535 lines
11 KiB
ReStructuredText
535 lines
11 KiB
ReStructuredText
===================
|
|
100 numpy exercises
|
|
===================
|
|
|
|
A joint effort of the numpy community
|
|
-------------------------------------
|
|
|
|
The goal is both to offer a quick reference for new and old users and to
|
|
provide also a set of exercices for those who teach. If you remember having
|
|
asked or answered a (short) problem, you can send a pull request. The format
|
|
is::
|
|
|
|
#. Find indices of non-zero elements from [1,2,0,0,4,0]
|
|
|
|
.. code:: python
|
|
|
|
# Author: Somebody
|
|
|
|
print np.nonzero([1,2,0,0,4,0])
|
|
|
|
|
|
Here is what the page looks like so far:
|
|
http://www.loria.fr/~rougier/teaching/numpy.100/index.html
|
|
|
|
|
|
.. Note:: The level names came from an old-game (Dungeon Master)
|
|
|
|
|
|
Repository is at: https://github.com/rougier/numpy-100
|
|
|
|
|
|
**Contents**
|
|
|
|
.. contents::
|
|
:local:
|
|
:depth: 1
|
|
|
|
|
|
Neophyte
|
|
========
|
|
|
|
1. Import the numpy package under the name ``np``
|
|
|
|
.. code:: python
|
|
|
|
import numpy as np
|
|
|
|
|
|
2. Print the numpy version and the configuration.
|
|
|
|
.. code:: python
|
|
|
|
print np.__version__
|
|
np.__config__.show()
|
|
|
|
|
|
3. Create a null vector of size 10
|
|
|
|
.. code:: python
|
|
|
|
Z = np.zeros(10)
|
|
|
|
4. Create a null vector of size 10 but the fifth value which is 1
|
|
|
|
.. code:: python
|
|
|
|
Z = np.zeros(10)
|
|
Z[4] = 1
|
|
|
|
5. Create a vector with values ranging from 10 to 99
|
|
|
|
.. code:: python
|
|
|
|
Z = np.arange(10,100)
|
|
|
|
6. Create a 3x3 matrix with values ranging from 0 to 8
|
|
|
|
.. code:: python
|
|
|
|
Z = np.arange(9).reshape(3,3)
|
|
|
|
7. Find indices of non-zero elements from [1,2,0,0,4,0]
|
|
|
|
.. code:: python
|
|
|
|
nz = np.nonzero([1,2,0,0,4,0])
|
|
|
|
|
|
8. Declare a 3x3 identity matrix
|
|
|
|
.. code:: python
|
|
|
|
Z = np.eye(3)
|
|
|
|
9. Declare a 5x5 matrix with values 1,2,3,4 just below the diagonal
|
|
|
|
.. code:: python
|
|
|
|
Z = np.diag(1+np.arange(4),k=-1)
|
|
|
|
|
|
10. Declare a 10x10x10 array with random values
|
|
|
|
.. code:: python
|
|
|
|
Z = np.random.random((10,10,10))
|
|
|
|
Novice
|
|
======
|
|
|
|
1. Declare a 8x8 matrix and fill it with a checkerboard pattern
|
|
|
|
.. code:: python
|
|
|
|
Z = np.zeros((8,8))
|
|
Z[1::2,::2] = 1
|
|
Z[::2,1::2] = 1
|
|
|
|
2. Declare a 10x10 array with random values and find the minimum and maximum values
|
|
|
|
.. code:: python
|
|
|
|
Z = np.random.random((10,10))
|
|
Zmin, Zmax = Z.min(), Z.max()
|
|
|
|
3. Create a checkerboard 8x8 matrix using the tile function
|
|
|
|
.. code:: python
|
|
|
|
Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
|
|
|
|
4. Normalize a 5x5 random matrix (between 0 and 1)
|
|
|
|
.. code:: python
|
|
|
|
Z = np.random.random((5,5))
|
|
Zmax,Zmin = Z.max(), Z.min()
|
|
Z = (Z - Zmin)/(Zmax - Zmin)
|
|
|
|
|
|
5. Multiply a 5x3 matrix by a 3x2 matrix (real matrix product)
|
|
|
|
.. code:: python
|
|
|
|
Z = np.dot(np.ones((5,3)), np.ones((3,2)))
|
|
|
|
|
|
6. Create a 10x10 matrix with row values ranging from 0 to 9
|
|
|
|
.. code:: python
|
|
|
|
Z = np.zeros((10,10))
|
|
Z += np.arange(10)
|
|
|
|
7. Create a vector of size 1000 with values ranging from 0 to 1, both excluded
|
|
|
|
.. code:: python
|
|
|
|
Z = np.random.linspace(0,1,1002,endpoint=True)[1:-1]
|
|
|
|
8. Create a random vector of size 100 and sort it
|
|
|
|
.. code:: python
|
|
|
|
Z = np.random.random(100)
|
|
Z.sort()
|
|
|
|
9. Consider two random matrices A anb B, check if they are equal.
|
|
|
|
.. code:: python
|
|
|
|
A = np.random.randint(0,2,(2,2))
|
|
B = np.random.randint(0,2,(2,2))
|
|
equal = np.allclose(A,B)
|
|
|
|
10. Create a random vector of size 1000 and find the mean value
|
|
|
|
.. code:: python
|
|
|
|
Z = np.random.random(1000)
|
|
m = Z.mean()
|
|
|
|
|
|
|
|
Apprentice
|
|
==========
|
|
|
|
|
|
1. Make an array immutable
|
|
|
|
.. code:: python
|
|
|
|
Z = np.zeros(10)
|
|
Z.flags.writeable = False
|
|
|
|
|
|
2. Consider a random 100x2 matrix representing cartesian coordinates, convert
|
|
them to polar coordinates
|
|
|
|
.. code:: python
|
|
|
|
Z = np.random.random((100,2))
|
|
X,Y = Z[:,0], Z[:,1]
|
|
R = np.sqrt(X**2+Y**2)
|
|
T = np.arctan2(Y,X)
|
|
|
|
|
|
3. Create random vector of size 100 and replace the maximum value by 0
|
|
|
|
.. code:: python
|
|
|
|
Z = np.random.random(100)
|
|
Z[Z.argmax()] = 0
|
|
|
|
|
|
4. Declare a structured array with ``x`` and ``y`` coordinates covering the
|
|
[0,1]x[0,1] area.
|
|
|
|
.. code:: python
|
|
|
|
Z = np.zeros((10,10), [('x',float),('y',float)])
|
|
Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,10),
|
|
np.linspace(0,1,10))
|
|
|
|
5. Print the minimum and maximum representable value for each numpy scalar type
|
|
|
|
.. code:: python
|
|
|
|
for dtype in [np.int8, np.int32, np.int64]:
|
|
print np.iinfo(dtype).min
|
|
print np.iinfo(dtype).max
|
|
for dtype in [np.float32, np.float64]:
|
|
print np.finfo(dtype).min
|
|
print np.finfo(dtype).max
|
|
print np.finfo(dtype).eps
|
|
|
|
|
|
6. Create a structured array representing a position (x,y) and a color (r,g,b)
|
|
|
|
.. code:: python
|
|
|
|
Z = np.zeros(10, [ ('position', [ ('x', float, 1),
|
|
('y', float, 1)]),
|
|
('color', [ ('r', float, 1),
|
|
('g', float, 1),
|
|
('b', float, 1)])])
|
|
|
|
|
|
7. Consider a random vector with shape (100,2) representing coordinates, find
|
|
point by point distances
|
|
|
|
.. code:: python
|
|
|
|
Z = np.random.random((10,2))
|
|
X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1])
|
|
D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
|
|
|
|
# Much faster with scipy
|
|
Z = np.random.random((10,2))
|
|
D = scipy.spatial.distance.cdist(Z,Z)
|
|
|
|
|
|
|
|
8. Generate a generic 2D Gaussian-like array
|
|
|
|
.. code:: python
|
|
|
|
X, Y = np.meshgrid(np.linspace(-1,1,100), np.linspace(-1,1,100))
|
|
D = np.sqrt(X*X+Y*Y)
|
|
sigma, mu = 1.0, 0.0
|
|
G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
|
|
|
|
9. Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3
|
|
consecutive zeros interleaved between each value ?
|
|
|
|
.. code:: python
|
|
|
|
# Author: Warren Weckesser
|
|
|
|
Z = np.array([1,2,3,4,5])
|
|
nz = 3
|
|
Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
|
|
Z0[::nz+1] = Z
|
|
|
|
|
|
10. Find the nearest value from a given value in an array
|
|
|
|
.. code:: python
|
|
|
|
Z.flat[np.abs(Z - z).argmin()]
|
|
|
|
|
|
|
|
Journeyman
|
|
==========
|
|
|
|
1. Consider the following file::
|
|
|
|
1,2,3,4,5
|
|
6,,,7,8
|
|
,,9,10,11
|
|
|
|
How to read it ?
|
|
|
|
.. code:: python
|
|
|
|
Z = genfromtxt("missing.dat", delimiter=",")
|
|
|
|
|
|
2. Consider a generator function that generates 10 integers and use it to build an
|
|
array
|
|
|
|
.. code:: python
|
|
|
|
def generate():
|
|
for x in xrange(10):
|
|
yield x
|
|
Z = np.fromiter(generate(),dtype=float,count=-1)
|
|
|
|
|
|
3. Consider a given vector, how to add 1 to each element indexed by a second
|
|
vector (be careful with repeated indices) ?
|
|
|
|
.. code:: python
|
|
|
|
# Author: Brett Olsen
|
|
|
|
Z = np.ones(10)
|
|
I = np.random.randint(0,len(Z),20)
|
|
Z += np.bincount(I, minlength=len(Z))
|
|
|
|
|
|
4. How to accumulate elements of a vector (X) to an array (F) based on an index
|
|
list (I) ?
|
|
|
|
.. code:: python
|
|
|
|
# Author: Alan G Isaac
|
|
|
|
X = [1,2,3,4,5,6]
|
|
I = [1,3,9,3,4,1]
|
|
F = np.bincount(I,X)
|
|
|
|
5. Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique
|
|
colors
|
|
|
|
.. code:: python
|
|
|
|
# Author: Nadav Horesh
|
|
|
|
w,h = 16,16
|
|
I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
|
|
F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
|
|
n = len(np.unique(F))
|
|
|
|
np.unique(I)
|
|
|
|
6. Considering a four dimensions array, how to get sum over the last two axis at once ?
|
|
|
|
|
|
.. code:: python
|
|
|
|
A = np.random.randint(0,10,(3,4,3,4))
|
|
sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
|
|
|
|
|
|
7. Considering a one-dimensional vector D, how to compute means of subsets of D
|
|
using a vector S of same size describing subset indices ?
|
|
|
|
|
|
.. code:: python
|
|
|
|
# Jaime Fernández del Río
|
|
|
|
D = np.random.uniform(0,1,100)
|
|
S = np.random.randint(0,10,100)
|
|
D_sums = np.bincount(S, weights=D)
|
|
D_counts = np.bincount(S)
|
|
D_means = D_sums / D_counts
|
|
|
|
|
|
|
|
|
|
|
|
Craftsman
|
|
=========
|
|
|
|
1. Consider a one-dimensional array Z, build a two-dimensional array whose
|
|
first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last
|
|
row should be (Z[-3],Z[-2],Z[-1])
|
|
|
|
.. code:: python
|
|
|
|
# Author: Joe Kington / Erik Rigtorp
|
|
|
|
def rolling(a, window):
|
|
shape = (a.size - window + 1, window)
|
|
strides = (a.itemsize, a.itemsize)
|
|
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
|
|
|
|
Z = rolling(np.arange(100), 3)
|
|
|
|
2. Consider a set of 100 triplets describing 100 triangles (with shared
|
|
vertices), find the set of unique line segments composing all the triangles.
|
|
|
|
.. code:: python
|
|
|
|
# Author: Nicolas Rougier
|
|
|
|
faces = np.random.randint(0,100,(100,3))
|
|
|
|
F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
|
|
F = F.reshape(len(F)*3,2)
|
|
F = np.sort(F,axis=1)
|
|
G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
|
|
G = np.unique(G)
|
|
|
|
|
|
3. Given an array C that is a bincount, how to produce an array A such that
|
|
np.bincount(A) == C ?
|
|
|
|
.. code:: python
|
|
|
|
# Jaime Fernández del Río
|
|
|
|
C = np.bincount([1,1,2,3,4,4,6])
|
|
A = np.repeat(np.arange(len(C)), C)
|
|
|
|
|
|
|
|
Artisan
|
|
=======
|
|
|
|
1. Considering a 100x3 matrix, extract rows with unequal values (e.g. [2,2,3])
|
|
|
|
.. code:: python
|
|
|
|
# Author: Robert Kern
|
|
|
|
Z = np.random.randint(0,5,(100,3))
|
|
E = np.logical_and.reduce(Z[:,1:] == Z[:,:-1], axis=1)
|
|
U = Z[~E]
|
|
|
|
2. Convert a vector of ints into a matrix binary representation.
|
|
|
|
.. code:: python
|
|
|
|
# Author: Warren Weckesser
|
|
|
|
I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
|
|
B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
|
|
B = B[:,::-1]
|
|
|
|
# Author: Daniel T. McDonald
|
|
|
|
I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)
|
|
np.unpackbits(I[:, np.newaxis], axis=1)
|
|
|
|
|
|
|
|
Adept
|
|
=====
|
|
|
|
1. Consider an arbitrary array, write a function that extract a subpart with a
|
|
fixed shape and centered on a given element (pad with a ``fill`` value when
|
|
necessary)
|
|
|
|
.. code :: python
|
|
|
|
# Author: Nicolas Rougier
|
|
|
|
Z = np.random.random((25,25))
|
|
shape = (3,3)
|
|
fill = 0
|
|
position = (0,0)
|
|
|
|
R = np.ones(shape, dtype=Z.dtype)*fill
|
|
P = np.array(list(position)).astype(int)
|
|
Rs = np.array(list(R.shape)).astype(int)
|
|
Zs = np.array(list(Z.shape)).astype(int)
|
|
|
|
R_start = np.zeros((len(shape),)).astype(int)
|
|
R_stop = np.array(list(shape)).astype(int)
|
|
Z_start = (P-Rs//2)
|
|
Z_stop = (P+Rs//2)+Rs%2
|
|
|
|
R_start = (R_start - np.minimum(Z_start,0)).tolist()
|
|
Z_start = (np.maximum(Z_start,0)).tolist()
|
|
R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
|
|
Z_stop = (np.minimum(Z_stop,Zs)).tolist()
|
|
|
|
r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
|
|
z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
|
|
R[r] = Z[z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Expert
|
|
======
|
|
|
|
1. Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A
|
|
that contain elements of each row of B regardless of the order of the elements
|
|
in B ?
|
|
|
|
.. code:: python
|
|
|
|
# Author: Gabe Schwartz
|
|
|
|
A = np.random.randint(0,5,(8,3))
|
|
B = np.random.randint(0,5,(2,2))
|
|
|
|
C = (A[..., np.newaxis, np.newaxis] == B)
|
|
rows = (C.sum(axis=(1,2,3)) >= B.shape[1]).nonzero()[0]
|
|
|
|
|
|
2. Extract all the contiguous 3x3 blocks from a random 10x10 matrix.
|
|
|
|
.. code:: python
|
|
|
|
Z = np.random.randint(0,5,(10,10))
|
|
n = 3
|
|
i = 1 + (Z.shape[0]-3)
|
|
j = 1 + (Z.shape[1]-3)
|
|
C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
|
|
|
|
|
|
Master
|
|
======
|
|
|
|
Archmaster
|
|
==========
|