_F=oYO`$y{7d;d-f^$ix)ox(Zwde zDCY;Lgzil)C017~POd600}~$;&QW2vJbcs;g`?GS-kOJ=9;8rbC>!c&n1|Be$<#5( zSoZpTncQsi-=Z)Y`yJImbm1sjv?bK`i7S$Ko0)*r=-^>(HbR$eYxhqU7k##Mpd1^R z$(Yt;`zs@2)n8-y)jOhFzk9Jx8IvJP7hzc;*c6r$BxwAL^eKT)tJDg-sAa*{lGc8X zzbhvToaw9PWw|YJ0%@eGwoP~)FC#c3n0v|fU4VXHgEV0LMfjYSk-V#2G_*5uD=&(R zC2S;t;UJ3Jo=0sfF(9BlAUckllTLLu<?WFrQm)3=Vm%y<V{%QGuX%QI_?H1RPjDye znYp37QOa`;iod|;Q4wl#qef4E#rU(RAb5W~d|TIYRmYB3cM_Jw)&#B&%M&~;OTFfO zN0zv9NERf@fp2x@<uBQqOvk4Mw2OKr5!V}ZvI5wfbj3EweRI(l)bYeT$>*UQ6@itP zpS24iSt!)6L`22L0<n?Bv<vJOPnsr%GI=Nq!H+ILqo6PJ5ewCpJL~yH*>XD*8=9`h zTRaK(ok71#0OPA@$;^C?qyvcBK`?#~v%3^xRJpHwrpQv#kiBR<)mq7dLeHm)hg5YE z`Pe{l%Zt{=VQTTa)DFa)?mDD__S?5S&xy0hsr@Icv^$tdk&)%v)Mz~tLE>}hJhxYC zN|f`J?N7^!JW;&&d$(FH78A2jYc!Rzb>Q&6lXtMvPs*Bo8OnZDKLaB>3;uYndDIrI zk-sG={;kujIi?jg#*_8cRV2f$6DpI$^lP>3Z_vVN)IC`~Gb*IqEqJfGg25iBL;EbC z0$%H>Ubh5uH<KvTVu&fH3n9VEFeHXDvOI~O;NOH_S@TuCZwwlklpmSWv-9(dNXG4` zHD!+wgXPgr5~ba$*fGVdp>wQ}TGUEU_D}f~^9nsB(B7q?l%8HHn)3w^P54R60=e%K z{)wo^mJ1fy;lpW#_s{s@rTY6N@6#GGTnOFBS)2e^)*Gdt-fQ-)8idPe-#L|aT;om+ zsVF4iUKfvBu;w&Hk3H*XvknccbvMK@#r*Xa&h+`lNmQ66{7ByR?p})}=QoSBxJH1K zC(F=30-D~Rg-pN8cx3N8f}GA?N)T!52WAaCjgSqV;+K5gnG-Sk&^;z`VKcp|n4_fI z;`gPaFhyS0y330G{ccLC!fn2?HpXY`QW>TuxIcf+J3f=q!gXpTkEs_}h4`e9ApDWp z<MhyEjZ67Ct45ui<9zsAwfi^Pt2(Colh8pKSy#KC4jfa7IXcp9tSpx6Jclt2&i%Wk z1G^aq*+k}MO6#vA3ZWU)Pu^>Nl$1df5t-uRm602bWo}k8Frnes*=E4LjMC6ir!&F| z@xQiOF+Q`EmF~%xv@)#2C)pJgB=E-{#7E8=8jTCQu%6#c5%jtXW-e1Hg9p&q+*Y3b ztWAz9sC0y$$)_ooF<UG=mo|XDd0BwZ=+vj<(7{!&qC<pdS#&eS1ObS&Ud}<V)I;df zDJ8L>EZx_rvgw7mPtrFhe*0iV%cg%|Vb64Ww$Lk@T!<UNov3=<98~e2K!21uF6CR? zJd7#}*MfSDi4Am_*s$p8oFVPVt3Oh1ygmtQQWX>p9lRo2r+L$<QT()ek*jYON3xL} zWMx8o<euZ@5g8i#i?vgWnHNcwQ)9m)sV^oZH!9~pZPkw}$IOk@f}^U&P-C>U3iNYE zWDxg=VYh!^OU)J#H0opa-97hO%bS>0A}caRwbvoR7%vTmSjiCH@Yp^9-GR=zc33_# z)Gu7n(fneth-On=T0N!}x_SeeO5{tDKLBJC1P3qNM#oUUr0X4R8yGrUO97$RA4y*= z5!v1g53>-53^oH-E+VKR*X;+cF%v3j1`Jh$h<3Li`^TF$R6N9a4?jbVV?u+#!&m;x z);#UnFG-tO@=vnzf5v^3)rv77HT3VzMJ`qTV`###yHDBck#G#n(3X=<i5zo=-Mm7J zQ%As}gNV}GXsb)HpL8%*HbM9Io(1oAc->l5B+h7eY+y#ATOADZ<vI?bz12e;#*7Cx zo&{o1XiSLFvwnwV^>rZoebn%c!KHp8YaT%!G4%we83jK;wdg9pZyzt{I51F>?n15F z`B^)x&*Ha~nWTY=38MsBp7z!?v}%B`4L0P5Z5bq_Y@VGHw>16dd1v=j2}W86HiBME z+jXgd*p48ctobljj%W*ObKeJ+g-anpr!HQ#nj^Jd)s-~#^?&WRaj9nw=}@RRZY}!c z>|?{$1c85uU&N^*Gl{Ds=XSH3e5~^)W+zx*Lpg46ODGIWZ|1<MNe>0>0z0pAA3nS7 zOd`q_0|(fwW6&mvnT<GniuTRm8yY5NiQbDkCx=P_1XFAQEPBxG+M_zNpu*d8xYdBY zHanEFjQ^=mVD2s$5(k<C_rOlL%qJt(uL$}|61EQ%&CX7S8QRQBc%MY3v=}$*8ye7g zFKu;2w_X35&cfk09M}MPU*UE451@y~J?3RtA@Oypd7!Je3aCH;=9Z_<oU*lXdTm%X zy|nb$K?64bw<$wB4c7%foD)A4`J9TD`^p#~<>q%ApOBdb<l=L3c+r=pla>@I4yY2h zl40cr=;I`z&~i~cpRsyb)&2%APoscGJ>%`NVO5(?ZKn+30Bcqua(^@u3=!If|D!D* z-<?{eRHY0;w%Fo|0l_e{)m5WMVc}5pH=pr5OvunZ@f0<_fVJt0B=&DWXgHZm<4aYE zEv?B-%DX;~HR!V4G#|d)0y+z}SRv)4gamsAT$yBQRn>#!p1HtQV@a)0$|g>yzw?7> zy99XA;_1wY{${1O!g`c-B6TLiUFUN*5ZnSdOa6NYDIU<{dsM;#fEnzpgFvanCg+p! z!K%U7Ncm!|$4y&&!Gt}UN*jUL#AUlZeNtRpy_f5krObDU)rGdsmL!b?rg%Yv-O^z% zDJdx2_shD0Wb$V*HPhb^(iNcdrxN{Ktj)$GluHjqFvsM;Cwf8a9E)T~`1mYS(Amn? zSuNH_iroky40vt8gVVPGG>$Fv`%kLhPR;_N)&n3LmW4dQ^Z&>PELR{S19ap;8RW4e zrw^h_#CCHpAz4!E+0qE>T=8w)XPsa6H-s*QFnl2U1Ms}f8s|WxL3M8I!o!;b*R{`s zh15_?GYy`ufVTZ?Q-4G-eqF*|0HgYGpt|@GOxN5G6AwlooL80)$7Z0WuD5M}1yT0! zSi}5e9v=iNtS_L)(YIjs;>M6zx&s08AdFlf?_hwei*&6lP)v>XB!QNx4Dr~b#wrg4 z!<Q_x`oy-Bt<G1Q>f<?C^DHW3q~REZD^-7LZ1kE@d;;tLg(SK>-xNFnglmm@=Uwfp z42V4?8EhtEfpfN=`-yH=$l(nL&^-X~s(G(z6O}L&N>vks&w=GB_sgpj{k*Lm!A=x6 zHHVAy6B8fXk1mpr9jHFAYD$DVf==?nc*C+Y0g&ekdfi@4Prnz!9$Whs%_FHUOGM>i zx84@N7wpqxHP`rY*jIQ#IC(MvXf6f*-5<ke(6cHkDrSoG$ae?2fiRNKdH;R3YEV<; zpKB4S2@4QRqTl3sQ%w+a1H_>fW=eocS*86*L<FrFJ<~cMv~}@Jz}Rk<1)F{troWeY zv_BZ1@`vdrq~y*^56VW2$Bp-m+z$|rI7q;IFFh~mxXc{tX5~ihm$P2BT8&KyPry9_ zSbaY3vN<2ToNr7oNSwL(ofjqrkIF65@t42I({rD4a@MQ$Jnh+VIA}uWu|Z7q+JCZg z+daHL8*Xu4{W_)ivO-=tOZ%OJig=YanhXMjxwEAr5SLK{s8YU29lo!2R7PfLv>y7j zDRja?S_OauHI9XbsuRe_);*7g<iL?699O181>2(_X^l<~%gd8qzW5Q{^McdKEXE>U zdqQ9B^`7_)$ZTp<QVSB5fvrT)<p6MqLnEs5Mvqc($HJEQ-7UXF2O2mXu06M2d{IZ? z9zXEwx6?I4BdsW3dfI=*KNXcq^1(F+{5SPF-L8F@>yClUCpFR$s;2A3P|F%InopZS zInO%}x(4E3>+pa_eM<k1#s|bbn$|e?+RdZ_lB7K_&DUPRIZ@tKP)rAdvj34H17?E| z&iH{X(FfNp8+llr?g8LJ4cvmv03ccJ40h2Yn~Uy@B9DkoX}v^DAObJ!v2%7N&(sn0 zhNe|;8R@^|X^K4jSmo|Xy>92UVzQR+=&M)@EuxowKM0&ns|jA%>`(=!F138x^S%sS zqAtyUhGTQf#qLqoqKpdZ^nMsz5^&k;GB5*?>pA%!UQ%42rrwto9(y_7S5o(tCjF{- zFH8Qn#b#^sL*GV4;H#^`Mr|t$h}v6kwZ~31)87T<&pfLhBKkGB9ZZqQ`X4JOQX<R$ z8H7t9y`L!CQycP=55{Tu_oU_m#V#o0#VbqFb=Ra};-tgREOMqxmtdcF0CMK8Z##K- zD<ZXSEB}gC<{(jq<_{Ose*2~0JgTWjBt)jlgKPfRj|7}HaJ_ovU+pkC!RH(f&iwbL zzKcVymRE$q=A`t@oo3xZ64Gh7c&hDqzsNE<3n;4q(OD0qXm(lxcY9YW&%L)<dj@XX zu-N&qIPq7O{Uwm9+5?QeuCK}+Kk5nP;kgE>(6GRbA)jyFLD;5e^p>S^j(fgD=&K4C zPazLc;rL)>+S&9tWIZs@hrjuiS)oAO#*M`kxO0k5)na$E85G7YT5}`zCJN=_R{i;2 zuyD<<F5b(FhnV5JFCsc2b_|5&{E$6&HzeGh^w)DmRSyq`x6ZvKQZ~|g`6KEb7LD1% zo1EOoB45=u0etyYlvZy5_fIRuspw7ofOLYZp+KRf;fO)gJ)!7B_`kJZS$xoRY5c2| zjXzThQFZ^#2k7n1uVsamZMpgw3u2nTSz414{R+BE!=FS_oTftdQqf-gTvKq$Br|*y z5Y!dEJBg=Ifg`^gTd<|5OT(EzJE}H)KSB&atqoV+8cFGOg}vSlc##+e$OOAK1Qp%y zEL7m1xK{@cJ-LMS{%vPQ9elR6y}U<pSD%nDx=Ta=s8yunr8D=9^I=QuYW&_nH^83; zd1??-drcubh!UTN*tQ$iKKE^zAKL){iCA`hXWnw)I|D999xwN?!1?KWVy!j}tjF6> zHW`VG3+0U0W?o18Zj$*`H6OK-N^w>ItGxZoi-*ZjvNJUe-Yn(veDBkO2XY9COCN#0 z>j~FEr)OgIPqruC*ACuvse?`Sw<vi0mDb%8Wpg<;x=(guM(5~Tv<Eh&a$b4e{hb<~ zuV0B|s0}m8{y7V&;dRR3d&c-K1Pzn!^oS>+T1_Lxcz>lSA!v<vGF!qvvFxp<4!n;w z`up%w^a!%gcGveOo6)`ljZRCyth^+{E{P{@XB~^VsMzhd^rh|5%f!akv;Ni|vm98& z1*R%_U3r?9_S5x6Qdzc=4C{stzJKTL0-J(8NJHK~?b;VEt(g8(_TsN=cmv?={{vIO z?(S|9htKtIvkHaEesbp2)@t%=Xug+-S4`z22<bq1e&|$kvOmlfK;^lw?Be25A-E<Y zII=JfZ3-((8~Lz&`X*LJX*WIu@5*VfKgn7r9wVqeT>=KYgP)b$QZ9iha`?I!h~xpF zynLuR$=(~hn(3vi4Y_QSuCET<5DW6=7YbRdBs@QGe5`)RhFI3ThDWT#KFvUW(e!15 zMM;YNV7B!0Vb|-s<m48Ib@U~^e@J+DIW9}(%7(rPLAz&5_n{B3jT+(Rh@uMWDSXo$ z;&q~IMVtgD40SGOO<S2h=PQ=iwWFAHp*;?;BvwDEOdq-VpT*<=&?9p`G#D&sz|H?h zn8WrXee4?4O%to<FDckEK%@qk$#GzltZ7XKR!w#uy=n?ezJ5eHD|)lw#U~`-M+kg3 zLHym`wv*Nm#mUtu04Xv!PO0THR?^baC-GMye$;lhLHf{)buKv!yu8SKh0R|r{2u5k ziUR}nI86d!#8scBq-<jF-jrM(dqlQq7j;QqXqy@26r#;LYD}!FNGDU<M_Rw3tr)8K zAmM(#TY6KGnOO=(fvsI-3*4lw2Mf=I)A}7Mlo6JXWN@Wq0VmDVvUf1B(-E`?|9q;r zJbd{Y#2S~8lRfkg0QJDZdet#HpacbLX0J!8GZLO$d))T+)~FXCmM-^Ze-5lPtB2T* z?JB@P1hWkuYN_=c&(>#M7kaL((`yhA_)Eh6e?{95^Vg8jAOm7Do|-tjtZ^+TqD<6s z<xGrB)n#Mh65I(5<n9l6On;G3Ff|y}A%@G7<I~&Y>fUBK$ip~)(bv}}3YKn<7|V1< zgVdkC{2grPGm;;SQ9)w+J#d9b^poj2QKllNj%Bi(Bxjg4%eb)}PM}VtKmiY)S#r=# z%aC6q>6-0Wve3@gq%-1A|H9>DKjHoAf{QED8$x$?56^^by>`0ui7V)h{|p-e4ZinA zACaZC(BR>Dp$wu0fDeJ3W6C;zp#Xp}^lw*5D3%@*wv&PL-__(+YWURagu$D0@mu#G zDHYYj-O|I|I={(S?a|DzmoqqJ9=w*NH~`6Cs?0H)jvpI7dm688{-)oTN1#QMj^xf5 z(GoNta>*dTkg<rFb~HN+zRzh^A%Rh3APwHp_XjR5f*^ddvW_*pIVupGqCNxI*RSWB zVDjpTbKP+|uunG^O40t@$!YOCGvfsp#3!*v+Aw7OUnqt8yG?#N4^?Sxy<CtPvkfvv z0HQc){Ft~lC2$es%59C0#Z_zri*T6GiHzP>?k)gfZK?{V{qAT1uCPb%R_L88_%sk_ zVm8!;J4(`W)p>vKHNYdk0NVS2nJ%Y&8Ws5fwo8Dh#;O%!58z+OKmt+eG+vFs_*-8? zhi<lOQKA07hqn{45BVy#T28~x@qVw8cfdO!>DeU$TgyjWqY%ko8G1C}C;gmGNlhC! z7Mmzb86}Vf)%#+z>VBxnh8*4Zey*ma2t!sFj~<F7BLPMJwjA`{lo%)1dHujRBp+W@ zrF4unTsF;#&SAb$J?<@@rn2C**{wlD*OC;0Dkt?@VHz3P&$XxHJ3*L1==g}g2YcEE z&K$7#y%(zqBI!UQ^yf(wy5vE2Cp%m7A%iGgvothexT;7suY=)3=o{YN9|NDc{HOz! zdLqYqg$d@|BKeez2R_8CcK0r)WW&r(zWh*9<STfCcW%9JmR--%yAYU9Px{HLjRS$> zmj(u^ueU={xLqSD=XQv94&x)s)#(N!LQCo+cBE`MY3GsO2jtNoQ#9~nnuJ5%i%xeZ zjn+v#o#%lQz0M3<dUpuIpl-YhsV2|O^t!v)XnW&RqI*FVeZVqbaB$6E^{0y)daV+g z6Ci_eAuvxqdiD3Xz)5NG`?-;#0~y{zqbt|F15gaf_UmL4+4wrOyy0y{&PJQ$1Mjll zJcX1V&G51`DBmS@vFt#!^Y0lXGb_K2AeD3#|6_HTD!c()m0&c#$PcxiYdh&pKDlEx zqFxU}#zC!ciLBl7le+AXAoW%{sKI~9<3Z7ck^hAg(Z$d8lc5`FF4bEmER5yS58AY8 z=h!?ylt5eSu8kd4jkR(d`U`{iB}fq(dn}>Xk+QD`V<{AG+qv*4Bq`enQ1RI<M@YZq zcRexQ5A&c(J>6jUb~QH68fC$01=zYxk11g276s|wIsFcxXwcNuT&sJeB!xX(g*C_% zIyGB?n(A7zSIHglogWVf##3Nt29HjeYrkqe&9I02Ybz`<Wz1En&C?l1;?fmOhymgF zIEw%DxAD2T8zASa+s~DK=-`ii?$S{U(&8uuo!=JiFj*#ok=rIH?mr*YN5dS!nHl_< z^-{C-o7Ar0X~ZwxBA<*u5fWu;-1z6RwkFi&lw2jR(3nz&D0r;CT+En(BV|-!jzCV{ zTd#hg=pu<dRAf%-iUTczfomrKCSL{Pk4R+E`%3;P420);gfyV0;4)-MNtBX=bOLEu zmrId;3$QldS!E*JzI?d?ZgMc@aJnp4Z;8$CnshKd*xojO+rjXlx9lEu$8UD=5FH14 zKkG2e;I^5tgSxH=9HO{(H0s%qUtJrBP;!@gjy<}VgPA?L><v5$c0E+p@UeKEDM+n6 z@1F@wNO+{GhjA7vG7WS3);QGZW1QW++F)}*RhNg?N2fCFK^xN|dIQ9{=Mt$=V`bw9 zf?S6Zb9DrXsCLr3?}4O7Ki-_06w1kJRn)dpw!FY6Gdq48?;rf0**BUb-oyqi@bU<t zh?InmJAjf!5xj?X#<FkXHm^Mv(T;fP^#`|3I|l%~yUQwdwf?fpdHpIA_=t9`&>ggk z*XSbygF6ka^x&ojt>qIr3e3|J7Th);UKv?PKdm@W$B;_TVjgrfk-ry6+4>7uxuAGu zQ_Js1=hWA&%Li6TtHs7Tr^<+EZb{IuA;bjuQYU+A;>R@HM@ZN$`Ve35&-~-mYuzUt zY<HPs5{KGEbVfr!!3wmKAhc&qzE>P~fOlr$9OxnyjgFCRFyrOBo_f5+_{)FuddTt3 zR?gtmL_RQ|%w07KVmrh`V%u2@@&Q2N;Il}ok_K*`<>@MV?=HEb0?mRM8$b7kq+`T_ zPR(%T<P&kye;<``{4AC=JudaDbkAAt4MjMzP2QNkVpn46?#vP5J1&t`&N+x?=IR?M z{*41kllo*TEvN0E6(%Yv3;C#uP>_~Z%ahBD_sHA1Pq!&W6Xy^X)+^G8is)ftQPO=& zR546JtOV+C?>_sweT&2_EEpV4J2~6&v-Sfg?*KW{vb}z7OJYhh^{>p#wc~CoZ@}XM zMY&ci5oO5Y$fP6(o#0Aw-3j@hJ#L$;Ej8V(vv9py*M8{}9pt61;f|(0Sfn|I<$hl+ za*>Yu&BDvyb)>-S+W)9M;OdyVi+0+HOjtOIu2M|C&Fdd7-M$>^F^)Zc#r&qTQVb~_ zA#fkHWiexQ0cuVCt2PoKU)zEw4!PunkZfY<Y8+<qJ><OZmFthT9zG9nsC%DAKs>_* z0SXHH+TyX#Rh(HVJ#yF-_!NT#6#2)Sq#iu#(A8Naj|Ir!rqI)gk|&UIv@kMAh>UU> zRP{AlT_d_;_gOwo-f3AnM_`98>9l-x^CrH9oT=`AOb8rJG>0#|Dz9D3$jun<qlP`7 zRUMbQk5FRBo!r6b^3AUp$Kt)!5(3|J<uT=x2dun^QfI>OH2qLo`{zXm{NirnN!g?Z zK;f2#rq1k(=)9xDVLLXmEUMz!u_I|Ay#B#^wF=Za7FD~hDIq-s5kQ~;B+snGdwplw zS%sfTBU#peb!GG&icbu?tc$nxA!CdeC1T2Pa9QTszqpd`i&a`ms&(xq%UJ82KNVu% za>8-MwmKNJlakTs`d;^*RpesY2(ZI}xA6=d^#F#t)@8=41nc+R%(GoK%Zyb4BUE(z z&KC#r4a=ACyado4WNa0XYaqshqLi1#TMR+nxrFse6kCM;x^SEVhL6ks^k)El1=@8* zFwQhvmbt`YDr)y!uP?$`CQCFet1xmr`>zcdw6j7wCH@les+l1-Bi2MS8MYGIu;SB6 zlvI(!!jwE5&pLq1wqM`l_+BKxn4o;7@Dwfr78no~P&f>-oBqeXhg=q!S{+y7;3{-- z-6)r-!WK)RW3Ne2eR%VjDgX?zb-F{woZ!#_vN){D-pkjhV2zOH6kC5g7V<CUf}-;f zy7)Xn(EH<5X=8$=!J)%AF8l4hrLig0C?>8^o(;uEy{I~P3D##QBS6WZASaI7(TPY$ z&E~-F&xTj6g7KQMb$G(8cFXkJn@v?H`BqjN?r`JP>b>-HtHme&5|A@z=Ry`|{<38@ z6}b1vPbq{Ye-Eix)#}s>uS_b@qjrE=gV$*nU5#d?ti9V$N)<9Q>_f{vrOk~lKt0%I zeO2*3tNj!GXLQJM>X7;hV+>q&$qw(>)7##@T$hd4^uLgh`1Mm)GqAFZD`q-LvbEgk zC}o&l2LqX2Ia~r0K}q$xAm7hgy|UIh*{%1qu3nuh@%xj2XSSM%mcsSX<?7!~I#VR| zAyF=Uno0|N_nUR9RUPD>n|;cx#DHu+`gpbjo2#>pp;M@SD>olnSubRJn-x0tYh$Q~ zk}j#x>~&_=ar(Qn#(|_o0z7f1nK?IG{sXEP&{?osgT5-zk*|1&EWxA?qoX$r6w4+@ zRRW#%6Q^wHkul~w-a=&7@RPZIC*^BbPzw%+-N^E`D60{9WxK5}WR`f`oP)>+`omB_ zvH>YJ>>evv;5C+a*=h*Trq0h{bXvyjvdI|-cGuA@r^$!lJoyoz<@NuK#ey`kFF=v} z|C>{T%|$<7aYNbPbkXv3;p_g#Q-r#q%EXHPkv}*3YZ`fO{+4U}{0p|+XHa_$!*?(a zjfrr-Z|{S8c9S#$qbGddboIl$%<{oq8nOUuHYX>ifN04it$*v3&0SxJ<HzZznC;Nf zZoDc*=ay)?e2ejXn84lUy)U4h6MSUUcfV9nCC<%1n60gIP8h`IFlAE8la}4%Ah7(| zUrG~>mKPZPtN+ozh?$cEk0Qv1XB!p`8aGM2Noc7Ml~RvUK1|n*rL~WErt9>5xAQ-V z=5Pm*qCACkCi9{vnKxV@@K)<bGRrY|RKOP?CUtax4jgfW{Hs6j17BST$ZmGn>0p?_ zK3p$p{<)oHD#BzEa4)AzDa{=zDp;Ga5bMjru6<BW$^XFTywZM{%odZum016d&q%(S zh2o#a%;C=A`<5o#_Wu_DqE8*VTQHEZ=LYa9EfGh?U_S|Vpnr~oBYZxt23oUW8@(R! z|I|#=$j<X>Y6OP}oUd<X_>VH%=&GJ2)pNO?-Kmv$Zzb2VMg8eZ^298bPt6}1;@ynY zXG|m_?qQSLp#|jyI8#k*yi|zkibf13^`iencO!ZkE&KW67R|e!l`fwcm!@o_Y&3|f z@p_Th`!EKSDe`78E+)%3*?2A}J{9$l`ay#}kn9`}mb3s~Xx+#5WqZ;;Ng_M0i{K6M zI0XW&0?yRohFDd4Z^g+H{V?sVM?XGPl>s00H%|cQ^zPF8;gW&?|D~vxhohsTx%p$| z1M;o_<QxF*yz|rr?AK+O)k&y@=il4Y9mZQwE30tQNI=;M=?xKbKdjiKRZLUk?HHk| zG@2je5R$K3IdE}sDgu49=n3)Ob#TieJ$|@7BBFoO^NQ_vb_II}J3kBJZ_j6qm-Wi@ zM<|GbWnG@VjGazRlh=f&RnKt^UVZZHgR5#bceQ>~>42DE-;JHJyIbA2>y$J)+z%)T zAF~pCEp@pIs2NVBj{9C?^RU{kbYG$ARkMC0LwDHFGVp{+PIi^GJ80f8Jrh6-KW<k> zwUVrIFi*o?>GzObh+#7NCQtDLkps&{{#*m`Nhe38I4<AeIAB`4l=aA?tzX;4;|C2S z{SkT%op+3kDFiuS$<NDgxU`r$B^UWs^m8_~Et5U@uRT13!sRo{IdSp)kzbWF=e^<2 zKHuIx-2I@RRI8<0PB{I?R!_I3AZJ=HO-%03#2BUb*##-%pNUwbC?Q8B)0}04eC$`% zAJPS%x8iD@V<yi}=){rd&Brqy7V0%|%Dzq-u>;A_Ru_P`FXFg8a=g~9lp@5hpWaBA zR$T=DhIEeOSfan=<Z$&2@4EVSagWMosiG;T0T=c6y86aYQPAk9VArg#!q=1_)E9Vp zm`FgL@Ns`khGuYF(G1c5+$y-9L4AUf4Sy7j>8RYc(^)i&JwVzBXj<gPSj#B%G8IHi zDH%gSB+%NgbCmY>n!p~7^XK~4_r54M^$mhwspA^CyxffkT#;<2D@RG$RRjVc+{pCE z>d{CarE)FsXS!Z~Gc@Zq6S=f<ap~?1(X^SbEnCmvTZGgXbpsR#2oG@wITBzx2DC~= z>xbpqeBi$c%wW1wYhWYxy4%wi{c>agWMANE2S7eBolHss@D}|A3du)qETkF$Ky^$( z7RzG?034O!*^xh3fw>>F-${|$-*tsk(|X0w(URkqbuY{R#8#J#m&Kqft5ri726d#C zV}ilo04qMHJ1)ihcXU6Ok@HF7b49WzsDE0qt(o*_SEWO!146VEwb6IIbYo4bwDDB& zlsuMPJ``7seae>=V9zO}bIOa2=I-vQLGtxJAV{4Xn|c_!{<9?N0GBQP@t>7m&3`e^ ztlWD3Ot}jRc;8=>{9+b2(0i-lm|-0;bU^Gw-WZ^T*=a>uj$yT(&*eIB)L6LnMkc7^ zI?LkqVffq?n3?9~;p1J4gBjc0zDaq?X}l`YtIXQ|GT;1q^%Pm74S6H8hN)~Um|7sO zC};<dt|(%ys=bR%gzlK=)<k!|96XId)!Io#z=Wh2`(QkJx~kgP_^OM|E^B$cAzoyd z-_pJB#xYv)@7Ujx+3ux)H{=s_Grt-_-+pd%NcfIw3`ztxW+&7~8I=wd<yC>#hY&wL z!HGV9@6NIss4632%9qurX7K-PXb>0V@hl<Z#qZul5l|rtkXR9TDc9Tb`}{IluI#5H zYwnY_+nHLui1gO8<ehvXF<_QS4<|@ZtdV-v%}{MM2Q-%&Ualslme!ot_h3B&j-T`O ziAh#Y4^u%BKbL30Zo85Q=l$$uPEJ28IQWI@p=T_wmTcMwwnXo%<9C8J*6JKz>ENz~ z5SxXU1US?n?3LBo`DgzIh30pLoSX})X|;X@mj_1|7yi@Yeu3)s)8b-YSO@9j%NE22 zfiyriZcCoXUgH!HP6IN57G&Fi$LBGe_<%l#$HmD>_~G^x9Il*ffi1<!`5H`0`R9bW zF3-<RIOC}?ia#^~JjeKcqNR!|?FoK+AU=j$R?ikItDLxua!9g)X;lP+eWRWu57On+ zNo|*(iUZJe8um)x_ZN4}Un|Iz1`8_=$5luA-jchi#{~+pTmFCw?!m=YKaN}_a#o0m zWg#quqFx)f=d;U(@)tEuVkePD+{T2=%r89{iKf2Uys8Sp7N~Wa8tfHpxo_7*dK0YH zu323|p)R3swqllgH=d#}7aZRv>bbF(&WQg(aVKoXV*D2!%8|UH0$>QFqn1}K4I&q| zg_`lR5&wLjwyqh`8>cIxQ*@Q|9s{;-cuPy(Uq01DD5}rPs;2Q{dVKH1yx}iguWqY; z+W)GlY|CDrb48XkfTht@8A=>#as7+PQ%xJk1QPEz^Kd&-r8ae-n}{iaqLCf$&!qJA zt0#qX(f^TjmSItKZ5tj^C8SG~4(SpQX&7lFhekrWJERqmlrCu{hmN6JI;A_L8|j93 zJ>Tbl4-aL#_geRTUgtHiUWuiJ0kcYR;3~>8b*;1#rs1vsAVnt>DWjDR7=SL<pg`J_ zFnmmcORA&+VQ_FimIrU8XS>YfQrwBvw3%L;JW&~fo;!0JMtIaFgh*}mdS-^79*3KC zPd}oEe%4hHW*?icJ=Cig+SmMYu8WS&fAPxiF+vNyZ?lAaleMvS;qAy-1ECh=zn%K? zukkh6?7z+3xgJjjGDY0>C%R5GC5oWv{m}T4^%^_f)}yu-8xax-VHy_dm{7*vTuhQO z1M<S)1e7Nicss{YAL=X?fp$Ek3=e<GD{i-9h2A)c2kG+a+2ttFv4mm7Y@@sVyX7qt zVC@vWjuX9}(zVCN!Rc{a`tMFG_~uQu-{V8K#1teAEhWVGV6KD~Oaj2=8(ffO6m3tV z!8?tDdtc!x^J<JEZ#vf}CS1NWA+8Kb;sPYPGfA^js{}M;E|aEW^QIf|wC8&odB;8U z#QwkX6VxXY42tB(CSI4@yv{+Tij!oBLs{9V+$mdjd4cWM<(<7^D*m>~^eJ7-(c^$- ztM)S#8vMzqGJ}VO>>e#y8PWPnPXDsz)6Lv@{(22dQiOq@X@{8_@yK8?-N1T%U(v2A zY)Vghi|er`_rl4OBWa+}ie1z>WL-UR#^Ah^&5`~c`M^8I`*KybD(wZt`sm9&iLZ(R zz6`^<lZ0%ENQ$;SOl%SI!bUPRhl@3yWkjN{m9DY)x@@S;Cpek1${j-OwjQF#a+Ja( zz8Rg6;=)3jeLvUfR8Z}_+7_c*Ppx4XakomwS7W696;DNlp4=?_#Qi{^u1KfkgQ5a~ zIp%xNq6A^kjN>{M&>J6d-(S-CQ3`@zjojM8zV{0a=O{tmo2%EUUB)W!D=Np{iX=xQ z1+Ta6e5A@vPfoZ?2VoLv3gNSVpT5D>HbM(!&4#y}0niPFcEVRz9e%y@Le&539FOw3 z6fC=SXXdxpYvti;{?zjv4-mKxdtxSWK`INWRIU~Nhi`jw;XSHln7msZ+Q@9eyiF|Z z4@aQ67(WI`^1&|~zWLeN9eC8>v}<Xb>zKfzt1CmC(WX;<gnHYsq!skz=U83w_Ttkw zZ<5nqD5BG>+DLbQf)Gkk#<G}gs?&_eG|$PTX~hm-?oE2(SrJZJ2o0M!^_}$qI+C}T zva<)t*W$5jZ@J0M9F@1vVYhpdeC=1N7rGu_^O5&iyZiT695GI{2)1|B_7{;kZ(qFf z%j$l0GiZKg-DxVu*A3RMW-Roj8CI4J-qS9`5TTJ%g}h@4nz6Y8*>O|8n808C#zD?w zehb(MIRn>eMj0%U%t5L;FEPm{-_i0K#toQSJwTl&_|v8NH1b%KgO9s=@+WH(R9(-y zp|1UmQSKCTV^yUCKEBRJ)rSR43IALNwKQjmCgn6<hE6Sjs|dLQx^oC~$WwTzO!+nv zp5liOk}k%^yKTR4Y!`%H(-=R6aG|p7MhKaIq0O0!jCZ5sf-|w>nfQBaR?G+#y{za` zs0e;%Dhp*`$b&?DSMa&%GM_3TPfkv567UvW5?}MRt%T-SA=N4wd}dl%klRd~bKNr8 zIV+>(JG}hA>qh4YBhKI5r7;WW2VZr){dc)BZhSP1RU*~JO3N?ZjP@4jCroI_NYF<U zD;>8v60Wq?j0-^FpU6DZ@04#pKaE%nRO1iXwGUf5b~BH+o;0>Dsck>)_&0YY(}lBe zdYD8o>37y>usBi6ZqNN`JnmC&AKAQP13mDR*slrq5Nfq8dQjNBhQ})e&tIkJFQ$jv z#7bCb=+K6$?YxWRLvXx_d9rgSz|ZH*(4sYm&hf9$G4fOc_DfX<4HgMqlY?WQe#0MO z%7;yE2!79pkp{O=BI{(lPWReU_1;*iS!yr2pZ%VuqNUS~_Bp1;zhMk>VDd+Tai6`B z)QA2EQ%1|J^doZXk)9K_&$w_l#RQ~%fokiuO>xLzlh@I6NQm*%r0}z7Dta`r^w65) z8HQ_x^Z?h-PW_5Mm3%ICT=&o+;M)u2G4xA{pp2%~>3Va)Kxm%s{){K;;>?Aywf-Wq zy4<iH2VomyFI&46Ie4i%;f2h$8acdF8S4Z-LRBA%bnh7L%xNnt@yP<xkB7skkp_Ky zc28<ZRk8v>I2wzp`?Q$yi$Jj)LsB8Hh$)lh{kRax%oj3RZb*Tlw!GwYu9l*<(C;;O zy9Kf$=dWQ~C9r1h&zO!HXVqUd!)CwE(kE(X*K;6mYM<7Ae`1Z^_{EFGfwm|KR>7u} zC;wfNVe1VI$H5={m0!k+KN6>HVk^T^9Mkf*j|9pr69fuge&gg(PKQS$LnWhZj`l~C zmNMS??Z1dWO@CEyJp5`UP9jwHebVrcm#L&WdXIVxI;Nb1N~R6_I(43VD`ABg75@Ns z3u-@D6km3)#l^vOST~<MnWm3R?uiRe0Ww)Wn{xMCI&`|sk&zY-*v70ZqYTXWlWAJJ zcfg3gbqu|0z*Qe1*Z_mTs>>JGktgDiEalh5dXKp3u$hSsRx9nf*^soq5%6?pkFiR6 zaX;L^K&z9G6t-fdfIx2TXJ3_zv#~}tFz9gf_J4JK+c~MwVSqQJ^}0$GOx(=Cp{c*G z{U~ekTxUP%8sX_Xzb?rU6oten!<q-3UVR*nai%rpa~0UsQM0}jD$^-psG=r_K}_)q zUYHo@{8n2aa`t6d6KS?ooq8UQCsLxltL8rze{{BOteM!XaA}y-=Vdh6>UllYmRFiG z=Ee+(U{8^3QQKO*5w(s+`v6M~=Mhj;yzvL%SAvbXP^gYWWe$M86kWz%wDLU5vQE6^ z<P^MJ02Mi)SWReael3m2zwWcop(XTLycRDV_cKM+6zZQ)xK%-R$AyqV1%?8y{Cidz zT{`l7Ybm}|q8O7ojA_101(8gHyu4wRm+z7Msf$d7s<&^Np_hCEMpTYPHnK9>{u?ZX zo;Wge;#gRLdPpvO-6-{J_Q5~r@kITdLz0D?R54HR7rd;=P5LnKLg~$3TbOo)rLr$; z@(xoE;CA7dHM3$c6cwV?%hGK%vfnBJUe0Lq$9z3&^JPjbOEDu26%5HG@?9O97`Ham zn%z5NOQ5I%p<yi`*TJbislXt~TRw48&lM@9_j)WDi|WUwrIPlW^JmM}rn$NY>)n06 ze(xX<j<^Bytbm>-UwP3`&GZxbHKK`{7A*h7u~oo#SWC<CYcyLIwnumRLozac&}?{X z+HK6wRtm?(I+eY#=2ZHwgs0-}&Irkn9x-Py<Jt0qaG8gM2z(_&DHwRWo5(W~gfjgT zk+mB}R4=jPUOV(gqsiiE!*E!YQqf+?-Mx0aNIo~#Ye~QX#5+(N&dHP3<`*kIpZrd* zYGUZNvQEvLn+wtFHI1D@3PliCl5r(Uq6hxIef*Lu2AhOxx4oBy$!kDxp;`NMYV6F} z3>s+V)vS#@h~Z+iyp5WEYIW3)QrX?9Y{sfO_zb2n1ma~3U&_!QMI#j)%Zfz?F{oXO zv~cTPQ8jiDXWWpU>qq(ij_!@?k1$veE>i_3Py7t7%yeaxZfwqG*pKezN=yU3)JS;= zl>fY*$Ta<CRRc+cuEUkhkSvBI>NeV-8rOZD{#aaCkfIC)$s~Et1)t**uboHQer6go z%EGL8qFAq1?8A`$`ZNF3BzqQtCsxG%iEnT|F7_!7$mQhHq!eU#u`$3gde72jc_-#) z(W)d;HxN9eAh6Lb`77alcMl^BkzZR>ai>4FY`~j#D%u7QhCq=)O74ONmM_K3sa6#x z6S7dhV(hF~`qLTl#ArAsT47>J4`jLli3>Xiqn=V(8c?|bh$AjDAO*#_!#?lq*>!!k zCqZPWQL{+Qe^Fh9H;bF9b2M_YtWud%jOCwt5V}7`iLXKmX8r*jA^qaP+4e9Pq;mC3 z)_c0wXfHyfg6vS`UrjZ*rI^ZCHGAUen2BM_{7!H+P?Vnbp&p)h8J=FP*u0pv#3>W1 z`f{1%m*Do|D;K)EV1R*E*^eVIz}I2Y%x4$~;GkK3GPzTzTEDJq9d{Xy#yi1B@y)e` z!h-%D5#ueA*=JIWSX)~IMVQ0nKb2p5ES=0bYza6;H)%%1W52onBb<BA)d{gNX6+K` zRdjDEL0Be!$%j9H^Pr7pz6!)Ro~Pb>xq$-msW$J6Qz%kx7RR?gA++AQ8Z>Nded@_2 zo&zzTA#94@Ob~y@pEXMKR8-hDPkLXdsU9Zez+C9NT5h{J;|mL!Ai~a`vBMd9W&w{O zGoCaA0%!_Wlq)VW46fYR{-eElCTWh>ALkcJ2Q_DY?WBI6DKW9Ic-r>gup%z`8o<4S zO`m$cgW+wp!He)q52oS)tJP7s<Fpnpb~8={SC^h!<?1hXnep;Djg-=y7__e`F+{2a z`I-=I2&>$_r-}IJTMY(ij~<TBTW-r?howJ5hf$ktgGMvVe~FxHIoC`>B5OOe^`<q7 zH@LaB>S$<^-WAQ3=!QdEoHTxY>fX47@=<IlmJTDiJwr&1n5@uytD}{o&MlzWQxqcx z7cNePH5Pv?Mh5|P0N4|lR`hP2b|-JtFcrX^!wdFaLxitw6jdC{YFwss-;lVgYe=)+ z=vWmM%O&jepFwAJij>cPhaRhD^MKw2Q$yX$-bg{zW;ZtzLwR?=sJd{-^CKBcTIoqt z&FWW5RC~-BOgH_JD^ypNa(4%>mp}ctG4b(TRVTCdi|*j$CUC0f?(XwpefFSU9#$9_ z;e>;g<$vX?mBFsboDehr>A$_v#y}D#m=P#%Z}*}|!9ui1&Thik_79jJ7t31xeG2Qp zuz&o5^YX0&C^7~M=jQV%UBIn30yhW94FdmaCKybxB6hjWUE8;>lnD{sbbZ7%tp7O~ z5Gb#j;}TL4qQ7FSLL>zTvhzaWB@EuV*yOK^m@5caGT^aBA+Yje)c&kqPe<7nVTyD+ z>1MOYUb}gM;J>k%Z`p_j2WPhjsW7??_y#nE)WC%w1^*c_!;kbDn$IE!GYm!%&weXI zXJ!Qxo%y<!wTebTmCxRJA+u+A<*RA>r_X=?;YrcpIb)?hHtQz+RD%86q29;qs4VD^ zi^sfbHsQ_<Pu5LF$m}LuxZ>xkp8bzSC8m<_9&~?E-5$3!W~|>t6l1Ovo0=x5#LqY= zTHBdl>3hOT)bFerzwu+0>}gM<WmV-@*-L67@NdQ+&edw&h0=zIoVCVi2{rE)Pn+K6 zxgHeg+R4;WSSWfg9~~Z|TDK&-%Wq(yvcZaAG)^hU^RCn%w5@St=Jhm-Ccy-+-@EYW zwz+u`+(=9ROzdCOy_ykL*qR~L@ggv2aX3HOC_0Q<TC$^g=X`@t1!zt4Om|+{@|EZB z*cUfFKeFD<+f4QB{UEqH^o{E%d7misX%IB3c&zuvfPOnbl;#0>3s`3Sw+tQEO0;xk zpke$6PQYavFhw&d9Q)(rKRSX1xk2%@=f#bjs}a2lG1o)@w#53)iOazwjjKIA@pf7W z{|7?%E1ZViLh`b>Wr~T$c{$xl3tMG;cZzDblK`D>%`{!0kbNp^7CVia-K|=IGDEM= z=5=Yj+R3DudmBh?nP_b9+vr*H^N|3dMuHsf&Br{57<DzY#|g9Cc&fH*plJOq)*Y@~ z1^axW<eL_zkyH32@TS=Hg$I2cw{Hqv{&-x3Wx`$MeW;GeSKenOMC#nB`Y|KQ#3nD~ z0tOQPliK}Ono9if@@olqhBY6;OB5UEUH&zD(Z1?VzE?WZTDj5xR?D_g%l}eCLu#N~ z8PIRstEq-(6q4DRw8O#<#y0qZ6jxP=-z2jCtus=7f6y{(f5{<C;NB14#dncfZrV3r zU}72wf#X{OtF(ViMMX=%gVcL#0rfI$@+r{z?3+O%pgm|4;~p@3GXhvf;cEA3{pF;l zfd+GR*YyihtB!Iugx$ouA#8u$T07g>%3R)~3DQ&0vcm37a_M-4NfrYI{m7vfkf&|g z2<U`StoZ@kLG|cZq!+H<*~U^NIj`JjrVy;k-S793qE7MAvy+LThl{H79dFIYx_L5l zdWrGy`b@a3M+xf9xWTfL20zd@-JJrjBz=3)WOYKWepgO_w*|;R=K9R4j0}Ib8JEm; zS-HPr!v!#yvyHlKYoACFGPg5dDmJK#{k<-4t2aaE`8CoH<4wVh;YAY^+ga8B(tbuR z8d3E$Z-G%^cmg(PrjB@tDmyS8+<xBawtoY4A{E%82rBV>Qd{+~V@E_+iW~0iP0`BJ z?0etc@G{2MUi|x*$mb=1&XlCCeRw)OhC9-br|<aQHst9_gW7!Rv>n$e0B+_QpMbNh zUE1a4rB{ag&MI$Pq+3|N*Er6RCN7#x=$con%Z?mh>cP>Gy?lwFEZ}jnmEVH01MlmY z`I8IsSN!HR<fs7|g6^eY-rm?qZb*MMg|9-L`di`Wm&B>&c@0Z7WISwan}t7<zada@ z9(h+01JvIf-~369e(`wG(OBhwu#CtLVSpD<GZ3i)^w4bB>~wC`lq%`#9NX5Zr`bi3 zxJ53t8QTjyATv_c{5{IH^`#BxJzeV1aLO_#h!zn@<AC<R3XI%sQU0EU*pcdI*q8Y9 zMFCH;^x$<1jmHAUw|xyd*ZbQo3&&dZdUj_amaSe&OZsDGc#jLYg_f`(5+?{1;ukcU z+S6$|qYfn%M8Kwk2s@M|+)D`*Cas7dRKxLluL=3=7KGfKe+t1A>$pj|J67=xv%2`@ zagb3472wLm&l6U-mW4zypy%Go1j^P%iCrj$7SnbJr^7R%320odzy<5UH<jqPf*0IX zVRZ(6HtWON+npD-f^j0kh2&2CRy`Yci=fl)YNm5iep*JnyyExL$%dyj(`&eCZnVE4 z_2=`G$-d)4V09vsL><3iw+4$<Fjf1HV-C{gHaFYz;9{R-7TRJaZmf=5UGIzAaPkCj zjLMuvyLxU8T(}DvGN!Q;ji!aB*kr$;bbeRrBeBaR_=KDRrOo5DiIWC>K{V`{xLo(} zw!;|T552XWM3!`uP{{%s9@w$4gGi=1dWn(kduUh}4PH<}SVFW+=&n-qoSFI?iFFKt zun<%u`s#o!&sm$ANP7WOHc3J>yd)NS70k-8=#Wn4-iAj)Y8uMH$w$iB&P*!R{PIxr z4b?8WZFnuBmOrrQ)i)iYS&8f{I3VpSXy$LwE-BJXhH3CrCc&Wwk7@Jtu$PnjR~)y+ zRzu``!xJl|(k`{l_%6wQ69iA@Uf&jS!m(UJZ^1x!-W?!}!J~XQ10zS3D@H9hrRLHo zF4~%{xy6&m4Je;C^iX)`<m`R6I|KS=LA4kXr1E4V|3@e{p6x=luY<$C-Q2$w6^?JI zX;ERew}S#u3|ul^G9nd8n*#hR#_#DPpUoZvnyroK<+M>I(oP8>7e~vPL+i_rD>Ej! zCPvT@J$3=^3ah#9g342<*+pPeq1?tjEhS)Pfd(qXpY~KfmGz4w#?E>i$h8AP>A&y} zFtdA;nSF!QbjVui`|R94q%|OamX#*P11#n+DAWS0J5Y<ha5||hXVf;h_pU)x{>~sZ zV)~lur+Ll6(ikskSRgN(A}rg)Y1TN;unVWCLxS}O^>?SFf}RP6*?_$}c$yUrjZ~0# zVSK)mAxGu_X%*i{<Jz!e&AD*}=@*s_tK63b)#eow*M|KexmNUNMg8%8Tc>@R)9RWz z)xsY*iNoI$u`6oc!|6R}I)byh@1_5(_Sl|NW_1`dVcFCZ1{)<05w3PTcddUl7n*|6 z3x)4`eq>KV;pFArxb@YOXh@GFsY19}10>s=n{1f01nqAD^F;J+l;|Ba?H}qtk88DW z`NbdAOJ1l>W<Rh&{!_5viK&Nb35LJA#W}>3dkBgO?hDRQ4)<@LD#wFuOqQEAh(>&o z(N@=v?4Pi>9y>NFqrL5=jhbLj`6VVVC|MfMPXQ9r#eF_k7lk{0v2bol>tn9D7Ol6x zLW8hFg)6O4yzUkW5>(GYVdu!!srB|->fH1~fi#J9o)a}CQM0fAN~V`F`iW>NuxLMQ zr@;QYUsK`M`=f*ePL8domfgQTD*}jH;6OR^K)Ra`nxpD>n(418xBVvEN+Q=eh>QQq zVUh-%T~*}Mau{&_C3cF=X)h(uUfV(d6taAO=ngvv9a<4bmp7duA^ZCWmoraGz8C!A z<4PEQubwAKDtbF{`nd1aYJk|Kxu6~KR9SESISqp=Xu?H!2-;794yXX`<aM*bEH*XA zsowUY-vpyRqAyej*_vFoqRUO1hO1h4y#b@%X%ffQaDbY}i-BNhqlVp{8YD9d;22<a z#Sk}I|Fdbj|2d;6_DcL$2`*hG&HJp~CzBCLrkigwRah)|<i%L)@O^VMIykYqm}M}7 zR@3NV^M9A(7XMH+>S++rz$buWuRD1v6t3G+ii@{=xd=}h*=mjmCG=1E5X<q>!$!^B zZ`H@C3~fklig5Vrt3c^mTS2FT{n;4Z+bMgrki}B`2KURBeiw&}g&l&U8%Z4d0b&7` z40_DaH03pQX4_yGFVr~sy*<uy{oQdnweQ2u7DiA<+F~6sAsY;>K#SFPwcfntaT90h zy1n8)3d?q;n&OX%TRU)jXotAt4}L5#Lg+ngFY>6V<pOHmZnpB-F{v_o-wQGvrh|~I zP2)Y6@bf)>k&|9pkWsikEV36morpvEx~Ma6SnHlffEVhYGSNSi9!mMJB9p7?d2*c3 zZ!@!U#ueO9TxTnmzGZx;1p}qP6o9??FN=utu!19UJ3I0m3yZ2^a%{>$>O+lZcBMx+ zRSTXuC|QOzgMy07)<>V^%S_*!ot736C<}6Cqi}JcbPYCBz#BOJ=xRr6WMpp)v2i@Q zV59Hh4#~r!?y{?js$CN^9#cg2p|LbBD$%lL8_vBMzgH0FAi%6dKE?cr+&ANgTMkwd zS1=J`7$qP3EC=&pF(1Htr`iWI%mIv5l|7h*B|@Kz?O=t$6Q?TuZR^$-7q#W6CqL>S zNNwDFF^MHLWoR=+S6@*ZKbB%jmVWZI3D}Z4Ar^kd?ol?NXTU7<DMk?Y8&uMq&JjDm zZ62@ZyorLkn3D7xEh-5AT6e=!u?lOG&%3J!^MX@2@YnI}G&J8R1>!kOqFxDpzWZi= zTYG_RcR1|6PKFDc;)`#3PJ{8D!A^0p=?yn8-{S1(?LK1$NQc;MHzQ(+1x9(tmX{wp z@<mU<o+<sU)5TowU)x4LoZ=&Dht$%p=jf<8Akpw!(@wwsZ81CwY}dZOnhzNqgjf_Y zA2C_ux;+W6aKvo`l&^FBg5XipY4eef-+T>QqnkY?>9+LzTid~}aOBU{R~KEFnj8jA z62Y0bojj?0Hfda`HJ_3-*PNuFAhkDW!VP}!Fy&o4<vw6e!6_fG|MDLR$aTSCp`cy< z#BFQQ8(`QVbP57@^l^ROCvllBd@c|Sii`#x)gSx+xTEZsWHH*DQ(SeuRjVuT1Ug>r z?~^TD$&WOjQ7-wGyd2!e|FusH{m3_;GSnc1Gh}yExprr3y%xKsXES7{8F!m=NH%gR zG~&z{Xr1F6!G$SP#5?wk$r@FW?l1C6v8A=iGch(V9J~@l%BwvS*GdpPEkPjt*>+&# z%^xLkJG!kvi9&G*vspA{E1k%DLyj~a?uGN8l+@Sbz9aELBr3A9j<p;DGA>oViz_jo zr0oq})caU=4!nr7J-unB+tn=Aq5cZ`9gpT~drm7MX+=AOrgmmSzLi7C&W)psi}xTB zaRH7UptVKtVu^{SpQ!1gbhjAXF0k(*ZQvXV9EEF=K?t>Q`rLz1DSOuO_yiNs4a@;5 zZ$OK$%T7ONE-f?T2DP8nj;P7_Mc4xyR=B8;8k@!cB!wV#eL>*$f&U{6K<}sW9L+AE zb_}$mWC(kK$Fd<--2#b!ePb^S;CY-_NH)tY_bcsR9s8A41DPrH1fHy@c~O+21$T!M z=zRWI-HJCW4wd{${%|_tdtDpV;=H>#IZGV4U6-2D$C)#U{U|Rt4~NSm;~{EkQe$KB zdGbx!z#`4w(Y?P-=LO{aqwjFjlG^KsiNEF-_6rgi$bEV*By{0dO!Ck-J{0qnrw8(k z?B65q|J@aCQO;3*+i6&TC+yRlc|DO2u0v%8ts){KA3<Xo-FMd%PVMn!-It`KGr;$> zeoN_@Ig}eP&it>VaOMyK@rTGl#nnZ1k{fV08$`Ff<r(5U0oww4JAMA&FX~ipQ(}AJ z!%7=mKNEMbw>J+Oy1}*Sknc+KHd;m-b5JmNO|4??t8vBE*|^eC>Wn*p?7$PP&P<df zQ$6cmuJAO5jFc4kMQ6dEuc=8gXDrpI-io=<l}2pBF9XV&|04-N86TKVM1KDckk>Bn z6)Pz089Msj&6As3uUeb=B_QnaQqg-J=gyIl0grzoh&ggJH~tTa%{I?km)41OKt`L% z#nZFlw9DYC6Vu!tyVY@XZM?R0dSWVY1z(YY-4cxZbE@ARH0%K@h^(ccmGmZVp|Bgb zw~zY>kKlz+)hG8vVYK*ibZfet1%AgL({(?GM?@}m{BCae?G+Y0w>nZ7YY*O}utL`c zLM*cU96;9qEcDHe-8g#Vp1@7MxSEcbqs~EXW)s4zAxV$D7Cbh9mf*jA{-doU%tbH3 z1Q8V(e?d#pa9K@8_Y=H+KspCe9+bvY@f(>$P}eH_sBCZj&UlRLJ#U{CaSbS!cMnWd z2w(91@}V6yrLZWs7_NZ92mgGw+ZFC^XO8_C%4pD=Tu{K8Ov-k@Cpb41A~b$(gK#VV zi+*_MO72!R&#BFp*~shdb2q$wmJZVHyJzt?Mi%!}Pv5$AFp4*lVCf6NU!a2XH2aY_ zcc03@YFOY+%h7HoU!%Z5F#Mf8fCaxMQerXLMh%D(1ZQt~?pWwKE#S8eg7f#RZ3>CC zEiP&WREKD9qQAY<CW0$|U>)OCS7|^?OMq*-z9b4c|M?kyjLd5+;%e!Dq<A7peQhCz zd@}+S`-)SNjL&~H{m%MxE9U8!{oHyagY*&!<zfuDhfr<sA!8O30!rWAepERkZmvce zmlol~dVTTYu2TU)%iF#;>)(peh%NaG2ig;2$7ty2b?*lCd#aqLtENhWnmwK7*v;~! zXEm%DD=lE(O4gP9rh^1OPQ2g<AL@6`OVwqYxR*Lc5-56#xf8MZTLJ#m_G&Xo?e`i1 z#ow)ryTR@Z->rJQX(r1dN@3ag7crlp$q{X~VRY)8{{8FeMazEo7f+-aIMU9K7WxBD zb4uU7Zr3WHhG{2!^|%g^3*l}wX}5r76R&kf^Dx&d{28)SX%vS}>A--9m`w!uc%Dw_ zFy?6#5|91pteUsHD@j}Lk<HOMl^Q5hV|iB5txpYM$`gE7nOdta{Lf*NU<3#2z=#x& z#YSen4i4+D%<9fPOXqU6HQ>M65;?v$@VRXSLEKi?ldr<$H6W&*<~;f0eLHHTkc(ca z!h~CL1$~3C*&*`It4-R&0JGYAUx!@i?*2-6eG-BU{fAx&P$#|8q1_Sknx;M|ebZg1 zy=?a6o9lgCgrmW_ZMSjzxh>{}(uqIrDe&Pn(N2>eHXrN8ZWR}~{4Ek>Mi=8m#m7zv z4QlVi2*6h{{5?Qh8-;CvA(?tPnCY>Z+l=xRfM3UcW4mZ1^RprQdOa!G67YVjcut?a zi_zsf1egXHmz2PY&4004rT3{&OKJbij<)+5TVT<<&h*o$M64+CXnhwZh!0cA3>7c2 zzS7ElP4xmFFT}*P|2}^5LplWtK4V_=_wHO;;`1=&zdwt0TwCH0d}l&RahT%rH7*+} zXfckh>3EfNIzK2xoQ<yrLqE0NrtVS9-Ckv0#ideSqsni``tvq6GZj4>BeP%i2(K$_ zeSEy>h<cprvG;Si9_yKAPjB({lw595Oc!448Xi_)Ukm*LOPGzVoM)-}TjSEu#8_L| zK%wP|*HSSqHMV9F<F*cSNyU-bw-34HPA^XXE@$bu`WfGmBKZA>^_iTRZo7}N1C}S< zBm|x-GVvXD)T<YD%XVC?S>!~{bK`O0pQ?`bGeVy@utl+}!}{PDF##~r(i@{b^tjwH zAj4z%#DD(>f3!5<+`x0S{=r*3AO}rA=Y>uSBX|iEt7G;N(z^-D3S6h#H=Wx*=BhJO zNtRR5`l|$%Q^+6%n2TYUYCxDjl55JgxX1Sv)VNg0{FFM-3&p~#b*j?jAWYfxBnrEa zccY^4I7TtUS($LC6M8E?*Kn#2OBSAdb7t}!l?o3D3sNbi4HHKvlxUteSGxb}cgrG} z>33M)`Y+QQqsxq+&-5H`OF}kJWYC<)@1#OWf5!3DD_=y!%lT?<y9E3d($~1~Oe3gi zG$e%tS&St*lyyntjwUPS^eIsT;4S=4wyw4%0IE(AaHbvK53YU}PDUhq^dSk#j`jQ3 z8vi&id+z&?O|Q+2EwA~&RMzDoba5&g$`1=xZl`;pC2cgS>`6!OAiL{Y^LJ+zr9a_9 zUTZsgy$KWOe1SA7W1poTSIjBic{rT%g~+k#J1yjD1Zn=JsIiUgRmc3U=2WPAyjk`z zlHYQF3u!}r+HP4|YG<7Di@Vd4?LA7Pu=;c^EyZ$)(6w%j5il4HKvijS@eS)OO|Orf z_B}GDR}XA3BDNQlAm)dkE(nPYjWMaSR|avGNb5bWPyM!z+_ACV{P)Ct^&lYfqLChv z7VO5NYP{j!_jbFt@Z6n2$dgFhM<p^G#pfZjv|wkUp5T?PDo?#XA8THi8#Ei!fz*uc zPc75>lH$g2xb=CNu@MMfh0AE!nQslnPj(3pT_U84LzarNoTnQJZB^NMZ$*e3+O0@A zPdiXnN^6%(Uo=W2M@TQEvy|@bE-mqUSd1s0>o+48!KvslpEo`!>i81D2at_{?<gL( z%ManbUy89}dsXzFnk;t9sftd%|C1~tN>5LpyOV=&scl(I0(7v8xrm~l>5A<ezczX^ z6fiK&Z&3muoQ2;Fny=CguFG1_SROf-C+GJs@`{mVNQO0WC+Qh~1{hCcHsTC5QK|m7 zREGz@m{kANT+0nT7y`k0_4Bp>lp(v`X2-MbQEw4oR=x51JUw?^a>U^olu81oIA9(K zwAW0;;~p{bo4?>d{c^Cs56(Gl&B@3lYLO-Bb)vL8z<UXvqyJ(HX8f%g>#|$G?gAKr zo7>wY1d9e5bX^XPXBmtg!xbpOpeuM9J{T$2@#4Kx&$}`BFK|WT`E<5_`SJQHwKcp~ zUV@WlG}$pqz)jG;%t+XLj7-zCbm;KxK_&xt_>cgpj_q4#8uVF7{I5H<<FE1YZj4N* zX=H0H&V;4J5nPwMxTE_F9KuzqmeY35Y)`%EjWc*_%yXYpA)DNFZ%jYtKQ0e|r$bu5 zv-$<mLOjtYBTF*flwYFOQ7QGwL%fX#L*@amTuqH7pi`F@e2tNpQcBs%K=beF&arzz z@O<CaMlU&%g;tf{bd%Lw=P`#7KT&QE;K!g2*@uLQ3Gyd>#GND@`_!l9_+>+zJ@<mv z_u`V2NotI|;0H@@Zq|edL`f5BpwUeF$fcXhAmhK#rxL>t=$Z;iGEkdsYl|*)iz@x# zsRtq>?D)RmDYJ;bSYF+WtZ^z9LUdLbZfo(DmTC%u<S~mo8m1@1IDY4T;%~&TsT`S! zX;h4&|BEtV(Q<_F29U;qp*8y^zf@mzX^BOAw|=D8%i!JH4Nk1o#kPd6A;1s8mr76b zhgI5l(9}UzR(k{bq=N=O*ogP(gieuF$drU(*nq*NX%!YOR>6H_zU(et>(Q+dX+!TZ zAA|POdD1mh-xK5_D?>f1#Yvp+X%C0BmrYmPct+URk@30a0m{J$!#8>+WX%Z4dk-ox z!k1e-Do+u<irG*0kk)n)Ay?46O*rLwzfINL+-yo-HJLM(K5W3ST&1Seg_QcozV%Ah zoIskCU<9z)SeGqIou-RZ2Zm%Z^Su;yKk44#aWB<-DkYW2$XINEZq~?I$B$6Kc^jC_ zTPf_+J>c%L^||pgpWV(f!s~aobY<6f9e$a3vXnrg7q*hRpLynhdX~oc5BNGpiF+a& z(x@VoaV_^__v9xtnOV3BJwA4SGOji!)gPN@Cw%^%IoI-&Ld#6Ma=FSR!c5!_3PaOl z(zH>gr&-Io2#qQY7l_1BhtdJLKDdR?+DxS+#)?ZFydhDY;towl(SU_$+*y&{4DOpM z1VrLvRp6_;B3KYS=PV2C&A|x1r(djK60JX22vhW#ifa&?Z|2I4EzL^Uk_LuLcfbFM z-~w03lT|q$G;!q;4WDH&;c~>VM0rZ5s>9@cRP^Y(J<dVO5&i?Nq_UzR*Kce|$ZCfQ z@)LJJLkgN}fr@|XL+av;DRo>QAf5nTd=FB4V9}*;A-ShXru`hhR0u(Cj_d$#y<lUk z-{S4*<lSK<m}$-JT%om4ZuA?3i7pNo_dGKuim_x&Oyp!OQDR?^;4x+4$F82u@-T{s zc=}w;ow;b|MEcYuhrAOE2e7=bgW)oeqk5k<rV}I6RMMcENP2A|>@&UA&im6<rbz<i zf=Pjp4PAUCR%CjKI7MX-lePH6Q)T}JQE0}Nsf5y(au@Tn;h=C5-z$`p!Hb^ErPC87 zm*-edpRU`b6Jg2hMSTOj8;Ty2B8A_*E*60{>d#PeHo)9>Y54G_JV)UR&X!yMSb|1a ze1rFLEx5e#zF6W}%Q;+J>&K5l!gp2Gc{Fln1w{aYOxSUxA2x0B<|8lrj93YDn^~`O zitX!xDy$Pxi@&B9J@YYuR$kLEa_dyLN9N}!n=qxze&o_Gt)$81_?)q&s-eP0%gB<$ zMn}T}k+DTE(r|?9Apy4<a|@fI>1mf9!??w^Wh)W2Wj)nTPArxL47~pmM|RjjlSNh{ zneJ}us)g%zq8|?4Lzz(}Hioya`CD6W$2pJ<iO>YyL(TX_O?gKxxPUom;=c;kt>ITA zrvNIdw4JZHAmEiPMgXml_g1?5lJD&S$S|~Ct%iek>fspr!=GlgjzJ+wL|ea<8y(3g zGrcz^MTJ~f>1MFb+zuCNMhD(BmJH0{7&GKCC}j#e1BpOOz|x4{;YN0LcAcbNF~6!c zSZ8#nAjO@uUWDnjzPl^YY~d9W8vHZllTOa(?syw4$RwVS$1p(Y=Y0ko$qRLk_X8Y$ zpv)Be{E6j3CGK0ya<P=_sg$^*`&&PKicC7yXpCO?P&pV^&6ZhNgocnR@J^#mlk?Ox zOky!jc;;2cN=#h(h!%X#NE$GS)csqW=C}1tbIHqnB+AF}Xsbmm4M{v33#N~@mJLo3 z(3}?^eJ*Vko=`LCk}%WrCYh7~4_g78OMkYPO&f}viBh}B7fSTyhnoZyl{{Y@4*_gy zEN6Na!MArer5z1ESfOt-hfIWj?b;Meyy%+EW>bH+6-u`3^>T$3<CB7PI|~dRU>^WZ zIr144{EdH^m~g`2-C?2dL^=8><=4dA!J%1Jp}n!(1Q3-CH?oT#4wUqc@<=DM3d4WY zXRmU(H<(gSIp+mRXG=ad%-jDN)gRh(svjH-l4w6|s_T|dUA#?uYkmjJt)3qX)j@Hh z_L%<CJDBSO75ww@xn??^_L@U!e7qO6B|qxF5__M$`^)8{{r$V0%!eJ2`4!3>`BcL< z=37Tm2fo_m_D#nZ^Y#W!9>@8<yZPWJ{A|$D$WnI~qq@`G=i#pF@eHwi;q$m7jpKU~ zin2G2!%R>ZRC81s2!-VjOw#rYH(hMrwq8#zdw>g(?<P-X_IB1hKH{i3zZlz0H=5UN z<#sd*j4LKZ2frA6HrZOc<-2g(gaqp-dp!y0yQ+R1?%T8X_BdXC{N{IhJ<@y!>~e1v zBdEBggU=>0>a#HZR@r-B&e;1Av1bN-3C-^BRnU~nHh_sQojOr;F}+#Cu>chb+DZ^* z(l26>_{Cueoo6|O8W^7E+}beHwz-w7qsQUxdS|7_lvcwgp%}GLR>WO|g)VJnxJJv# zU%Ub8cx$P)UN^H6@DxB7(ue#}`+p{8%MBAK{(QoAB<qXwN}__1TPqutn?k+OnY7F! zSG5ovZfv15K4MTHc@dLlU+YLAQ+_5U^=yuP^3!4%MgC*y_zn{3%%OMb`Zt)U$#dh& zYH;G{(2fp$ZNOT|H3j2?gi7(!%LYtRD)J5tW%JDjg@})G)%Lj%dN#1aT5Xz)^%L*- zXj5huu^|uuEW}W>CMpP2kY@q=)2~l}nNls}bY6qhIh`a2P7$F5SnRPNm`bEnV;<(F zTikBWc0en|<NnBl&DdpY^HzFeqhc!G{ou&mAgGVHKYCbfz1`Jpy-6tZ-pKw&Vbw~| zh*nUfwfFE}pm@6F0`cAWf#ji+au#8V;{TS{q%qN*7+=F|bJ+M{e1yVx|L>x~eY58B z=RIK2I0FU;ve4Kg;KlvXsSpKS0I!>y-;@uA0}Y3w*Vo^?-km^m%Kcvx)b1rSR>;xK zjqfy{b$-vku)RUp`&|v$`xU7(`+#{V9nJgovN3ikM)b8i>*f1@wXGNsgdqM_5lOra zLQYJ&-8lv2eS(=#%&#%ip_U-}Jq%S9j}_eh;296j;C`4cv*t-y0rNAa0J}7yhpESt z5z*rT@DJH!==yrz)@x#i@9|gC@QcFBa?|K=!-L)w8EI;2ni6c|c7>Z2v*jLDmmsUf z$fx068R{Vgf+Y23{EfLoof{6l<~%DFOUy`w2L<!pih>_U<Fex+bZ#T4m~WD}g1av7 zYs%gvROV4d^5wQ16<JXy4UsYsg$Z%QP@@~_#dc4M?!}!7`;NUP9K~M|4=qR@!LtMj z{ivk5PX|SNVe6{fQ;ncX!`&o#Kl7sTvO!lq2Q3QgU6*l8%GMYXv}iK)uQden9cMb# zhmxr%_Q>bR3)ro$I~hfe^B>PLKWMnvtdWr{8+u29soq_Y-+38m5x*Zkx*G;(YjO^| z+v|j;cJO6=I6Qi=vp4TCxVg@p13y;FcohsW@<wWMQiv6re~1flnBQiU-_E~>Y#h<M zm6F<}ju**zOx9r@LX?7T`z7G#Io%x~dP$&k=CTfxO~?WfPa5nJY&>puSaK!&!e#w& zK}m?Oy72M|n8I8guerXOq&V?gU+<yxJt&I&4LFA^RnyH<3BF;<UWa;iF^rHPi@PoO zBMvo0`DtXaYz}AVD}fPCfbLkcwV~D?$Ag>e%iDwHFZ1Qa!3&PIjWUhm0zRj1zgSWz z(P?6NI-z6b>Wu;m6yr0a9)jv>!wVVFDZ+W6&Iq$ZM-t|<%pa)N%~RC?FTp2bgD@V( zhs4K>Z0Xl_PFIiT$Y`h5{l@1n7alpSJP-9RVYb?HYaITJlohivG4->zYPKmP&?uxn zF@jHw;P?cr*RXg}A_k0A+)Zy6z1B)54`9gxNdsLdR7jGZyBCTyGznAF7HT?);Cytq zEiDQ{h~L1w)EEAtqxv`^+@6yReRO*IQoi*}eroQ&%J#_1rS8uji$n0;|5geGyCZ%Z zJvX1<$!60P<WAUV@|!@3ny3{V%qQtOZ+HwI_PZ6ombE@KgDBVRtI3+%vv{{}aY2&u zYU5?zd#OJ9uS73TervBi&mq!6`HU9YkV;QYqnvy?n0dGGx25#Ez26@BhSRM6hQ<@^ zgX1VMQuXC~oJX_a12u%Ikz`k~xVP5K6e!*NRebE!JsPpy>xrtM*$-FI7oVmi@%?u* zL_mq6S7f|6R`tu4gb@a_z8|CGw*Xs2&ey424)~?RZ4C;$HsP<}(~D*zzacO9qOH-~ z*RE~k2~R9a4P9e~i~l7HMSZ3Eb0K%#$~|!oQ@5|tkYw-;expNqcq<*X{Q7`pFbS9O zvV)WEXT;wpnbzUj96DoAZkAIHybbOQmN(Pv$1cve%Rey7Wo{%&IfsRFbJ2tMK%f1t z0af7=ndYR2^?2!TTGMOg$s^y(#=$%AVlxe*71FV)>sIp}NMy^r9yBintC`i#(Cbo5 z(Oqshc&crHXQgUHq|#B6l9R=ALhgm?i_2~2M^yQS(6zY>L5j?e!H-u1nRxBMos<|~ z%Vr0akxikL-TdHve`_D#@sCl|r)?HDDJ+LVUW{c9VLbYm;x)?a&F0Lj^_EJ?riYtL zy;M!t_oX?VBB%YeECd7&9c&c?Cq4%1;U8V9vsjWZgz>BB95v=W%d}O^(9I93cvX_< zGwCb&E+)e{L@op$xki(x$VZ;(G&tgfgb&3BCm2BSb@t^pK2nFank8Ze^GSc4SVZha z^IiCBk>aVqNTwH{KUaB_;hvIwrjG<sN|L8?^YKB2=h+j)@(^W>U?eT8+#%x~LXNge zX59FnBb<t{bVcDacrakUq<{Nntln7r@J1m#+J+R5>{A+@jay^lr7vufEG9J-^6tay zQ5swoJ<amxt$M*c-nAvJET;7iU%hQ?_Q!JN!P46V6jx#JXPMeof?|&^Tb^K_YUw7a z@qNZ>g{}|Op=%Cqe)KpTHAD2EnNA(x!g%@IbYWvZzO9^iN!c&FaWFjk&XcbMPDyr| zyQ)mqNm_R|Eq-9lqrd0%jnAFqV5@Q45k}-_mZ*IiPX(zp)B1f_(k%GI>-($Qw@=|k z<1dr8Cx3(v1Sf<q`wa<yN1m~|YOzl?mLKR(Z6&0jf)I=t{nR&ti9aJ-i}~Aj85baj z+U)%4YN{_v$LcF5Ws&0qdty0vWPNa#4ed$)Ib;%R$}V%$m^fCNYsmFF%^szmxO}Qc z0=0I}FA3vYeCiS%zoJGEl{HMuik=LOiaG$zFffG-*UBLX<`DvKV3T;mbaX#R@;D)S ztJ!)-z6^@FuE~d5W?}veCvEHp>tPB0ubV~4=|A?xT|BXG)kU83ZK;(&YMuf%!~Cb` ziZJye(`hrA0fazqLMY>05GDyk2;>I=p<dN!5-gEj4z6VbNgRUr<HEBpY%bc4$Mrde zAYkteXwt8@ZhVtozfDJyb3^d(+CDu0QLss5^!_3Y>*bsvp-!{Mv9WP+>8OvkoZx@v z56&~n*{UVhLM#o~*3sY~l#o0e{AZVaN)xD@I2Bhcb=;c~DUPex;_c}A;WY3bKGn=G zD)KSq2UKw&vc%Si6mFH5$mtR^ZOk~SE$J^#P5rg^VJhA(Q}#ZSr?^TILbM*h-gNGx zgMBSBS5Md&h&h28N5q!}!X%-%IwU<9Ul9FrhMTX8e<<k3JN7%R@d*rn#-A=WxHhXR zLtpte6)BHoC=O5K$}41l#)df3VZ&t#Y=h<)w+Cw_^r~sqZSd_*qBB8}#gY%5WQv*| zojF8r86RzqrXnFMbaD2fCagtYdM6rl5}{kmFT&tfX+{gUGXupKo=Z#PLJuWtPYwyQ zwcTw?Y{9!G)cWo#=av`@`CB_ONlwn7w2&catbhQskZ0GheXK!z+PU+`@>n{}Opw#? zJ{y$=;CIDWH?ILBh`+yVg0$TtdO4_&*$HDPlUZ#^3W|4;dL(hRWch_BQ5j3#olZWD zLi*~JqEM~X_n&I2o1aWfP*>RY8eL?^o0wVKIjcI575Xu1%7@i$2~|9K{B@Nonae%P zpBlQH4gXQD(mjQ^BelK%5PdSF)|0+Yh=3N$9pWeb9$J%`>dE$CDfoujTY!$MgvZU~ zl4w`{CA<vk`S{DXTt>r|8pd0z<X8OfsZsdAV+|k8JZ}FSRmnnVCkB6aWU{hKY4D*E z5=uvO#NRIi+%1*TG$lJ&hz@8^0{+JL0-iU;3Mgqdu0sV^JOUxl(CIv3<2fcnY-|lW zFRAHqvy5j7ihfCe`9D=oafNmG>Dv#ex-nnW6Nu;PT<jOF3Pmpm0H&eCdH-*v#YY+a zM_PpGWX1Y5>KCd4bZY$TLKvd47vQi7)kC?%qa)WPZ;qvpeMGgZCPpVG5gj|mM{>J9 zX_a(!s~FebzVy6BSB|8?>|e31=F+!3S<;5`4%f%-Q%AOt-m3gL`xioFD76UNJ2~2_ zLX%fi<4wPx!$F1-spN-ObdZh=;Pw`pvM|QWwhMHp)$gdOYVd#<S+7@0?)g2P33EW1 zak3&CW~7PmcQ?(F=5W}gF`qOP9PV^z#&3cqUf5IXjOsDqB_6XRrO2qKXvHT_A{XnC zKpJ9WE^}}#hBTuR0(-S!s+Kk*axO2pI`OM?j9%lR84HgTrOac;q0_fI-AWlPb`w+L z9N0pq1Ws4#{(U3ji>X&&q(~X2k$6u!(<Wuh(+&NaIw&_6qt+;e#na=3Rb1Q(+rQm+ zighE32vJATMNo(0vIx;mq)AS=1TOH$Jkw$e(dUqIB~aLuf1F$<>fnE9Uk+!dSAj90 z<6>O+>;`c>rax{?%v?R*<okwgQGRm|F1s%hz3+j%^uF#fSh}nggY4_;Cd8T)2D^K| z031)1HeQSs;zb_;Uw5(#1>(8v`<l?6f*=X%q=8VGdcE&eq=+AAWGecE1?k7BK#MH; zBROM_^5M7NTVdgJZ!>@b_#JaRbR`VhjBjHc$e3wa$!!(W@syf#B5w&%2meU4UGzC< zy<7IX>^~pXvBE5utI)ce_d8H(oO93l8<v}^`X&701G|E?i4AD{sQPASv!Ep>SZM$I zadWvvJcs7xw@1+m_chAfGhg#q>x~_Pd?yAP8Wgd~8XN1aMzqVeK2_CtDLd<RNi-Um zeCayz^w~ke<NJ6qDr?)mTBG$i3J8@2wYkuD;aQ{&q8XBCjD^~AdFLYbg#{m$_Kl0F z!iwY7wj1Iy=$KP#B7Jjh;`~`iFsg}m`p*@H*zCFC8nP$PWBj1HQGxH>B-C0O4!uGR zvA#~e*4uS2qyO!oN-PBv5Gj;X-@NbeyRN<TzUkW0t$k6Z36p$RZXGgn>X3v)wk1@N zP>IZ@6I-|8`A^#*-+{Ag%Ttb(ir&u0)j^T0Zf{U)sQJ>OV4|3Lh;6SyOcVOy<*2My zQPftv2E&qM>A%Z|QPCS|1K;Zn(2?Fb0t6_7=9BsX6f&_kQZM7Dmgok?t=0Bi-&I_k z<Yzo|m;)^C55;8!E=l;cRytfeTGQBl^EvPC&98GrNPN6Nim=Ns>`{E;0y_T?-_4-= z%+D@ce}XBJUQ0epzqV<zpVD~<BpwW9MFsS6uhcMVk$X!KJh0}S@CIvtO#GHihUIVL zS|{vZ1)ol}Im|<_k-!ue8biR?r*LNx*H|$X+`n!St{XkNl+hdFel>SDmX?DRJGY*# ztPatjC;C0)5*p^sr8Bb9(vkjWpJA{XO*tlo&QZ}tDLnQiLV2tBMMy{iF^3W|)%587 zn89P~!Sz`<guUhRS0|!F@2J>{<UVzpwU_C#`(%fUUBF3C?PpiMQaHc8rDcQL%uL2i z@zfW)UKQFkIbICe<`}iZ@SHSl&lG21Jpy-Tg9eu!aC<pS`A-hq<!boXUQd3^Lj%3u zESnB;L^fAxZZWX#vhnp(emm-9<lc?7W_i^~@gTJiAtR4&e_rSlwK>RSLFpC#yZ21d zMxR|SyQS4dw_l0)oqjKxuWxB3&AjO}nEo=Xg+)zjzKW{T72>&!8&jeYJMxsPNQNze zz-)M3!==J`HcDT>Yh=x75~G;MiriQ=h@c_7(5$t|!DU7qmFl%7#o4JwPS=6LSjadu zmRIr>GB<NhOsK=TT;zpe(5+uL-mkyb>3Xge{}gLkEhG)~`&VTf=7k=^{dPv~QXlKK z)HoW<MUFG?S1Ir9A7opKNW_|JE4}3QM8Ex9Kja=bLd;&)eXgHY5zg!$zY=h4f0LiJ z(Bqz4{BH9l1*S!xBmUjhkIm0C90h-z6>sg0QGgYBfDwh{v5((wA%xN%$X3|2ZFHlF zG(MU!eLya?)O%Sn)n98D1$X{{!iOUzWs;r1j#zw~p>|K53;Toi(0~a&6N^z84wP6O z6Y0z(6RqRY2%})(J9Ee2g3Paq@b!!7(qmw<Y^-M%$9TB{sDQbfLl_anu!E&C|BDN+ zg2+4w@aF;3zD(%RLt8gBwtIT5M$hJV)6UlZ;;PHD%xhjsrh3uve?#vvuaMcCfL~KO z9zd8)ZSkgE@LvZkhRAgD#A3{3725SO;dCpohbvTk8gIYPov(Ekd`FZ_(a45RGcc)2 zBTxGbzaP4q93Z~h-|Fyk=nrx>k#(fW;Ykp`YsHr@KTM;0t37N3<DZxeQ*-4DP-*wj zV*Qp`sWp)Rb(j}ziWNC{p5S;kWT)OQ*FgwlCiW+zL6t;R$+H-6JJ<|?qme<#r*Z0P zQzkIq($g~-m1_N^l0o`v7#%RI?k77ul={g|l-{H%AcNh!<&Cvq_va1EmTEc`&ccBv zd)ch@eO4)2`S4Kd_g*TpVk$7?P>f^`-;^>|<-_@g^NP%e*#jk^XDc01OWp?tcS`cE z)2_oOMXN5<z_o=!SK&b)q#VD%Cl#;P`~onayrChS(lOR5LtUNPUwAY_nITc*Ji#yw zp4WlgLB5tJwGW#H%cmXYt!K4<LH;-o<M#L4MUTOOft_uWs>(<aVNztAY3*Fhw3uSg zG!j%;K4s`cYo>LdksS7{c0P;t8k>9V5>7Zc>>Km&(K`M0!JLiK{{WmpW4;G>-r&v@ zQ%xWx<vxfdbDcv*@?hRQxPJY*dnuF23=R%9yWwp`(-TuH2BT1TPJJ>8h1T|I0_9t` z$DETRLDmoU#rK6)%8Qti(tH#kA!XD`*J1fLstlo8ZW$F}0|+S?6bhI%G9r`mx}HL| z1yfh74U#@ID-S6v2`PwG1po_!6kIFo!OT{CzzrsX0hC?YJtZ))s_Og)4_+qs+@Jr; zLr;A|)e^C4xU6LiqVnvmO}cMc76?&_6(Q7eir4bp)Ph3+sA|TfKSBFbXFDJwRZ>-{ z)l_t0K0+WO0ZA<xu}OW^S0_XyP@|$`h)4-Lp7?}&>C$^|vv^A6X%v=43Zrm!*j#Qb zWpbf5Kos%hl4r>(Ih<@8lHqc7e|iuPkr6Pyo}mJDA+ZW>{hY`t%StTyodsEIxL2LR z?JUTt5jiF0zDYXxW428*jvcvGt7p4m!%~KzreKw1b5?>Pu&Si6wc6&SAQ(`1<JKKg zsA@h}?Ca^A^~To7i<pwq5>RA%iyp6ts}sRk0>g-iGKqyHI7c0$sDyTWqC!Mq8tm^# z+Vxh2XlffonrZh`61QI#3sQiD1w<q)9bMf6+jokH6^05c0ql_nSNw@-$D>bedGxV` zKc7q{7@zp&|Mwr9`0lq=#TDgS`n!mA7;OR1?z@qCA}>8|PbkU+F)*Quh**uX+!~U= ziU2fIcB$1zNy>v$Cku#3nT*u{8dhyc3b8Jzxf+D=TRhKeeIb(4i1S-f0;#&H0$Uz= z3_xY_&dpP22%%Aa{+IvijwhaR*T>~+J9>KnbawUqsek@&>*B@6uUz@P|Mu^xgw4LW zHAM2jFZsNPSYjf!*4m&NpZYMfwbrTE##4{krt^1=ku+c>v!J--6(S-c%xsKt&!o95 zQc~`lIv?1&`tMOt2vMn2nwXeyFKybisoAYgX$Hy!HY6Z2qDqKDLd7S}-WnYf2B~gX z-<?camDaUONr{PsYV3&|#Z4}|0;8&|Y7si8E6Z$D6doX!aBFm07%ZxUt$kf_#z?e6 zf`yb7hnZb0D2#=myKmj+{~!Oa(zW4l{gZzrVOe1S0R_fDH3R6r&wcR|f9mIhYW3Iu z%AZl0*Df4Z%0KwEf5pgn+04P0zO+n3%V{reFWLG>AgK{~>2W#-tA>i{FqqRLoe|Yg z<J7Tm4KQbN%rKO45NfC(VUS=(XC)Qqml|K(`l2MI4ninOM5JVTHf-$Kv_*j{9~@z_ zq8><k)~#Q+V^__5EYO6zx@Xqy*j4v|>vrtQ<_mslve|c*0wuPA@B6;h8B+xSQV~#1 z3Gh-2@*1Shq(wy4YPC|SVD>_gw05ON<dl^AV?Nc$T6^ctozc<Jd_LdT*EcdU5?dD1 zgvd+9YEey9l|hz-R0%3VLNYO49=kJT4E6T*8uiN+-^GEgUpJU6d72ubQc`B2Ah^^n zyh7pZ&cl?5z|PH7g7DUKWn!}0k<Sct<whn;q;R<l1_uhW^3JUi8I`hB)P8+s6;;mm zbbsc*{M#Kp1Lt3VL)C`r0U-b)!{j+9&P*nwO4fykFYw8*9y}#gRS{*TT7lMOxr<dX zZc`)jaxop+Fszk;WMquTP^+kf%7~v&w~lLqMsZNC`hI8uC{u=vF@{J(vDT`HxM5Kj zN}sa2uoO*ihU|ReX#fOVdjB1Px||dj-u=<^ol$qOQk17+)4qcn_8x%ZgWvy6iIU;~ zwWBF(gJ$2>nj_9;8$Tl=rAjqE9n54hPLf+|!!V4mGsLMA(^|&)9hXX_I8R(AlX0~c zt+hcA#Os3RrJ7hu%Kej6u|EFz<5ypO^~#ki^Q9C_J&~7+)uNgbkr1&Ev7Wzh?YloZ zdhx<FUu>**DVS@i!Zxk%OL{V<i+D;(jGOXzu3Z^9e}3EJPh^W7EAg$$L?i;het3T5 zjicwUjg=79N0Zo)9qpm|x*HpuvKDY^Kpcluv9$5<qfh^dU(EClOjYIVM<12d3&WDT zn4QC3EawfIyA2hWT{-giV;9J>jFG{sV%<r%E=!Ms%T?c6b@hL9S(A-&22lpc7))2A zEu~3?+uFd%wK&sFrBd-NgFr-uY$oePxp8ywthG}W-_`p_tLm+4*wxj96492&o^VfI ze(#<5f{(xXdyVgU_D}!W4SNoh#%{m*Pya_G^dnWvFq)2t6{qe5$e9JL0su1?a@m9h zFjKDjzVEv~$ndPPJSpu<<4^1?$kWr)?s;QOp-^xZWJkGNj)zKmoSc&KAUF|y^XAQ8 z|Mg$LcI}#bvbVRlzrTNce0*eNBzbY_iM-@gDwTXbj~4cyBGs|UssH2mUOjht*u~&? zb`%B&dZ(vKH%G@=p%jVnO@sYbYYt}0iZm5+N(um1QV#$$2rs<-=H(-AZ+YbL9Zx>9 z0;XhDy?T4{H^2As?eQ`IB@FZwyK<Sasmge{8hhImvzeZbZ1Rn%`n>|Qh}e(Y5Ll^( z`o+Kd4+eMa1Yj6|zVtW#D^mO)fAg<T-M+1A<02)|yJ}*7fqQXzmZ2VIsuL}->b~mo z+one3`-BvA2Az21Rs0|n7w>^W#?+YtRaJ$E6{!(<EfFtcrK*GiAuy0nSdiT{HX%QZ z$uzswDRUD~_BiF@oN9`z`U+s%V~+!vxN-f?jjR1zwvSx93JIh4!T_^tw$w_#sLq7S z5SjUw7I!q^9t#P(H`NLmH@mCa3IR=*D^jx{cNFr*n7Yt8)P{%0Ci!Ga8#7B8t&y}K zcXV{ry_$5BOd6L{Qc~`N3l}c@>aYH4xm+fqfq{Xa`I(>DxpQay(!csw|0)Oq09{>O z9UUv;J-3!P`k#K2J#YJ=M+SE9HeMF4#?h>e61y{TQgP3$SSCN$hMTv?{>@jvIW{>( zL|vU7Kl$<}5ANCSE*QQw`oI0gHzy{i-JcuR4a^t@(qeik4@RA0P*>@ssV%$rro_ct z03x<Qc<J4@FCRU!{n5u2q|^-vk(o>5Wk4383A>pm?yD?;YwtL7_0F$-=V%xRh&K-u z{@7;@ZR{_)zCC_v<k!Cap$i#Y*O#w}nwkD@c1O1xLAi9{owqjaJJ`8CDp5;B&M`bW zpyH7)iQn;_nA4scKdGuj26cygBvoH3fiUyw*Zy#H)264t{6}E;_PH~sfACt>x6>oH zR0V+NVozp1e<t)K@o_U_Df(VzEa$P}svE4S5&1r8bP03=GPE|Z;<Tl#=du*cy4Wg+ z)urf4{g2iHaX7rH`k@VN0DvKdTsC94u8g=OZHd%E`bG)>SJb=M+rR6HXV&fB*RyGp zl*`}!m;bahI!qLqfp$Fo{GQLe*wNX2;(LF1^3`tv7~J(xp}P-?%SYbb_3Wqq$lv>w zfB%>M%;=>Hh|>SNu@O5RN2{%>UCbe8wxd9R%j2X(9Gjg<C>=aYgsYXRs=n{XsR;_X zY%=K8;a+u-2h7W>ZKSjmNinXf<#IV58-+q4S?LQkqqBR}S&&=Al_Mo(HFD|FrPxfo zb?eq&{^eiJWM<Cbw{G1UpV_3jES7_Ot~hex%!ijRnOttez5|;NJxt1&wNaADkVMh4 zsKm6?2_<LS7iQxBMn<Rp`M>|2N;Lq`-`(+l`T3vj>d43M+A!E3zpJmeGn-3~^ir0L zSr%kfB>YYy6`dAZ{gc%}=X%vfTaUYJ76ovdO|3ncV}G#N4X4{~XwA451Q*|VTbQtI z$3WM!nL;N3fR%*Q9pNw#0^TAtoLFIIOA=ci&t4n*x8M3u1R!~6YyU6&*kJ<$h@0c< z`#R!|+C0#kYTe6?m(5>#|D8+kzTGh}uzvr+P5bs`irr4sH`qWKWQ~&6cB%KooC9Wd zp3nN<y6Q{WDpW<}(re%Ce(5FWhkWME*H69jZ9lZ}4$foJ$OU<3a=8RYaR}+mT|iR( zd`?m$@_o|iiEN=zE``x~J2MwEBsDEcYi{aJmn9+#cqWarXn&H+e>I2_=n#?Tc{E$( z5>dR>AtEn5V`wpYwrzj$Fa3?Jk37bnaZ_4V{c7dg|HD6mvXH#^m;Z~${>WF{OWU4& z=G>dFSF6=c4?hL~B*m`YANyN>_vjz|&gi8J0vKh5kVZL{*qNV5NMWIOw;(G6c<9;B z0K(uc2M^P1Vd7*|YMgp-h{#o4s8*})nT%o2^XlTE>MVn*ns)peL{-BuboML&*=*MH zyauflu`cV*k{b^sQc_YDLl}m?@f*M4W?Xl7_b>k9FD5O>0EUN$<AZ#c%OYJCmzHd2 z(GrZpR;$;J9=Ue(h*#{;ZQH~C0WY6ZFhRho3Q~cn8UjQ(Tw0-5S4YIH$f4@jzWI99 z4@r^DW`E&lzSxnlAd_Oc>Q78eIE`!5`o3oOWlDRZvm+O07vNQe(wsVfq5!Y^6pd|O ziYSl~v#h^~53jkVC?ooI5Y;!MW;+%VLM?LInWt4P$iyM`@s|)JnW2$bSj_ar^B-Qh zvSHu8!Gni09UW1&adOS@fY8~y7YNu-#B>TPTm!11{n{HRtyO09cXj?}FCH+UC>O1= zst%7%MQ>LO_T}%}?=|JFM2B;Rb6wrl@$u=Ak&EAd{oD^;@7lD*&*r39a28t^W<ns4 zrRX?;mheYOjPU44l86-6hFS?ND}k8}Wpmha@Q{1U^^ZPqqbuLto$u^YrLKZ!YNI{Z z)d2`Y`!;Q<eF>=wDazB+!Q_ObI>S7qM&$dX(G%G)2ceMl1w=#{!-7P>I{<(cQWK#b za|lh3yw?t{lAa@%@eH9(e^ymnJKe2ihfirCvbh3Ce(-DmT1&xmfBw&TnH&*4^r;uV z^FRJ$hJNDb|H5N`<SRfeAB7DC$_RTlZ3Up<ouB;F&5u5Q<6r($035}8ieSbiKvj*x zl6Z@#$@bV!e`U+Vk8FSDc~u3WZ_BnX{nx*8<;eRV{@!mzpGK}8MS3j16p#%n)%Zv8 zvbp&2%$7iAPPwBXl$14wb6R)Fj@`h><#KfsnTWzLj3ZQHPvmB|JtbvT^2#f(+`4tk zO}!ucu^;Q|>Z-fo`t|FmZ33Mqa;jY|E!kqH5fXA~`bbs7()84+6Ca&9-nDht;LzT# zO`GAl1b$2$vU;l4s9B~TBHr*b^E>aKIDh$?wU*fX<WmO+2YLZ8)NRm|aC3M>h*_Y7 z4gKqy-IpothX717ZpDbLz<_f`p_&>w<317@>|zryltDtu(ch}<q7ds%&$B%!-BSWE zWX5nz3EMP94lx8Ks(HK-8EEt`D3N@I0Kmd1EMVX)+DZZ;1*<>&(T6urofsV2x8ae8 zy+S9E5*a~Alu@-<FkrtfEtm_({MOs2?o3vgRfNCvi9N+!7Jv%Hi3qNYOvO<SoBMlG z3-WR>`*+c7XIFK60?>fP2v1(UN`z~d&S#3<VHg_n)MHY2E+PO~!V)HzpGhW(&>fJd zD!}C+ASDH$)R`d?UVrcqKvSc)CWfy=SuCFU*`M3}+-JemU2rGO0)T`S!ujG){>ncl zqR91F$g)VO`qlsYUz5rdYdW&#AT=T{8CJv(t)<9)G-DXBE^;KkCS+C{I4R7~jFPOr z6eub8NnpiU4FKdaUi>&_mM0^nZpbYJ!9eZsxl_OWxBm+lkJ-0-*TXOW7{K|?u5~+y zdbjL+_UC?KeE8aT|LH$jw{7R9gAbp0{WV*yK)n;+`TCycKLy~@yKletzy8lQ2uNXx z*(qnU_fV0Ca$+RRN8gsM)#>RI-}wV~M&+*V-MobqN+MuV%S<9FBnIhm)%`<6)*=WY zBF=BLkTGFm{<;VLtXwp+(ifzx5u9l_3`5im%8f~@RMlFWG;=h&)hQ{f72o$?d+jwh z*ZTVUo_OMk`Xr>P&WH>^MAE8y%YbA$3c?o3hR8;_BUNG5nu$vn?p(Uy6^nyId;5om zay>l?28E1_rA6iJx({MwnOMB~gZEX5J(JIv=bk?78Z5Q%CB@Z|QBr`3gf?$VjmRkv zN=*dCNhD%p?raxe0#wN*qKgt!%y=9V$Qee-1ve{!z)H>&S=o6hFbK}SxZ&HAFaTvz z1xL;gQcJ-nN({9`1Qo!<7ZDK@&TK8@l5Yrs1<D#i4ah3k*_RnaOe!E!gyF5zAKpBB zVsQ6?4Tm1db{1JZkr0bGy{i-5<)HfZi5mdaV%vt!1KaxIlyUK8w??NCsa|$nZ?4%t zej8HfK2JoQ-93|6uK+N@0Eh+35KP~`uD%~o#e^AnhK*4W00Z(L%%)N2R#kh<@vD9q z_yQsrm~2**vprk4=DT~Ldh_^4?g*v|f<TR$nq$6;0amsyUq7+uCafyduu+2|=kxiX zTuRH@&q-=TUNRUa6raHW3^9Wm)guZeE&=Q@TcpEstze;H7`m9{`Qn#DnfWs{EVLFR z3Xoc1Lso?O(vRMJ_~kFT7l%Ie>BoQakNf5F*Z$Vu7{77#(%WzAZ~gCx5=zLebEp3G zFZ~Q+1yZ2|4=N3wszNe#<Hn_<KdMfYXCl$&;k*CrpUk{*=28K1ZTMtVg}IjbDdpaY zGh|r}MSW(Ys+mm2>RkB;q~0=^tiIUnTS-|7h{*T-_~)(*tB;9;>ycK~OG$YEKKke* zm&igyo_Xe(#v>Ubx_0fFdti)NzkYqQo7{eIrqHRVRd|@Ol(DL)0wg*;dE>+PhmRfU zSiiY{&+h(h+mu3D<x_@x6HU`q<<Y00<86d#Iz3gR&4aBu>pdeB-tfRD_7u_xGho zzbOw$BG!JExihLLSu-&c7(|FdmS;*M#QKBFE}`z<$cU>9f`TZ@6cPCkJ0i!FS#|sX z)LflGB&tjVRU-nmp(;VDs;X85RwYzbSW#7oDgmKbwWI`65m8kUnHm{msE{G4c~g^B zWspFbSXG!LxP9{2$eEA(hW2kfd?@Kxv5-DY;(SX%Lg1rkZ>bfKkTH+#-lBkE4xuD7 z*`;rcOghKxf$m}<n@e*dFF90;s)t77FyGau1V$~Ti4YhJh(xY()>?$2g~uMq^WZT* zn8##eJRdMKT13PTVMw5)uo=#>hFcCCCWV5oe|!vp6_Dr$-}wDgZ@iYvc=^oCN;UNK zr}w?|c@g@?KmLC^|Mw_YA(2r`PK`JF7ie8lBl3e1D;!oOUNe|EQPo#a%QWPY6{sqd zVTe=X!kR&>8e(y=@I0d~#Qw<caeTeUsTSKp#K)ebmW*N5s~;YX%TPS`r~W*EZ~b@w zVEo2aAbAu(5O+MUZZQK~o-Y-OqSKP!!s31Ooj>^a+uu;Siv_tB*#?jcE1UU@nTPa$ zviIL{mR#4FAo!hgBc98b-e;Eg4rO2pBp`YtiV{UniXtV=NZVt&f4kkgv)j|NJG<LG z{oCC!zip${sHeNtGA*?%M9Pq&XhaeK0TKXVs|u!o@|E73XCv-C`^Sxl7x~guR_04n zS??o%h0K@nBCd~fzkAMi!qujZHN$R!iL@4g<N5=OBME#X5womR<=npB1@{lE4ITaJ zI7^#Y))N_#wNOVLb*u?5zx;Bv7d(9U@RHX=auyvO9d=6AiNe|<m2I%W^4cuSWgmD; z1cr`?%#Yrh9~rovNVshsX=g*aAfBt>l}m30Vgf{m4_IL_t%M}h5Fn!4qmv{MCYPPI z_Qv|asH1i;c9>N@AcXpLOT71q$oN{c=a)U>`PwfVWBjrw+Bd%Tby<9EKQz8Jo-f+? zx&&=}-#6Mb2BMADo@foDje%${xY!sGZG0gqYYj-C0{{SI#1OHta25Yb21W(xRYH$r zm_SJ&*z4Ho#=^ovTA4sgR+A_IqRr&nuTQ>nIn|g|tB~o7)CmX-k&9PGg+Rha%;DWF z06Z~DtW-1;nSy7g=8LweyILFS4DyB`CWdYO-V@DP2c(0pBw`~7_DW1jV1zY8iIk1U z(3(7!8in02*j0sNSO{8-Jy&5xiXh<LlgEsJNd{iOU|^$r&FsLf8K#WG$plAV@7#Y# zMEr7b`0^Vf#0XOMk+6`Vx-{YPsFTPwL$op)W0c}(+6f#AS7sfKL_@|Qr%o>1KM*0S zU5nV!bbKeHWuYhX>eA%av1u@Ykg>8JEBTqRnZbdUzCecm#!Jt?`TcL1(1W~k-cI)5 zhz+#09SuBCaMF&L6S0U`{bE^)U#>0;84i@$HKL?^vGs(AL>ttPBG!laR7K3Q7*!4? zL<VHtGypI&QE*0BXDjX#R061DB=X{}x0h9A)vFJZI_g*(Zr;3USKV|vy=&L5#TQIZ zPZtUW`*WmaQJ-!#fz7K$M2Sq6h|HpfU6dJstZgGAl*tsm4cP(3U)Hw<Cm6~y2#5Ff z10X2NX){Ow?aSEsBmfe0bvCQ|z^G&0@QVenRMuX}FMGOF^1YJr%H>kYFPDtxo3iJ5 zW#jqUD{0R+p6~f3?fKd(YtN%K(E@kx(jTL+#cClh+;WhCuyDW~N7Fbw4T^o+s$&2! zBqSoDh)f`$M>aU2v9D*GTrF4b?1^j($Bw`QoLghlmcnjp%5*fPMM%MbU<fP*!05zm z^sSz@>_+uy9SD5biO6Wr&*yce69rbO+w!^*{R#nC2xLTH)(~F3*f5T~F0|G}6gbNV zu9=EmGM?{}%_&9QM@}+fYT#yJX6E$AfA-Q-&!RYLUGkMu2!+T2P{@UnfFM?7#zqnY zFvf8B)~KTjbrN}vh@23sSO)uvEC^t!j6B~2?#e1s5?b#5vB_iCPykC%OQAzzJz#yC z!x-NtIs=)=t|kdp;6<2VnT0?})2WVe4tqJ2o3kG-%<i?-wcN?DFF+D){fPk{eB)w7 zB0u%-e*;DcraGCjWr@j9<y3$d-xgK7uRFc27Qc<FdS6894D$LB&p-`S&)*0l0x@xB zki=$D6&0KuER7mQ^G2>BBu1FHZt`p{q634fvm7j3oFhSG`|HYD7WGxVjyhIAxm=D2 z;+B?{C9jDDkpbAOdUdQHGeZNT?_8c49@=;Q-5q=OCmR;hH&K)^LS`W_QvslH*Zw_^ zy!-a(sL*p8v%XaVxu)mlZQ_|^GMP-d03<xlx0|N1$w{qkDkk)GwJ&kAaN8A}{{a-p z#WKOvcV6p9C3RfPu)Vv3RY8^4O*{_FhT#VnEV^=4x7Wri75rkMoG*H%qF*d{<)SW@ z%cX)>EcvC9UoLv3qAnG^QrVQtYi^2o(HM~B4FFQiuEV6*QS7*2R!Xs>m>qT!%uI@z znU$lI5+-IQc9;R>*i;Rqm@Fs9Or)TgpzOC0q;@A}7AB&QmLs<RnH?Q^^Y6YBl*Fp^ z#ri7>J0Lbq{d;;(KiJUOHT=ULt}-&u4h9m;7K+-~-%U#<AtHd-wS~pbM;e;SM_=q} z%PhPT$BI+=#CmtYN`cg9`H2z|-Ye!>V64VUUis6~Q-qE0k6*nqcJ=buwJXseuWVtA z@WKgOVaXiDNmo3Ly96n=-tLJ^!`_F^?>>FD?ZClIOS|uvzW?k0-@(@}*as$3$<v?x zQuo<+JE`RDS6_Vg-~3AvYCEvsO{M`1zkc!DXTNabBR_rV2hT)xR{`}L^jIwEU*P<+ zV3Wrr))_3^WHoj5*!9XuB;wZr#!}mc4at2GVpu1U*N7!wLlu=nu`))11r=SagF_Qu za_OolV`y!HRoR4-G+6r_MGzKvfhd09y13QNQOBJS^br|LHNd_~!;Z84Zj2!T1-Y22 z1r5TJF_GZ)siXLM)I;Vs7_q#`3?rmS3=O}2@x%vz+IFIwNJ)_O0ybwwxNB0;VQC%r z90K1`geC=9Ut>nNE?d<sz-X;Wj1W^Gm#m2vFu8$)Midz+E0N1<fYp~25fFQ2Pm4(< z>N!R>6^lbm7MwtYSgd!kTpC6Z@qOR(JP~mmhnZd1jqX|ZrmW*W$IMJctT3Ccc0;ps z#0nx?tV|*=H>c`zElLsQ<>zi)xG;M8Qek4s`pOJke63^ee&ssky5e~OeJm`5Fmaez zr3(N~CcXFJN1OH?iZ6_{bb<*~SsjoMaJgJA6w5+jsD^X~6-trq1ptP}W=J5!B&OSv z$T4Rff)Wb24{LJUotOcbOx@<L2?8q1CVvav8l%K?(Pi<i^nxiV5J-^tExKns>2df? ztAbE9osF-{`JA86mkRk}A?Fu!#eBgOiluzcFP2J$T)9{<#S#D_uHus7!YMYT<dPK( zynjSUDJPLoZo)~p<R+Bsvg5jmgi5%|aUCZ?2}ddAxJh;$<s`^atd!%p%5~UvSh-3m zu%ldOnH9-YJC6uJ(GkvqtbQvf<}JJ8iRB#FFBU701PD+zj*^Uk6^s^Y+TGuC@?5st zF1bO(74Ed01}usQz_atEhycl?69GvFWh6=|A;XjN(HDDKv+*i0+ih}8XBh@$BxLt$ z#vn(&CJUamtr2vAXpmYcscjt}7gV8~&s}@r$AgzHpj<X&#E=#4BO)u&X$7o}ZQ<w< z09cfpRE|vza@QoXWso}$9sKA&{(m@5MAwq*CeMB9bAuOOBX(5E`I-OjpJlrH3!VY6 z=gh;ews-im)7=M;*?GGA?D=eG$1}h4?`EgQ0T_bIDjb1EY^KP-GYo-(A;2Ilq1I@) zX|uE5O(qUK_87om>OFZX)znm+owaWe3FJP&hVPSIf1O0G8JI*1S?%z$(V5__#e{(B z^?YHYg$x0%Qdsx~ir-2^v{2C(fEb#YfiM7;Il(67s_4r5-n!k^h>ki{n3<HBeWL^I zAc27}voTWk4G|eJWLPN%RCK5rnzW*c*ch-?Qm#(gfV$_}hJitXAo#^Fu?R>KnRN8B z?LB#B<nkMqGbCYzCj=rwOsIFtJqvqI6HPQ`_I*F$q>asI4F+kW#q&I{G9pZHn3&lZ zBg}{e4QLx9B@4GZA=bT^8zFeUDVNJyYo!zt>$q7RYlRgvu|M06i1)0Blu9N0^WxPz z{;R#RR4OT@lv1TqNko##WGa=i(JJ+&zK;7GksC4q-}mExiYDFA&`@M)M{*X6;rssV z>}-|NJu^2nG$a!Bm6WFjZVkNl%E;Sq*-W!w0dd=&eFx6JOGFc?WJ5!7dOD(yNo-Is zDba=)p!Optc0G8O6Aku+RYFbTT5h%j{YsyNHJf57B&p$v_DEQiCe1|JfQiHy3=NM7 z1w>U(M{8BMr!T$}uCyc-UVubUAu;)mp<{KdgwTQ25};%Q%E_t;!vvx7)_WYVoGej= zE+s=1Un^6ItPgLieN&#BE9YiPxqKm)FXd*v`CKtSUn=BvE>|uV$&Oa*m<VzJEemo! zGK>Km@$3nN5*Wa798M+OM26GJWHPN1u1Y2oiG-6*yNLw53CB&ksU*9ulSnxUSGh@c zRK)5oGWJa9dBzJ|v!&8RfddgtM7)b=f~rvDHo`f6V+sVp?Jq<Kosi-rd^J12fS`|A ztM+G!W%L0Pfh=_j0KyKC>e=0Y_FT5BC(KS3sQMu)#PYBUwRH$B`8wLsdZG;(Wmpgx z<n|B46LYqU6iaJ!2H~cghy)(M5DmDNK8CPWRWJm`+Sy)Wfv`Xa3eM1WBY1UmdUtDM zC7ZGpo8HD0O_0tpav2W#Ag-oq0KW3$XNF&W)%w;Z(oJ0l54P_=bn&}i*M&l`0~QX4 zGz;wUA=qJ+NLYR1^<Zvv;`u-Ly|H)RD$UJ({Qve(vt8W)+V>wwW;1@F^!|VF-!$*u zo12>lrvOvP%@t;56J(U@Savwu*>UMxUw`N6?;9-uY}Zv{xCJ&tAZ+5I(6shp#2A6Y z$|wemvg^Tz|BwH;>(JpuvOxgRhTYWX{^#EqyY}|C{-=Kq#LkxP8JG0+qD~^O74gGr zdyq~JNl62W$Twm%6dMsu$^j@}_R5}Nwr<G8p_&+~j!XdnN-3Aw(<K;k5^hEr10qsI z&v@D|`vhfDl&}U90+R858M5~lI8cjP5T#{&ZH&VVAz~t5OsQ1%v=1;d8xXN!GA2~7 zFj4HYh-OySH4>o?2J_+^Uv+E*Y(hL`93j)vyX)Ow`PJ~y-|Rkl>ZPxNjWR4up|J)a zv`6c>M-iMwD<(f+B0R4ot|B5>IU1w##e9&J7ytzf@)8r1ZCY(w;Xzmvn`~4670V^h z^Ma3z)Ko2_jyuDy#zCGLW&ov9$#va`@YP!9^Z9uC1lM)3%;8_TTrQPLj^ku9L6GMB z{Cu%kjQb<kQOEs^rlux@(`RC0Vu1=Ak%$xug&Q|+*mXFQ$t)*%0pRxS+kgDWe>^=s zZGVmCm+QKR4<9~t>eT7er`-xYaDU<E%g?>@)Kk{s1<;NCdv+f?-F^57rxKBUn{3Dy zr>6lp5JP0uP?cy+D$~-k>(TdSyE*}gXl6%(BiP!*`U?wzg&VU@xU}+2E?@RM7p`XC z?wrIZ?fY-v8Vsx8_jY#JY!e7GT{|ExqzJw-M1d!W7IFYzBoI)pGsx>f<R%;_^TLpD zz;aq&#)!E$AQsVNe<HG{7k2m=!`|Ffadv)gZq}QhEzZvtXXlH#snUE=7p&qzpaf`R z2}Q)}MF4;?U?CzlVhEJXG^DcJkV+<#$xMTrZcyoTGMVIbI+;ql$%LEEIEj>HgoR9y zeao8p0sAWmMYm&09ibO<EQ3O2$r2`!z|%eEnjKN$5f>a#?MA>vq-=wM3<dh+6mQkI z3vgUqYk{>HruwtDjGV#4pw|k=OaQ>vp~fz%EHHq;2PqO{dwRRhJlN9R4GOYP$M{GV zkvmToG91QnHfJ0d0uf*)XNoK^<OwMyfe^t=t~@%O7Xlm8-I{d?h75=MEdz&Ph!e*6 z0E8R{SPT&b20Ef9y1OYXh5#FbC;|}NtHa}e^Zb?J(fPms*@t>svXwsFuKV&R$dWCI zTKNMcIF*SS2km<fjK6casjsj9fivy9_Yyk*GR^IC`9Xv!d<cQqJ(CEFs}hn-P@siu z)?u%5d2Z_Mr+#1qJ>Poz$%j7sB_Ux(=Yb<#2aog}KXvQH7r*uE|BK2rb{;-4^5&a< zIiE;1y!qX4x(#V2HF)X5;KkQGT{&ZRRmB5?1j2z7p@3OIw4W=B_F<GTO7P$+C*uUl zMHjyH*UonnLhL|%h&@lzVxlG`nEPtSUnh~*ir7+U7hZ=%DMcoTSI&8UD&Z2tly%vN zZ$vSRh!#<Rt5!OlVP<XM8xWy^jUh)de67<7<>dirzr;v~Nsz-gRvp_DLJk{~a=GLM zq>@19i)A}Jd{5gWhk#r%!q5qoGNI%}+|(8#1#Ju|60tG$%vA;f)<i<pu`(hB0u}~q zko(jB?f;#Vsn8vOdQYEW04ypv?5wO0s;*moFT;i@B^8$t9aAG$)QO~HAlmb^moo<7 zAmIayW_!{TBp3<rBVxlT@90LlhRG`;C9g=t*-V3{{c^DcMRf*wlVK-#GMOxuN|9zo zE|*ItlK>)NifA=(9H(k9#5K6f<uZU|G8y^Zq*AGTK3^`E?^`mfjymFKZf<rQ$NC`8 z%*?#`=9|ZlACLYzJUsk+zxR8yv$J+ZUBL|*z`lL^{>eZ2C*S<$H-GSh9}v+${D=RL zh-PPJFI~Fy{PWMh{`%{eFJJ!R7r)4NpB-oiKzqJ1CXvi^9y_|{^h25UHjswc{iF3n zgPUo9Rp1H5gPF;w#O?>qbeuRt%4Yr$0*iQnvtgqBF^>&$TU)YIlQ|({jCtY0n~y(y zLK)U<U@$j3`@3KJ&hW^DWs#a18<P!=GAtAY%NtF~fwlr>B&6A}uo7RG6xe{3_yVWS zBd;Byj;!@92H8|xkria3bmR~s0znn?1#f0LH#1Y1ohnRE<!0x~v(v@-X&5FpWF+u5 zjR{Zy0BIXkrqT^gCX>lFx|s$yola+)?GK4e%1vjI=|)lrnOOh}oSH-VG5`iJAdq1& z$gr>x5Qzbp11*k#ffX>s7N)}3R^?~5?$rUMO~fE02<i+(st)1l3yY<D$%G9S^Ix`Z z^0D$S8L=9CNF*?Jw;6HwR7t;6@jedvD&)RdL5wvqiOE%sP0dG-?>=!{iP9i8#zxr! zL53Eq@@IpySJ(v!DQKVAF~&4EWTRDLd@6rqcy@133yc;bh`u&5{ilC-sZ=&Z5JFdT z7Jy}t4FQ0HXksNElp;ecMgT+1Vhj@t8#3!rw6IMvF<bcdPu_n0+PDZok<k?Ptg>Pn z+fyhxazL~p6%wjg*s)aQ`qp*mQ0Kva5SKs^Af0WV!yp+F0vlyWAWE2sUB^v|!w$r^ zktnj3O-)cvF`5Wu3<U6oFTO^f{epl2KKap~?L2yPZgk+ufB&x?$lT;~?ztZd0Oh2$ z@0Ii`fBGjjIZ)A;vL7iFEs*LE0vR5D<KmD1<9{&PGn(g1+8C2ex+#Z5Bv<l1&&!dU zaU8&my#5BrK$9pUqlFcWkaeB6s-(1XzO$W%I*D8h1g@f-a%8>?g0?Zs#bQx}Y{-qn zOahJI>{@F>AhnD+Dk8>+A|f#YSBbB+C}v}f>u}K*C>=)bI23Ao)v-Ncg>rmB(slC1 zlCi3~!i7>L{ep57;AkC)W|w_Gl~~}R7Rq914W$?wLMC{ZFE~=QPpmV@wTA&K*t9AJ z@BZaq={b60;I)@-y!!IHf9cmil+L!a?%q3f>xK{v%!0R6ok6~rL4gV$xvpC-mqmoc zXunwSVL;3fP%@pge*!?Pv=%6)FoZ9P5DcRTje!;Fvw5Z^vb5JTb2F*5Er6#3iOER0 zua3=xWrw5ed0Oj2p%D3`TZ-9UX;<&aZ5c8DN9)**F!NsAlgRh|`Y~Z0bpRlu{rmU7 z{r1}cnE8n(p7_;Y{nh^d{)vf+ix)3`=R4o=JTH3lMkMkI(`RI4goxVO+WPwXM5MR3 z_vq21$z<}Wr=EKG<(EJB!4GzKcW-s2w*dPdc~{%+gXxYY*GY#>=OC7@41`oFZI>u} zgib_md&iNV`k>p?2moNBU=bv7g#5tYRK#r928KlM-_tuW`IhDFzWvmTU9Ii=4|LAY zmR`Sd<GVk2u}~@sfwTrwPe+@A67r*j7Q&<qJiq}oS$>lNkaBFI3x)}$FzQ$bg7gp^ zqp>WE=SgvLBsVpapB&FkPv)m5b2HOi_IzWa6Z)_N2oTb&VMwu)&88ch(hZG?#%v;+ zO=X*t*`{PBoovXmQdR75nDQjL8B@F%m2n<8mWoK|l@4JOWK6g8XhmVxvYEm`u5Do9 z)=XlYED)EVU=EZi5NJfl#5zI>JMOJ)$PkzaMnFMme*BKK#0;xMY*^Jy%VJlU<*<+x zJct&2(OCUg`(d`P@5rN%UmhMwG&hm3CV?@AiG;Kmh5~fdp|}&HN=86|0+{2Vud8uz z)CyMM&!2kZD<3`8*_Iuen7ep=;^|jzY3)T7>1xkLbgiX^1;P-+ij0Ix15n2Dh647L zuqLpqeg2Nk<p0fIzIdd+^)v4|@zp2af;K^_<VyT7bnVjj)fS-wG7t`LgrYG*9H{$N z@-{6H(Iz0(ltt*vuUQxb=AM&h$KHBF#IV38C^3c|GTN-wT(w#gBEmvKYU1Y2QrS-= z5<=)XampC;<Zu3lDS1T1N{m%qHhSJiLxME9Vsx=2zF(1J)&x~ifwm$=X8gvr@f+8O zNQ);%h>>y#0I_5eYOW~S^F;-bC(s0k$%wEbtFs<gV-MmIYO3|WjZr6&YX>rpqHF?% zQlN)wSh27`ryP}VdA_6(+Diqkq0x|ZmpijC#^wuV#Sn3rMH|CJzR?Whh|Mz0L>p&- z)lmafG?78dQIbp)%O!hg6>1}}>$>TrGhYliWf3WPeyMC4Gj2pKuz&<}C11n?;3_BS za-mfAw1LqL=~VFQs$+v7j=%th!Tk?B_{bN2DL*s$xBufmZ|U1bzZ6K7?K%0t^vxSW z_}TyNpSAS%{n7v7@7b@~mx_oGl&m4QKpk5RYrLltNfGfpPr^t;yQN4cU3Q!}Gng+H zh^Vn416bQt0Mc6LizO>Plu4zv7|-*3-&aayGifZ;HCn@Y!xG;yF&nUsO@U>EGnq_2 zpN~XZgTPPbbUIB$(NHnQ%+Jp|j+4!1mrTAFmsbYhI6-u_*4k#|tD}zl93TGhhc92g zY_)@Ox!kY+`md+c=}0TNzrTNAV8H&|*47sP;*wPI@bIwZjuBgsPn<aM^wUoRxPANf z{YfGdsivOpFjZbvcsl@yh|`!wa59QSCZl%mYuddpWRUI00g)r2<BN!jG$Lw<Xj4Q) z??3<GORv2h9ItxbZ~xg}H6&BHQrTYB-_t%YJOL&VX>Cr6Ay6eQL>b2?Pk}TE3rD1Y zXaio5ov)7dz*43FJkQIIPvj>jX2(WyQ<J%=$@1JZL~*!tw*TrdjT<SIYHCU~H8(W1 zBpMr2O-<>h=5%9gB9o3B1LH|<BO)vq!W5SPuBa~9|4{7gwn}I?zHU%Ry#+cI3oEvQ zoIya&E^&de6kfbA;e3f*9`U@^Q%$TmV&x`P-(40JnQwpyRW(Ibm4X{;ViGj<^&Wck zJ*|890idA~E9k)peEo%>h()5wF3~;jXx#?O45<%2xbHuH>w;Z3rsj+P`m4`noJ7I% z0Vv|`w(RiKJVOLddsAx3+XneB$q)34ZQdFpGD_Cxi435rA^Cs)()pyDD3-Lr>p^5N z5C|HOfjH|SsW%R>ezqR&Aj0_7E4j(>-De+W$7bz{za^_jQ7YSP8(83zC^R>BpL;0d zCLqeHV6#A=*k}P1sJzy_h%tsZh`k2P#MQTYk3C?A>*eo#YwGq*07O=MS*-iM_RX}0 zBC9ijNS9hflt2*&vJ(`H2L?fj7!=DeBFTtO5oU&B(nfrv6OMurqliS)(wY@)pgG8z zzI5`N9ftZoq?RBtj-qrjp#@rN2B45|5|$}Wy9!Vm!V<l@mR-R7Xb%}gKpP^ZE8a;0 z5Qo#Cj%^DT#9x|8*KwFU4c};nFgr=twJUYfb;MBs6hYhcpbPzrg{UFv=1QK{8Vd8p zvh_ihMOW5QbMzcLk)Il$8y#!tX#e<s|4&Krcm9|E_x#j&es0z)mEB}QMD{)QzE{5a z*N=Su%SYb(!RP+)ckLH#7H|7=ok6}wVf&9rGO1+QakSPEEtqrzUN4hM#=jEFOcI<^ zE2SFJskvNUL_F=6N~Iv6Y|-Rh1A{CCQ$<2T)tyzh3PjY<&|vi|wAMuAx~@&nB_ff= zvBi?wCR%GOA5&6~X{e(Pi+%g{z3+YRd+MpDqIqN)<c5ZZ&wS=HH*VaBNaSyP;~PKv z(T_gyiBFt3aRN(Cu41t`H8n*<Rl*mALc!iSolb9cb+-&QwtX2=2}G36WC4iCt_RK@ ze$V?}e)U4tHBn@YRCwc!pjQkByq*&1_SUA4fAG=2`QCF;!meDY48T>1pZU<E00xGi zv74+Pz4F$jw{Lyuu?HVLcam6O1Tae63vXQ+92ysq#%$*C^QQ)fCSH5v%G<XFA31&W z{JG;C)S_;IuLXsfnfdXt*|D*?vBBKLL~(lBGR3hVDh6pI%#M?8ZceqdG_<s3T3XUA zZRw_#RJL*1c-|19jxgd(@j}1aJA4-~Sn8ys>J)0>@yf!-EPeOo{=m!qWy#V;suWc> zx$DlT@?TyFCY^0K_o>gf?b}~zjli88#`saTOgrO(N>L>9e5Zm${@$XG_P0NBwC^Wx z4qDF&f|K_Q3pX{opMKx*m);m0nVbhP!TjNOFLt(MKL5TGeI41TJ3!{Si$ha|vN2{? zNAsD3-Is5TzIuIZWNiMEKXtUPt5K0im^1C}!3hN*5uA`kI@ggSh}<(_3PiZ}{4-ad zeFi|Xv9agqi3NRuphJQ>f<Q<&H(Nnu$4%}z|L!rvD%C*72dw10{l1n^nR5+%ee8@U z__9EczVlAc(NlJeUH<;x1z8Qrq+KUxd>w9tSc0@fj^d2Nvn3w@F$`$7;5k4h?N<DC zIEWjy${S8xBbuzhtdxD@Dh7d#eT6OAxkiZ!i0S(y_x1fkB5zLkr?rh71qVRIQ7Amt zW&mL#)jKWK1_X#AyEJP6zV8=(17Sx=(g~)e+#hEh_c#`;BT8AP;RTMvMC8UIES7O9 zwz-NmfU@r~b8|!57*i_Mv+C6nRT}~l?0xj{PyVz25y0p>Z#Q;!rJ9>xdg70+zxW&g z<CjO@y4ZjEK_c4w;Q3Gf5C7A?M;;r#^41G~_`88{SnO8yAoLx8grne8Pf*JeuKdMF z3>VC$QYn>6BpkQo`KSdJ9Y@xWm9_?PFLK9m7W)gYW~g9!nmF=Awz>5-XFZ9JuDU=< z9or2b|M<uI`ucwS;~x(U4EVm^+}!-&gAYFb_~Y4ZwooXXIddj{aYI8O-CO0T2w-@4 z*nUz)B44_62>=oG_4RFaT{i>~J8<>cr$*kneEdT{-MVYf64$M`*d#Iy4ejm6KlIa$ zef<nt?A;PA9UHucM5>({0LVQ4@Ttz$mZyJmVPJ5)SS~d*q)#2*{l4?(npzv*dS~Fw zv3-VBbOxKvW`a=kAdug*G-WTmdG+F3*ZR8K(&^L_fAa$XfN{^A<b_YHBY-SDR0JsJ z=4Xe8XNL!7Mo03aBc(86AcAFOoJ6v*y*=C3k#29#wsxdiTGNe9cjSv#!1`X3OFwt< z%lE!9?m5%enQ7}>@^8!7BqsXL9cO=)@$;$2kMy=Tyz=(Q$oO2@nD)l>xuZSrI^LH~ zxI<&JRo_jfIAU@E7&vXsnU}7O42;Y^e8j&oGWp!=gZ9dF%H<$IUsQAh;mCvwnM<yC zXpph;B_SUga)@I6<12;V{_J5~K1D>{`oVVxUVRyW+mLDP?hpU8U^g7<u8<H2Cf(Em z;ikUcQy=-b+t@tz;)|7F%E+Z<bxw}7v_qt&VZ(f`VN*|BdnXhRm!|$*)5C-Ib0TC@ zZr=BeFD8`aNV>{Z48V1igerm(_HEQnQLkC4!ALX)u%gj|SouP=z@?7|qR+Sg7^n&E z7ZUm2;%>wQnNNKqxuW(V6ol1C%5_}VjTWzat6p`i83bdaIkZ4T9Hvat1z<y@x4LvY z3N{a3w5<YBOLwrP>^gK<1UFxL{+a*qZ=>t4J@;JS>9YhTg}vt=E6vV*`~UM#t<-7N zo$Ispeum9w4S+<_>2$(T0IVbP!V9_Vdr?}p6~GYd+*-%Z!{T)6SY(yf*ONNx06;|N z&Ye4V?wl1OkDuH;^2j3(Km0HjO_sQJQ1qcCkpWma3jkW{XP<rcCqMZKfX5zttfi%8 ztLs`DL}`=&0EUR+$%SwK)!5r_0hqXUWoZ(5MYQ(!pa1fI&b3#kr~wWi=s$XBx7J$w z;wDtIq8>lgfBaCt6*{m^Z}BzOk_Ef_Iy+liNH91u`4@lt^oJfhck;-A-~5k%(bLsp zz)Fm!ozEgKqJ>S6w{1zjm;e~D?3*!jqhm9}15*P7v%>?$`FR!3I&EF{l$&mCYwYOC zc6K(jcQ&?lBpVx1M;##^J=XuO<GVbgq2VS7h6E6i_dH;iDYm)v7Me!}!Yt<SuJ-5O z92@|@ba^<Fa(?cyLoM0NpM3vPdt=Hhp;pWy;ohy1+A)Al*tk6fj@N_B-}}zMg;xN| zws)TT`A;RAn-P$#OWBx#-y)|P8xFnq{d>+mLPWmrTiSkYCaHnMLN}vRMiY4ni*T@_ z0K3ne3kpKibNI-Om!7u*#P+)x#}Osq>Nx*Q;?9DfVVY~r3)eO43vJAf>-bt=CzHtc z*cMAT%J6HCGK?{nVj!)30SVFx*L7mqX6v|bU>W2<C=-%NCGWA}eea-(z5y^ba4R~J zz5VhFfAjzPr-n@Qin{cjzd8MhPd4@R3AivZ_Vs`M-%kzP-s(!!vE9Ic@r?%HI8Gw; zWnLm!j9|5rSGbpmW@Zs`oJ8H_ct^sDoCH}_ZBqFtjr*ntG%OgU_18`v+Z9V@hFJY% z85$b0KfLh53tH=$nVDO+ZcR;1xvu-(_rCWdANj~u*RQs);;@FmqRqwce0}ttw-k`+ z>e~I_BUsj*bTI<ch?6NYvOPm1iAY2fk(*c`&l)rYvxu<eD#94#cv__4$w>oEP@n(g z2Oc=G2jH)K<|94r?UvZ!dn96gZLp3Mp(t>4@DOBgTe7=Fo7vIfiCed(2X4&`-S*36 z77~VmC@}`i%ne<Aja?nhT|JH6-I=xy#cEkfI=bzB<my|;0@x|(vJw)bB^2-=Lr@@r zk5DY3l8Zi!#xrDwC*}Z?bQ8bw@zcGnO`^>gKX6h+7!>iyA~cuRKq+)RX2cc&lHkrl za9ua;?hLcr0DR?{CvRVP1wdnG$GOjZ!A%EZYjy*?!k0Oj*!$pl*oi4YHhHm1<99hz z0}9xtm==jQJHiluQAC3NGY=kq?}r25Wn;RI9w#ke(j+8c3jEL^L6KIDdWrjIgpo;0 zXioAf+~@CG>|_#I-&6fgtRrvvvM&IbIpHWKflAC4OG5B86dRiypdwF0L^hpd9XlPK z5Q!0$U|M3CwyutKa(O*40EsZOZ;TUeCvLp-{J;C+r&Yo!mCEJWDXwfw4S>?@^zZ)a zFQl8=0OaRpU=_ilBob>%l2*r#gCQcVg@~Aze(eV57GfIGspak>1ekE;w<JKF)!T`P zV(qJb#-eO{b<|OZ#ggYMm7t<K5z3ZCPNh=Uu3ghw-@bhtz|o^ezx1Uq?XY;SC{Y-J z0rS=m{&w{8n+`a;d(YWVe#UVeNL5y)<xq)tCPCo;wfz<+5n(Vf8Dp$gvJf#4ZKe>= z2W*v0nZ(5ChoO;4hWqgkJaX#rUJ@muj~?hV>_RkXCo{+hwXlT@2_xcYLbt$pcju-j zrmo+f9JoGt^SUmT7%(6qVIn}1O>M1xz0Ezl8@oHRUA-I%6o*dnfi1HHB@HVwunmV* z9h(Fq1(+abor37#u!jYLP<ELNgf)Z%A7oh94PBP0`8<*O#gCrsZp(_%<jAr9c90li z7Gw8uZ`>OB!|%Lqgop*gu+a%%J2(x3*N2F_|Mb3(KC*v3)!A}{vzP~8fBpIk&k<3k zt?k@rzUZb?@fh5tCSy!bJa!Ce7;J(&-z|e2p+e~fH(()SAS3`Q7@cludHh#@O+e+D z$wX5NGq>&9oyeq0g`xsk@}F#!1hXN55sC>D$IXDM*uJW)=5ggE36`gN>Zzr%lS$+_ zwznFo0oZ6Jj*VOZ00$8Q##LN4;%PtaCPj1<W)N&Iw{6Yps2#L`v?s(a8DHWO$^jw~ z`Z{a5W-x3XOL2*f=<ow7%ud>)nka38F@7MN#H2-vGm}1Pw)uZeB_OBX7j*!zQE~u8 zB%#C}xf=*W**qkxyo(Z%z-@}f+DmopEW~n&Ea1NoNVb_RFlM-JVbrnR5%;Tz&yl#P zyz<vaM@L2Efd?M=+~+<A;9vc#e>FTjJUBR*OeXL2@OurF#xOTud1dg`i(tz1_nrIX zr`URP)6%lhix7DG*$qDlZ%<F;KwQ%phSKaSsGw2?up|_PY`8Ee6q6DLnR3aWo|!Ww z`}g*PS;QwMF%BDjKL}Zb+%5|NqC>S%wj!pY&E(*%iECFTu3s%qPunaYn&5ynqoJd< zy?1X@e}7y5KDQxV5m6Csh#3My#1xW%Ac0^(@-Bo7avk?G4Ec6%Wtd0{F$dvUfF^L@ zCd@>{A|fOV1!cWTho+{9TqbW%Pm>aWS%fICq(h}<!tTzNU;gN6y9yAA7GlfH*el2o zkr-l_w&sSdZjbfCuII(MsW-m+Hz4CSG@t$S7u<9T;K<8+$$X*lLnHem2?sNm5T#G7 z5e&#Uq6}+@5mt}=%HK;jw!i+Zzn;2z<EQ@Ke+?s~-1dV<hA&<)jHb4>WOK{-)hjF% z<nar~2^Q|eBfZL~HKJ%gBbvaG#Tz<A3jkh)#^8O3olGKgEVOMKGsp;ts+iD@uR%n? zxrZ>wB$X=rWe}CLPAawN^n2%9GIcm)3I+g}SuH=D>#Su>pv4FUCy%yCeUJh~M3Lhe zUxm{9q75@?1B#p_cDi#)9d{37K)&xYGuR2YNf79}dN&y;gk&^D%0^W8N8UNG<H72> ziiq#~QINjY8UQmd&eyjIMXIBY?Tk2gyyS>o`SfLadb&_35K$zE{P^RKKk>v9b8~YS zE?hW$`t**R1#=_gZ$I^SU}V}_AN<5;*+~!rdSFS}=*1ARPQ4&7C@!_UjUXJIg(IEs z|HhB*aWG7LaCA+_ra7Bt)7{-|)7@=)n40N6I;WfIZpPs--M{Di^9LNq<9*-HeZSw= z^|}gZU)7Tpa)iV(^S(<8N{y;-tTYFi@j&^6xLHsm)V1_*VuKjchX`cBm%Y2g!noj3 zHlzUJ)6%Dz+wm2;bYT4L`9Yq6XzxEW*Q_jn4R5zpUtJ#1Bws?>`Zj!AafHX6@Rup{ z20vpb+8;f`S~&jKdjTR!MIJ^oT%stIA}A((n&frAP#<}(W{+lXdsg?EI?}dBg8)k+ zm=;_UO3WAH>+>?;USOi4ci4q1J)p`nua_xngNa~g`CP5d2=+|2@;_B8wJ-FLi`u0L zP5Va`Swh<|^BPAP4-Xz|K!o#o4<y5Gx+p;tANl=uNX9G2&-!sWTm0^i_!z7aOPdV$ zNYvl{a0YEbgZf_PB_p}C`e`TNR}^K9r4ppCXWzP|2s82xI<)8;z<i#saxG9wg&}ZC zI<Yx|fWqJ`O@QTq#qUVLA3!XG4t{s9+de)PR1+y%-0EHbn4n$7C*V?)fb=!494%rJ zBn9r|<|?1fsG~2l3NB6J5ux;%N;Is6{CBj-V_jL9)Q3xGwn)qEve0rk@;Vr+!s)|V zR^))C-_?d>%}x*?3j;Xdx^{NMk&z5ZRD(<ID!W6URzGL|dhbbACStXN*cR?guS^Sz zyu7?zi~&NF9>$&gdDBNlFUEKQyy()=$Q%h0_sv8?Za7$I0)_hJD^qHN6BVtt_@B87 zUP-l;yr7ej8}6Zn-e?_M?w;;Wxp&O9<8o@lie}#=B0pRX4G~A#*x7mN3xJTqu?8@S zVwu;6lLCnUu!51HjE;uXUoWm|%MpjFEb>A9yD<35S|dVY<rxKN&7mn01%`b-n;&gv z)%CB%mWMZ;yel|b6d~imOwncyVnm~Z&Z{$mcL-x6b>-VU&0P&Q-5ZNd?kpg+OfnLQ z)I6beRcBl@W;S-n$lKZtQUt}Vb8(+}`8+-IUS>Gi7UUWmkRrDokx&PNrfDZtF-4O? z$bvVegAL1nS<W#I$yrYLZmad*Em2H9{j%8TjOaW|RW&&+eK`prN@^Ldy&FEa*NXr> zOuo#P8$BF70E$I5x0hVROZ7{#Brch?0D<9DS9u81kd-F4_v-t{X5nAQc9B%dkPW^3 zr=C6{5^3Z@OaeSc1+8NJ-BAMYPK;|W%ZR{{eR+)GAi6XZ^CJ%K;#Mjj+i4|tmy!wZ z+sKc<8dZwu_bn7_N%q6UD+rKu57H4<WM(uKl#p=D-`1g@)isDb!|wE`#f2%(pOqL> zat~g|d>C}e(6KXMCy8RtRCN3YnN;50(b<?>sHLja?kYHP@EJ^X11`&k^MC%Bae5lu z02pB4bywoJ+RV+xHMOzPHP=`{8yvOT>4bnEZf@Q9(yUCQjjl#DdS}=N7YTPbBeNoP z!!9M`wU(0m!`<7_2)^Kw(bSw)I5l3;(x?{h5aG`KnR_c>EM}el>CtVFVg;GNm6u4G zloPMxYpIAh=~KVb&(>G}oeDWOJ0Sksqc=^bBg1|D_XN9l6<=V^<nV8!bH<0uIhgul zm05j{X&7o4+Q*8(U~HaoHi#KfSm?*;UJE;S9vM?_UGhq3U8HtXO#cPUR4r`G%o$3! zyHsz2DQwyqV{k0AGS?whUM+GHEbxlR9-UgACbsJp>e{T&_Uv$iUoa}Z-{~kQDuepz z+G#uv4<+zy=$N!#{K{XVj>^F3?j``Vxtx&Oa<_dE*&-_~G^-Q6LCGd0&0HKSu+012 zxq#D#4zk@UoXKgx>*-qf%N;!iPA=?OM#$snVA^`f&l0{r$`B|i^`pQ^UU#NS6&Ezt zBmC~*ZbasN=B9_@+!?{J<|;Jv9##g15oolzNE;Wjx#+E+K#TZ6T(MV@hE?_R(r?vW zh!{mO+Ytld7SX?1d1u#Pf0M^O0vfl<YBPg~r;P=&E1mia@OqeCccwKO$qA+O-=>RB z*4MRw8s_US-hEJnW-4MUFs#Rl1fMpUmAuyPYJ%}^CuquB@MKEma|sF#<~QrT&+(+R zqLXiy>R&T|pSGWM95L@vfkbhCuLtn>{k}6KWoKoPld~qL|BtZ>WEa|i0gI4T=UEu% zs@r(okSor={11z6*IS}i)aa%*<J-^q<;=@jA|J<1ug0bpQY8mMa{~eK;bH$xrS6TC zQG4L0|H!lX5_97<gR$j)wUxnnPGD2;QeFS1BPw;JW%5`9pM(8!&WY7lmY`4E>O4z+ zhq9CTX5(!)HEJE7qaU-kyVx}X2-4QffjUVR{AJCyP^;X>;K)%z?OT^2RH|bq6O&9^ z!{|)&sg1st;w9~gR$mbQpOXC-$H(9@3p-%zz%;1D35`Wqdg|npgbcAQoet8r&lqID z->JEiN-_M^u&C1#Qi{5}a1>(pc0cjU*3^j_K_-jZTC9#Z*=&xLP0ctPF%ogv=|3>x z2jy3F+^+WIc?YOJpO<UpJ#_?7tkI&^*Jz|K-e_b<WPIDXH`Jk+HZ_a=eC7*wA$HO> z6(ymVsFT%}&`e$Ni~)|C=76ViIuHeQ-4IehMtJy{HP{OOTdfDKD_XB2V~Q*)?c@(G z>R;NmUl?s=OCYBq#`Lp;`Y6m9zw>7j=VH4!0dfbtX3r=xa%aS71xvnEk=2H@E{@hy zDYZSD+h1h#&r?W7zxgS~jJchWda5)$?f?OQ+L4LM)^JIYr3V@+(Vtf+Gw7XDcUY~^ zc-*551(5sALqSmt>5JzLJYbv39TP+<qmCWBVI={AanOaFf}(MLfUH=($nNt>2{ez) ztPIyem~b_`BIr|%FjscdT&Y<JO<i}>R_0~4Q|H|Tkiq!BfwAw#%Ya~KEx<2LVN!{f z)ze!6f?w8w&NToh;m=h34?s=>BVvAEca8A8EVJpHuQp$iu=}kAv1&hr$C7+b@+Nx& zS*Ah1t1<?auL$!9$U)brs2ayTXpISFzo>v~Rrs=u`H$gX1UhA{)?*q;Tu0(}{^j4@ z{iIGEkE$k);T0Q@a@d;BgYx&I_wE^~dM$dZ`Crr|kW1UlXHn1TZD2&hvdm_xNxTFD zS+^BogBQqwrh+CxLW-@5MN)te%<Mg4Z<M@--gSJxI#h4(uE1;S=+L)Q<egDN!2Lvw zR;zBklFd!u`b3&N10CC_R8DcAedAG&Ky&kcV}hBELo~Tckw#N3v`_*_U{iFCnJ!;& zRa3*O9PeMc)9QMj6YP4ZJgbpJBKvZcy3l#vScrH@bR}vs1VD{|(e&2B$>GB*Gk9#^ zn`Alqe}*htGgULXeGA4P@S@05il=932(6{DuyyHStGuU3rxrjTM7~trOwYw}rgaH& zC_qnHqW{)z2h2Nqq`V?XXrdU%=}b&Puo7j?@P($9PKeBs5fVwlOhR2T-~N}MySx@| zllYmnwo$28<C8qM+tPwuamJGULS$;F8ZB7B*kvnH?DaHgMZ{RXG-sTd13m2glRy+A z{$LiSYNWTws6N2>&kJji<-YU4Mlh3rj>4f+hYRIXnu5-lK^4V7T>zBQ?qjc%fm00H z*7`uMbe#ZW@<zXA9-BSiH&vh$WC<(#saM5M%^CQl!_sKZ*uj4@oxH&_KxS6p7Jmpv zAL8RzOI#oN=;&Z_G3%lN$y7uJtk`jJaVzE~Q9mc)@QNLw1hIST%M#PtNarlyT{>zY zCbBlqXPvyMbX4?x`sjzadRmXzl>X_-x~ZKnF|Bkt$|xC=sp?}Fq$_m%4Oh!Z#(e8n zn^-%eRnOPU;ta80h`@x*5|KDzQd2@7e`qV7=+R-`#KRNOLP9;3D17(!jyc5v5w7eH zV|8iIo6?ATW${e`K6UVCNZl|l5AwKU()*-#T4U{;v`r7{j_ZZlWya>z$Rbr1+OhO@ zfuh2$l<Dx-AT+eYHmw>1a?cA!Nc66#)eUR%^?<rV_OLfe%#d#<F3-u*?85{c?M*lj zq{X+z-krVztUngbYE!EdYqGCj3ZhAsH!%z0d6$MXxk$wR>15ATlZ<|Tk%X3!n-J=e zIF}XK*-u={=|=Zk<xwyoPZsU|$~aymZCK)VPds2dRs6-Q^f0ahqZTd`UAKFiHByi% zlp`S}X^K{k6<fO{RDd>?ox5M;xmZhI_j<|(4j-9RVhf^?%`gTHx`<5v5hIi%JS;n_ zstl%$=qKfR!zskT$XK}Zo&pzq?y#;%vXLl#JVYW7l1-YH`uKo*s5Eic>9^VH2qY&x zy#M>Qhi33yItQOKsZ600h&_Z|QGLDuZP?sYc=0kDU7<iG&R)$4u}M<%hP<iofrl$& z==LMoVvTk_Lw7vNk3*l*(88AY&$c1^ZIRBh=}xEx$TF^i17rnzeCcd+j1Y#O>TjbW z_XxZMLU6nHE7(Y4@bK_7_}5<L4t-|&Sk-g>IIUr-Z|4*GMC+gN`E5Ffi2=Vc<)@$Z zq{gpK;8fI^pJnh&BGiD)%s@7+s_&vcp5+SaEE!K*k9QYr`tutbMnwF(3>w+hh8<b* z!1N?ruq^(1`tu<za><T%Eo?02XGezt%hg0&exCQ?Hv;<sc2F(cQ!kum^}jJ}YX3*D zsS+DTb@di_3wSxvPS-qR|6oH20RdUyCtyy2U|sBYJ>B&xAZv*?l^C2Iu6r$3Prf~d zbBk+hFH?mb7_U-@_E+jK`&CSrk+aRa-e5|{a-}R0ki-3@*b}>g(W0$rSDFVNB05u1 z=hoH~g6*10uH6M_ou{TjLzrMJn@BY_D-%0fBx^+`vFj=S#m58H(Mn1j+<fkw+r!@v zq-9&s;Z?HTltd6a=#8El5!pdc{PXe@W#GhwvVD;S1DCmI5*iK6z_7gg2b!0*Y>5U- zKX<*82;oAIHP~>PHt2Pq1au`m-6T7nnNS$L2ZM#oNVY%A&mpY(%L;+7rKk1`+!|$( zzhwRaCTn11=MbyO+VSk;hy@d~whl4IaNJoB87U(Q{fHH{$j5)tT7d_$T-sJD<fvo_ zLn3p9zo6L<MKPj-ZJ132TVwkN??qIHzl8trW6i8PZuRZzjEmzQHdlp4TNo5;*n0h& z?)1aKd83uKI0Y^zTmGSaozXJF?J!7J5R3PQqRt$|nZ9!5>Y(kHS#G*0=)g@JoX%zq z#%LHm&3jd!t=PNpZjzZuL9RXNLe#O!0ZJ#6L)PLU^SGm$uBG1fp~#xvXg+=inmZ&+ z1|y{$1i;3s+|kdidjlX6Xe*jHl=b6l(ekVI8?!=Dat=T%-6|r3!gx!YX><A)6~rab z%~2JfgC`vQic&}dTHXE+8@3#;TL&s<QRUN_5AP@P^!C07m=Z7xfoo@OW~3oY)Ohi- zfoBb`Y4RwjDbPK1GV0*ZVM8Jay_YgaZd~OcZY22FENW>X`#o$a)Al^{lTM5@0}=#z zti0MlnVt|xrjKski7QNtq!%&yR47;_dK1xgF@N(iv5N!Bdhp75+C7*I_^WlFKxrZa z)@Fs2c_-aQHS!6ReaFdzB3lM0ee!I1R@G%oYk)ve2`?G@!#BLMbcPVe$9A$-hMfY8 z1t3fjWL$1uJ6XIp=AfTaHpz@6TsCSK{App8_Yq2}qzxrCc>e@;IfcFw!txPgub_H% zYXpYAK1D#vP<3@R%%WVXo5s%Vug`|}j?c!cMpe7|H>IZ0fS04G1+S3vZUpIp3zyK4 znBmPagxh2_TVs{C;Y=tFua+BqgcdTSD?-B(Ye{pPdeDos87OMj;jlTI#bU78u@!UN zs&L&aT1&M8Y-%UT9aa<8!4lbv2N1wILag3-XcOEsKUl^)lxU{0qT|c+-y0<^c7JCf z>gfK&^Pw*w%z?ULy9ls!eB`d*_%0xbbzs}6nWlj(XpHIqdrUr{(A_L=q_Re1*Y~1_ zIv|`7HlgylPO);K*lP-D<|V!J@r{^CNba4@f8`bh@RKIZ9#h7BT1`a-tBbGq*Qo4r z+znLWq;3}H+l}kZcmH`gRDJa;^z{Z8I2vr}2#{z%<-<hiG7uD>ZyeB8`b*WLBZ0K^ zkE6*|)YGa)<*ox8RGx}&-)K7J%wB(gPsO+@Pylmco2$*4o|<w#nk`)bdaFls<v1d1 z0&CZXu7s7Ax^s_nXIIq$RNZt5B6ThkNE)fH+18+Qq;uE#Y(I`}kAUrNAj3)YO8-*p zfrNKn{OA6<QMr@g7YPXlig79QZF|&Ay+)L-+xe3fIwJgB(R5jQc889hWl7xN^icyK zyRY?(G(a;Wi%_by{vk-k?{sVO#q{C1gFv<jT}KW_bGlv17u)G^l=e$Ob+zvcg7s~} zRr<_(n%V#kAZ<fugY(1a$G(~Bl1w>mmaDTnnSql1fPec+p!pUx$yjb|^NwV@FzY?8 zDO_r<M!aS&$-ri?w0X`BhYJTGvsR*sOBsnf#SYt<#K>Fs$u2P=(UgGQBpF$5EZhn; zPdo*30Td*zrj2$X@2$C>1w)RwNeNr&n?6z`Fm0o;u+CK#pkfOgwlTuOq8O5&koL@} z^&h0CNe*klP@;KL;Rn{ytBPMl!Wu-d_i0MM$NWQ6%ArGk7x_)Z2sEhkaU%Gb{vXM2 zxc^y_JFKNF_gaKLN#2J0F1QP9d+LQlTa$6NnAtO;{J}@D=}bNzoum@6shk1LZb>Fd zGG~m+QGQj0YpGoF2dd8QlWR13qf_~5k4AHaL+QKRFsXutQCpSWS|X{q#VEdk0698{ zEqwZ};CfW~$S{ttg$~+hNw$()!t{s5WbYs*+X!SiVa_A<eUenviFe<pL3%xMWLdWM zmPuh|d#;rPwerfh^OHcbyya<>8zQS4CQUQ)PMlgPh{I?pO@C%*Sl#ZKrqbhWI`05b z_5D!~d|R6j;`%O;ouq_*v$c4%5X9F>pXA|PA{CLOm=D+XozTU#SDUtjkK|i>>441e ze7jVw#M|3@+XSOA$7s&xPh^$I%_aWJZztuo&NmviyjJcS6sJq|2f)psTEF>mnL=x) zRICE|fy5h7oY7=ccGE*l1r$x_+N(3OGGFeS@*HKY)~^=Z*#64dF29>Y2XT4s{j2YK z5iU&MK>aaO`iJ^%=>lMZRrx&tk7B#bTJzIcsy5pa<yC`!vP&ur0M+PSc(y-l#G!a; zctDoCj@9mpH)?rY)_PHAt@1iP(eZHudjoOYdf9rNcfE64!(Shm%KwA8loLoNg$5h* zw^x#VA|4w|qY_ARMWbPydhG8_;i7|t+uu*+m);>dzf?9hUTsB8>QU>V>jbPU3x;${ zICk8&Bk?#?md-N@H&!m(c@u~~(?iN5NS+#_KPl6zj=@vo@KIdYZT{;r?x{BI``6?G zOAoeKay_M?gKIuF?CWBN790|op6@98&{I;f%@gY?43k=VCM#Ic6)Mes(dRu4f>hyY zUMCR^7gFDmfn*s7|GbJRI{x{`h9jBnYi`$7Zny>!jiPkaYk{U?9Zxjoua=!~?x{o@ z_tfQ)#aahYVJ46Qi3@%mvuEmp6InSISVMcn28D9v3IJ-XlDOm6c{Qi=)RlT2+nCL7 zEk%t++o9#FROPQv4`Pb%d_^ixEU&9cTzFZ)=l}YZ7)#*D*~8|b-I%brT!e=3?rlV) zAC%v^=eTgBoh?<qMQWWaMXq=?RQE*G3;Ua@K;AH56)II<e)T-0An?UuEfHK;KC)N0 zH>FmpUZhVPAg`c;sKTI*(x1c?_%z!VpA*r1x4gJ`Tbtl#Z)&>j6>#Hqap&tko~F{8 z3SLMnofF;gy%-mNs28`hvwJv;5U1py{g`9cf2#F8yYu<ct+?f`G+Xe*2*x*wfpQC^ z`z+7Q{OeoD^L;pynA<2|9vhF4ENZt2m4NbZP<`-G&bIfmth#+r@wMyJ1_H95?0GU{ z5#x4Ck}fFSw@&_umFlM}qub)Iptk>nE^axWv~rl@c`-L_PvD2>J?VuHVCxJ0pbxv- zMgbnX;|ur!htk<sV-F~`Z$&OU@s->CuHu~hseYxZ%hnXC%0E4ph}ncbZ?=&RT4G0T ziwVZE^L~zZCsA7odpoN_;QY&7KR=@&uQ5@FOH@09M&!N0V~CRhpH$xCE|dL<G*d5m z%I6-tFfO+fOMh3w?p(J7DBPTHe4%3qRZu-j7}HpHA<kEaVuy2L<_*AfN9|Sk^gF4K z4L6kKvP)l!t)DQChaS5N)8tEz%S()LEDNzHXjn0e0UHsCrGPvUZn0WP>&gC(u=o4p zt`%p%jb4AtU$iaUUYZnV{R!t<ZT2s%hYzpVA~JswE_97o=;`z`m0N@91~Tfvp>5X1 zvQX4}$GD)A1!#Hi3?Uw+tcoR1rfRABzjoEmU+mUxa}C$9MklD9LqZsxlu1}&%%1t% zQ;+DNNVsHe<d;22y*ylB&>ZxU9@~2H+gKb<H!$r@x{PUY#d3sDWf|c(j4WF$*LuVj z{r63E%lBrq6XtriV)N69xM3c+b#kXDTIx{m?q!)`jJe|sx&VrhQgv367~ptTCWY8U zBCsjz!;pBNW9SGHd5q~I>1T3uHuj(rCitAJ@^E~<GiYULnd|#+c;hy1<8}t%@A}-F zR=(XV`}7-4((Y+iO~vn6Z^PEw`W9{_PJuOKznVptKllc`=6lCLhVtWPh$Vxj<d)Gj z5HLaNFY|&xfgm}kq&kQvbL>FurbYa|Q2ahY#rK#FA^Nf|qoSwgYo~OYSiJbl*9Fp> zpF;;(aEyQaE7&P6nD??cDCW7@9dwxG(b%neH^uze{C%?HI<D*cn`XT3aX#QcKj{u% zvlAuJ;-?hovO=ZN_d9x!CVhLI_qFC=7UkHncw7Pf3uz;9P<7r*N5H}B=n}DuyR>Hx zZCbr+xae8#jsDl8QbmP}&OC1;4pmZ37@4T3sQAl;_)B`gU3%Bm0_V%43e~%oYLvk6 zv+z<qjI=W6%5<XoLk#F#tbbMVE-fL6emnOysfy9H=tb$IZ);nd;H}zbbq8$^GwSM> z6AO?s>zo^WmyqrE{eQOactNa5QDw?gb!T#@zsH6ZTfcGc%D>Mc?#CoPlV&do{~X5L z@t>`ER@EwU;~IjPKXsHm6kzxcb)xZsqtpkIflrHa$Q$w=OdbLZFqp&Y`?W7e)K6<K zk1zUMQ2QF<H^u7G(jf<_?R8%OuT;;qZ&L+|iS{fq<ReS!|2N7+Xil3W`=|~D_>hY= zwR!wTTrXw%et<u}&w<&b1Mrv5w+nCM{$BTNyQ>P!4Z9K|V!Gn-t}9l{ENegW7<O8R z5|*lK@QuF;aaJTAJj8QuZsA>}&*sTa#$Om&<)|ChOq#SyZLplfHV#lK`2*yFj#^A! zki2+YP?*!zG`}7DuE<Cf)pt~Kf{h`2^Oil%F$Jz;?-6AiQs$^D0{W&}b=<04M_5Wl zjs?k*rTX%S;xmzl0U|3WYMS#X+xhSJcG$K7!duJCY-i*7WaD|j>2V;F*Xlq2+bzJ< zp(pJ=$PQC5_4K^n?vI%ixfr{>{i32WX(e`%IWRB~=Wi{NT7Lc5qmT}ArxeO?bXt=7 z*NlB~asnhtcRi8@Joh!_`JVPGICVbsq%bAG?QDl21QcsQG&}@*U)NJ9P$rF<fmCHX zzyngB_XO_=!8k!X|64Qg73`Ho_-PlLPBkOT|1alr0~fCn)ZyV(?)~39mp`SOvL-9R zpEAh1o(rihSA^pO;8uZwnv4ZgOYX00<XVH7jlv~{P~Q#0NN52_YQL1f=NCn2>_PPn z%&tEu&--Pz(JsB~<;h;lX)uY-u5&UOwhd%H{7+QjcVcJsP}t?;5TJ5=xAP=(-SCsr z>tONQ=#RrYr;RM%=eVF_y82AT{R^Ypv29;(igQBZq~6ub#YQi(Ls1u7I*482l|0K{ z(TsmBh)kH1A5F0pD?pZ2#)2ozR7`6&emiuhZA8bnoGP&Fi4lC)$#Soo-R;M88e+t+ zhD)2{pwEobK~-xeXTEZ3zbJwDde{SeFFWzOl#Rj+PvQQ@T`H!0eTW=6UZPG0^1oae zZ7MT2W~`*&pR){fMCk~yyd6KiN+e(K25*>ro!Mihm>V_R6pCM4Br`KFH9qqp)!>gS z8>q!hZzCrZW=H6M@;f1tW@$`G3ua)oqhBu3Nw(%?k@D%Z=yv}0rSl+Ne*tf{)c&3J zk2qS7!OGn%H<aZT;PZBbJUbDyI|cnf-lM>~5(i4NScme;s--oJfOpzfa>d`q9c#k~ zw<xez)~1oZ+V=?3OYLI1yX*djH&6>bp1%B}1}Pt!5iTouiA|Lj#xoF%_o<aApDZ^X z`)oX{12JpYN9EPaX6<E<Rl>Nr2dSeLV8EyTKQjU_qHKGIe0g5%bT-50-|{2y2|qVo zD5O1#v$a`3w!JO8F0Six^kqqbv*QwupLchR5P7(A63>>c+Yu5T&0~6HhKp^X0wq2N zOv1pgy0NTRN|N629#6=)`4tKwxz6qXJDlfxk`V3oF1-Z-4~h6MK%6q({jK>5B?o)e zxZcKH{PkE8e!w>(IiImN)d1a+paDxyY)$@FhibV}W>yE1O$}~_x)4)8+)j!<IK7Og zmIO@s@5*usocfpk(w!;P+1S{4F?vKium718c{m!a)~E23ZjdV>G+x^GUCNS#nyXi- z69+4t{stt3z>K~`wN&ZL-V&JK_dFSejK@bgZ!NK;k1wV^hw4w0({ci;@fPbK4br#Y zOW^~iwTC`?cRa+Yv^|jto@~OFIN{yGco1_;?3z>IwB%?hv)}D8K{AEN{0&|XFK_-= zXQRrPZy04l|GS+%=({oW-o8QVwzeE(Dh$OFfxKR>j!u<v=I6s9!bm33Gf47~l(fM_ z!Y;~}ZkyAdE*FZb`B&8FQa#<ZxE^b(Z}8SMtjusM=AWik-P}^e<;PIeF?+LTuUMHQ zQ;dkRs)nMo5p`W(T=lSu^%bsyr3_!47?-8S{8ix+&lnmAjS`eg($E;Z^j(dQ8{nse zqOoTF8*x*;UQ!~f`&k5{0qk|IIwX0al_KNm4WA39tG-27y9$HY#%{_slV3X$j(eHK zs@jeUzVoX1$BHk!gApou+MLsn#Zkcmen(SoBwa+aJmJkKFeOmg+)?o`bdC><?e`f0 zhGB*kj25XK9A$L0co#{cVW#Njc2Oe!1T=^LHf{L(xVtxeVuoj2dCD;tXJutw!<XDP zyOD}#)7p(3yZ+Uo$a^;OUn6wSA`&T=Lp_{Y*u&-z#a_<n@V^5|l}A^{P1Td*yN&C# zlC%oFKg|zMPTx82eo|8-%9ckCA%{MyTZ>D3a^f=n5E6V!seb-!BT!9z-E{y6AjNPC zz8H!urv)|BXEa}5AL=<-)ZtNK;3Fl4G9&*yQvRJ5+-jrtidem{DI>+XHqc`I{ZKH+ z-2B_9rK;1k=jWE7p4Dz=SQmz!ZT4-lszwf!^)4UZZ_^+_)O)Y83FBk<zxoSw;WQ{Z z=%>BFpOuvWApJ%WhV-!@4)*k5s+Eux7#UlQ@z#JxV)QhmbRVXBn4)g%M1pAk`3!I| zFif{624028E`>zK(lVwfmprL2e^cm0&@KK$`<<JQdeiBp%N*4mEgP9(Ak!oFi>pNz zs<LDW=IS9c(+0mAR@B3Qb;Pf}VoW-@H3M^>y>Y+C>6-F9+r)nv?;4t%u=_G1lob~e z8bpHU5*n+r9UO}zvniQDQ^yg{vhXUX1XYTiOI{l}shZ2cW=v6MsVYvtA(ngogIBp7 zjBpz&vHPCXkL)0((DN6zSrgBlB#4uU$cDBchd{sSOZle{-5-d@ur=*P5{^W<={0c} zF`^*Y(PX8uBwHtbhIQ*lJa&~(zS2++b#>_R_yV9aS~377bra}+9`I<m9_c&~dX*8Y zzP~)uR$7)4%i48Y_N0Bu#yeOYD@>z@KTh@MFWck|gPskyeRf|0VJ*_NBVKv?h&so# z9>VY)wE=IiAB*upGq*(|k0LG^_n6{HBtc7*8jxYNWOR$hltf=!@YkLuT03TP{>~0V zK!u7T%vwXo-WCRf<%$P9S8Z>3f?$1roF9);@BYd`-rslAK^p>PFas9HAR7Ic(U?8f z`3>1(?z?A6bTZu#VXypJR&1${P~vwG<e$wq;f*TuD|7-%-=01jx6jxGTs8jF&&_<* zb@01wQY?}yo%BQBx#yIpb{Rw~;Fb^Uk@J<nHc77DH;8n`f>Hea9lYzwsBn?|;qTT> zSHO$Uy2_$0`Wp~hOwoK+=3Ls54AxY@KD>XWsk-wF{`YyZqE@Q*WH*`ATrKktey*QH zUVQs9tY(BFBJv##p&3ZJn^5x-U874xTrDfllgwx0d#zbT_&It^YDHT-W!Lpii4G(> z@U`B@FcPj38twsFS;!t^taBfa40#W>aG(rq8fJ{A^bxlfh3*GKhX(E&5`rY_zoH(H zA*-6b<C*Bi9(ta@O@K6j9NqvIdpNUtxpFeNzh78?ycWc1VYyzaK{p1FEVOmOf#~GU z0&h!u_k$f=O(NNf=rGJ5n%Z=`AoZ3HoR<pd)9O?wRr+3#=oR7tGM{a~YM-Anb3Hsh z;d}ZYG@D(SS{#rEZhX(7!qz|HnADocA;{AbQqbR+^@P*eHK%CzJIHN*)8?`)*L)+L zE|l@SL&0;2%PzSEN50Je7!ulOISnB-&Q@(HtDn=e5iu5S>21>OIu-TT6V`eCK-(B) zG?x;SS7(sm19C7(K8XzM?24dE`2GY>*S$Ff(=O`oqk?b=!5HyNcWkCq`~%yKrsw2s zDL>b3$;~h5JTcyO_Wn?R|Hto<zUInTr+qMv8<%GcwNQ>|h`?Br!`%nJH(8!uF_4=k zSYR_l#nj<32?-U-8sfaQvXMbW!T9UxfO^I6v}fqXGl==@+U9}`NgtSKbht=MJXtBD zD3*ItGNNJ+L8SVI2QEwVURv&^qoV8(yWxYlNP*eo#w#?0X|KT?dc!}!Q-1$0vp4SM z4=K{y@%{T8bPEH0=CDj(<A%g8elbF^ms3qs3XDUbstHy41;(AzMR?oqDsauscs_=R zpWKDTqeRpqMTDjHOVdCMm{f{+#|{0JgZD-=!cuX({9h$aqcZ49m<KDM{uc}cXt9lg zrJ+RHztxNh-m&X`3ugcNQQKwSa{X$mts51|!HLli7>(xdSWh8^O9n$(-L5Z;#GZyH z*SzmiS4a)Nx43vXnip}2TQyjru?K&0T%KR^Y~mVNv?xD%r1olYU2{`wwM`oc=-|C# zVV^?%(EdlnLeoEH^`v`IjsvCUiv?}Yrh4Kt|K*#dqhJT(f*sRO&gQn=?LCM}<JhoQ zT)2@twyX~W3bYz7hJ_jy_ElNAn&zzkJ{TzfFdmlcShp8gA!Li0G4>FiYnIvSm=p49 z^hU%M`!BtMZ2bHf2p<0?YeDgTMeo7OgG#g!G3{lw{Qd;Ho3e&XpqKCdYk9fGU`GV& z+>b*EwzoVm{h<rx-fasvBF*VUD_#LR-N~hTxP3Uug+UKCYa+<mm`^t8b}`>wHI!!R zow}mA?){nn6L0UUx*!}<ATEdT*J<J4P1l1<C^o)!MM(Qz*(;NlLKfc3eFi++^|ghm z|Jw5_oO)O(S>MTPV{|K7Jxqw;W|XTiRK<!}^l{Oz%(eNkI+(Cy)y`?ArO10y2@AMy zZI6@YiQhisSC#~&@s`WR#*vm#aim!6HJQoH*w^gLD7XOHyhBYtD`lB!bPAJhJq{=r zIO&-2ru}#g;fq-5sSg}MkuHT|Kf3h<mpQ*QE8eB41YJoPfBk?4`-;{tA&C(Uk9kbX zaHxCpXKH=P@6r56errdLju%%HWuG(-w@z_>U@8ctOn(D_Z`Wn0Un7UaRzJB;vym3V z?J7S|U=2343=TTu0RzB@hzK8VZ(#n`)XF|;dVa6XOuYW}AZLDlzD$2{+UDiedebV$ zDU3hT8ZgOvtVu__I>|`$-SYAu<s^NW6m3T&d1cDOl5##Z_J8?{|MG)Ru;U>~#!K{8 z_L4S+JG(ioe$@V5p3nJB07f@(1@5dZl&Kleo&fyxJv}|Ar>EvTQEhw~X~gpD4W5gN z6-!9Y#>T*amrBUlxZJLW{Uaa){`k?`$H!oyKL@>g`)%g|^S?Ia6xAx}=+tb*pS;fB zG)!WQf-`QWwkzQR36<q$ZTYP8v;_$}|BVQHWX72(Xr`VeJ$4U@W#&;j9UcuxO|Nk1 zoRYLHg_kG#{f%g!nJ|a|&saf;`-KbV*TCSy;?>8!l9yM#rD<tq)b|;YjK8qe)C}q> z9kYP^AhlS-X3!6ZNih(Zvwehjyx8{lMPcE5HSUj}6ICbbHparGKVT>8!axyB^)I~g z-;}ny_0~8uQl#V74ZD3_3a|dDXV->|df)~!3F@`NV|(q97pGNE{om8sprh!GJ&Pc| z1ZXr5S%QI`CecwRHGQfhR=&?uds4{8kb!}<;AD~skbAD2HG9dy`3T?5GxU7NYJS`+ zGC2AA(^N3W<<AOpnMGSrWOV=bcS$v;06izp)0}ZnvAoHNJ@S=hU0vPN6t6i;(`A5_ zRp)TCUinrw(BnNZv6a=Dxjchf2a|FmTt}nWd};STg}+<uI-Qjl!GINzdunk>V=css zU3Ctvr}{V<WP5tbaex!g?cj5*%>V)G6b}<&>D&%q#yVv^-2eG|DSGs-Er<K$uOef; z-~NLsajG!q>}nHRlB~Ul&MDF=w`P@myzv9v>3Gpmdrw~PHLliRax<G*qtrb6#k!@8 zMO*7hf`-b{V=KF-h*3NC8ipC&QKbBumd>%pt5{}*^;D}|0RYgFLjBa7^6A*cp`6F7 zd{FNS!9NvxX?gGy107^8>_al^*m7I;;}j>I4oQl^89W>puMNZt+EFkiAG2?1(#|hR zV*g@zfoYNj@~*9cqSbi!?(U!hK21%({tZi59R5pQn5}iGtd;aK{0CEJ^}CMgdR%pS zVFV2!=UlOVO?epquK#vTy{`=AQ20T11LeScnzV`OYh&eF(E=!2=sz5yfVo<KXfEC7 z#9NrdIs;nLPGfVxcOwDf?CC(&J1vrc&e@1#%5OjgLHi`kylz;#2%{}z!nkpi-q#-< z$seORG(TA;t0Pc*b!FkfUyd<^qcdXutcf?|7gBUzZgK@m;MvZVD>iI$YKm4-Q_Z1j zc>h@;@fw3@53WI;2P&wCXKN{8FWb)eCRa-=AgId|QcsgZO&!FR$}6T#@o5CKUosG3 z*aiCWuo#urDOS$Xo+e4yq(S<Hdr(ndDzR7UQ+biLTcI>;WT~oZPG3b~0+|PMk`<bL zH_T#3B5>_KTa-u<&+x#u&#R@hU$OH05BWu$K?exe#PjT$%1PVkQ4rY<*1TQ9lDZLu zH=?PfF_Ei=Px)}m1k!eRkU$fAv}5=~V{F|s-K*?vfoU&LDKR4fwTH_!#AY9kb3g(k z8xZSWrwT@flxI!mno%c#Int07ON)J3TZeLmhCjx0$KO;JEkl~IH7IK>IvVGvjSw@h z%FS$`MB}fbmU|@%UXUbFWyey{u0LoO7dJegsQLRULMaF38du|7<bw8CAp|fJ0@!~L zTr#>j3%V)KpJpU53+sH%mb^qTxUcLZ4#K&qrtfKN>LmKkjfveb5^l{mpng82w^nc? z5*$j?*#*An2zRE$P~f=rs33xx>v?432fl}4U$wx%k&gnJz4F!T)@<ei^=<+X_j~`3 z?V?(1u#bV+oFe!<eXh6XHyZJGHjUZM8Lur6q%M76sU3pE?v8HO{D1G~L{3tyWCkN6 z-(<!MzxQPSQUCiIOaHz7h&9qalMIR%#Mw+{GUv2Kv_@U4x{qzxn@D&`PdNV1)I7Ga z_vZYFyyiLayxy9&F!t!4yAI(`+jRQ?8p0^b5L*J^ZK}Z2H7Is@UMT*6WrF-;DKavC zgg9ClvzxGEhZU>aYk(P2LkRjrGfJZc8>N3g)`kWuiu|?HoiFoJ{?f72D!IdMA2M{d zt{GSFw##l`|5KI4EcW0lu&p>w%o9L&zy1d*=WDG*cX?g#1?j<#C$k}}x@+C`6?j^A zh4!-^7qhrvAv6Y6_t8;0#g&r4y;Q{eZhUnpgK=$fZmIP^qP68sB=S7+6N9cAbYbk4 z4Aj(;^tBPO>?&5G@IknNEEL+SWL04A0UaP7_2=e<k|!%#Xz(CuuYc8JxcG&RbhpGJ zkgCC#<X{<rtU>}Z<`i^#Or}+(DJj*NZr%Qy%uxxFSL4k^v~2lYz6#UlD^x2b1_8k; zDIG8Z@Wu_e6B))q7!_)8_UCWIQ;`_qJbpIe_>CWAc^~CReBAHkkLvD@R=ipBcnDqE zEca_;xTA>!ZQyS&Zl`@I>q4pHQW@JYX2MzBHE6@Xzrm4=s{XX%kMk5Xb3TviGnQdk zse{%YUpZNq=|Htg(G~>sIj^wM$+D|ckpr-!XVxnR2O1M5RAR}^>O|L~@oM0A#g$Iq z>2OHP1M}(v7`7e{>2Yx1pqF?HYh~s;`Se5*^s2ktQ?M-}edwrhtoj7)o?Tqy73b&o z@(GPqw}1IiV>Nbl)wN%9;rE*92Hp6heFsA{qp|&7HA4vH63R7R<CIrQm@{0O+Ua=d z;$Pn5;Pxsz_lg@OgwU+}b(%U{jQaKTZl&YZayJ3Uq?^<w!{Gt-7$$**^G4>I1n+SE z>ha!V9Hvw5*Pcd3kn1MuNRYy%PqUl5h!<3drk9)yrn2S2g4OIi;ZT#e{*@R-F#D zLf_w|%BRW~4@qZcR(iC}F?1Y!W+slbrV9_fek6Tv+F++3`o0<DDemq6g0U|CZ$?4O z|F$8I(^jBL6NP=mL*)_9B%JVHYB!ZoY!<j8KjP`H3rDhZGDNZ5?CZwk`~uTkqt|4B zfB)~m&p{wKI^q{sU4m2lSs~lxb7WtQ^YOEvmH!qg9U;l0rA@vxCQYaRsbGNG5U2u( ztG*a2j1a#~YQ8?d=z3Y%TY86yHFlm5P=~lg=~-B4SVzaGQB)o3anR8lJ{d7$CpotB zcaVf$zn+?!s+qIU!2+TQ$joANWh#yDdZhAc00Ez<PoH0OF&Y6CMxdziFWzu|Nd`S| z{k*pWBguzLmmvn!rZwW2-yQ}VHz%#1o0{y9eSS#*rqP(85sZ_xIjXM@N;At6i1&VP zA48t-H!AnuPzd67gNV;kp`TjLOMAz(3u<fgJ7Si+#d+psCYCWK65?4tnJGjh>Yh46 zq>2IqmtRHIe_9&5ZHf9jv#Q=&%CWSZoJTp0Yq7{|YqRp&EK#seu6~{igrn!rH6tlV zyid_k%7W%{705q7DqsvNOxcYa&d;vfrd5X|)m(Il{aHwmANUL&ov7ZXOxoFCDCnK- zyGl2L3*Sq)1vu@MWmP?=s=tAb*>@;P-O{s%PNbBGUj{r`IX!I(3+CRLv~bCwZz<3U zp<#&@y#|>s$w^0|fubTu?I9}WU@(t)WEj7KRIAE&;q%(O(d+9ZGSI-ckU3m?;Xmks z1A0E?cA7o$kfaYqrKQ7UDWiMjC;4`f4s(Y$5c_gqsMdG~wdWzBM~2wi+LFI{129$R z<s9DGT)aOeNmBzbZdLD02FIAh0Cf9kHGb!Ft101h(d|s0D7W`XG=KazlY}snhJ%jl zM)9w=qc1uar=mEHwLiB31nY-T^W-5if{pXH!A}TpCpV{;O}py-pFcA{kBtMf^m&)V zL=cqb$Hie()Tq-$yoxR19wW@*E&NCdEP9qXIkDR5alynX1SR*row38%xRLZ!H?OAj zM__RJJ#k7((d=pdW3P7LY98L)t=4B}%$gs83M&JX8`1Shu?nIQe#y7#D2aF%<@S@B z9+XTu$_K736B83BI=w#NG_1NmtUfnbo=1y4k@|w$#{p~2y7&beqZc9@Hw*sCPEK?| zO%?<!?JOFyC4Y8ycCIjQmU~b2;f9uB9ojX6NOA2~FcP^YFUvNcGGSAGSCiWEfsM|` zYy3{43A@iD?=Jc|i^;RYIrZD0e={8nFxm69x)ME5`#g55baWNC*3KgtPm1ji%HRf3 z@UX2GxCWHXj@|NH9;rBrz3kjY$?+@`#6%)vrSNc}7BkN+5%Llt>=8~J(7tb@lTW8k zNSj=T|28qiX1`v3d92HOd`6_YUchve{qEg>E?`?pqBN<j1cMsLy%cvcq79x1VEX{i zm)@F`Fsci`vYBFwzN3SK!5r!5Oh>1uv(hLwrvt_T>U-bACSnCn9XCEczTJzv%{eDj zI2n*-O2(8bc2}Dxex09?VBqa=JF-$ABIssTX!w@tqeKzMk|Mh1Ubd(1KTF8JKIX(I z$|kj8dj-3nB~8cO`RjkIQpPLk1A_=qXk6uDmDrsw0@CD*9gf@F@Cky;BQ)R+wzfb! zK`-YefU5jMtv2640}QrKL}KF0Bn{=@;Gm<UySTV;aB!IBzfzibZxWlCmp5t7Ljhh> zj0QF}w6US$g*dXns+U6@h^s-<Nq5lo69#sQnxK&{Qs){)saNh}Pl(aoUf7N+#~?!W z8i}3|3%oto3@0G>@uBeX`9qaM`tpbcA|UtO>yHnKD9}lEbm07o9tc^!IQ2qWnSJ=; zLfSz6Zr){A+eAR{ex3o{Cv5w0PtaTWdvqDWo}Ht$)3JzeF!NA&6O474Zwa#fI+{zW zJxzcx3Ai2tW{lCjf}7K8qdJ&)EccynXMR4dYv6Kjr98B<vQk=FI!wysVQ_qvjcdTV zGN#`YXhWAlb^m8jpM1?8LZCHJk*$3kv6iNF*SCrlw5K*P*>P49@J$h5MQ@R&x+2+I z?)nR4Q&CfM5@WA;-uNW+R{ds6k(We9naqCE`2i}5fv?vT*yg9Hn9%#n9FjDyY}9r7 z5L9mbRqSS8u<M=Yozkd#O%3g>1tNzj?|U8@&;y^ObC=O}vxqx*u)yo~AhP_B=Cw63 ztJvvwwJq4G`+YnHlb8Ixum+DtMlS3A1u+-zkmq$xqP7dZy$br$A}*U|elXBO&VKL1 z<Yd4(F@Z$Tdv%a|EaENFx#2>1+Slj;Aq=_8-x{dm|0@<Vx61onehDKL`|jIH!|EPj zg9p+!fk8XAtfNQU2|;9JT$%peYl0IPCIJLwXyX6x{x#U<FTBbf{Y{{anaF7+9>EZZ z3%tZUAN{5qtK<M40+>*6SIb4I2fplyh*0g<a1X4aJkA(MMam`-e%NK+qyG+#rg}{- zyJe%q5DO}3<cfM70{K#0hj>^Kcy^LW8X^HQBZ2h-`~U@bK8e7(c3UyEv_zMXkr@=7 z4%hHoTU-PTwpLbFdU|?=1SLKNkd-$r`pR}|)3rfMac*WigoS0x*Qesw!zw>#dUA_u zn{Kv^{PDO5`1zg7`9w4A9ra4CQ?%Y984F4hGkk^h2D5d8R==Lf{%rB^w~RJstTJR7 zo6s({Jh>z7ytXRNv;oNk-0zHcv<3PEN`ADDhkNhl1N(6dk}SHBf9=67i{A6<;$eT+ zBWoa3`gi7}Us6s6(NInq*_yB9l*HlwX1Zualq9+Y6d2StIc?<T<WxEt*+t&n0jZ`| zRtK7-yAy|phh*gBS(%w~C4W44${CIK|Ngb9yb|RG9WC-f4=w>}ClIZ;d^F2spu{CE zt^yqwIR0%5&R|2S?$rFA`<CF*_cMQMVA9<1<~%A;+6&c2d3kx&U14@H`fsgNMzmUG zLA~%zhw1R3v^5{CR?iQ6P2H(d%^rx(i0f0I6T1Kb-*Z9`xaDk)$u&g{#NW_pDJ;zB zw9XSoBRq80uh90N*apl80Vo$0Tg(j{bIeUG(geBa&}evXkJzdMo~kP(><)UQnZ%!? z%<XVMW@D8Hd49*j8;wT8o?hX>6f4)--)heq)*Y;cuKrG9?=EdTUfq?l5Gt-U=TcLT zHh6u!8%XdyERo^tLZO+<_$%gOt290t&L@o}wABhCD^mDitV7sRT)YQBh=DChfK85y z9|>H!|GGw~`e;bcDMkP~>-UJHu5BqiA!y#9w-DFT(sF%$y?LS%h#B_o34&oJoSS+K z`ZV14WK$r6>)HU0e{Rg)pvf;V_V-^GKxmSFwXt6*b~~}Qv5{j;@%&Bn^7u?ydMtT) z1ZYoyt)rvEFLkL3Mj6v+28iVv=F_kT|Apj>Noit%GqbW(<sF!#M8x0Y5<Z+RJydz+ zJw0+3&ET2fXI7ap)#Vs~LPEp#nMzo>h0h(oEp~YwnRdaEKIK;-qk5Spn#}Em)*Np| zys636magtZ1$A~_UR5jUw_tBhVTeun?88MRsr8_eA2^=cvRi#Bu(<plJpD~^yB{xa zM+5#v80K#lsUCFR#+0VP+S>0R9!!!vZ?yCLP5ea}ybPK;Iz;m(Nn`p`C!^uUzw(&Y zzyle>!*UBAJ3W*uBvH_U#zqg|8H6tuuJ<1YI!J8Xl#~G6Id?U+KS0L%;6zZ4&U}Y4 z@JE-&xZ#_flka^se4B3P;LuV2OJ3L{j=Sk?C+-i6g<NwpI#f@mR-0pENRl=1VgU+p zIdZO60LodHnfb=D6Qx7~#3d?3194Wj+c-_FGWe?aY0n6pNlj&`KmgujELpxj@rQRk zVkEqT1bo@YG4fy7c&MgWW-V@gT1{Xx!eH-u^GH$Oqs23b=HFt?{*dad)n22z9HeFF z|HSzsj{}0gzu62idM<|ADV)jd+iQ8bJD6#4o_-*Rw7#KBP+bHI8hX<vmtV&eYjxe1 zup37x`yKrmF(@pdkw&7SQ|9>xeOu-1$Cv`FLSV%S5TYq?SYJI|nX=ntef(CyZE0!w zGe6&iU(y5SapD!R-i}JMvJMFU!|)8RPl)Q5>;c3*ig8fdCKUrMV&gNIe!Sc^h*kHi zr6psg;<^Rj%>MkA;o$bGLj+<$S4Bxl!$4<4t_mI8W2+`dZZ<GD81<{V+NnGS=GoBH z#6%cXT3RZ5?>F3I{CW`9TC;)^L-ZOsBQx_{q`IleD+Fo=|CXCWhDKvf2;_|4_z|$? zvIisaA(rt1`!E%4JYlAYw_=&a-Jx-PBqYCYvwV>@n`xsI(Y-<!i3Mi;?i*YU^lAWU zE&m=cjymtV-4o0l+rsz%GI=+6+8EUTnfFTkks$b&xZ80m>4A)l;nULw=Yi|6`}HcP ze{p`j-T36Migi@wRuHbS2oe9uGGJa+fda?1bKjnrxYSmGdsY*C3jiT?8U<gON3TIK z?!f|186O+)8*uh_cZ(w7%Z=sF{uO52@bhHRCcV?FdrEyIjX1M_M!k&OT#XNfGFE#6 z9_zQlh;IjOxNz@H${PM2m5z>%fs8}zd@+z_)ZR5C$hAd3{}Zr%YR7Gf3Ue1k&Qv<U zD@Nr7HP!VRtN}Ekl6I>f!XLiH`C<zzCkl*I78IoR-M}a;n25vWY*!k?;rVtH@2|f+ zTi9KW0%~KsYf=?zjduIv<ag|Z7laA`1t}jECy{>ycA+D={Vqf*XZUua-L};_$JJpq z*_uy!FjQV`JBeXDQk?#BC_erwfpEA~#rNk^_tuqI1j`RZ+)z&PYndut7ZUdP`)6<N zH2PJPbMFFRdk5?6v337cr!QFT({?lmN!-+$Wq%6$)d0NzIuVl-6Z1Y_$0HBaQMrVL zk01O26%fo}CPxCo>9`7vBmp%LK(6r>qkd_3>{|u9hzdU-fcS)3ZTRu=3g+JxB@|x7 zTH68{uYf>!*<#QKj+(i!HA8J*S+%$6OiWC`>ITwQlNTzeQOS%*nJht(TlQ9y$(oit zDd@r9xOIILQpI>wPV%W`Zj83`qvOn|7$E!S6KqAOV&u+5rR%&_@Q6MA)4v;!T02_n zw5l=z`$SI(-!Ta8O;;%hz@bRN1~MuP6cnJEv&|UJu1lGKPwXVTN=o?8Gg{=rZ5A9? z*yHz$M@m^BE`k%)nt2yM+yyXd<%?C#r%n5LUx1vTTJ7&yS%6Fr_}?x*OG&__Q-;k| zR8#<1eSr#lLGQwYpPaf9$%_1)ufL}!3|K1ikc#;C5TL4Xx_5VXT}kaPJk0EX+ipAW zHnDv14DfV-;~lF(B5PI#1a-CfmJs|d(|#dH`a0OUW2K?Ey11Ajdt6yX#V0r7b<6bo zZEZ(02n49-G5dpMs?WK(+!C;HbeyWS+g*u7tv$w%?q9mQj#oou#4e|0J!55&4&QsS zLL}wuc?lfK$_d#%rj`$?7S7xR15=WtSD$MHXa^}aZtc4Cc?d|pKQ2z9!CRn~?U_^* z5F{|x|FLw9VU>Mv`(#a?Y&X?p8)vd>a!s~vd*Wof36t$6+qP|c{`>b{@A_Ql+UKmb zpY`B|jMEtXvmR8NZP~xIAo89-<x+Of>%boj9ZxyFexCZmUtDeu1y`L;0@C@1rJxD? zsx&m7M`B`7PRoiK^lalxS9N6!hfS~f?JO<nlB6r>J`_mF^;zTckZ^p^QePBQ2mCeL z6ecXEXJ>a?FZT9~y+LzcZ<T20)qkY)p@iF7TX%4*UGQ-9Y2t=t3@<l2Vs@jVqrYYU zE?K277oG!iddQcm;**fr0o!qLv0-cUXgj^Owl+N-KY94OxHw-E|D8k7rKz=W6<_Og zd)oj6heD{4maR<#$gPnglc^=1AL;yhY`_=*iP3f>nkS+Kf6_lANCc&tgt4HvM6mmd zS`;-`z&zq0IL4xZs}I*a$ZJDu8J|U+-x6|8_<WL~4#T`GIx3tQyJJrHUeW$!R0A^0 zV~y<D?>AM2+N<C0=spW!Q@lz4;c9o(FXU~ITwhpU&yxR5Lrs0Av|||d(u#V68160Z zy-9+HXK(;O?KUxED5qIB78lLng!2@a-}+)D|9gJ)pRu0=CJFHHl%&sBo9xPE)CV8F z(IuT+Tukgc%0z1QeY^Va&pt2g#js+=L`8v?+T1S7?DRz!<wxYA#y8s$0I_cQuMeW@ zV?}lVcxoVZdV0G5UGGO^O5d+|KXSwG$1+9Ac6OI#&M+{5yfNt4_}5d$#G23FZLP`a z^i=$E$TWxK2wZ97$3bX;mw=hs_l(d1Mo8X7=msj7WCSlRYVW*Vl<(Nnw-f~wc0WRC zB}!iRB4qp8gD23K`Gxo`SJ@JV?KxFXJ8>2%doIFAOigowp%;Dc?tc1Rt<FM0olPB2 z`c@vUm8J{O^3yOk2Qea}p97)d@f{d=y%g#ptLeQn_%&#?{XA=fx*G4+uKL14^or8P zBJd(7N%)2Q_2K;1XEWPnKIO6DFEI_K5<6(8<xi8g*M>~tz(`50l5%Mx(Kt|BU56j= zsv%@xIh&ggIb;UGp{`&Vlp{6hoh{b^4FLstd9Bi$GLA~(CvS=HAwbdg(4&!xtG>c? zaIlZL20h+d0X4byZsgXW1VXCJ0HH>{RvA+t_OCEJy_vNNz|MMz-cP^O_&e3zAVe|0 zu+nOl6TTlm9{=dmd^m)lxL4tgid<noo|wD*I+=xTl<^B9^L3;OfD?hxN?qpZ76_CP zy@xR)=3cZT(@=?c3lnQ88b{JgSGnkWM{1TaDJE|L(pQ{x(M2glyFMt<Fh2F(_Xo1| z53lV1>}km1P>G#0iBiK_V(<+gFV=^R9Ssfh>uIleZt5!(I{Hg$`O`eCt^epSUamA) zaVV#fEwwt~|H@!`2V;WQI%iS8`BA5CiDclS&o3=4t*%<>a_uDb=QpqOR<{dMvjN=_ zU^9Thlr)!dm5$m9MLsj;y(i}@0~&cc0a1A5;?jDrsB%jMga(?sMO?R337EVgu7wpo z#vKcNxrA+$UWVaPjqq4@ppqc_hlWQcT4}(dp0PuCG}&DiAEwm;X-#UtutLo8Bz~*c zmmAs^uEj!UD~Z+kpcu5^0~%^GSczpNv#zJ4N~6J^3%y5KoF~2IGJU=aB152)1(X*R z6*fRR$Rii@VjOEEC4s$a3zUs5I+bm0Z7nSx987Wuoj=p!$+{G8{<bLyRrg^LAe7H< ztgP^|u^IKp@1B_vl|zJ7+bqq@)Y_<=Xr5)F=<$yOgFgW21>8??u&_HHLoR<{i<B+g z-8H}{B!b=wNSb|r#{k0-S6w$}XJ=nu!HZ~(&DB4kRiIu6sA+~ZOTZ&6FGob%uqP0Z z00JE%CDVeoBJu2owN~InlsYp8g!AXR-k^}{nxry>LJT}|x+Fw>jOp?}`t>;J1kD0` z?A>D^D1HHFHuzc0fHiF+26qnl0BFcH-(xJpRLQdAhp&B!2bK^j3ju?)G;8;pDuAic z9)M&0W~{HDtHZdsZ>5GR^YRH98R!<Tx4CH(1$kM5poCe|_#OAc!#|;*BwrLBsY?(p zz<B^~1Th{b2gkg?<EaMT7@-_jhWyuT<Kt{?0ZzD|3S2<`4S?7I=o>Iqc4)Gr4a}KD z?Raj5I^l6;PqPUZ2=8UPlv{rU0G#x|l_e`XHa@;h>>XiEooq$eMx-K5B-pN%q+P{* z83gV_jISU<=YtuGjS2}6oSB;biq<2#&o#a8t=~^o_p^hytb+{3y40-4Pyq?bAM?wo z*s-C<e!NkX(9OVU&kAmHrRBO)p)xxnaRvb%i?97ZYxUm@SF|mII^)(H4>^8oXyM4g z;p6{xd4S%JC=)j5bV6T*dH>gZib}+H+DOpr<E288azR1Ccgy@~4i|bulW<AK6aoSQ zAPxe^d|mJA`nAO~KW#67-YDR<6)&;+K%`^;7q+Tx`sYV?02J_Q85<WW(&8GOpl`T^ zNQ&56TQdMs1^n*z8C>fVWbr9rb#*|kt&Jg8XH%?_7^n_`A{!e3VZ|8NEg#)_dEPgL z0Aw+VSYj7lH{heB8S7&9^$|jV;l60z)cU%OE*YmYGrYU4JE1?s(6+4hVLo~3%$=;S zW6#G*qgz*k)=No2Vus&&gpkL_qo3Q;{m+!HS2v-zfA2qAw40JW%1TtVz>16%svg=V zukg%1?=LbyQRW-<hp@}Lg`dreDnrBy`)M6gBSsI*5cD?T*5&h__8ZO1VC`-Aw!zn@ z`UiYM2_?oUiSENZplb@4>R3nN;o<^R`cYjq2|{vZx}-CiIzR(F$wHtJp-lY0KI^(W zpvt-g`poe8t%4%PoEPxw0ltr8OS{=5v6r#N<5uNv%#bl_7z)wMe=2sXkMH4pm0?hf zVeXI^AT~BOU_XwX0XmeJ6?_W1FwW=zu3Y`Uc!}MOtVR;f7S{#5anJmys3<VK{oUdV zc{?k(@3uW40K#Z2Pb^HibdIj;2q&`fF>BAVtCoG}!w9q|9!3TRBio$I3x8o`hIE=$ zQ3@+g*GBI!?v<~6sB8Qen%#pW!3SkOi)ZyS{f6k_azD-6!8Jw_U23+o;|#4CL(+_e zkGBV-dVaYwJLL9+m_p2YJNf}+#2x?!E6YX0>+Kjkq;PcB(j$fZpo2qB)L2Mk*r<rv zB^2~dO#|%MfA;S<W;eR@q1z>R3kvb`pS4~9+7{OEPnKGL9Fb?IAN}^Wb}v_d(E%bI z+!8T_O46E((J$ryYykz4@S~x4ikMx7G-tQhEn;o1MgQ#VY$!Ms4GaURnnvE8>e54T zadDkR0na=0@A9$0k%~pkkuHiM;!7Sj2I{u3&`@%w`*Tj7Ce(w21KZ6`UB;Bx*H^d8 z4I7~~Me<PpwLMx8HXywjztbO!*K)&&jt3IerIBZBNtZ)i^ZXC0;=V7@bt5Ao_%_Y< z<IONX?|Q!L&8bRt0CJbJBtAhNYRUxFEuw~N(|dpNAJ|LJNc}Mn)w|o5mb^*NGl1@K zGrV{OO#?D3yf2lj^I9DctPlx*=saDw@p^<q_PRZIySi%4Mz2RFPqW;GVPlDxUSNjM z0t$RU+%V0<-QC^WyWMv7&!-I8`OwQV07VFRMQmu{;#A4Fg1BSYSXo&)IkBnUn}7c> zYxw5f8ZiXuS4~aDExc^~4N{Vi<-OG#w47R4X!QH%J9%rn-ip;?J9oH(7(TQE++*?a z@v3w#Z%+<@v*y+MI-+D#L-xO&6q5IlAC~4nGNlYv+`Q3gQY9&Y-}9jL0vJw>jmhdv z=L<3?gXh3S%Et>8+Q}ledUWT5j<hL|vHDy)S&I#hb?QThW(OkVuyO(&N%;ee>7Iv( zpl;!k_buOUQ>0RNk(E2QmD{R+SHmeEvw+h5>c5ZY&F7{|{%5z(?+quVG0K%t-AJWl z`-<r~uz$V|A6v@^2WgS)RfpeFh=oFWv8^tLcwsk+QrNX$kC6P!gI8j%cwV?=BK?R- z20A!lBcj_WkYR>y9vCfUyZHF{z|)I^p`f5-iYZGA5S3EK$HxI-1D0Fh6k4J|GA``} ziLFipR0e=X33fhR_<Gu=(nO$+aQasYoLtzW+|t(g-RQy_15a36J0mL&6BDz^c3q2g z$Z%9dn@G;6B`AZ-ZiWAhMn2Qr+<Zwbs3Ejk+y>}^3g&dVoG#4GseX1fsF@}()p{5h z$WFi<ZbeO4)M{MX1z<K?TU$p*CBUhVC2qJ*8r5yb9?B;Hf%d&8MzO4AI9%Nflo(>J z@4Ih>SO=K53NeW!Vi{WN7!RFrx?ap$bp)@6Czn*5$t}-Lfd;^Hgc3cwl8ZK17NjEG zL5=Dq)7NbpT+jQSqOO-R^YyvK|F94jLT($#MW5jGyp+6ruPXL=J6sE_9nyfgg`MB! zYOA8gO%((E`rwn}HB&Zjr!z!1Am6hI^f2rfgHWOT<H%a>caW6q{%Dk9sdI`_s+^}p zf>PtHD<~-%^)^nyoEZWRJ79o9Gd4C>0l38<93-m}|G`Su;!3s(KJPaNyv_mw0<Nze zPT_#;Tj_RSnUG;)9*}m=FD<nIxHZ6eQme8l9}RcET+~n86d+gVF5$R&egiUopkSCe zzKg)5!5*zy{~44QBPR~DXn~*?#R6<cWI`x<<KP)oveaS2^OP1U3W~g(90xmlCcnpw z%Q_adR+8JHA^ZKENgHp?e7N>>sp`qzaKf>(r?IgykhNqG?b}8dbwDzxFawE@m?#kG zy_-f-TU8qgI|xFKDt<c#t}Uh7P=6a*N$A%QNBcQUudX3n_&E&#q(Gmsq&@i{&SEmX zUD!qIc)s^d`t7_`eXPWz`kbB2Ds<g;T&f8%b01;J7ehR45J~R!jLBYo%>z@bpc@B? z90dsp@djQUk<U)!(a-5N^l4RTKc=hm_&~twd0#gGf+ObzK9ku~^n^i7U9@^Fte3Ry zp3kD8yvL)0GARu%o1F#Jj)cqB4^P*-3nU(fhCO8jU&G{b+ybf<nxE{rQC%gfV5}md zV`6|e2+$VNf^_)K_2W)vA9E#Y<tswlp)@5%Z*Q-Wk<sd5be9bo`9c*-yd<HJFMlNj zngM}j&>9Ya7?!1W+Ubkv>=ewfoV*Ej$lI$pNiugp=gw%4jw;ikOQNQsvD;|p5fqdM z17%2E&tL5&27vT(FxC!)+5(AKYK(~C;bFkE4yazS5JR4dJ)z1cliX6{d@{452#cLn zL}nt!iLe*k?|uAiZEf}cTe%txuCA`xye?%UUpuHv(8`gtJ#CHIS@{Wg`3lB%(Zw0t zl~dE|h@78-NOVU!mF#>D`S!gHE}tbZ(?X9V)l#HE(z9$oNf1eAS75tyCOxv7njb3& zzRe#t`QEG%_`Rx=&$PNtigjJd&?Tu=&fa!gysGQogfVtPrhao{+x9coq`18B68uPX z6ntE0>bicrd|Rl%(Yx~T8}8P?+^^7k0+UZ?{~O8q_zl=5Vh2%>JY97T62ndTUMZH< zpi_SO)a5XY1Wk_JAwk*6bBL>Hs#dbN_JkY6dahez{R#GT^%X1$<UcWl%WZB<=)e|j zw0k%?I@ani+Vwf0Q`lEWj_YD02qG*b=SI+RtjqEiSW>!Yn;qY8Z*K!OB&(}lH+#c? zV?uh<7<LcrGVqoteBt2abbWuh2YzkCn&vbUc=a0LD&|B6cF-90is7{^$QAemE&&0b z+XFd*^x4Hlx3{P3HmQ^E5=2N-D=VJB2O6{T@bY>B+enwP*Ke0UuF4r+RZpqif)Gjg z57^|i(R~2%3HUM8h{DRW`9oJoga^7O_cX4qQDH;?2h7#kd2C{0quId-*u7y`&6`7H z$Os$JUNsa_ooFt6w=r7t{XzhmsZu%z(A)n56}qzJk5Xw<@MSJ6r;4T$;Biud*b8gg zP=9`^d)s>&T1`O~`DwAy#5BKz0kb5r_!P2p+jUD4SyzYZyPu*G{T0-7w!AvE;CUNj z24dj;j(jruz+wEx7dNEWLTeljPl-XS6fRi;nt&WbL0x@U74wpjY}Z0^$_v1+a^D}6 zMvR+hKfn;AaDXuVp`h1gs%Ewm#$SbF$+!Cwo89^}-i4hv(Hl1LvBLxqOBr81fQAd8 zL6y6<0LQPU_1X+0p{P2HthaxF5zSQ|amJl#ZP~M)o0qqJcRULyE+r%+09mh|vYhR$ zij{QXNiWzi<dxHVWRN2(c`bb3vE_8J3h16S)z@e8x>(+qafBn&qt_Vsa2nVEJn4Pp zd>kFsi6;|2)1MAa;p+S;qssyoKzg7{L}tz7>ezZdbj>$nx4O8vxV+2*Xxy@}uyAm2 z@bC<e0a`9!8VYeNk$L)#Y_FBaH=9}A_N8yHF^{u-tGj7Km&W(R*}@jur?dbjCA}^n zLIF@rf#v2cIPTuW$;p|`@8Jk6AVRvjE);(NCpBglEgp-q%u%`WD_F9IMbw|nKuCz| zVJ0?fU?HXs70TMFZJDet&jtfoX7kZ!^N}CbU%3qE*SEFtB}v;PTEm1enEnZXDQ0H* zD@rP7kKg760+hExi^pR>b=`Md2G&Ekoe50=&9r`W5*4nhm=2GKaL-8r$`beXgMmS` z7kno1)k*<C!7rqS<#$s`xM5W6*XzL3Dxuecas|KG@LB-@Gog1FM<_3!#}=oiAMP8t zB#J>y{F{Ccd2~6*P=+A!RGc|NV{q!lkw~?n5dM!%@8^(=N&aIT4oN^*8<*2R@`dvZ zS%t3a&diTph#RyWbona0`F#6#6YGV<`)VXX0TQjkuHz;FDz*#tdwEfjL_hV~0yNcU zRn{S6j8upDQ(0f{G2vR>^_t0r2JEkTy?lIpt1Bx&R~R_*Kt~Q(iOR#qGmM@Mk(F4i z$=NjIxDoPE)*h0=VAvkmmiU0QMJ5x}GpjW>W6WZY@4MmQECVCS5#h>Z<>lqT4;e2B zPB~9?0&B;|#KZuj^y};Eni>{9fXJ<NwMZ)JDWPE)xIArW=n-=EWY!&y7T*|rQ{2Fb zu6amm1*H*zy6EEN<ppdr4pPm$(x7etpj<Eph01S#x=;b6gFu7^YBS*823j0@$7iOn z7AxO5`3F`hQ<h2sr`aEU{D65>Yu(akUQWMb#8dx$-rd$3)zb<<cbES~^NY*TR37k5 zKtcp`;AG|G8tUuWIXPM3%7M)Jbvra!juzK@1=o~wz~2K?ujjKNOO7(_=i=YLomvRd z?;jp6fR>C6U#(-Q@#SUVjK-r^CNx`t*mM=LK-L46=~uOCkoUQT40JCH$;Xxi&IW1q z<Hpl!7w!IygwUJPZ?fp2E1GNm>l-IqQv@Nb`NX8_Yk($-u~b+$J{_QF>y6<bP~A`h z28>O&k|z$4*&yWBeQMO1&$=)UGNbGyN^WF|aMVhb+T0CSGNL=5Usg9?U2Or0_<!d@ zf3v8NKA{u9_cmnYHvPNcTg>(e_0Qg=QSiN)9dU6LxVdUD%V8N1K6*hCy6`)SpZW<= zQi%0w1|PPdGG9MrE58WkA)Ho-?VC8O&3WO4Ct+))7jU8eMN5+{2Iipv`oU9;{hG_^ z8g<b?&ENEUujEvc0ln2C-fJBTb;_umf&$LZZ$)zeFWBZIV&9<JK0H#@7`V6lR|smX zLU*|bV~7Zdh&q6Lb8AbVF3HluV%W6KfvLkrc@DY%7sc8y8KC+Gs>^=E__W8%&CTUy zJUK+`*AzZi&WQFs5Kw;uy|VZBcVM^={MEBJfce%Ar8?O~KIf#4(3!aD6=VK*>&~6v z{E4;&ptSufa+T>4h5<wjI~SK(-Lj3KhE>dvwT<0>t7%~s5TwXctWKvP$l#L)cLVCx zBOl_n9#@TDu-io~TpbZn(7#NZilA&q2k(z#Mu451>NqYcm`RdZA}k;E;bjxqGlLI9 z?Si27DfC)9boDiGp&?A|*4v-de*|5MtR-(eV3PcUHi$pNX9l>S0L*ti$9xF34U)B0 z6@WcrDm6AxoP|C~G2-)j{wFQvXX{*2S_Ma{*?N!M4OP|dz8|(pLq?Mz2;h;((&`zQ z(P=VPS00H{n?1kzw;ZPd!riN=goWLZ%xEa?hSU`Lh<M*eovR9>ZPpLPL!G$ni2kMJ zOgcOBKWhJrF%EgGw?B#{JVkcew)&ApfE#Q-S*r3%?B(`nWzO&9?w&-jsDX3que#of z*N4MCYe}s=LU3@8q68I-82^(9T3cri^<;GPFVflRnya_TKOW!zl)2O&-QV2-gCL;Y z2n=ZXHqS-0<N(pOr87p#DL~0TF3to=?4SpJ=*Y3u`<)2a&etCP{9S}q406nL33(yV z;Xh!P_U?x50oO~5HqvO48?anlfW!-!#^^Ar(|!hO5Ah3QTxLo%R#1X);Pqw3bLO<k z@0KiM6^he>@u*$yG+F8_`BfMaBsQOQJ8BW4Q}BFh&9z=uRu<4f25O)dor#sqhb3yp z*ESwXNc89Dou#71bT6-&w#V+Hah8?>UacLV`IaJ0Meqnfn}8V-(3s43)%KWyX+m71 z;qmPVk1L9zyIhtlS+hisjs_qB$;rt;VgoFoHUPq!F>9K1k<Q|G>1DU6VkMb}FLjGm zDb!(n3OPXuYr%&DMj~f%Q(C}#(MA9>1^mn6Vv{4o(8y^WBUTj4u=5Jq?TUnGKl^xW zln6YfEpL*gbxjjx4ICajAbPVEk`lgzTlZQs2v81iHo_p-Jf6?<Wb6PR(hrFVZL1tm zLC4!2gBap$i$7RTW932D%WR`X54S}OHbz#PUKG*>P}>14pPW_LhKLVtulkXy{C1f> z)vz)f<MX!ls%S?rc-P)XdvimFQp$cpwAZNo&UIjT>*8yERB`!nzISg0O|zo?$6E+J zgL;zsptz~?eX%Lq4<UGhLIN0lvz^g)Q`U{2OQ1$~IHW}n$122h-O3N<i6yxh{9Q-> z^i_ie+i6g#M~ocaG)z3$BF}Dc{XY?~f`Z-?@`GCs)5a=)FuB2dJ?CxTilFVz4t?L6 z>&{*ASJv<f3r;5&VDt7J7svtF%lYZ4HepaLEhX<7g~T1q4%ATgDQ^B(&fNkBlYi$I z7q)hGB!q;7c>lMEi6>0!BEUT^>*;+`)@FSvFGpghtx9xBK#BGXYD>=`uBJ|EZ(qMj z0VuJ7HT@^X>%^w77UMc;0QZ|UDP=P^FE<BQlGM$z(;*0o+ciWJ7u2Z~jdmS0O5}OA zm1Uf?81&8ooZSMOVYCdbSVS*z+x4kF|90i;1sNt3<aJ6%@b=M%0CH9b=g@j<j<slA z-{LzRMW>p4`lujpX9~rbLJZtE<%Gh=me2*S7xnUtb>zofg_T%}o>{j)AL^O!mP$?m z7~^`e1O%;17t?tU8&9dFeM>>1#m+{c|8ejYeVRNiCZ^v64W4JN*6Z@Af&O_If$u7% zl<lW_`^#KHA#!RuZ`(SUZmppP1fF}`>ZMTMR3gRod0i%<CTz-Ulc2&}AZ14rH|}Ny zRR{?EkTsoAM5%rt$_0(Tzsu#k^Z)$}IBrwWr+v=rAnY9?u#?kmt3*J_X!LnSUrne* zGs)nM%_j7CcY$l=S8u)^QxTw%r_t6<9F6BPv8N>Uhp+M10Kc_(Bn{WrRm)MW<;%+U zF6vvJTxhv}G`V`2BPhgaeD>qah&KMc^LLIz<2qHpPZ$@G*|h<+kxu+TLV~*L2VRSB z5kF5+1g<>-VArF$h`FdXRz$l?)UqWJp5dG<5L@=AVIw?J;>`Yv71{6W*qDyr$1+gk z@LtE~oN_yx->&{`?PYk5+$_C(=jFtgi2<SozyuEv@Op@fiCJ;t>$?{)qP(I0)Y5Z) z`Z0dW*1Jd`WpkibF%s+q_#ZQ}b8vibS=(sghs;OhG0DZF3|KWe6ZY|v-J}zR*uE&} z>gsB0S_}=I7#jonr$_WkcaP#Emaqqi1|R!o2HZ4>N9)mYcwtHq`6Q{p<(XGhR8(F* zI)YFcm4tMRBMk=I28x{GA{e|9q>&Ib2);$HXI0<TgfolWtxXN}(|qUzgDh4%UIDDA zKl26M0o$;;?+pbRV2*r1OJk^R7A6j^$1O}3MV^9rAOmI}vv2RBr5dSeQcM|IQ-xaE z%FCfW)-hOkv5arem}Z?%9$d5RLhSCZJ)=!Ieh?tM=}6FoYeQJ?FG<okW&~ty8Ff<V zGB8SwNjwbL%_0?Utu8#f+2eLz=rv(ucaRr_sP%2#4uMB&sAYDYt}gWG+|F-z;Fc-C z`EQ1JB|w=_8DGnmBvXx+$8hci;r{`Q%~jablHKnr_$@)H3h!hrID0~V7--yY2X z1iS0KVFg+|nEXF6Vcj;@W!kIdWzEqXL(D@hXaTl_wl`P=MB7Mw&R!2jU&GI7dLW<% z1J=sw>Q{ogLaN5ObGqzZNV!75*lcY|8z<Ip%S_wT%bWln?<-^DE;ry)aC~{0lbH#i z0BSEh-AWE(gfsQZEy>A&tiu9;q}te2@Cs=VrqtO0vI=`xXVuNyxZ@|`O3^>+(5q2v znSL8{mPg#O@tC4S80iVQI5ufaKpDbaQmX5frXbapxTwUzWB$B0zUq<T(tC?|_#;ds z^191qYueUEKhcu0f%KEWU=}vWd@L50vbH+$cX6fQvvJAZH$>|7jm|^e%L_gaM#rXz zO!zYe;LV)Qh7)Va`^yy;CaEzLcQtpE3)zyU$~xl~GfIIGAvs&QzPngChRWpZ9cMY~ zYHMAqO3RFiFi`blJUWW~?oPEHG2kHxjzC-MhK&u(E@<xs7)ecr+;;lCZ7y4UtmM4? z2Cj+tyG+mA$ADRYAl^GXn$n?s{pR=agWcIx73=JRcjAM<{dFWu4Wm+r*q5D)9RveM z8E7>rxa@PIO2ru?EW8<niqd(Fj})|b;w04iu@>t|!tL_5n*&aTyBx3b^YOF?F$0<} z#NL;1l>)DON2gUdx6f=j?>d8jDP%t5q>>PPM(0YiT<+*nqp+z_*hgdv!H=~;N%ewq z>|VL0vDM3I^)z`K;Lsh?#-C=MksB{cOWS#CH?MBfM2B;;tgm3~5hv@kh=^t36D_m$ z$0xT|ghER#RBV0NiG^j<W8YzsDlYQ4CF<V2k5-6#l3gyf`^U>k0=PQb`u(@MSc)|m zw9u2DU@{z)CxULB3b?B3n1GQW_OyX<_d!Dt@<)jwLb)rITPu<wgmP$}>3~G>M$61= z_c3@NG?HMs{;A=+s>d}=WAT`Enlq?Kxm1H;ftm8C^6JJ(LFBYC`5;>ij+2d;U3%)5 zBqbm_h5Q3L<c+~!Rty;<4PG%l>t;0jykTu=Z_295m594%+1S?GdaozMO6VicoB}K$ z5t{|bZE3b7t&!!Wh_Y~TIi2$cwZ;m7M2*WQQ8rBFY)4!OYBkzNN!cGSU6<xpMx&z` z6v)}=Hy)o}H=Z6gapBR6VeJHNnf`?&$S&8zjkx?;w)VAL3EeN!=A(ml+v@nCWCW$z zwdu}7$M_HIhDCq_zlg5nWcLX7G5s$jF`WQExLJCyveoP4r9oTBH^AW2)0WpJMGU#W zB!svm$K_^*&E-&RECH*EdgWMbjB#7*?tY>qIO~hf9pGeDnwyDrled$ko0<uHQ?%N3 zD}_0{-<sBFxc-KKW*Bx8<zG`@@3V@ZOe{)nc5Y5?n+H{#F}su)5vp_zbR+I8*w$L} zYfD4(W;vguhs*5%b6x8u(C1)5-Z5(|)(YdW1_<lMY(R>uxJMp((FLGjjxg*C1Q5xP zGyT5A?9wkE@+ELKT{P*0*Ue-alP}895<^~#UKy!`c#KndPbVAA9IQMTaS_svZNENf z$a!n#7b5Wp;&gT$kBvpv^R}2wW6PAZ9e>if@%OAV59t|eHkSiy6&6)h<<-d?-pbQe zkS#YZSex0c20$%9C&CC~2Yja^2TVXg=110kPwKwN@QiG6B=1#SdZ{^=f;a!{E<1Kl zX(!(QnVBlsos9po(PXTpe2i>k(f_nGfYwbZPv}Y8Qh&E*uhQ9tMk)Z^L&de-BL|<C zZfn&2nQLvI&P^)W_}<lXIc<}~X(C(TyF{ZkR`%o16rL3z!A;9r&w3wYn`9H5E=3?q zqY%#o9obs%u|h>eq8AU5>G(h{1O`gct9=Quz0>5`{$7}OP}ck)?j@1Yhesm}pQm-* zUPQRmcWNhi^&)dV&jFEQHu;muvyJy28|gN%CWWOLQ?FBB<t{Zd;sy>bS{NeN{zX>C zw{u9st})n}sYmSau4g-;szWOI{jc~g`IA8jGQ@zc%lI|&B^P0du}8K~Rr}Jq;%_;b z0$EP8!*AKVXLI@Go!Rz7#6sDYlt*nz%{82g_DUO5J7D6by4$<s<P(*17Y=Z8kSV+> z0}oV>`@_)m{i~Zy@bW7D>}?nfDq)YpsxOr#DEBQU-J)4vfoCMG%l2RAi9lQPA{A7; zKS)tG{oLETF%zoBDr!fKu#L=-3~e;+mEJi@V0=avH-(IXLQawy=Wsz~Q>Ug}&-2xg z9JFH;;I!k$_t^Phw|ssN$8U7Vguamv8_xB!xtw5kLA7e})awD&D{so;{=;9J#)7rZ zaj4%1e{lb8Q^fZ-0f^o7_8BJ>#I3DG>OAkwxER2-8Gh4N#DOoN%WAgQ9&#;y0D?|` z1elNgC>^(<p_YLZW^w!z^5Wf@e6kuj^z_$B8}t?&je&s=Y-WVxa?85|RA0=t=PZZ@ zV>z<;5rQ#MAPi#UA~@*lc3ucjyKb@VF42&Lngm{D#eFyW=B@7Hr+ZG_E}dOmKr{#K z?FN|C4eB|9UiyBI%b_>rl~M$HpIPZIzHKV%ikD5NNgnM;2M-JTv-qoaJx*R!8AHRz z!*{1;wXyw_fPw}n!b#EJ*i2PzG*E?ks8+LmRua>c_`USD@6txT@n2sL5<-F)yzZXr zd$z|1Q8-8hcP^}R9_Aag>NM{uKc(*~l0F>NfpVwKXCfmfTmI38Hl29=V0Z(}dPQj1 zq)W%3j$xg|O%J}&_VUOeI$(fd(0(n)$8yzz;G&E5cM3~NV|^u_v19IY4ViI0v4qg@ zQa@>;YmyC@6m@mRf3E9{0`#?IMk7=xisj(+p`=A(=&ls0PMlgL2p&4~&+keTR)yT$ z>M>DzXqq&1IUHA_f=Jp4uH0j6KkDCV>EQwcbB5G9P|+`j`$z{i=Ac2D5LAl5*Xs!| zdi(DA3BF-*5z4>9986ma4f21rE?C^o1;OlN8VV6%p|&psiaLoG|L*A6KZ<XUL;&@W zfydZ_<JN8v@3%)H5{(xE`K?5<4WZBkDQJGF?K*LTa$Of=+8v6De*7zLD=$BJcPr6Y zfR-lw>(r$|nwe9iZ;ExdiBYS|T3m!TI}_Nc))NwLUYR*FGvxYH_!ni)C<4f=9A!Ba zIm7AkU8}<N^vAz^++Vbe)nf4=kJ;@YVX2KL$0AuALw08e+oFrcgNKvZir@0Q+UbFZ z$XQue_SN>4)1T$D9S^36>1JbQe}{yxU2?sq1T<S7hon;?A-`nA5b-?st95k{fIubg zvnp94zqtm!&W9M~Mu*4c^?}@iif0J|R1ndw+#AGazoCd>-1AwofMe5w8%!Ca&;rmL z_jZwMSH&P|BgG*~0>yL+vE>>TnEi8@f9YMiwV70<fIdM}T!7saPnwe2%8@{Kje^x+ zSpSPDNm!69-mzX7#nvq*B5cNdVpi67{$le12B~s{iSRyxG%k{INdL@V4kq+fYR=3D z_jVtnDxf$POG*$Jx=Mv8L(tGzLRZ(#2-P;8s={<;{0Cph{%mns??f{8L<9$o)lxlP zh>Dq{mfS!%dhwkz_1icE$RC~u*HRM%8G1KX2lv>p2ryn*haDQX?;e=o?Lkxc$Ys@3 zdEtSjx`WL)^01=t2K8_vS`mowAb>hBc8Qr+_7&ziPYr{3j~0zKlfS5-GP(L{SG`=8 z%pL@Jka@OCVt2Pf#G9}`m#nZVpADUhUm;&Gb_iqj4ND03q0S6~)a{JBLJ#f`TEWtO zoe32>YZ_z-*?Zc`ZNhCPMJ5l~5co;4&F%NQH58fg+#eost58cjcLQ6YUn8VW-6&YF zkWgI?p`GFUaZLU!U&k{O4y`RL`90mA<}BVXkl$rS`&qh_Ly2_FP8F<I*VgAqS>Rg+ zVc=1^Bwepl^AS|=Q2=cWUY)FXC4L(<rb&tgxGb+9ttCyeL#6>}`AddvTC0igp?CFq zD~L)Udly%bu$D+LK~?cC;P`6Xuo4+MXj;-7Plged&iC)C%`QuzTBs_Y(0|}No77wH zE~k03{&pY4^7IA-2nb?HRqa5Sk6z|~&u9vc$raA6`-tlJZBHK9e!b7D;+>G-j#%3& z(A(G@d6}pvA@`;4NApg6uces`8>ny}N519QRLTzI-|{GcM(F2Mso@mfyQ)BR-=f2t zAl0lN8t}drWBp@WF}B)&&7-mM{%*MOL`5)6*W!Ess19>WnHEofLA08-_(yo<OL{Tp z_x_YIs>A(GG^wOLqZg+OF9W8y+*TZT=Y<@e7Mr?)78cH$F9IEd%49>NJN$O}NYM-C zkRaGC7v8>02vNGP*crvZMYDiO10t>R4!n5)d;Z+8ymfX3W=ybw&yA$Eev;RXH{55w zO#~o@w6xMWT3h@E#QF6l+8#(5t?@OlOB^U-P%b`DNaD~LTdPI6a4e{x;8FD=FF2d@ z+o-IQfq?8uHZxI}9S$;1SIg7$G<hLm@J%pQoL<dr;2$k1##c@E;}V#k{fM3oKg%4{ z8Dv)0Kp@QmiN(ux7{$$Izpg^AL?&(1k&(5>o31Fl<ucwG#bJy_E4m4rZ~no1;WVXB zSt?q|Dq7eya<l=3T(X@X#gq-BIo!v4G$ala3f?z0JYS7wT(~^5Vv5D!dKuY!O$zg& z*hzSxyKiV@gPlx3o$&S4L8;NVFzYuD|3-omm8h9<K`!;|S!<1WpfMgEir?ePVT(W8 z)1lHKmc(FD{{OUg<Ee3On_DH6cNE>vU1v`3P6&w^3!}%RAV+~*8k(}#IvYA(C_#$w za5~B}1Tzfae4_)#+NMTluDN;J)t-)z9hn2zS!gl#t3tzBeGei?;idFcCwYHFk>!mQ zFt>eA1Z5g)ol2FGWZyOe8VIB<lIN+e@*N9JjonBsHhbu1gihXWeNEYCWPRPFy7;jH z6>|%EE$cjrB_b{oYY`C+1zLFKXb#JQ&-IV#VodfeMW24%UQ`6p59NsvNfHjV?>y2J zpFr@tge5yTElqi1qM9K=cPv$d>+8s%{m~R87(7rScYDog9sUCeDWUk-$+@?b5Jrp^ zaeIeH?#oZ6v+;YwrcXMMjKS^`CWy*YsH_kpLD6yATCgCG-9b0@IrsDR^ZDO(;z@UI z9dS-!!PtUVQ*wKjb^<Ln+S>OH@<|QUBJ^yC!BDsr$pIAFq(f7oP`K6$xmJrY@=mT7 z`W^T1AZ9O>+ZqKSNRW}Z_;Qg<?>ynvfeaKfaNDZuHWbv^nAdBW4Lx<IC*=J4YrU5v z5<5@F^|!K^x+lQNR#E{|S0+k}tbxPmB8GE$k~^e+n}Y0U7zdR5d_)GS#zN*YDI?b{ z-v~F9=PW3pwNiEPa*><O3j!i6tss?q;NO$y=2B;NE(p-Px!IqVd9Ao!T-mn~InwDZ zGn_DgLilE#VK#L9q77>$Eelf8*N(~wMiBFo_3YwCF-OL`t-99VYVdKJygDD>3RMT0 zmAMqA>deWwY1QoUiFsH+%?;^&t=N@oL4feqRj6Cb811}#^9{aKxwqaIBs~Y?2pxMx z@P*mUKy1}U!|dgWt&mEFE-MP0uUPaH);$mZ@2;ga`@3pz{zF&_3x?>}F%L+XHp_Y3 z1#ZKmqpmd1^%6xwV)dy%MOvIb8a=B3x19vFr`g|r1fe-yD|p9rLh?6${}Ji2vja02 z76Ro{V012*cH*P?>h*5r#KhfNe$O#mLc2~7V<x2*zuCsN+a_<Do!xK`mCqY1wJ^6c zSCb^6GahF&bqtBH(#P~qCIX*h6R9$SmvKYL8&=q0$h^c*ti9acgQ+<fe{=gDkv<pH zvT@1}%f3DElR8XwQzHlzPbubEti0eZc!USK=RU8XQAl-U{aO5D#;w9TFXAHdmpGS4 z|47HFUR@KH3JM0AsJZ!lO<~EC;TNhRRn~Oif_C(8XDLvyVSCMrd1y@^Q=$sGx%dYC zH|{Re{^Xu_!usEi^*kBlXri)yrV;`-RKM3J2oUoMtJtZoLtiW@4mPB|q)Y<5f$-Y7 z9B5a+Iwn1Ja=X;qj3~u~TnaO#g7j}VQcykbJ0hHu8ZX?JE&G<t2SEgJx9bsNOo=e4 z`W$`~Vakq)bc%e%JAJF=AUj)4fO+xrJo!&5$m+`-N7w9M1WD+bo8C|&2GXW%?r%Jw zWz#T-sY1Kb0!^^XccifyYyrE1_0EoOz^TJdG3?hP>Et!>>z<#Mf=~1A9S8C+Q0`~P z!5BCY>0fg!8qW3~ZC<E%=HEU6LfKy}C?YK`A+JNKBsW#1zPT9{z@KoO6S%=E;Aj<m z@#&L9=`Ki8g%zGWTm2T!Zao7oi-%SHGvOqD{3Y~`9XN+)XP{=q%3DU&=OCi&td}zt z2`>V)7UK^{8P`flG^|7n5k_`e@<%pcAGUAk31Tjo(z!KVUQzS+u_RgHg}ZkvmOBa_ zx&=qPKb!kIA={(;+UX$sv^x;x3<CAA<Bu06EfQ_sDUDti*!))To}N+VwKI4~Rd$(* z1z*R*k`VecZzW<5_|z7Zi_J}?XN@K~7(2o#ka?Msf*~!3CmV8XFjo7`|Cp|tMhG7# zjm{yh?U+)+?muHvXRq9N^j@rc>?e#bYx>Y%+e1zy*JTQOs);DpAb)8`H`?hdn7kqb zbw^0!V2?|Efs^+i{(I5G12+KyPb2DpQsE9cfN-V%XEKh;@zUz^iMwpyvwb7G(?o^l zGB}^bVonjn-C`gBB5*rSQpFcmBPd1Jx*iTdBR_UYP}gg^j84(bA_`U<Fup(kVjYJ- z#%e#IsV9XnFWDU+`Eo6j+(^jB>pe2}*W-~~q^|)5dM|WDm!r+C+FuCwD9b?_!9=#$ zAS?<b48K^kOuDn0+jZ(sDu!P%kt?I{=<K?(%A0S9`w5#HgnHFs*KyL|=7h4#q-{Aq z9xIs}$sBO^DIm�%1tF=pr58=s8$qjx0EkFtY7$00!f$wtN;O`C)P*w46DDoM1!T z8&c24%ot?tk^DkCzhYOZ`_*{T+KoSpDEASAcs|)*QO6DY+?mS<jh~@d@@b`nm7d6D zo=jm;@%@?w(ktZ(eA?;bnmn1pOFOKk-z2N>XP0M2H2m4pmH5e@zGJv9i1e3uEsdqM z6q!UZk9akA$$Bg&LetNz_GHGgxa2R`H#9PDCI4Y4=<gB3i9weKlTO$hK|!3{wq}&0 zSji65Acc^P=Bmeu%v*e2_Q-O%uUxQi9ug5*l7}<zt%2%xH@$A&Rx$l1vDzCz=~yF- z-tw;o3u`$tQnb<<hWm+t+<AUcz4H<F@s&dul2mC+E0-0fr)RsxWD8%E=P(n^NK0HX zEuU0r{fWM^eh({it&?i2n&fTky&fuQ_uy--@u4W~g!Ui2p4?yn|3`|+=)$=uWhf~f z&M1%oE|dx%8A*be`m<A`YnFlkpdORTmh#*Vx9Kx#aGBZY8QqXe`uqu*3`9!anDFIC zi^HMN$KzDnsp+2<s*AFEC${Hp9coe@?G*$?A6s$7*6-p|-96Jen5PHikt7Hls^(5Z zu0cWJT_RMu<l-br{)k!Gjy*jeTKyxm(g?em**S6j0SWrKXcA6rFowg!-wy}C1{5&{ zE^QC&S=`CGTJf5!xB@(i@`3RR+$j(x3+Cze=W<C^|3<AY3srl0Fx58DYDG+=Ea3ME z5eF4u;XQT;lrnkpxnX9pjkkLIRYbL{<Vjxl#DF*juc)6Xornoa8x2;H<^kEWWOc(! z3V&U24u9elM%xqZArtV^a5AHT9@GySH4K7K?8!S`LN}AagwkU@{nc|50g7^x7lwo+ zd&bS7F74sbaB{4t&e%LQFXhSl!AW*DWDu9?0ymC8O9nDSB|&l50V!`ZBVK34?F^Bh z&HgZn1wj*zS9DX6vXcE`;li2op=Y<3+Yn#KBm_;RRX~^E&SRi7ta4%^Q0q1XD#J!W zBE!Zhnqaka_0w9-y}_K%(<s<}IPbV{J<yfto;0Tu@JKeU$x1gw+4mrjl|k@;X!J+N z4|&>~ev=k1>h0hfbx3VELA0jhQ^6*$W!f*<<~L6u3&Hl2_pgj+w0tsR(q%}4joW<^ z^oK%|q{mhJ(Zbd3KPqc;%o>jCcRUmG(#qm=Al_`YC$Jd>KNFT4&aa3|X@phiR)~ci zlhJf_bTA238|w%nWi?Z!K6%o@fELiQpI}HkMsq}Fm>bBKN??_U;cm4^c(;yzx9+`A z|1pNE$#1!!Q{x}v|Jf>*|LB11+xBVWIlq&B?C(0UR0{hEt42GEk~O2TAzIC9<~n!h zUxbMb?mheleVH<ljEl=7K4$cf7GJToMMRFVWPmgrbhQ0b2`hUkGl6fPzWlNC&Tmj? zL!;GMGe6-0Ta*%IY}qrJ#dMr8yhXKa=N`8_wnVolL_C0ejzAJk2U8+I5fTE(;q4*8 zMHFmXpePnRbMrW_39Ggq>iMzdg&qXly1HHx3K5!W^fW&F3<ckI7Ne&jgwZOZ#Pa>V zaJhONbH+h)PC1=M!^w;)hbp-6m77F=_`h&EDe<<$;}JvDXLm-DvPeG9Xe36*FyD^9 zQE0^wC*#_a2aIu(fj*a1n;U`>L#eTF&0gy3KNz_Ky(6}u2N>Juk~0$6DhWZbNr9gt zi%o}zQ=&r80(++GaA2C~(Gi%10Z<>?u_lFhb_MU8>j{{2Yu@}mPd7+kwnsz*nr#bg z8jvo)2kK4)D2%nZAb$r@DY~FmeUo_v1dy=$DITd#-;(4cf_OQKpF`nQM;=E;g=X4B zqgqa#wppXYL~Nzs;`%y|LH|89`bT=LA_xIp4kcKVgEk-nVHp3rGPjB6duK;le?esN z7<{@8=v*wXtF0&k#AR{_Lcg@aM|41|zd=dYynAql5?gU<s<)T6=HX#K%77x}-%>@` z2ig3V&sphQP8RxOKQflr2#y4SK1Y2;f`)7y`}6mHIxlz*O8>cN|G8*4>4T&lX^7Nu zBH$B@BA6It?;mHkcI2UNJk@(MLS2M~MYQ}BP|y<Zl&1V;WF2dJ8{UiBikeoYHJlO~ zJ8g#bcjb%pZNx53*VEjh$z@6DaY<?8{vnQBb~cA2`#f6B)0a#Gzr~g&Xo(13%ZV{g z6JteERuhowj%;&XTzx2UE&PZFA-6%WRsD;@Xr;9CH|1wrO2a;WL*wVjQ<SdvgOU~` z7t@3tjvfB6im}sMXYLa4AD(50$3fV3d1XZhNy$JHVe>h$V5C)7_;ea5i2g7~Px;P8 z{YGOGr|)xBPUVS5vpeQM`~zt?)+Q-+E{Txlo6l<taqS<<H9K(3O9tK4{MHIW=r$HQ zHRqo7-qE-%EtsRZ-5QK@taE~gU8Cq7NGe|mK>to@q8bNBPw4M2{`+g!*~o&D5sKdn z*>$rKFGon65he%}EpFEcHuWbRf(Zs4MICI<no2N!5Xho|WaJ<6+djmWF&->rUi7_h zOvEJFLNKYb1iYEIZaIi~RJk2aNG-b+MZS>zaeZWTlYpaPHe8?*!R&WR9>%R&Zdsq6 zoAcaBtvw$KeH>fXO#X9bFl$QtTcM~cTF>$MFV~ON_nzCv?OsATBH4$@r-5^ekjS6L z`1rkI?lMcV<lIpVZKffc)4KN`FF=Djd96Ly7TZG1NiaO1oTCcF%`7U(tO!pd+%rDJ zb2p>@iALD7YbS3IwAB$5)KMD2Y&(tzYcMz~9R8W(Chj~&>{O2}-3HUHIRFiV>0o3_ zB5)g%8nv~-PlSu<Z(7e(j|#d1ExTJdK87QU2zpCb1U%TQl2|G}0Er4ZYGLfl;<{p+ zm&AQ#7J1_@eC!(<@dj%23y|ssvgmA-<3(!CazEAh_ptKEi>sBkHUfg!OdoZln$J=6 zlk`k%MJ5k!a+B!WU9nJK(^<;R2mTm;NmwKNOY|9Jj@qO+a~;Ra06_+d<LV4ljvmNW z&%h|O4MfK=lR=Us4KN-Wlh){o%ld|jod2+h&AZ^+c-;4!#Pi&>YMrd{;%U|Il)<!v zs^YGeK8lBD#NVsuo-11h=2v6p;>9QTc98z?`1fc>Q4<s{iqS7$M~T_QXDkhvg&rUU z{mgW2PD^*kIcQoI;m8t<DwfY~n<E&?38Z=hFoy`#u?s#Zf(Ylok1^s2xGhx|<k(sY zc(Bu99qJ(RuyASoL6`4+ZG(lsDI#Up!p$5NOf}3ZjS`+yvf1W04eZK<x1hGsi07dn zo!`)Fb2Ag^H<mumwHQ$3vTtn2TB$(>{pm$S98kX#3<{Sc4!b>qBM|k28_Wm7Kw~yP znFUA4tQp-GmFxL9wodQq5)26|g4<_?lzoe65gG)8cdi3>NOUMKP;R39%ZMD`zsqMa zyDov(2fi16+^B*UbZ+$WK6CRv5*BY{&TrDF$S9T+L8|EK+(q@jufBHlo>srE6QitU zrVu&Q7>eggaCVBpr@h?UrOwuYM6qeaY;w!`tO<j`8=qOaUOAU211X`t?R`++h@)0! z#J`7ewktsXF`n*;<4(O{FV+|n)DRaE3nBh9giruh;r2*xt1EwY|2`*=k9cP_RNc?R zZcai6l+=<y5`U1C!jZ$R*W{N|&@z2ky?C*%)L|F)l}5<T+2Uep+EWJgv|w^N!ER^` zBk+U&)!H&04YIVNOR99rXX6@SFERPyyd}!xdA74tt$hB$*lJ3Qq8xS^J+*E|23wD= z5_4Av3Jfd%W&e}&G2Te{Kgeh{cIw_cJMRQEj2n_)CFACL{lS8QT(JNPL|1^-L)8<z zLz&@5Qo_v2%tlUI&c#ejfEh1Q`+NB~kxIHyBSS|?$*Fa3XVZ@$VN!2gs>XK6pmA(| zfe0byl=lFr)6GQ6^JbWolZt~m@9M3g>mBqHj53Atq4Hc7T>45K*N3UAf*c=NZm9V| z19K`wHm%v~6|$jkR6Vv746}WLZ*ZarWD`LFp+6%OqB?`nSPf6c%3?X2dD|w4mwvFD zSo)>V;*n$5Y88HRUrW0DQ{bCsW!~RY{w0r}4$|pY>)@(!wI<`gX^QJf`TYJ(VlQ%t zxI5USV+V6D1*3mQAY$J4`i#ZQrFwMG%Y)!O-@0HMCVXn$Ek-mM0;rJxyl^3#2SPzY z8(`<?wXH9&P;!!Z9&!|Xoz<^7P)IK<Ink<fnC{)AB6P-<iKLN+Q3qo3(I-zItx!)d zdyk^B1WC`{`l@x);fcs2ZZT02V)sg7To7_-I<)`L>yh`_DV*BZ_&lV@A*jG`JQ<Wu zMhUNbDe>IhO_yG?F?<#aPiq~fYqBy&7=nk0Ak?^@3THa4FEFHDK4vHv0xFur>$c(n zP<c`4q9*#P4lJOt<m~vB7WS6ik(+^}m5g)(lnXn4k4#wam;-SMr`_X<ob=n9x}P$& zkrHWjfv~@a2jZsb((McKSY4FnL!iRlKZ)5p%=QO4$k%JxtW=ZV4|Kj87x5acR2wMa zu<YzU2Y!!*l4LJ)#mUaa!E8Y0g~}CS8ov%T?CA|9-;Cglux3Q0H0L79B!RSF<>Mv5 zZ#|i)pPz@-k#8U)n8&M?5jRVT8m7bl((VL;)As$_SFT3v{;137g$n^R;RD`g9OvtJ z1uGvGD%l!9)@JW%(@0ETX}_YXVfMtnGmpTbiX6V+L?}|w=csL8@fm1)$<IcHqEFyL z`0F#fUGHGmtjir+kVz~-^_Y<de)2ICg)ccn4!WRbsthDNbS`s9ORXl+nf?b$4`YI9 z`FP>n*p#{S?4ft8QK7VNW$xduL18nQ#6pBL<h9}3yFQJeO5C-DC}XRZ)2_G!n|N`# zps!WeV*N~~)ZIDW>i*#kVm2`e6&jwbN*|Go1?{um@?{01Y1;;HG=V_e5Qu%J&cOnN ztnwws)py2RQ(lw>4s&ZBp5+{6)-^em`-^`NUzURNIGc!^Sj6H93amV)vzrXU*rXHj zd$49%43vjrY+t(97kCVw8$8Qfa<tJz$jOv0G~<0KW&)c%A93dS8rc}FxTlML$EL9f zl^Z(;yARGI^^)cF6FUA4k2Hb1)@#)<{q1H`A=Dh}0Tm27<nJhPAL|LpZk#BSBY+a* zqKI;oGG=yMc-z5aQxPgXV$(4lr-^MO6qs32q=A9Dg8(gR+W;vjYZ#8%XKeH6<mzjS zsWpL~%StU-wU9>ma|)4OICe)8hCW!Wy|T$^vi*aou<Vd8xa#yP4o~9Y|D)?IpsJ3# zZ_z^^l<ty}4w3HeZje^GQyK&jq$MQf(B0A<(jg!q2-10^8>HX%yZ8Uy``#FjaRx&{ z&-v}W*Pd&xwbx#g4-!El=AJINU?@aB;l;-bQoXmCYBLBh9CL+<AxhIk?y|l_GYPtp z=T1V%;7E(|X4RyJ)FQ?{=FGW8cj{_$BjaS+%&~f@jWAfNr?OWrCbR1YESWq*ZE-;J zi4X=XZka}@8NY-o<K%Z+-2;Zj_h~EfPEUMfL`V#-lAx=Uyjkt*f5#>!gqs1(tgPi_ z|GrpM>#b2pZ9@kZ*3eJWOz!n~aOv33$;uX*u2i;`ak-0$Q`8TS^vF-Y&T7vjyL2cC zOt6viTWxuY6u#;2rxuCYAc*iw>On*(F}^zb#BBq$>K$QBHF2AfU^)(SjOwK7L}hP# zeqVX<ElEq@H5X&gXRf%r#*k?5(vU19!Pvk?S<kfG<seAX6YwyvuFTqZ2Vu<nOO(N` z$3PBo#dm3W3Ijr@Z#vCN#S3-EmB97Q!6_Ac3Hi#;OZDiet?%#w84tb)`^@kDyJA0a zGI!ERLri1YcO)Yj;b@qh&HeCL<Iig~L39(u2#PCKo@_CLh6kq?+_dj`z5hm}b92iR zJVnBf>kZuee6`Pe0UI(`Y7W?$5wy^{e?n-_sX0%MY+SYdMVoyv&O57;9$_GaN(v*` z(EV)s?1@wFM=Ju1&nl=r%#8L=i3>SU_@j7#C*(gHcpuSBT%vw~KoM-Fz+n+7A4WWj zYx(E$&qB$(=xicF@i+N5Oi5IbKA&nmQS%QLJFe{;KP)4EP0q|Ot~)yZv3GW_=Q$0g z_(>)(M8JeL>^RI!mY~NY(&1Y0%^b^SG+ARg4<iSbbMj}c44WSZ(Jo(3wZ&eSg}wK^ zXI5$T@A_|h?l=Po3d_wW&x^*ntgHqY4$9->6j)>gIM%x(R0QZHsK;4@Bj@=Me@-t2 zZuVXYlTT=^a=DHu_VfPQCP;<IsG~ps@RT3{4R>v=#>aSc)z+zg(-OZ-GllSKG_&MO z*prlm>&0-fzd1WTgoRoILkZgY7X}a{I<jQZ{<T<84IwBY5R=vP)n~gRnmbXkGR7W7 zP{8&?;2_zhYu(<SKGZUnRQ%06Z|GD+({R}S58^hf^<P_yp35ck&$qroh<lFS*Ct|+ zAotFPDO0{dW01oPG!8k=;aLvl--x>15K!f&L+9_@$5t>LgOt{|s{@|k_ctGN^>VoT zOg@ga>*n`2csCX4ZcfDFiVSpcQr$JZZlG7b%-iv4a~p(dEndw0X8~b3wFt+viEu2m z?!qx*$~VX5bG3cC$bndc4_7Nw8SKv)CRA9zN5kf=yA=*{JBphe8DMT$(=K<d^o+tM zJG6n9pr6uO3)+Bm4Wearbw^ceWn)q0cK!a_Cy!PzJWNJdFtccHQg(KVktOR;gXJcZ zITT5)**;7hU6I^)N4evvVoV=APvvHi^Q#sErBrJB(F6tOlQ_7~T91x4EKypAST}S( z!v8Z85(HIey<2iSrbS4I!m0AIk;q2b$a~LV`(!e{TmaGoEv7ivGcsH|j=6i&_(rzq zt<hg1BFeFduV$}h=;h>fJJ*K3<!3vl`ORSN^gq|G%KT0OyEgY9dsynW<YeRt7}?kK z*zUJOxFEth`K}t@`C$|Rku2UaDCb}^a(jBv2_@`#kxKNHWciR@3_|HbTmE)5hky;_ z<^9L%bPsnlo3|Wv7*RtX&}T|MLMZNSrI+51w7YHLSD9j=%M?D1Q&JAe37(nP@ILOi z5*dH-<h6=&cD;GBAZu~gg7Z+X0OR7(?Rr1)qDdx(PybZ1uT>#ZH<LW+aX9fa&ecp$ z8?272l!-0tZjZqfHB&E41+rk8Du`TJH9S@KdsN49b!Xaq?2!2E58h>~)*r0__4IEy zch)Nk$)f@lMgQ0fG(Qf7?>!x1Ofl=kfbP_FCi}fHHx)81-spp8^XNZAg`}V1)>+4; zH$@=63x1A-bso96QbO@-&^a}jNH1wCj<r&}zRP*Vw5xn!ex^$7#qK=ivp*24(5L9= zLV?r}m@neboM_ejx>rRje;Zcg)qTvK%(LU?NWAImvzrflj^(ll_77K4F{5baZxeJB zJTiS$3*%5#Te^-HHs{Uzi8YW_M~58|?O)5TMSG4W-AB2w-@*$f2hZ5$v5+8>c8&(V zDKKLP=PY(%v+OJe+CWY`;{irg(cI3^rBaTFPCJgFl7vt{8=U?fdl&Oun8!>A5a@Zx zt0#XhVjUwZjoxD~1Yev!c-zn<AiMypbQ-_pleZza;d;~46Rxd<{)U3dmS+|ga^4=` zVEWEb^8L8wC-3wg$}#FqPKu;katWYL#T=fj3Q?=<4KIAfixq>Tn3&^p*nWqOuYUA< zIiTVRiHo483OnuKj$o*9QsbjmFUg*ON6|rFO_4TZ`hG5~aRx@oX=V76Le7=p1M(83 zwv?PoW+rdm=1@45z`_^L9a0?9rKghdPoE+nzG42Ptpv3b^lE0{x9K~d$8{NtKE>FA zl~b*So&-;L1nj{vZ?7Urzr&_#YgwzNY>zDt5NS;hF`)FwZ*Q1?nRcBe2ca%5_mZzz zFPgm)tLb{GApN0il~!t=s${w5;QW(QC>ON`*IDAE2N5JeY8FY_*Xrq7H##HSq<=2Q z*O;)f)kP#-W^q9&0*kWcoI8(>SV~e)jcn_ROOGDM=((Xa(`Ei~PV|T3Hgd=pEd4LQ zjf|%Sa)udFYT-br1<dI*np}=fDzmw|!aef%jTkvPgzB0}Uc|VGguobWBSonHXv(g4 z`viN#N;z$;$Q}6<4(rUB#woB!dN7YXg@ktPh3y@F+dEiRx83dj_-zSM@KJp(TJ`a} zl%R#@?G>R~=9j2p=|1z_w8$-=L2k$@*PIcVF!{I_KkwU2C#a7xEvp*(RyQ+3x@PPw zEZJ^+q`}fEz0SSTK#=T1XBRoe&NE!+ppE_5Bk#iMH^fuA@|LmGJ!w*bD=3Hv`u^o@ z<<m1Wht8nB>a9TAZyIpEETs_4jjn^_9XpVc=`b?VxV2?e=Mg%e`rA$*GNzwkp*@#e zds{|}Q1Q<Y&%=7c@@m6EhMJBQ2D$UtXq>%M#QA3uhu0zJgiZ}Jn7U}c%N=M|wPE&q zW3y}AHpD6VeQkBGDi~!LMm^CkW734`_-*7+nZQIr(Z$%2#2&{}v%DLckR)~rQwi0+ z%!<d2{W!}7l}|`i?a$jpArj}UCr@8c@x74>YMM#Kz>>%TVOSQwskN9mgd<D1%W@m` z{!9$W|A}1=hgV&CNkJ#~2F(0qC7BG5ASdl^2!cm$I%UPpuUn$N72uVK2pQPouAz|j z(7XQ~7tp|x=u(j$JZ63UOZm~YvB`a$CB@W4gHyBPDvwZl)kBc~@xrc05aElq9-s4C zp<%w_KG{tZ9~V>-*B65Oi(mG9kFBT4&eeLvq3PHDlHJ(I@QW9dUpNEcD50Yjb-A5& zRgINZ1M^cV0@&>S;faFLQAKLn{vRUlP;f~7c)3>2$Qt_0rqtHGDNcHqmL`|xY+amp zo$c$Jc#uACY_pN7ZpWyA8ZANYg|sYZrO_Wom46w8ZBV-fR(oP%Z~WI;R^9wt+f0_0 zvZ}E3y;IBUdZ(8PqdpL8n@VBwWzcgkz>=ND#&sFs=2dDs9`sJ4$;}ievc>Oguktdr z+O=XldaPzW8z+;T@h6+mB>2g{_+)-Mn0VAhCP7)1DW6~^{mkv`D5vQbg-J=n5Tqz} z8!p5|i!G*emD|=~0e5&j6@CVJX}`Un=o@W5ZCt;;Z*rw1ugVJ-aX9}|+pl~<wAXKD z8ViBI7bh3%;bZ!UFZdyrF>F<@{2G=WcUH9KjlQTkE&TSoVRBW1)(~P;H=nXt7?Met z|B8_I6!`&ff}^;erik!U?kVL}lQVC}yy3?>G4U<X7?+H>p+pxXMarqFy3Blh(C^;b z42|hJugy~=7GJEX)k>$D|J%9nh9g~+BmZkj*TPdtKZxw6q{8>JhraEJ-K!&12r3;r zhq#A~+x9VTBP<|(9YZu<T21zbP!|px;?{!kD<xqwd;Tqhe&|b*?-glJQ+Ou!;-)Yo zXS0S7I)ERsCndC|>88{MkJUf0nLs9wM`Fz3Oy~X>_nnzC*@VmQ_=SpBBhSKu(KGh3 z%UL3M2kx`$BonD^C~rg`y?t$A`V_aS9Vu$YSXx$9lVOY=d2V3MBG<TQA4iGU76ob< zoTo81R(L7jasZ!%p!}rG1VrW=u0H#jl=4l*3u}$uZEZr$D;#(wt>r8>id;ojY17;) zr0JkG%)#r^w-k^%f@^lY?=R)x`*rwR63S_9X&uX?#!8l;`HIQz?a9<YTkbl^C&sR$ zS1~Iek^AN_FaE9-e9|KMELK=7iT$j!crWv7wEOGYc6e;it?~GG-2Rq)rK#wsQtPi` zX9=B%vYX#N)m2(ekaOHpynujYy3hKQ1D=5etS&2YWc4%B969;!<<Tg)Sr)Ik%=r`4 z&Ag3W`<2I8^6^GKP@5J@@3Bp&tAfDX!!EI|AG7O}d@P#EVq!yHeibn3cgMsi5xjF= zG<imho$<1?%Lpp@5piiO*552haP<VzeOx*{_}z#?v|joCqbj{s(j1qirQfD9YSfVQ z`@?~{aDFFOZ!ZNHr&=hvM%lDAQ7p*bWeR(>M+_BU*pj&7t(k_)q6U2M*`A0&^Z58j z6!%(Uq9(@w?jv?2G%~={jow<{_!~cgm!uOObd73_v@61HPT+kD?FbzaLg2~zqo0s) zu+q*o%1*Dm)h80?@sV7e8NWc1^EFz$88Wf9rJ3bzN0%dK2M_Oh;RPeB?OYh*%O`k9 zvf5a!naP4_j(i=%Me0qYY<e9t_FrFN&hm83OYv$|98yiAki4V~XenC|v7Qo0LSmHg zH~mEvr2gbkT<VE!w&@^cYv9n%w-(bjF`Ut)%g_=e=_ZvtAM$S+?rSzmL%r0+-GcBp z3*icnW-w4vbn43XbX*Yb-n|9v$GL3@?(PR$at@z9`g%*@)ijOp9`YOlNgB-7GEe%# zruTupH!aIrMVY&xFnzi%R*yUqrWuVdZuwGMzvXr_WrCLSgHG-CmJKFVmafR}#LTDh zi~R}|R|?+*-s7qkJtVvid3nQz%aM9U!peI6G5bJsD~c%qvG|2ziY@Zur>Yb^`Lp@) zfx2#m`7LEn1`nATot@8v1CpIO-~bKzSYZElC17Uq_ed}~TT08y9np*eC$=a`ava%! zAi@ka_Zmqp|LC!FoNz$<Iog{Ks#xySuKQ<k<d;YIZ7TEg`8E?{&$z{S21`%#GHeA( zWeOseb5GfEI#)4tTz&+vEco61O~1cwB_|Kbh$yl>El8aANcKF0hQP!R8!wmkOizD5 zgT$K(xbMdDmx>ANT05<IOZ|wW*tzaiC2c@G@|dTJ@1V@=&r|!cf*DNRfeO$>ks=}0 zL*8F`Z%6xpx4~o#lfY65lvM?f8{Vs0=vhm}p&6ql$N6du;w!vlz+0D!NyI6Y;l|?8 zn$yBgqjlHI$~vLS*G%tg5FirtcoEGcr_;c~eE8Kg0bIR}TbTU4ZR@b>?9{-Yc_FZ0 zn94p%B}!y2gO)vd;OxK)w^25Hj^05MJc>*QfugmMzYTpWK`kL=Ld(YDe(2F`Y~ob) z3CrImqxhdwIM_L4fT3R`YD<wYhPtLBV7}7_C%y2*<r03Qdh7ge=G=2^sQJ1MJbz+| zDrfR$$V=t4>RFOW$^_s_o874hKU}rtjebNwkP?v7)N-?mb@|vnMYmzn))>xIiaWRu zH-1|j_SH(sRli`CD2q6f;Ap+AIkNM4-gha4VE5M)P?Yfx>^M=+3C#NRPv2Wob-VGG zr9N|2lgc&0^W?^YUALPy4Z_`SGM&4ocP{7dv8q=#&Rbxn#l3L%gx3ziHy3?S1q^~C z&Y0lY*IWjU05xB$a?d$_tmpZ_JNCK;FII-u`3`!|nZO{{ytcY)>r`HPAf&zE*O)R? ziy`voB;DSovZLR&wr?O9t3@k?Sz#A$d1qtogG|AhOA_co?>xgK`4Q<uNdSa)eX_LZ zUMG+}frzrRB4?4ojaEVKt-H6pk%MP!M`2BQ%jCigeHP#PiKgE?;dLSY`uDF4UW#!6 zf`Al2yAjgZs2<Nhw~m;QeR%Wm%o`kzl@Q=sW5#%J&c*N#BcJ?|e)(d0ymhx|L;gTj z)q=?Ei>81`EdkrIHt`OB$TV`daCv!L&}B`22PTB+B{RFl&!0Oj7K3|Z3|3!6{u<!k zV^VLETh5dy5Vk@f5Gc01A3->Bfcs$jmpaC>-|7^p_wP<FpBp+!8uXVKcwi7Y1o2~p zU~rN^E(9siX1kV5^n2+K3cbZ8>N)ouW{|p$2ldZcAv(@LLJ<WoeqmRQUstywOXTqC zwkT+8`}^ASUWX$H)zuI+$o%I@6b!RJ^=Uuw^mMW*JGj71l;ro_!X(QiqD5;kEzYkg zi`qR;`OaohH1oPX<P>KEBqUn;6hl8zH1fpomMX|P>sclCaeq`=CKP)6c6=CdHd6E5 zkGkZvi8zWR`KVu*Xe=4(6rNt5qt3(@7<5m#o`>RKf$FH#@0sM^1^pC;BEQyI(sh2} zgrYsXK?$E;WedSM4UTx#ApwoEg$`I93%4CSGcolKZyMcl^J;C~H<eFaablD~g22#1 z3z&ouXhJ#Fpf9N<EPJ4gWSNrH{AoNy9pkS#)5a1fOL$*lFnliH|AS#zIax4CIzt?f zP>dl!Pt$?^(>fC7frt@7;8aDDG(_0;>xbO?DVpblXi9%Jnbc=b*n>7q-pT^qHF7gb zwQj{95vfnl@MRPC1m~<Zus)Ud$!4*=9a-H8$+DrvFzwNz-k|w>{MD`Fl_Y5^mG0G- zv~Ik0;f<L06B__wsu!O7FPS!Bi@b;%-17Fnql}x_I&aOa{l!`b+3E?Ex7JA{fe^NG zqR|i`A-v#LV=AQ9tn9b{T0p95-7#ifUtq^Z^kK}N(<X#(-CtFOT!t-8Lupjt$Lsax zET@mCd0m_ahxWGnRl?JTW)?1XDJnpq(S-(8TIVesfTV$kT()(C^(H4KF}@3h0OYxh z(xOCJOGZ3wBtqr=`D?{oO4{hG<i5PNHvtfcxQ?QXq>gv&?xA*g0J^XM?QV=YJiSNB ztzNX@$voBE=~dU)U@C|JJ)TXB5^{+kH-G-u9G_VcP!m5WrYp)9;kWMLszyc|2n7j- z%+)<?2voo@qg2hMwosNX0+zZ?jYK1Zk%Cv9j&I-riR;MksH)0uY^>at={`WB#gG4} zt3nnupPZ}D&a{CX{AvTEKpbi~6TuJN;DQN$t+xKfr`{x;pI}Luqx0F6hqkzYC-Cn} z2kTD);7zIj%2^@X9_Pz-yk<S!Q#_|-7zKCXs|L6$XLvI`d5u$;gH?iEe-syDX1uif z8#*kxXE7=Iag!QV@`aE{fpf&d*PTtb{FyI&6*zgbtlZ;FIFuAL9u1KpN&yk$6y4L4 zzcp8W=ou|(`6v2^!bK4Y7&yAb+AQA&{i2i{e@2iHj!Z#flT=pJBfuyjpc&*M@4C5x zO%_L)D6j#;kB^XaP@CW@wjrD1uDqU4?~TG|KZ7GfNYLlspZ+<z{wv=<_iV7j`IAbo zG}oJ?*QtHt)(WAtFxMxcD3;#(ZN&=+coP(2EP7TJwU5(}@1B4p6163~L{+(NYqOA$ zU^6b8Dd{S$HVhd{&9{#$C4Pq@o@DUH2ZRPmhtLEQh1giQvD9Byjo}6ik~M@wuX=x& zmv__XQSI%%SKRcDr_iFB@Rc7V7;oGX5nR?_ron(B3?L@i3&3MuMk1k&1Vh$@Iuxh& z-l9I|{S)JdKeOj4^lWmk!LLrQI`u7Crk?t_T&3xAy9=4;D5Kx4q#{PjU)SF=Bfa=| z9<?NdlpYlo6+LR(hb*JT;d7!tc80v}Mv!19fWFtGX`M_H?LT9J|K{b0l(?;Hq3+OS z_Is7!P#2>a{yHrLHIg-BPARl;q<0+Nw*lV=Mc-wwjNXgI{TdB;HxIw`7hT-Dx()!| z_2}Zd<1lz)^xo7B<%1P613nAF7R+s&xv*Q{DPbfI7Bzx}G2_lTL*=~r%XClcx^Iq? zX=6g4`yFc(tv{%_=%9&c@;drRx*Z#Ou-F$g`h-D;IVu!-Ubjj5(`v1w;fUF!apcgD zRq1vb^{Tpowf$0#g`<W9nT^57WM4{4aIP&PpPKrfZXj1qe|QFq>_^Cj*Oi??N-9cq z9#j-;11Q_pWklc`0-p$0me+PLwnRWRnXCdI?&%98(ss4*!R4*JU9UM|5tF6y!xv99 z-py-S$m!{rSO&emDt|nG>-A@<Vy8uRU~xZYA5q&YtKf5AyIR0Sx|>{t(vf86KHyw` zKwf01n|JL>zWyEoZQ0c|o8s8uESfD{(6B=dl>vc{>?+C;6iU1SmC@hf#GPN5lA+i* zv7F_WKhsd6WA!qG+#>$S)B1hiC;qw4fgEUzL$nHRQDy#a>z)2RoW_QW*iE95+5aU) z|MmCb@83tJ3yaCw^eQI_$Xp~8RIu7E6Ymj#u}-YL^=fP}G!iy4T6AKs6$b?`BuGjK z-8mB+q#0(WS$q|*uG{fBzKLNYgj1V2lemsZR<NWX(5=!ulj5y9tPmX|N#m+Jw<g!9 zF~`mmgU$H5t6jC9#(k>8Bm;@>NC!*296yV9!*h41=sRIyBebYJG=A;T)JR#K5n*A* zj<oAhh!C6{I&*6ByWlv!WXw3#I{B1({cKRE7OF*xm^ipH|MSO808y|awW_J7w&Ayz zL>9ikO^td3C}W57_{lvPSb6^taz;yQU`60d(Aw58ebh|Cr^JJk(C{qNe)=j!lU4dg zlHI(B!#vO}aLZI)zI<W>L!dqDP_24GQqU?CSB{|?)H2)p{2Z}nv5U4D+ZFPkO-gw) z{Jp-wX3vBBT!>pjUD^w==gmi)a%uWpB|$}|dFl{+>I7OJh06SOvX^-77ddGxXuKj% z-pD4pKam+!O`k9NzCXmfDgpf(yzkw%czGB+xaB4g=o~(=b=kHgmO2f0zv&PYTrGqo zDaUX_UTF3RqWc&l#EmY@C<?p{!w7;vgDJkm2mgQ}<6sv4q$cGttW4OgPt?nww5QMf zWXmh0DBVC7tA<ThDVLwXL#D)=sHR*(XU9ve8Cx)I%adfECPS~7kAWeBA~j|6cg1zD z|83f8Hr-q!j`1gw8{A#$wRzkgiSMeP<M9S%#UQ!dsDZIEV{P$YTQMaJs39@KwN!Vo z59%rD`&Zlp)YNE*?<J_a4Z7iHI9(L+9ku-3_Xz3Nh+<uA9@`gamS){>c<sv3g=BZH zAVMS_12-a`!Y-+NPozrA@tZuy0-f?d%MfaOrAV0uq0HeDUL#Mxj#=BEq^gD=G;O$c zF{~^5b2z_v3VkSJCZy-`%Zg;eBo9E<2wweyj>l#+^o9DTz+}0+AY)SK72_GM$RB8W zO*jiH<&qAg+bSK!7aoxvt9mPl0?ZXXBEMX97j&3h3&kOAmht3vF?CRC3gb{7`W9AQ zo{129>8VCb={G{34+}+Eajn){W?2`cDyK%$WWJ~9$ugzxZsBteRACB|cR2eNd*s_H zgdY9&Jz}WGvZ=mNS^_SwFSQ--w9BjBZ`G4z`DR9;GA%=z9fAs*%2=u>xR$QZF%Wsy z?eP4BN-w#o>+3oXhX%=+ae4%iex$|t<wufzPYPMKWy$Q4uo=~$k`l0j@#^YvF(5(U z#x9N4u@vco*2c>bnmIEiR00V{G-M4(gq!bZ{-`jYJIO}$A(SBdTH&9KG6??u@+Iz> zi;(7)y$fT~EybmEv563R1K7GWiDr3n`I=L^C34c9eo)u(d*hTq%Ib-YZFh<FZ>ixg z`58i8rI>Im<kaL&jw=%K>z+n8%RS9WQ{vJX{xQdhQ@}x^^0yE}Z7mc);2sG?h<w+( z<Kzjh7jj|&e+Ca~egUTf8LeFdeJWf1_O?v(C>nKbQ(a3s-V5%$x>vRGDVv{2vw`-7 z((edv{2omSIaC^uw34$`5Pb6RjK7EobKzN(D(*__eE#5O3?;s63&qm2tl7)MDn5Px z@Z!29r=}04<=p8AKfTg0f*bXygxl9lNSg~@iECAkTfR(V`^{rC-_x&S6T?Zdv0U|O z{3EJjF-ojnVnNR07`le}C`S&@xRQjr&22hTa_DsMzQsc@8ycc%_Wl*Bh;wGY(9V~= z9=;w3C;+#sE*EXs!cRvvS<}MGJ5JKhn<i&tNDjI?#(UJ{-X3VgKz5=dTtT4;8Z0Y< zJ}6VyTeFYsZLi`N6NIU83h9mJKyb9;X?S#>;#wcl9-6zhwCBy^_T%Xl<dG@5G=ORp zncC=m?7vGdx)!$1{17RdR<=%jGvCGOU;5osR{uc~`{xG};stYl2ZG8gE{ode>u=ag zxP%z&Vo|mB>RfNSBR?wWB+^CNODaQY66p|<p)^Taw04nCazb$sbHxP-M>urxTyv6K zb9>##nbAlIPKZNK`$P6DtQe5cNJ&zyNJ-!@?tzH!mgA7%(U=+t9OeoXX+KM1{S8Jz zG%lh+h{cs_A#k{(sGc>CVpJ31S?k9Qo>FMq0C#TBh3dvtE({f2e(YQ%npX4v;r06< z2mTUkn6GK^bMIWPY&zV~=#yI_j!2;rGMbdapZA3UE&ayN@EXMnd+6jj)%8x}ycK5* z!WP3Zo~`@0ZSx5D<L=~q#@7<Du$J8Ud)P>%?_XD(KRP*ic(@ziVX7#yq9CzEFY|SF z_RDnma^Pp&7jAMFav&byB=H1>$Gyw`aZTIi&$*n&(|cqnTJ^6jXBU05@YPW2+*w$= z>v`E%TFmkB#*av79hAgpzIR~NFRlY9=MPY}e;IrSy(*+(3OaHkp1&O?e1wHU-o^KE zzgJ=~Y88Cm3(HE^7ow@UZYh|7*b)eH7Fx)N6Xj(c$t-zlNXo^3!$fa6Q#_?{868(1 zCAStgnt&oex~2(TTi(}02Twnq$JBTbhfdYLcEyrntumco@|jIcw;P?{x3ZQO?ovgm z7dQ~llan=PV-<>|7oLD+YIAvaHr17PbT;O9R<#vQ&MafqvUx}aPY1JwyhVVlQP911 z_rakJtG7rG9=ELBBr347GB|t6{p6$FnA}#cDsMf?Ofi)g6nRHjAb13eW1p6T>n42M z@ds&4?E+>f=Rg2farMGDGjWQpVMp%Wh(n0xD}|xdB02HfBHqhOJ)?J>oTA+B7knjz zHtmH8-~Pn_7*$iZI!G~_R2_&`-(=^A%LXi!_|vJoUYecA<HREb+e@*sDZKhIY2=hM zsfd8hNY+CNft=k^yvy#z8nej=k7FY-!}U~>8ani>2GuwxHa{fYBfe`|Fqk&bHWn~8 zIy;q%VMz$s<l4K_V1ip};C2`|6|>BEY2@{ZzKeR*%>hF$bGV}E)wy*Bv*^<6I<jdl zde!Fa!Ov;7-(Q*#&c-Mt6yo!0^d<jU6hPxj>t{}8ZqUll@l%NCdtXj2GqYt&QK{a* ze7X@cuuUZ*!%AAu2kOMqwd=cw1+o8jeBVpGH|_cbKl8P!4!^!b=;B{J<L;U`I&<q1 zUp>3MHzk4&z03Zqe~AYDnuFi#!`F|y1xEmW7(%+Z+BrnLX55ZZnvv{I#{W5fjhmiK zF@I9g5Oc<suJV&Tpw%h1yoq#<O$}s~n)%aOm2&0W3Wk{lzwFP2D#xh-+1?FvCDMWR z=T#0l=lCUsRlG~YEYvX_dM-L3qv``GI9?NtIGPloyZeg4hoOy~ko=}**?z3XFt-_* z+UN6iAf=0Ulbp?ug`ayBy?Sd9nER@PRW*PT1R-hx3rYG)=gsr^GPL|xX+7RuryN}! z!lv(i59dz7IbIYqkMPO7O{V9}E@F7aYWl?5CM9;LjAh|$7$G6Te17s<!@7Bp(J3n2 zQQ4m3Q~YWTlT*#0Kc1v}DA?^shK6AH^_2*$yXBh7%R&(pt22Dheg(cL&TpBYoZQ_x zy!01&mmP<aCifhZqZ(pWrL)y7>izxC;-rNxw`GTS?kDy1hy3tHI5PCl^z@S{#%+BS zItUxJaNEND5>{OA;hvXYpxX8o+TA;YOMEG&85||vf8+pIGHUtQ>pId(JF*X)Fsl&! zv!Q<1W<*rU8;nF-kI)ixrO_|m3!+t*dh+ra#cd0F^=Kld^G8pS)94a<6t$%l!)ydu zh^7qOPuW_0*Bog@Jf?okpLofk(gTOYg%@jwXZwZ|N$=ux&FA{bwSaS0<Ki7k)6#*5 z;JtI|ubuO@XJSo*8(;l9DA|+U<zsc*XbGcuAg^lcgdIN6a&6grvi**%bMLH}wAeqW z><+-2!H)&}D^ag}lAK2<pI&(MODegxR~aWsap2arn2X+2biGo3rav<(LvBJjvg_d} z%V!FrHEf!9J+``8IC(Rq5;l-Oo=NrwDM;@j$aieib-{5cmJEP-L9S3Nw`~xEg6kj_ zF{23E*bz=J&H>AKQaH?G+%kPM#>3!FQ2-7@dP+vd4Sir%`6x*I;P+mh<rk-T3DiLj z$|yq{>KgeZ)QY|^37KC*E;vFQcoolYm5C|#bc%_=_9b$(WRXf_iivcJw0ML{oHKtS zWM;fqQ0PzcmIR1f!#gx@KVOtZYqz|YYJT3olHJo#gbb+{`oOo4vs_WZz6ygA5KpvU zlaGJ$YU&VPJ@r`}4<5unZoU^IMqu{$aXY@I;=%gVKu_!iul=(C3Dtg*fY`*OblA*k z>d%-^4<eo^a=H%Fsl9W*4n3Ezo11&nT;|anJDBv`@Qb3cyk9ZJKb-5~&vB4R1AfpM z{gfui9EKT)u+;hJEE?w-V<J;!{ryUkCsW~s2!WI(RHO@1hwNt>Wii8)VP#zoan#b8 zX>FQQ_7%R@nqH3R*mUtjJtQtRmbSs~FXESR^`a~+qGg>mwQky-x06Y)P(<FZM!g#k z*6`5#WLWnph|KtV_&Ex?Dz7wyw8#Ly@=&Ll)0v-|1G@jphmCBMBjkdv$c<C6{ToJF zwS2C85~z=flM|;{cz@KYak8#35+uTSFV=*T^zZA}qR5gs;I%o5WJvqG<HJ`C$My(W zQpsP~kerH9jfzB1!{@)aSFID}ey)d95IrSOZ@{Uy)HbRvt&@%Spw|1mmHXQJTaYg2 zyfmfA&xGEd>(G>nq7gx46@~RLIq+!|OtG+A+=wqTlHq<s*Er?GtVXmqzC*a;j5_&~ z3#Z{>fm3w*;RG_F!#OVSW99$#F#o=jLUUNc3uJznXS(Htg1f5EDI`wxhNZbEB;FRU z_cX>lxrqJ1#>b8K<hCEd$7eG9)d9BgwlPto-8UZEMSQgSOnE=$MKNg|tu#C@b%7x) z-{aS1y(Dnj0l)f?3d`}CPDASEWRG-L$m_f-)F8S$Y`=wJL3o*kv?l_!jCpq?3;CL| z+?FYkq#wF|+q`w|V<cSs=@>%UXYEyy`XBuDaS-jWBn&u%Dbu$d#j?Yxk;-ofeNGY7 z(2)Q2G7k8GN2(Z^GebhC*%ItpRx%I@rAmvzSNiG96v_cvV}%GnaN_$+#|2UHxE^Cf zh&Ln%Ge3nP+Mrn^;!xYFMxIB7c7&C)B@hx5<#tEF%JWfBgYao3Wni4i!iKW=Pvs_X zYy9Xqm8F^m)Z@;)2%yiuy^eFMJTeflvJ6%oe~&}dE-G0>9ht#M@>{J2(k~3%VgDvp z@MZ7mbtY77SeC6cLaZNJLR7&-BjfW&kn-eDu>=Y6$qQ1nkq;+oG|hj*aNNYXmNR4_ z|1%_N1*(vgA%!y6{y&Kx8s}z+F#MkP(h8D#7~@in)>5R@p-<V<qD|=jL=iy<v`1E% znKTXRQ3{{XYf(X@@1O1<3E=cVUuv|n(|l_N>1qjuAs&Id>X)Gy@)+9WI_|4DT5kp6 zxt1|NwLX+?uZiY^Ike45kpKzb_K!FU5ldV%DKieZ58Bf=mj9_m4vOG@h=7;C!6?$$ z6?!8Gmk4$nR}4LPDRX6tXuPNq>ed4xc`li;{sU89QA3iUTc*2X)r9&`M(UMgjOu^w zY%}jYEmtB7o$cjNgwiYuBo~WyG-bwJTEiYosb7*RHOdj~4XYa2vN9Ad^2r+aGBPHU zXy<7N3%l;algP^4hBM=(6@s-_QO34Z`@Nct9c3##+w$$T$f?I4>}kZKe^wi;=Re;V zk}sdbMTUFclny6IDmlLFSiM};!Y|wHc7xR*-}i<d@jj7YR-k<odZVKFXZ$JI?b-1y zB>V2a6Mv8XE}4cocM8Qe2I+~Ffv7~%qC`kae5ib}ddOEptStVme4K(fXjBW0@}>+r zt$_N%vci(8=I4!)Ip)L?5gI{kNk7@mKE+KcrTu9pG!95EWAmwq{)Cfj|Gli`ieCHB zaZZgm+4%GS`9ut4jWlVk^#Jh=e}5jq!3~^(qh_Bt`K00a_o^&ch_TbLk-IA;@0Kl6 z2mKNM10a?!<C$FfQP1V#bJ3!P{^x!E?FEHu#ZD-mWPC32|L5l%66BW1*R@~){`a2w z&(4{8nz%rnpA<tajZKh%``?8^mW((3tiUGcO$6mSm%t_c&xii+-|p~6z1ly!PT??n z09|CreqfMFeq>^z{qJc0y>Ev!ZZzn*tY2+<f7o{P!mu9t|MSlx`X@xrzR%TI{HioU zgSd3vUjp%pn>J%;h%t_ajNCu4{Lkx!KwxK&C|@t7x?8UPy!_ULpnjt<4CR4%EH=2+ zG|+P@TH|l@j`f<zgy(~7>;gHymH&A0*>wOAi0bd}hrA5Dd8?TCR%j`>Ody0hFs!KS zY4Cr>|8FiZ0@tft;jrj~k+`$ruY(kcbT}vq9VBkra!$CUMXwsgXs!*$a})eUG^u9y zr1&*YcjXU69~+hKjfqQm&HXJBx#(6h3TTBg4;jU;hqFZeA*)6!H?x`E%kxeBhYJ)x zn|$N$*F>I9hc}UjVBi3x`tNkMtTMUpRv6SNNhc*IC#R%*q7v_{sBi==>OV868rGQi z_hO5;2R%MS8@HP>55?EE{)}VMst~oV(D0!dpMo3E3(D@=sK0YF^V^}HBy@0a@K;$h z;&WMM^Siyd*y~SWYG~Ex6>35~s^KnJ)~gvNvB(ZMMTZ!_yWWB?DiOa)4%T{o(WTjb zd)T%y7{|fRE*kLnYvStS$j2vKVBwW5|7ZSjHbe3iSpKPA31vnmJ`-?-Kpy^rTaE8- z55NLq6fzr#^(S}uS#872$uz(nL#&;X_6}Zml|->i0?-}%VT&VZSnzQ=`+>)Kv6(LU znJuk;9)qgRI9+3J4SPy^Ezo-gnjk2Uwk67B_1%;m*crKV^S1*p4ztd?&f7!nPo4r4 zgK<=Fm~iI!-1mI@C5t#wG>4mI!+BPs^WipFtv8Ukd-m)ZJw1KCT&xoP<7UgnZpqwl z`XGXHg}}gjpe}<>^CFeCaZEd);Joo0uI1O@|7#~qVK2ImvTN?DC@U*lSy`EwJcHl4 z1l=wG!|b~1I4Z?fq>Jw-bRc-fNXT5QZ<l9TEt7?yl@#c|m_Zk~Uj-DND$KgFaHi(x z(b3P@8gTe>3aU(pgKF#@S=dtw!Yqo>{H)R`p~yh*V^EOTu&k9Fs>*j!j`Pd9UEWT( z@%wH{q?Y(+9>>!cxJEH?VmDAo3Y$Tqxl#WZyXShN?x|AY@&u^`ZFcjt{_xfXT`{?a zH)#lr`~Ti`#2Neh`|vD(wL85%F3{W}T>Neg48dspT0Q7y`X~S{Y|mTV^e*1t0hShp z>$b}fU%C*=pvA8JcKJ&ItzzE~kFOBbBy?j)dW8!kB$4<PuJ1&PmZo4yTqd{8_&_YV zARO3a)B$^`aoFZ^thS?~r$56Ex2Tte=WzcKw)kB<j(b0$KHWrdbws5UOI}cvdNAl{ z5=SXY1{sJU{aiw??RdOtBOm`S+WaqK4TaI_X(}CN>E=(0T+Ug5rtHGLrv(cKVqW`m zK;UDd4x^MD^>QR#BFQ;9sykC*SINDV(z9H~KTOq%*01oy1Sa81EYwSRc62}>t1}|g znmcB#4MVw7&gq{sO}!~Vv|t-yNX5x>qzm=wSY|hBgmfp;D+3)j5$8pLSUC?|79VHS zjhc(typsQX>4!tj0~1S{^69y_c>ZtTYtf*?`})(ZD({Cak9LuYpzkRi1hjf*p{>PP z1*_WRd$tXFkG3owqC6#HGi~=dS?|{?Cp51g2jWeRb6?+pcH=;)57-wgGjq#sS-ErT z4ufK%xfA<Jz}Xl_=ih%?mlqcogoK3J#cC$4Z+DWIwSOZ1c(}iPyr>RB=)UTD42&B* zyV<J-k`&iK><H}FY<`zzr=}(Ax_QL+-Fwwt4?D%#K=Mep`WG=V@d_~L(G+&=ab0cg zGtk@*(jCjc{OZ-KzY{?Z9$>QoH8c(;rZirM*}Lnr>h@D5&v|fFz|?0A1@fxR%gMkX z-7j_JC}=Z59!hhzJ!aGyaLqj-q7B~c8lD~9p)P)Z-s-srrRloc;+T2z;D6L{1wQ_8 zv1Qu1X(C%ZXfjV$IfYG8S$Xe-R?cnrXX%94Z3WPat*XL;u&}Ufe^2Ljn62<QWC6CC ztZzEs=(GT&)1WlbMC^w3wv!<!PgNMSb(E@q-2zeXz5A<`>hf|2&}@C)QC3!#Rj;CX zrzpc5zs<Nx-z?DcpX!?T5x^z@_P|P8ua^Bm|Mz^YC@f${HC+!E)eDVI4o*&>M{}lF z;LQhYF#-3@Av$_-@ck)A`|8zge>M==e4LDXhYT@$y!pk-!UC}P0nGX{h;zq<-df>5 zfe@F@YX->OzKysrXbKBP-{?56rK`*PrY96E|B~C_Gt>{?_AWYacFVKh-RuBQ28N)h zIQ-0eu?84KGx2)EFVlq<4>*v78yOiP;xKKu98R2?(z?(U_S#Q-dB;zJA%4H3Zo#d& zBK)rF5rDrj(E1sq3Ni*#yr!m|7K2zFrq~c5=5)2_G4T<TTuDjE3rKtMkO9e!L$9`C zwani@(*&OB9R>Ago|>K2)77=&AuCqRNV(ChWqSlq4sJ7p$@{nL<Sy+s;IV=2-UM_i zer7NUy1)2k;%(x1u;_eMUftPhGm+KdfA#y|au}$bWbirlM-hVQ-Aw{od4bnksR*lU z;Z)<p!<yrNXN`bF#0YD#diLS|{`b*QazXb^pldx-sGQ33q;1NNG7jEPY_<sWrw*6e z*oj8h`=g234S8IaMPlVX2yt=!S^FPAILFJi*VWa%@Rr1}JbuHMfj|xPBox2Q*V!Ni z%jM&~A4g_qXCF=Fh`TR)26`;H=2vVFGiLv^Z>WhJj3xKJIk)p10ooJbgQa40$|h~! zUDjm}*RmyY4wwQLS@X}1s5s4KbjDfrtKPOP)gTf<M2@?WMt1%=O}+;(LFB?-jyfQX z#on~Ie&UmK?$U9QGIz0^;UYJq8L95`cz@+F4thwF``f?aXPE*Lkc&PWu{Cxdv8mnx zEtySyRZH53%Ia#fHZOJ>OR(|PMK69XclbY^#05oEm<C?Vn0lfXIyN*k0Gx<mUpU{H zURYR|*@>eN)Y8zv(O*g9wo$XODHeJJP9-Tdb+G8?-i5l@bwT1jcF^Asa}Pt$<47<* zmh{=#*^%=(DriO9WC!v&`~KUw<1Mb5s!-ppWPO=HV1RZBucwPtf!czme5Fa-?3$~w z*Su8?>BBm4SA@`o$AqX&%`0>5hwF);Pf84pK<V+yNAumoS+;sQmlarRaF9T8aTN4u zw8(7F8F+tl0XqYhNC9~Q?##xJY8x1k`dg7&j2tn^th``nKhV|JY`y>IGfN)WoY#a8 zo1gE_0d?EK15~~8i|og{Vj&OCZ%7bf??VD3(0Uoz3gy+!3zOEL@Uv3&x5umB(D51i zirRr0EjfEvJ7Xe~2IoY?{BM#5O1><S1#Jj$1rzFZ3=B%AcS0GM8ea~;)NB+LBQ-3+ z19>a}DD(r$94WxevIITkhS$U&&%_Be?ZC2lFZ;p^Q%za)=ATZMwY3=)I663JvuRc8 z?SUQXzY=&gmMw0k88lmAkZ)NYF+^MLwlT2ewczCNt4g=R?CkUu(rsR|2#^{Z+|4m0 z)a7B8l_7e?mNLrGb+_z)lqnw6sntWToWjJYN=qwDfmNd%@v{j~3ZVFt-2XQ$EbJes z*V`s20OAb5ukXbhs=&c#-q7Ax8aqRgFQRJqfI3(2M@*z()~e>b%1YJ!8^EnuPFt?G zGqiV*G;Qpho%Jfj7**0-!RCIqLB7Jo#ztUNq?%FmX9#p~mFi>+wY0Kg2W;tf<?#U^ zeTi|1JXN61a93HGQd$X;gtPNunQr-Pl?kgFozBuPvmldy16A_A+2-%^1si|w!Y@}D zAeLUbTErHZlnf!ye~MwU<{hAA_3lq*?V|Sk%LUlk#on)IM>F3o!UR*?gfL$hS=oLQ z@1=`|>Oj@E{+fo6p`oEyb=G4*VTF2I2NJC1w?D^Oh#7R2u@Z5B`r*yiNb=(e)uS6= z3QUbPQu0KqxU95{EkB;biC(4&?2Zc`onHrl|Ifn8>c19744`**!KG_y=dJs=`0ajO zPfrivg>QiRM`V=?I6NK_rQCBBkP(iKcBq@zt9a!G0IU@5DfaN!g8m-(1OndnoSfBi zv-@4}kN~HVt)>)wUK9644VCLvYB`s*9k%Yti{DJ@cb*bXazbfVZkMl;EW&gf{+IyL z(+=DS2w}kdRx*u`Y{s{KVs0c10nyt31SavOAQuRDSR`8l(t8OLlO=6+QTl>c5TEr( zMuM;{5DrAn{XOo*W}OWJ5cqI=M7(g+dFxzLQ&pu#@_F~-Ce`en!EhH?Z%xg|%cd^3 zaZ(Fx(ewB@F5nt>ckSs<0I()!WxeonT5dNWkj70wSZ!Omcc#X{i6q3vgJ_tVR;AP( zwZJKB?n{fa@Qi-ay4%^6{$}$7?k*~Y<y=1Nm5g;vi}8zw2sXYa<*%fMh|L0W)gJrs z)g$^qjM7AqKO{kYyg~K&%JFemzl-e3uT-|GsEFZ>Xl6pf<lJ1z{{8(?5C>NzZ?b9_ z*woS#4`4Qx>}C!R4}lMfIQZwU`dgNLHZZr`%b#8Xn1`w!@0M5V#T0?5W5+Y|Uh<53 z$2fYLA178eG;N-*^$zlP4Lj%$aJiR2(dT4iFd7DU46NWu3}^NPqv1oA|DooQ5-lxK z_v6*$eUOrDk^{StrM5Ocw!tZjr|(HWvFth!*KlKvCFR}*MCgBEH;-+H>B{flEPS13 z<H8=>-&-~lm0xt-o&KyI1)6z%ij1mX&cQGRxVh^Z8!st<^=Q?|=o#@uQ;jU5LsT+_ zF2G(LNe%>jr|%NXx~`!8T2GkyhARJ30ZG|YbkjsS8oB7AZBE+SUwedS_(0=LkGzFS zz*Rzo3XtRCBvm%sc)Fbyc$PLFA3r}UmVKWEW0???E8_pKNIy)#eBH;PTgqwbPe88o z+iMMf^%OcqO>|NVz)X6qJs$3^HBob8Y5<AEkzyl??p=Ew6L`C@LUjFj=-suEU_J(T z7NeJm|3L%nthH5W?X<^{56D25i1NK02&FQD;0(0edlLcIqA~triZyzR-|2V3cyVp5 z7H(!gO;iM%V&adkpIq~3Q~}hN<7u4Ijsdp^O&d`|##V{UGL{K(>xPo-v<nAbYv-?j z*V{!YmAlU9>Z6Zo*06nwUOCF<wD>r5H*b@zdsMq{0OFKC)9T^}?k!qJ=usVCOZqYS z7ju@!1+RQW^4@@0@kLb|mkrKdw@lh=^)Eb%cfNm*-%Muyn=KuKO@M?1`1@cX$FHd# z|H_}h+kMY`3XZV)$@Dc{@M&Z$t;D2D!*CMNX-1Mh($ZENw{VRx>Avzs3jWQD3^zXE zy_>U$i)07pl{(}Fh^{6*u9h&(=0BbsrB72fEAq3cuC|t-Uk~@2_Aq-gzHH<Wo6M;; z6KyS>VwB&DPxg+E1lxB}?2mv($s7T^!S_Jg)n4>o2{b>F#ulY(l!+VyQRzs4`p@JW zzzcOuO~pKSbvVUq+&1JAP67A%!~&Y)VwM#WLb((op|z3!O(;+kBS=Lsh5|d0!Uzq? zP|e^w0DE8Gax3um(znAD(!5vI_A@J55FQ#204Uny&{beL@X92&6jv%nF8`|>LBfg5 zO?g$TJ#gPtf#;JPLD$NVxjGwlY8*%~FaUkGx^mcg#>(A41y6+601aa}FMI(}(W9@K zdyz8b(D3{E3|?+=!YoE=ZqQ&qQ=*wKu@#;Ep8!oIoeKp5NaFz@H>jHVJOqV09sG)O zRlVWZPj?O)7o72DQ%Byz&f1PT$sz5gM-J5;M4m*vKzeil04n4)Fwv-kuL{;RuipLb zrCJ6wq6RDM^A!R#a%o+NWkI&lufvq*BAweNwB-t@MSTX`F-t7a5Z4GnB4z9Gw(Al9 z<euOk+d6Fl@S4mL&28WC8~o`Au-!X=m0_*LI+wr?gbvxpN0HiroJRF7A$dFJCE^lD zHfVA(%7zaQ4W;qeCEmR1-+5x8ayQo*C=5}732@F5UjiR@dU`4VkE-6C8^>R8%8O#Z zxr7ON^c{iuR4Tc1<JS4bc}Xy=UZ9q<s8RaTW}L#x>AippaF4*-A>;rkc3f%oEN2>i z9w$P3ZnZ@KI|JkezCHnX@&LP&n%X#EZ0Ix~Sz+?^^*1m{tcOat)u%we7=#3qdw?VX zUK)Xv>|9YVt*19T#=n9A0bnc)5>QbM((wop|F6_jz|N1o3*fM?`dxCvxdz5zf^~M& zML=#F#FFeFiUdKS6su0kjQIHv>7M%#!$c4P5#wp8s$xQ*E1g?gTT$Xq8rT|qPRzIF z03tofwE=Mz&Qxwv5Od*lvAX#GilsfaV}uIkj@NpV6QhyB#F8^J+0T`>VxpW07Z5>c z7rnsc0Uuv#a-o9Xfk}vxE0UXBHTP_7c1<=5k*D;P;jGmCQUh4i9W&X>#z~oxf0)01 z6&G~3!6b=;$NE7toe4c@rN=VOqtkkfY|UPeeV(6>FN(@$9EQsd`}`RnitGgx!mUPA zfRO>E(Z4`UTZxb$G`T5WGI_LM|Cy*?eHu+fnXF@pG`)yLRApxSjiwO++N=_yTWiVC z`%s*IliFZT5X_)JKyU!!zZzoYv>$Tld%GALQNL^S?ZLzywVz?Z1LkY3l%z}JV)4Gw zxT*iy-(Re^`+P$LVlGBVeM3XX!_A&j5JTwZ=4Q!#BBQ-@Kg>AL%WaTZ>lXN-{y2j= z>wZ2dJv}`Tv;pPSBuh<3+R%UTLDRBdIoqgFqoYBMd6;Q+Hi#iXfSLmG39f5Wg)cy4 zPk?3$l4`rB(AzP9X*GpKMRF?7Xog-R1LFEW>Ap>K3$SYd!ya@#Iy~$IR2PJ8%TrUQ zO<nh@0)nERyGe89BqS^)4L^Z26cC64azs)Q8rd^Z$u~GB`MJ50cT7x7ICej8h~dW2 z!O(a>5gH;WGLoqiUJ~mE={PFq<0LePF6(G&x{d!XG&~Y^TMwO^15#0wlL>#~=>{4B zmFa2x_4=i;-%ep<B7G{uhAGO{dSiV(UFj!{&*(J&lCi*1v+!7<l+V~VEzB6nG{Vk8 zLP98GjgsXW=N%)xGQ~xA9~Adp^RX(bt3f?yC=T%2$Ro}5_4O|Yk~I8rp5HJsNB+$X z<y>rZ%2-#X^Wv3YnW-)<Z2^;S(bUw~_->2UOtWcXE7h#ZCp<zZp*1q8Br?)41}Be4 zZShv$QQU1^21xcTITMr0nH0GMY>;mZ#QOiq4R3T=`Hyn}>o5<ZZ;%4iGc|qqsjUvS z3W?5=K!R(vaY8dTJu)f5{|OzSA?MgNN>O9hxBVRNYToW>Rk>3czk0=FnF^Ag9Ffmf z3KTzox2}6>4;YOempa`n(0`1e0`Yc@KRONY%6aih6<sptCHMUd3I%gdy70{j1M*<9 zGkqgB&Bf6yY34$Kz=ftJCr2J=iU~m^eEj45U%Z(g5zH2FGsnv&gy%#vQ;Pq?%57kE z%7rOsp=M#?4<~UTl%R&#@_b>fZg&USA}~f)cJ^o7*54OfJP1<}A@M0G4DVzjM~SnW zr+jI(epY}m1RU2|wdCbV9T?MJ9!pT;SoLEtvvzs4-4~1Bmnw9D9Y*PpDq_@OTHRPd z{KD4W!NF6=BnjbfUnKr#7*jt3-p)TwylgNmdt#<1>y-TIDm`{Si+BG*eW0ZWbPxf* z4|)I@o_9B;X~}{Ce~(YMMw=YxxqMG8Cu7lR;=~`CkGb)^`-7WrS7C<)$UENuWy2s- ze-l18a{~DaHbtc#ITRU4IQFO1)^gGG{WG{8TTXNU0KgOkz4l2gR0L8rR$(i?aA1^~ zAaAQKav}rB>)bmK3p!M_Fz~Uip-3ebfXpppYLy>BqdETmN|(5^lGSY*r$u5@hPfF< zgXm>Ul#qz`;UZvcytBnJj&}JfdP~ktf7vlgZhw5zN|*u16j?){yP42hbgw0s(_%B{ z2=Q0EUup&VZ-+sf4*LDvp03CHBYjg}6v(@aa<l%{uOK+~)%%L=lur0oDD$}Yb%P<* zyT5D8rqKk`AiQ01wzK<})!N+^^4M1K^z?LdI}x-Ies|~75C5=w(6nOO;=TnOZeHUR zdfo)n3l6MjLIe(<56`YcpGSkx^wO3wD<h-rA0RsXLhJ@19Hr0ddypj*_<!m;6L6~5 zw~epLiBcy+6HXbTXd`4E5|ODKl#nUgP$<OCu!(YXLW)E(rL&umLzFUvQif8TIuV~E zr4Si1+u6haURS67^?ldpy09;My?ecTt@nMN`}y6k{bo0(xzNdKl_3_?4AkW1*}Tx; z_tmTImwgQ&JOjK!4g;tg0FVNkK}PCU$~3lfIiuX|z4x`a7~qmC%cDL$;1v+sK_WhQ zFWa*}qEDR8ZqD@o_!ceN&nLWohd?+onm+&8-Pyx9z0oh_2!6h*87>1f>*Gy5K9wYn z#HN`qtx=?NK3q=ZlMD+Bs}*uMeDl(Uj*asw!8_BaVW?xVULZ!7%bF-&JTA`p#B1FM z7N<6{Vjdx*p8ZK(j8c!v<46Y;E8-jTq=ZBXU0|!?$0JoUE^l)xN=iyl25FYs-#%cS z68%qG+xiF!rPuD|LlS5VCIAca>d!ua{Fts6^OtS=fQm2vmGh)XZ_*aQGw1e`BeI#< zoUPNkV%15I*lSm>#%Z3`>pLg=05fX5mVXms+2*_5k(KRIRI&N@K~jw`HF0Fx(i7;F zvmw}wvZsM0i|rQ7etoXPg^5#^t25tV<O9O3Kj#hJF}SB<@`Xhdcdq-?wwU>a?=MAe zmpdu%TJ1!8XMa-n2W2mSJCocPM133P>x)D|SUEXGJY1?l+}A-`n*96M8$r2+g^{eW zhIta$iWq2=2mo}5bM9s~hb(vWGK`gPf||~qoyhPl6nrpKSUI9i<Q5gxpjuq+oFEVg zd>TGdZo<ktvu>5KRG6Z<+8(RXz;Y*)iPk1DL7KnRHlGdRKs}ujua#3ESlwK9j`m61 zN5e*Y>t5^eRes7m9UUD&68!zFi5C5+q2h*@OzcXwDD9{1m&cw^igwV9mve6c3a`>G zv6;c1ra*N3*B4taT_JP5{!l$Kqk{cSg1Cs_Ko+gp2Qj|5>~8K-0)C6lZ7;s^&$f3v zHENhU-QtF(=yf7R6@we!GCdI1q=ZjEDu_$Pycz1ab%NJN(?8tJFqS&)cenH0oQtV+ zNkd=yfpz^XRJMvlV@U+SNS0pso}*JWb6unHkunhi!iLksogqMP-BDb2&)%6(hVTZ< zh>wol6%ee|)1^f~#-`G<@6Y{8?CY*R3N@n#u*+1n8`r)T8e6e!>y;Y*-r!0QV<Vor z(_$JNKo9Hd7`QD_W2an+W71}1;oswO)<UuT(Z{KZu90r`NJwOjYn8?An*pEZ6QBj6 zI>GY&tXE*km@_Yp=?MCDF>SRc`0JhuL@%-VEBmK!zG~o@sj<2c$4tZ>GI2#U9~oC5 z9~A}o$nt_z(ktwo&Zef8LhB*k@{6^j9<!Q_bcW#vG^)>he-7`@De$oj?r*yKp}oGo zA4!pjAR%Dr_4Gn9eafd!uNLC-;{+4sayiuEpDtDO_l;)(sl%r`_Mcd;i5j@*=&*0` z$QlWo;?sen0%A`RZA2Z%mWruA&C;4cF!(b!SCc;Z0W%DcT$yNWX(1Vef{F+LDX<R8 zX5^2C1QFnv3<iVIRf#(=8kOeh@aK#8NhXs?eFuv(3?Ci<0Z+OBF-fFS20X8EQhb#d zIe8hkD++=P!6WDBbjRFi%_c)Z6gpjIQmK%xBB!?}HtceAoP#;Rx4@0iq<#47Nh(F| zDnj42<g$tiI+w#f`SY3#a0X}v4oWC8v?c0}$M#%O&({-=VvT{NFPwk8^@bf6D&46p z;Ey^g6SF|W?;ly8ncu`&1c85N8K0OC6BEO}?0~O!nDMUtS>k&1NwQR@O1HgyiLOVL zkJXD|<7V<T@oJmvM_@W4LGOE<EVJ@d@2!?CB#i>j`aJtC@%o3fb*ZY!(l82vajRJ4 zO)f>)VVr%OcdeDKcW#it*%6@=&n+SqB@=}Vy;?3FMI^WfPXGo(4yYR5&-$GiGz1`2 zJ^q+RF-gE$nf}!dzm#GJyA3%J$pX|{9X$(g^AOknE~nPT<7u!(UC!(~Ty?NuY2qnx z<zz0B771!+x<b0EW?tWDo7}X%cBM;-$r>f4{CTN&T761M=cCT)`Aqdp6$V<7eQ_<d z_+VGX6vEsp2eO`e!idSOhwr;aKQhABwiUJcevB_9C#2oEi0VU~cjPt;<2*9`PB&UP zH6Sw8pIeLI34l}f0E$-wvuO4MM9<>F7&jZvm?Rl2G5OcFzmgU^H4eefb|zPDU3lh2 zG&VO|Cik6p^b>R~AOl`|?dmz)FZZg9#ePV5^%nv|Vb)@H2x@pDuR?>rjDz}Mgwky( znK4O_1=mVTZOvFOEH=eeAuIo3vvJHFmw-sh$q~234$(g!ZVaiOSkp_RHkEib_2lov zK(lT+uhAW`>+<uhSF{%rkhlr4vorS>ER&7P%*aR)a3dtB5pfJZ>_v|W^h9wgpPNdt zds33cs%5{5Vy6YZnF20FxLzc4czUP<MU8cG6^09PU1{SqtfX1c0qHYzK-AXqyiN1^ zS-_{lLO};tSCG@%Y#L#vVdX`Ek^|2fm;<gI<M7GiC&}POefVS^Yz^i^an7X_Kr!(B zYPkKmdnqGyF6{N`_PdA{+ov25cEg&Pq@|yO+!k*-4bdB?0L$x)&*Hb&F5kPSn}5{u zqOM4|3GK*{qX;*r^D_<{$CkQBoR`~44h#&$Eq1lFy*gP4mG0hfMy|3D(OITnE2uA2 z_u|@2sTHs39~B5$VEk6=_&7G{l5}3i&|OMEE?A9zZqVmQvciqJ`g&fE(W}gT^^sbs zb4b3a=UbjV+j(V3f9#R)AY}@vj^eiAa>WPI2-xDS$}?c{!*YjEd8aZ|yrdG=7&rax zuS~y+yldBf4=S7umx&?m2{L{Go=(Fj^6%b~*l;dA-2oc^uWidvYwgJHyy^B({b2j2 zp<6A5t~J$=5P5lz_bDZy<_1{?K)A^m=j&_EM&oMW5e-siRfUIyhtGkOT;Gvi0ww#F zVIcP!#qg%eA(iH^f^}U3e_z+hwiKjUI<NV2Po>9Wa8;+tjln55?201Mm$l(T#pElO zmupcdzMx`AFYMPd)f;HRCooX_x~tiw(GW637Fx<s%m_-a12E_R33!P4q@%43rIhkW zOG^tL8oe(a14!%L%v@`78;F<D0yw7NRM_JW0tRb9*bPyv22c$8y#W2Wj+X6-YuUK? z#U&-<7=>xlc??Dm3@=vO-Ri5YKB*gv_5$zZ+lq*YSYDq1!5ppOa>yYGNmHJiEBm~6 z;V~G)k?==q*u(xa!<}{x4suO_US55u^hx0htJc-*4lYwcK>?X#VD25M?81lvx2Z;G z!zS<#Dk>^q1o|PA!%T(mB*g|Gqjh+ufdfS47Zm75%mzpZtXA`Ri5_r2)^IH1Vy-zk z@P!Rqt=gog=j`+#IXU_L@Ix)`D6}eko*}rz1GM>D4GfOY+PzQ8%%s?yPf3YY=%Ec> zga38r!wu_UcU93ec?T)^zf<{rZgsdsjMZT^LCsW~BdJj?R$G{x8|mB8^D355qmMV- zs%d`qtkhmUxbi6CD((h%UDoDU4=jOLMxju|L`BalI)8@oy{qWehVqoW&2Z!qQ76@x zWJ{Yd6wS*_uNr9fBV#IOJ~O<qXYn0mJlsVNretnG!E(L*wK0oe`a4w7kEHOY)z%sw zPNeK%qGmyQ`kcdM=8z&$O--$<t4s9sdVT#Uqzza{&i6u#D+EW7Xuxw>@YxD+t>}}v zox_Uq@_<r(%OXGh24^M9ks{f6{}2Cvs{UO>)tDBKp$$78UoT#~;3)D(FHsT7v&_3; zEp=7C$^7=+b^*shg@ocV^_s&iK<TA>54qZ&YbYyk2fO;T>=P)cvvQebq|K4_YZEt^ z^XT`l+#`C^?p1UUT;k#2@ZjKJ#=}H$eHZM5YGczw(}vBg?ekK$vg_g_yX`}ATYFg= zXLFLudYAFcul3Pc`PNm(I(;sFLeMt+=}D7{)-zK1IXRA4QMHzDQR(4L&+7WKD6&m~ z49jHc{@e!3L4~%&oiP$e`LW9NtFtSyD$yw4e9-5VX`ZQ8G4J+6W<5G;!S3-?zxWdg zOI25C+$h^%`yzMOdb^}LNx3@#LRxBOYKtVXLA8g9j9fj;tVdelS<rY}<QSb-3njMc zCayfpO>pE$_q-{8+)!n^an4*-mpA0GHT&MO6&^=^Kb&otwQbv!oAA_h{f<Hj6I+Er z^@L&LxcKAa$|{qW`g6W2wunU!Mz>*Y-1CzmRoW6R;uj0M6}HtSLMg?HL$HPDpTGX= ztc~7a`0k{Z;r2-R>AI&Zi&opDO&h)~z-cT$7Wr0y$4s#Iuq0LZfmOsY*%2L9Bp2Q0 zA)=T~u5?wV5z^v9{%=iiVH$rj8lJb6*>&0Xok0x!F&8R#IJok$$KG3BOP3gz|3a=5 zUevr;>f1GJtUDI81)#C8P?5N4FVA+)+On-G$#u4*tS`eiM%=^cU7`fvj|*1}6c<Y6 zrakleI2!G=b<6CV1%!R6k8RW{l1dF&d@oz0CHhYUIKG{t%U!*-zs04PY8;iu_vNVX zmaG{h1sM!46(J_+Y;<?7(h8k3?IwM&FZ_Elqe-!{;P&m^p)9=Nffezew0UCl8?Ew1 zaRB4@eOGpW<6&PONDF=t{_l#oFQu;8_iKc{yn9o_??J;Cg&`FE?X+Lvd$Pcf>lkrh zQq1=>=*xl9-*dTt`yt8IpJgnsYEI`7$HzNpdfJ<L?c7OhBtPnbn0L~f;K8GL_!h-C zLCn82|Lb3Pk6l{u^)Zho`J}R?!XSRh(2VVA9&R*GZTCP={32A8R8$p|RTPvr?^aUP zR#Vg7tU*yy(pFNM@c(Vm4-F3adw6?={r?T3Rdh<xK=#`iXx@iBgJ^Dt0{(X!O>Gs` zFDL2BJk^0VLS!4yP;W17WBmBl%PYu}MyROo5@UGcS&?tgT6u?h9<(>Y>-q(G`}+~f zS}IDP!}8+(??DdV9i*hGbm!h59$)+B?e4Da?jH~q=)L~{jo9|}k%U1&z(G$5Ge37l zc?nz<mG`%6vd~79JUiJ2pF{5+=p8^KPi*8J6mZZjOu}k&Vp!!p97UKJTN)J_?u-5p DZy8<8 literal 0 HcmV?d00001