numpy-100/source/exercises100.ktx
2020-05-02 07:30:46 +02:00

1458 lines
28 KiB
Plaintext

< q1
Import the numpy package under the name `np` (★☆☆)
< h1
hint: import … as
< a1
import numpy as np
< q2
Print the numpy version and the configuration (★☆☆)
< h2
hint: np.__version__, np.show_config)
< a2
print(np.__version__)
np.show_config()
< q3
Create a null vector of size 10 (★☆☆)
< h3
hint: np.zeros
< a3
Z = np.zeros(10)
print(Z)
< q4
How to find the memory size of any array (★☆☆)
< h4
hint: size, itemsize
< a4
Z = np.zeros((10,10))
print("%d bytes" % (Z.size * Z.itemsize))
< q5
How to get the documentation of the numpy add function from the command line? (★☆☆)
< h5
hint: np.info
< a5
%run `python -c "import numpy; numpy.info(numpy.add)"`
< q6
Create a null vector of size 10 but the fifth value which is 1 (★☆☆)
< h6
hint: array[4]
< a6
Z = np.zeros(10)
Z[4] = 1
print(Z)
< q7
Create a vector with values ranging from 10 to 49 (★☆☆)
< h7
hint: arange
< a7
Z = np.arange(10,50)
print(Z)
< q8
Reverse a vector (first element becomes last) (★☆☆)
< h8
hint: array[::-1]
< a8
Z = np.arange(50)
Z = Z[::-1]
print(Z)
< q9
Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆)
< h9
hint: reshape
< a9
Z = np.arange(9).reshape(3, 3)
print(Z)
< q10
Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆)
< h10
hint: np.nonzero
< a10
nz = np.nonzero([1,2,0,0,4,0])
print(nz)
< q11
Create a 3x3 identity matrix (★☆☆)
< h11
hint: np.eye
< a11
Z = np.eye(3)
print(Z)
< q12
Create a 3x3x3 array with random values (★☆☆)
< h12
hint: np.random.random
< a12
Z = np.random.random((3,3,3))
print(Z)
< q13
Create a 10x10 array with random values and find the minimum and maximum values (★☆☆)
< h13
hint: min, max
< a13
Z = np.random.random((10,10))
Zmin, Zmax = Z.min(), Z.max()
print(Zmin, Zmax)
< q14
Create a random vector of size 30 and find the mean value (★☆☆)
< h14
hint: mean
< a14
Z = np.random.random(30)
m = Z.mean()
print(m)
< q15
Create a 2d array with 1 on the border and 0 inside (★☆☆)
< h15
hint: array[1:-1, 1:-1]
< a15
Z = np.ones((10,10))
Z[1:-1,1:-1] = 0
print(Z)
< q16
How to add a border (filled with 0's) around an existing array? (★☆☆)
< h16
hint: np.pad
< a16
Z = np.ones((5,5))
Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0)
print(Z)
< q17
What is the result of the following expression? (★☆☆)
```python
0 * np.nan
np.nan == np.nan
np.inf > np.nan
np.nan - np.nan
np.nan in set([np.nan])
0.3 == 3 * 0.1
```
< h17
hint: NaN = not a number, inf = infinity
< a17
print(0 * np.nan)
print(np.nan == np.nan)
print(np.inf > np.nan)
print(np.nan - np.nan)
print(np.nan in set([np.nan]))
print(0.3 == 3 * 0.1)
< q18
Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★☆☆)
< h18
hint: np.diag
< a18
Z = np.diag(1+np.arange(4),k=-1)
print(Z)
< q19
Create a 8x8 matrix and fill it with a checkerboard pattern (★☆☆)
< h19
hint: array[::2]
< a19
Z = np.array([[(i + j) % 2 for j in range(8)] for i in range(8)])
print(Z)
< q20
Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element?
< h20
hint: np.unravel_index
< a20
print(np.unravel_index(99,(6,7,8)))
< q21
Create a checkerboard 8x8 matrix using the tile function (★☆☆)
< h21
hint: np.tile
< a21
Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
print(Z)
< q22
Normalize a 5x5 random matrix (★☆☆)
< h22
hint: (x -mean)/std
< a22
Z = np.random.random((5,5))
Z = (Z - np.mean (Z)) / (np.std (Z))
print(Z)
< q23
Create a custom dtype that describes a color as four unsigned bytes (RGBA) (★☆☆)
< h23
hint: np.dtype
< a23
color = np.dtype([("r", np.ubyte, 1),
("g", np.ubyte, 1),
("b", np.ubyte, 1),
("a", np.ubyte, 1)])
< q24
Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★☆☆)
< h24
hint:
< a24
Z = np.dot(np.ones((5,3)), np.ones((3,2)))
print(Z)
# Alternative solution, in Python 3.5 and above
Z = np.ones((5,3)) @ np.ones((3,2))
print(Z)
< q25
Given a 1D array, negate all elements which are between 3 and 8, in place. (★☆☆)
< h25
hint: >, <
< a25
# Author: Evgeni Burovski
Z = np.arange(11)
Z[(3 < Z) & (Z <= 8)] *= -1
print(Z)
< q26
What is the output of the following script? (★☆☆)
```python
# Author: Jake VanderPlas
print(sum(range(5),-1))
from numpy import *
print(sum(range(5),-1))
```
< h26
hint: np.sum
< a26
# Author: Jake VanderPlas
print(sum(range(5),-1))
from numpy import *
print(sum(range(5),-1))
< q27
Consider an integer vector Z, which of these expressions are legal? (★☆☆)
```python
Z**Z
2 << Z >> 2
Z <- Z
1j*Z
Z/1/1
Z<Z>Z
```
< h27
No hints provided...
< a27
Z**Z
2 << Z >> 2
Z <- Z
1j*Z
Z/1/1
Z<Z>Z
< q28
What are the result of the following expressions?
```python
np.array(0) / np.array(0)
np.array(0) // np.array(0)
np.array([np.nan]).astype(int).astype(float)
```
< h28
No hints provided...
< a28
print(np.array(0) / np.array(0))
print(np.array(0) // np.array(0))
print(np.array([np.nan]).astype(int).astype(float))
< q29
How to round away from zero a float array ? (★☆☆)
< h29
hint: np.uniform, np.copysign, np.ceil, np.abs
< a29
# Author: Charles R Harris
Z = np.random.uniform(-10,+10,10)
print (np.copysign(np.ceil(np.abs(Z)), Z))
< q30
How to find common values between two arrays? (★☆☆)
< h30
hint: np.intersect1d
< a30
Z1 = np.random.randint(0,10,10)
Z2 = np.random.randint(0,10,10)
print(np.intersect1d(Z1,Z2))
< q31
How to ignore all numpy warnings (not recommended)? (★☆☆)
< h31
hint: np.seterr, np.errstate
< a31
# Suicide mode on
defaults = np.seterr(all="ignore")
Z = np.ones(1) / 0
# Back to sanity
_ = np.seterr(**defaults)
# Equivalently with a context manager
nz = np.nonzero([1,2,0,0,4,0])
print(nz)
< q32
Is the following expressions true? (★☆☆)
```python
np.sqrt(-1) == np.emath.sqrt(-1)
```
< h32
hint: imaginary number
< a32
np.sqrt(-1) == np.emath.sqrt(-1)
< q33
How to get the dates of yesterday, today and tomorrow? (★☆☆)
< h33
hint: np.datetime64, np.timedelta64
< a33
yesterday = np.datetime64('today', 'D') - np.timedelta64(1, 'D')
today = np.datetime64('today', 'D')
tomorrow = np.datetime64('today', 'D') + np.timedelta64(1, 'D')
< q34
How to get all the dates corresponding to the month of July 2016? (★★☆)
< h34
hint: np.arange(dtype=datetime64['D'])
< a34
Z = np.arange('2016-07', '2016-08', dtype='datetime64[D]')
print(Z)
< q35
How to compute ((A+B)*(-A/2)) in place (without copy)? (★★☆)
< h35
hint: np.add(out=), np.negative(out=), np.multiply(out=), np.divide(out=)
< a35
A = np.ones(3)*1
B = np.ones(3)*2
C = np.ones(3)*3
np.add(A,B,out=B)
np.divide(A,2,out=A)
np.negative(A,out=A)
np.multiply(A,B,out=A)
< q36
Extract the integer part of a random array of positive numbers using 4 different methods (★★☆)
< h36
hint: %, np.floor, astype, np.trunc
< a36
Z = np.random.uniform(0,10,10)
print (Z - Z%1)
print (np.floor(Z))
print (Z.astype(int))
print (np.trunc(Z))
< q37
Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆)
< h37
hint: np.arange
< a37
Z = np.zeros((5,5))
Z += np.arange(5)
print(Z)
< q38
Consider a generator function that generates 10 integers and use it to build an array (★☆☆)
< h38
hint: np.fromiter
< a38
def generate():
for x in range(10):
yield x
Z = np.fromiter(generate(),dtype=float,count=-1)
print(Z)
< q39
Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆)
< h39
hint: np.linspace
< a39
Z = np.linspace(0,1,11,endpoint=False)[1:]
print(Z)
< q40
Create a random vector of size 10 and sort it (★★☆)
< h40
hint: sort
< a40
Z = np.random.random(10)
Z.sort()
print(Z)
< q41
How to sum a small array faster than np.sum? (★★☆)
< h41
hint: np.add.reduce
< a41
# Author: Evgeni Burovski
Z = np.arange(10)
np.add.reduce(Z)
< q42
Consider two random array A and B, check if they are equal (★★☆)
< h42
hint: np.allclose, np.array_equal
< a42
A = np.random.randint(0,2,5)
B = np.random.randint(0,2,5)
# Assuming identical shape of the arrays and a tolerance for the comparison of values
equal = np.allclose(A,B)
print(equal)
# Checking both the shape and the element values, no tolerance (values have to be exactly equal)
equal = np.array_equal(A,B)
print(equal)
< q43
Make an array immutable (read-only) (★★☆)
< h43
hint: flags.writeable
< a43
Z = np.zeros(10)
Z.flags.writeable = False
Z[0] = 1
< q44
Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆)
< h44
hint: np.sqrt, np.arctan2
< a44
Z = np.random.random((10,2))
X,Y = Z[:,0], Z[:,1]
R = np.sqrt(X**2+Y**2)
T = np.arctan2(Y,X)
print(R)
print(T)
< q45
Create random vector of size 10 and replace the maximum value by 0 (★★☆)
< h45
hint: argmax
< a45
Z = np.random.random(10)
Z[Z.argmax()] = 0
print(Z)
< q46
Create a structured array with `x` and `y` coordinates covering the [0,1]x[0,1] area (★★☆)
< h46
hint: np.meshgrid
< a46
Z = np.zeros((5,5), [('x',float),('y',float)])
Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,5),
np.linspace(0,1,5))
print(Z)
< q47
Given two arrays, X and Y, construct the Cauchy matrix C (Cij =1/(xi - yj))
< h47
hint: np.subtract.outer
< a47
# Author: Evgeni Burovski
X = np.arange(8)
Y = X + 0.5
C = 1.0 / np.subtract.outer(X, Y)
print(np.linalg.det(C))
< q48
Print the minimum and maximum representable value for each numpy scalar type (★★☆)
< h48
hint: np.iinfo, np.finfo, eps
< a48
for dtype in [np.int8, np.int32, np.int64]:
print(np.iinfo(dtype).min)
print(np.iinfo(dtype).max)
for dtype in [np.float32, np.float64]:
print(np.finfo(dtype).min)
print(np.finfo(dtype).max)
print(np.finfo(dtype).eps)
< q49
How to print all the values of an array? (★★☆)
< h49
hint: np.set_printoptions
< a49
np.set_printoptions(threshold=np.nan)
Z = np.zeros((16,16))
print(Z)
< q50
How to find the closest value (to a given scalar) in a vector? (★★☆)
< h50
hint: argmin
< a50
Z = np.arange(100)
v = np.random.uniform(0,100)
index = (np.abs(Z-v)).argmin()
print(Z[index])
< q51
Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆)
< h51
hint: dtype
< a51
Z = np.zeros(10, [ ('position', [ ('x', float, 1),
('y', float, 1)]),
('color', [ ('r', float, 1),
('g', float, 1),
('b', float, 1)])])
print(Z)
< q52
Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆)
< h52
hint: np.atleast_2d, T, np.sqrt
< a52
Z = np.random.random((10,2))
X,Y = np.atleast_2d(Z[:,0], Z[:,1])
D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
print(D)
# Much faster with scipy
import scipy
# Thanks Gavin Heverly-Coulson (#issue 1)
import scipy.spatial
Z = np.random.random((10,2))
D = scipy.spatial.distance.cdist(Z,Z)
print(D)
< q53
How to convert a float (32 bits) array into an integer (32 bits) in place?
< h53
hint: view and [:] =
< a53
# Thanks Vikas (https://stackoverflow.com/a/10622758/5989906)
# & unutbu (https://stackoverflow.com/a/4396247/5989906)
Z = (np.random.rand(10)*100).astype(np.float32)
Y = Z.view(np.int32)
Y[:] = Z
print(Y)
< q54
How to read the following file? (★★☆)
```
1, 2, 3, 4, 5
6, , , 7, 8
, , 9,10,11
```
< h54
hint: np.genfromtxt
< a54
from io import StringIO
# Fake file
s = StringIO('''1, 2, 3, 4, 5
6, , , 7, 8
, , 9,10,11
''')
Z = np.genfromtxt(s, delimiter=",", dtype=np.int)
print(Z)
< q55
What is the equivalent of enumerate for numpy arrays? (★★☆)
< h55
hint: np.ndenumerate, np.ndindex
< a55
Z = np.arange(9).reshape(3,3)
for index, value in np.ndenumerate(Z):
print(index, value)
for index in np.ndindex(Z.shape):
print(index, Z[index])
< q56
Generate a generic 2D Gaussian-like array (★★☆)
< h56
hint: np.meshgrid, np.exp
< a56
X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
D = np.sqrt(X*X+Y*Y)
sigma, mu = 1.0, 0.0
G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
print(G)
< q57
How to randomly place p elements in a 2D array? (★★☆)
< h57
hint: np.put, np.random.choice
< a57
# Author: Divakar
n = 10
p = 3
Z = np.zeros((n,n))
np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
print(Z)
< q58
Subtract the mean of each row of a matrix (★★☆)
< h58
hint: mean(axis=,keepdims=)
< a58
# Author: Warren Weckesser
X = np.random.rand(5, 10)
# Recent versions of numpy
Y = X - X.mean(axis=1, keepdims=True)
# Older versions of numpy
Y = X - X.mean(axis=1).reshape(-1, 1)
print(Y)
< q59
How to sort an array by the nth column? (★★☆)
< h59
hint: argsort
< a59
# Author: Steve Tjoa
Z = np.random.randint(0,10,(3,3))
print(Z)
print(Z[Z[:,1].argsort()])
< q60
How to tell if a given 2D array has null columns? (★★☆)
< h60
hint: any, ~
< a60
# Author: Warren Weckesser
Z = np.random.randint(0,3,(3,10))
print((~Z.any(axis=0)).any())
< q61
Find the nearest value from a given value in an array (★★☆)
< h61
hint: np.abs, argmin, flat
< a61
Z = np.random.uniform(0,1,10)
z = 0.5
m = Z.flat[np.abs(Z - z).argmin()]
print(m)
< q62
Considering two arrays with shape (1,3) and (3,1), how to compute their sum using an iterator? (★★☆)
< h62
hint: np.nditer
< a62
A = np.arange(3).reshape(3,1)
B = np.arange(3).reshape(1,3)
it = np.nditer([A,B,None])
for x,y,z in it: z[...] = x + y
print(it.operands[2])
< q63
Create an array class that has a name attribute (★★☆)
< h63
hint: class method
< a63
class NamedArray(np.ndarray):
def __new__(cls, array, name="no name"):
obj = np.asarray(array).view(cls)
obj.name = name
return obj
def __array_finalize__(self, obj):
if obj is None: return
self.info = getattr(obj, 'name', "no name")
Z = NamedArray(np.arange(10), "range_10")
print (Z.name)
< q64
Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices)? (★★★)
< h64
hint: np.bincount | np.add.at
< a64
# Author: Brett Olsen
Z = np.ones(10)
I = np.random.randint(0,len(Z),20)
Z += np.bincount(I, minlength=len(Z))
print(Z)
# Another solution
# Author: Bartosz Telenczuk
np.add.at(Z, I, 1)
print(Z)
< q65
How to accumulate elements of a vector (X) to an array (F) based on an index list (I)? (★★★)
< h65
hint: np.bincount
< a65
# Author: Alan G Isaac
X = [1,2,3,4,5,6]
I = [1,3,9,3,4,1]
F = np.bincount(I,X)
print(F)
< q66
Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★)
< h66
hint: np.unique
< a66
# Author: Nadav Horesh
w,h = 16,16
I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
n = len(np.unique(F))
print(np.unique(I))
< q67
Considering a four dimensions array, how to get sum over the last two axis at once? (★★★)
< h67
hint: sum(axis=(-2,-1))
< a67
A = np.random.randint(0,10,(3,4,3,4))
# solution by passing a tuple of axes (introduced in numpy 1.7.0)
sum = A.sum(axis=(-2,-1))
print(sum)
# solution by flattening the last two dimensions into one
# (useful for functions that don't accept tuples for axis argument)
sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
print(sum)
< q68
Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices? (★★★)
< h68
hint: np.bincount
< a68
# Author: Jaime Fernández del Río
D = np.random.uniform(0,1,100)
S = np.random.randint(0,10,100)
D_sums = np.bincount(S, weights=D)
D_counts = np.bincount(S)
D_means = D_sums / D_counts
print(D_means)
# Pandas solution as a reference due to more intuitive code
import pandas as pd
print(pd.Series(D).groupby(S).mean())
< q69
How to get the diagonal of a dot product? (★★★)
< h69
hint: np.diag
< a69
# Author: Mathieu Blondel
A = np.random.uniform(0,1,(5,5))
B = np.random.uniform(0,1,(5,5))
# Slow version
np.diag(np.dot(A, B))
# Fast version
np.sum(A * B.T, axis=1)
# Faster version
np.einsum("ij,ji->i", A, B)
< q70
Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value? (★★★)
< h70
hint: array[::4]
< a70
# Author: Warren Weckesser
Z = np.array([1,2,3,4,5])
nz = 3
Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
Z0[::nz+1] = Z
print(Z0)
< q71
Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5)? (★★★)
< h71
hint: array[:, :, None]
< a71
A = np.ones((5,5,3))
B = 2*np.ones((5,5))
print(A * B[:,:,None])
< q72
How to swap two rows of an array? (★★★)
< h72
hint: array[[]] = array[[]]
< a72
# Author: Eelco Hoogendoorn
A = np.arange(25).reshape(5,5)
A[[0,1]] = A[[1,0]]
print(A)
< q73
Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★)
< h73
hint: repeat, np.roll, np.sort, view, np.unique
< a73
# Author: Nicolas P. Rougier
faces = np.random.randint(0,100,(10,3))
F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
F = F.reshape(len(F)*3,2)
F = np.sort(F,axis=1)
G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
G = np.unique(G)
print(G)
< q74
Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C? (★★★)
< h74
hint: np.repeat
< a74
# Author: Jaime Fernández del Río
C = np.bincount([1,1,2,3,4,4,6])
A = np.repeat(np.arange(len(C)), C)
print(A)
< q75
How to compute averages using a sliding window over an array? (★★★)
< h75
hint: np.cumsum
< a75
# Author: Jaime Fernández del Río
def moving_average(a, n=3) :
ret = np.cumsum(a, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
Z = np.arange(20)
print(moving_average(Z, n=3))
< q76
Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★)
< h76
hint: from numpy.lib import stride_tricks
< a76
# Author: Joe Kington / Erik Rigtorp
from numpy.lib import stride_tricks
def rolling(a, window):
shape = (a.size - window + 1, window)
strides = (a.itemsize, a.itemsize)
return stride_tricks.as_strided(a, shape=shape, strides=strides)
Z = rolling(np.arange(10), 3)
print(Z)
< q77
How to negate a boolean, or to change the sign of a float inplace? (★★★)
< h77
hint: np.logical_not, np.negative
< a77
# Author: Nathaniel J. Smith
Z = np.random.randint(0,2,100)
np.logical_not(Z, out=Z)
Z = np.random.uniform(-1.0,1.0,100)
np.negative(Z, out=Z)
< q78
Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i])? (★★★)
< h78
No hints provided...
< a78
def distance(P0, P1, p):
T = P1 - P0
L = (T**2).sum(axis=1)
U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
U = U.reshape(len(U),1)
D = P0 + U*T - p
return np.sqrt((D**2).sum(axis=1))
P0 = np.random.uniform(-10,10,(10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10,10,( 1,2))
print(distance(P0, P1, p))
< q79
Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i])? (★★★)
< h79
No hints provided...
< a79
# Author: Italmassov Kuanysh
# based on distance function from previous question
P0 = np.random.uniform(-10, 10, (10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10, 10, (10,2))
print(np.array([distance(P0,P1,p_i) for p_i in p]))
< q80
Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a `fill` value when necessary) (★★★)
< h80
hint: minimum maximum
< a80
# Author: Nicolas Rougier
Z = np.random.randint(0,10,(10,10))
shape = (5,5)
fill = 0
position = (1,1)
R = np.ones(shape, dtype=Z.dtype)*fill
P = np.array(list(position)).astype(int)
Rs = np.array(list(R.shape)).astype(int)
Zs = np.array(list(Z.shape)).astype(int)
R_start = np.zeros((len(shape),)).astype(int)
R_stop = np.array(list(shape)).astype(int)
Z_start = (P-Rs//2)
Z_stop = (P+Rs//2)+Rs%2
R_start = (R_start - np.minimum(Z_start,0)).tolist()
Z_start = (np.maximum(Z_start,0)).tolist()
R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
Z_stop = (np.minimum(Z_stop,Zs)).tolist()
r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
R[r] = Z[z]
print(Z)
print(R)
< q81
Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]]? (★★★)
< h81
hint: stride_tricks.as_strided
< a81
# Author: Stefan van der Walt
Z = np.arange(1,15,dtype=np.uint32)
R = stride_tricks.as_strided(Z,(11,4),(4,4))
print(R)
< q82
Compute a matrix rank (★★★)
< h82
hint: np.linalg.svd
< a82
# Author: Stefan van der Walt
Z = np.random.uniform(0,1,(10,10))
U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
rank = np.sum(S > 1e-10)
print(rank)
< q83
How to find the most frequent value in an array?
< h83
hint: np.bincount, argmax
< a83
Z = np.random.randint(0,10,50)
print(np.bincount(Z).argmax())
< q84
Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★)
< h84
hint: stride_tricks.as_strided
< a84
# Author: Chris Barker
Z = np.random.randint(0,5,(10,10))
n = 3
i = 1 + (Z.shape[0]-3)
j = 1 + (Z.shape[1]-3)
C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
print(C)
< q85
Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★)
< h85
hint: class method
< a85
# Author: Eric O. Lebigot
# Note: only works for 2d array and value setting using indices
class Symetric(np.ndarray):
def __setitem__(self, index, value):
i,j = index
super(Symetric, self).__setitem__((i,j), value)
super(Symetric, self).__setitem__((j,i), value)
def symetric(Z):
return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)
S = symetric(np.random.randint(0,10,(5,5)))
S[2,3] = 42
print(S)
< q86
Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). How to compute the sum of of the p matrix products at once? (result has shape (n,1)) (★★★)
< h86
hint: np.tensordot
< a86
# Author: Stefan van der Walt
p, n = 10, 20
M = np.ones((p,n,n))
V = np.ones((p,n,1))
S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
print(S)
# It works, because:
# M is (p,n,n)
# V is (p,n,1)
# Thus, summing over the paired axes 0 and 0 (of M and V independently),
# and 2 and 1, to remain with a (n,1) vector.
< q87
Consider a 16x16 array, how to get the block-sum (block size is 4x4)? (★★★)
< h87
hint: np.add.reduceat
< a87
# Author: Robert Kern
Z = np.ones((16,16))
k = 4
S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
np.arange(0, Z.shape[1], k), axis=1)
print(S)
< q88
How to implement the Game of Life using numpy arrays? (★★★)
< h88
No hints provided...
< a88
# Author: Nicolas Rougier
def iterate(Z):
# Count neighbours
N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
Z[1:-1,0:-2] + Z[1:-1,2:] +
Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:])
# Apply rules
birth = (N==3) & (Z[1:-1,1:-1]==0)
survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
Z[...] = 0
Z[1:-1,1:-1][birth | survive] = 1
return Z
Z = np.random.randint(0,2,(50,50))
for i in range(100): Z = iterate(Z)
print(Z)
< q89
How to get the n largest values of an array (★★★)
< h89
hint: np.argsort | np.argpartition
< a89
Z = np.arange(10000)
np.random.shuffle(Z)
n = 5
# Slow
print (Z[np.argsort(Z)[-n:]])
# Fast
print (Z[np.argpartition(-Z,n)[:n]])
< q90
Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★)
< h90
hint: np.indices
< a90
# Author: Stefan Van der Walt
def cartesian(arrays):
arrays = [np.asarray(a) for a in arrays]
shape = (len(x) for x in arrays)
ix = np.indices(shape, dtype=int)
ix = ix.reshape(len(arrays), -1).T
for n, arr in enumerate(arrays):
ix[:, n] = arrays[n][ix[:, n]]
return ix
print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
< q91
How to create a record array from a regular array? (★★★)
< h91
hint: np.core.records.fromarrays
< a91
Z = np.array([("Hello", 2.5, 3),
("World", 3.6, 2)])
R = np.core.records.fromarrays(Z.T,
names='col1, col2, col3',
formats = 'S8, f8, i8')
print(R)
< q92
Consider a large vector Z, compute Z to the power of 3 using 3 different methods (★★★)
< h92
hint: np.power, *, np.einsum
< a92
# Author: Ryan G.
x = np.random.rand(int(5e7))
%timeit np.power(x,3)
%timeit x*x*x
%timeit np.einsum('i,i,i->i',x,x,x)
< q93
Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B? (★★★)
< h93
hint: np.where
< a93
# Author: Gabe Schwartz
A = np.random.randint(0,5,(8,3))
B = np.random.randint(0,5,(2,2))
C = (A[..., np.newaxis, np.newaxis] == B)
rows = np.where(C.any((3,1)).all(1))[0]
print(rows)
< q94
Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3]) (★★★)
< h94
No hints provided...
< a94
# Author: Robert Kern
Z = np.random.randint(0,5,(10,3))
print(Z)
# solution for arrays of all dtypes (including string arrays and record arrays)
E = np.all(Z[:,1:] == Z[:,:-1], axis=1)
U = Z[~E]
print(U)
# soluiton for numerical arrays only, will work for any number of columns in Z
U = Z[Z.max(axis=1) != Z.min(axis=1),:]
print(U)
< q95
Convert a vector of ints into a matrix binary representation (★★★)
< h95
hint: np.unpackbits
< a95
# Author: Warren Weckesser
I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
print(B[:,::-1])
# Author: Daniel T. McDonald
I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)
print(np.unpackbits(I[:, np.newaxis], axis=1))
< q96
Given a two dimensional array, how to extract unique rows? (★★★)
< h96
hint: np.ascontiguousarray | np.unique
< a96
# Author: Jaime Fernández del Río
Z = np.random.randint(0,2,(6,3))
T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
_, idx = np.unique(T, return_index=True)
uZ = Z[idx]
print(uZ)
# Author: Andreas Kouzelis
# NumPy >= 1.13
uZ = np.unique(Z, axis=0)
print(uZ)
< q97
Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★)
< h97
hint: np.einsum
< a97
# Author: Alex Riley
# Make sure to read: http://ajcr.net/Basic-guide-to-einsum/
A = np.random.uniform(0,1,10)
B = np.random.uniform(0,1,10)
np.einsum('i->', A) # np.sum(A)
np.einsum('i,i->i', A, B) # A * B
np.einsum('i,i', A, B) # np.inner(A, B)
np.einsum('i,j->ij', A, B) # np.outer(A, B)
< q98
Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★)?
< h98
hint: np.cumsum, np.interp
< a98
# Author: Bas Swinckels
phi = np.arange(0, 10*np.pi, 0.1)
a = 1
x = a*phi*np.cos(phi)
y = a*phi*np.sin(phi)
dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
r = np.zeros_like(x)
r[1:] = np.cumsum(dr) # integrate path
r_int = np.linspace(0, r.max(), 200) # regular spaced path
x_int = np.interp(r_int, r, x) # integrate path
y_int = np.interp(r_int, r, y)
< q99
Given an integer n and a 2D array X, select from X the rows which can be interpreted as draws from a multinomial distribution with n degrees, i.e., the rows which only contain integers and which sum to n. (★★★)
< h99
hint: np.logical_and.reduce, np.mod
< a99
# Author: Evgeni Burovski
X = np.asarray([[1.0, 0.0, 3.0, 8.0],
[2.0, 0.0, 1.0, 1.0],
[1.5, 2.5, 1.0, 0.0]])
n = 4
M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1)
M &= (X.sum(axis=-1) == n)
print(X[M])
< q100
Compute bootstrapped 95% confidence intervals for the mean of a 1D array X (i.e., resample the elements of an array with replacement N times, compute the mean of each sample, and then compute percentiles over the means). (★★★)
< h100
hint: np.percentile
< a100
# Author: Jessica B. Hamrick
X = np.random.randn(100) # random 1D array
N = 1000 # number of bootstrap samples
idx = np.random.randint(0, X.size, (N, X.size))
means = X[idx].mean(axis=1)
confint = np.percentile(means, [2.5, 97.5])
print(confint)