# 100 numpy exercises This is a collection of exercises that have been collected in the numpy mailing list, on stack overflow and in the numpy documentation. The goal of this collection is to offer a quick reference for both old and new users but also to provide a set of exercises for those who teach. If you find an error or think you've a better way to solve some of them, feel free to open an issue at #### 1. Import the numpy package under the name `np` (★☆☆) ```python import numpy as np ``` #### 2. Print the numpy version and the configuration (★☆☆) ```python print(np.__version__) np.show_config() ``` #### 3. Create a null vector of size 10 (★☆☆) ```python Z = np.zeros(10) print(Z) ``` #### 4. How to find the memory size of any array (★☆☆) ```python Z = np.zeros((10,10)) print("%d bytes" % (Z.size * Z.itemsize)) ``` #### 5. How to get the documentation of the numpy add function from the command line? (★☆☆) ```python %run `python -c "import numpy; numpy.info(numpy.add)"` ``` #### 6. Create a null vector of size 10 but the fifth value which is 1 (★☆☆) ```python Z = np.zeros(10) Z[4] = 1 print(Z) ``` #### 7. Create a vector with values ranging from 10 to 49 (★☆☆) ```python Z = np.arange(10,50) print(Z) ``` #### 8. Reverse a vector (first element becomes last) (★☆☆) ```python Z = np.arange(50) Z = Z[::-1] print(Z) ``` #### 9. Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆) ```python Z = np.arange(9).reshape(3,3) print(Z) ``` #### 10. Find indices of non-zero elements from \[1,2,0,0,4,0\] (★☆☆) ```python nz = np.nonzero([1,2,0,0,4,0]) print(nz) ``` #### 11. Create a 3x3 identity matrix (★☆☆) ```python Z = np.eye(3) print(Z) ``` #### 12. Create a 3x3x3 array with random values (★☆☆) ```python Z = np.random.random((3,3,3)) print(Z) ``` #### 13. Create a 10x10 array with random values and find the minimum and maximum values (★☆☆) ```python Z = np.random.random((10,10)) Zmin, Zmax = Z.min(), Z.max() print(Zmin, Zmax) ``` #### 14. Create a random vector of size 30 and find the mean value (★☆☆) ```python Z = np.random.random(30) m = Z.mean() print(m) ``` #### 15. Create a 2d array with 1 on the border and 0 inside (★☆☆) ```python Z = np.ones((10,10)) Z[1:-1,1:-1] = 0 print(Z) ``` #### 16. How to add a border (filled with 0's) around an existing array? (★☆☆) ```python Z = np.ones((5,5)) Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0) print(Z) ``` #### 17. What is the result of the following expression? (★☆☆) ```python print(0 * np.nan) print(np.nan == np.nan) print(np.inf > np.nan) print(np.nan - np.nan) print(0.3 == 3 * 0.1) ``` #### 18. Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★☆☆) ```python Z = np.diag(1+np.arange(4),k=-1) print(Z) ``` #### 19. Create a 8x8 matrix and fill it with a checkerboard pattern (★☆☆) ```python Z = np.zeros((8,8),dtype=int) Z[1::2,::2] = 1 Z[::2,1::2] = 1 print(Z) ``` #### 20. Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element? ```python print(np.unravel_index(99,(6,7,8))) ``` #### 21. Create a checkerboard 8x8 matrix using the tile function (★☆☆) ```python Z = np.tile( np.array([[0,1],[1,0]]), (4,4)) print(Z) ``` #### 22. Normalize a 5x5 random matrix (★☆☆) ```python Z = np.random.random((5,5)) Zmax, Zmin = Z.max(), Z.min() Z = (Z - Zmin)/(Zmax - Zmin) print(Z) ``` #### 23. Create a custom dtype that describes a color as four unsigned bytes (RGBA) (★☆☆) ```python color = np.dtype([("r", np.ubyte, 1), ("g", np.ubyte, 1), ("b", np.ubyte, 1), ("a", np.ubyte, 1)]) ``` #### 24. Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★☆☆) ```python Z = np.dot(np.ones((5,3)), np.ones((3,2))) print(Z) # Alternative solution, in Python 3.5 and above Z = np.ones((5,3)) @ np.ones((3,2)) print(Z) ``` #### 25. Given a 1D array, negate all elements which are between 3 and 8, in place. (★☆☆) ```python # Author: Evgeni Burovski Z = np.arange(11) Z[(3 < Z) & (Z <= 8)] *= -1 print(Z) ``` #### 26. What is the output of the following script? (★☆☆) ```python # Author: Jake VanderPlas print(sum(range(5),-1)) from numpy import * print(sum(range(5),-1)) ``` #### 27. Consider an integer vector Z, which of these expressions are legal? (★☆☆) ```python Z**Z 2 << Z >> 2 Z <- Z 1j*Z Z/1/1 ZZ ``` #### 28. What are the result of the following expressions? ```python print(np.array(0) / np.array(0)) print(np.array(0) // np.array(0)) print(np.array([np.nan]).astype(int).astype(float)) ``` #### 29. How to round away from zero a float array ? (★☆☆) ```python # Author: Charles R Harris Z = np.random.uniform(-10,+10,10) print (np.copysign(np.ceil(np.abs(Z)), Z)) ``` #### 30. How to find common values between two arrays? (★☆☆) ```python Z1 = np.random.randint(0,10,10) Z2 = np.random.randint(0,10,10) print(np.intersect1d(Z1,Z2)) ``` #### 31. How to ignore all numpy warnings (not recommended)? (★☆☆) ```python # Suicide mode on defaults = np.seterr(all="ignore") Z = np.ones(1) / 0 # Back to sanity _ = np.seterr(**defaults) ``` An equivalent way, with a context manager: ```python with np.errstate(divide='ignore'): Z = np.ones(1) / 0 ``` #### 32. Is the following expressions true? (★☆☆) ```python np.sqrt(-1) == np.emath.sqrt(-1) ``` #### 33. How to get the dates of yesterday, today and tomorrow? (★☆☆) ```python yesterday = np.datetime64('today', 'D') - np.timedelta64(1, 'D') today = np.datetime64('today', 'D') tomorrow = np.datetime64('today', 'D') + np.timedelta64(1, 'D') ``` #### 34. How to get all the dates corresponding to the month of July 2016? (★★☆) ```python Z = np.arange('2016-07', '2016-08', dtype='datetime64[D]') print(Z) ``` #### 35. How to compute ((A+B)\*(-A/2)) in place (without copy)? (★★☆) ```python A = np.ones(3)*1 B = np.ones(3)*2 C = np.ones(3)*3 np.add(A,B,out=B) np.divide(A,2,out=A) np.negative(A,out=A) np.multiply(A,B,out=A) ``` #### 36. Extract the integer part of a random array using 5 different methods (★★☆) ```python Z = np.random.uniform(0,10,10) print (Z - Z%1) print (np.floor(Z)) print (np.ceil(Z)-1) print (Z.astype(int)) print (np.trunc(Z)) ``` #### 37. Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆) ```python Z = np.zeros((5,5)) Z += np.arange(5) print(Z) ``` #### 38. Consider a generator function that generates 10 integers and use it to build an array (★☆☆) ```python def generate(): for x in range(10): yield x Z = np.fromiter(generate(),dtype=float,count=-1) print(Z) ``` #### 39. Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆) ```python Z = np.linspace(0,1,11,endpoint=False)[1:] print(Z) ``` #### 40. Create a random vector of size 10 and sort it (★★☆) ```python Z = np.random.random(10) Z.sort() print(Z) ``` #### 41. How to sum a small array faster than np.sum? (★★☆) ```python # Author: Evgeni Burovski Z = np.arange(10) np.add.reduce(Z) ``` #### 42. Consider two random array A and B, check if they are equal (★★☆) ```python A = np.random.randint(0,2,5) B = np.random.randint(0,2,5) # Assuming identical shape of the arrays and a tolerance for the comparison of values equal = np.allclose(A,B) print(equal) # Checking both the shape and the element values, no tolerance (values have to be exactly equal) equal = np.array_equal(A,B) print(equal) ``` #### 43. Make an array immutable (read-only) (★★☆) ```python Z = np.zeros(10) Z.flags.writeable = False Z[0] = 1 ``` #### 44. Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆) ```python Z = np.random.random((10,2)) X,Y = Z[:,0], Z[:,1] R = np.sqrt(X**2+Y**2) T = np.arctan2(Y,X) print(R) print(T) ``` #### 45. Create random vector of size 10 and replace the maximum value by 0 (★★☆) ```python Z = np.random.random(10) Z[Z.argmax()] = 0 print(Z) ``` #### 46. Create a structured array with `x` and `y` coordinates covering the \[0,1\]x\[0,1\] area (★★☆) ```python Z = np.zeros((5,5), [('x',float),('y',float)]) Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,5), np.linspace(0,1,5)) print(Z) ``` #### 47. Given two arrays, X and Y, construct the Cauchy matrix C (Cij =1/(xi - yj)) ```python # Author: Evgeni Burovski X = np.arange(8) Y = X + 0.5 C = 1.0 / np.subtract.outer(X, Y) print(np.linalg.det(C)) ``` #### 48. Print the minimum and maximum representable value for each numpy scalar type (★★☆) ```python for dtype in [np.int8, np.int32, np.int64]: print(np.iinfo(dtype).min) print(np.iinfo(dtype).max) for dtype in [np.float32, np.float64]: print(np.finfo(dtype).min) print(np.finfo(dtype).max) print(np.finfo(dtype).eps) ``` #### 49. How to print all the values of an array? (★★☆) ```python np.set_printoptions(threshold=np.nan) Z = np.zeros((16,16)) print(Z) ``` #### 50. How to find the closest value (to a given scalar) in a vector? (★★☆) ```python Z = np.arange(100) v = np.random.uniform(0,100) index = (np.abs(Z-v)).argmin() print(Z[index]) ``` #### 51. Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆) ```python Z = np.zeros(10, [ ('position', [ ('x', float, 1), ('y', float, 1)]), ('color', [ ('r', float, 1), ('g', float, 1), ('b', float, 1)])]) print(Z) ``` #### 52. Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆) ```python Z = np.random.random((10,2)) X,Y = np.atleast_2d(Z[:,0], Z[:,1]) D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2) print(D) # Much faster with scipy import scipy # Thanks Gavin Heverly-Coulson (#issue 1) import scipy.spatial Z = np.random.random((10,2)) D = scipy.spatial.distance.cdist(Z,Z) print(D) ``` #### 53. How to convert a float (32 bits) array into an integer (32 bits) in place? ```python Z = np.arange(10, dtype=np.float32) Z = Z.astype(np.int32, copy=False) print(Z) ``` #### 54. How to read the following file? (★★☆) ```python from io import StringIO # Fake file s = StringIO("""1, 2, 3, 4, 5\n 6, , , 7, 8\n , , 9,10,11\n""") Z = np.genfromtxt(s, delimiter=",", dtype=np.int) print(Z) ``` #### 55. What is the equivalent of enumerate for numpy arrays? (★★☆) ```python Z = np.arange(9).reshape(3,3) for index, value in np.ndenumerate(Z): print(index, value) for index in np.ndindex(Z.shape): print(index, Z[index]) ``` #### 56. Generate a generic 2D Gaussian-like array (★★☆) ```python X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10)) D = np.sqrt(X*X+Y*Y) sigma, mu = 1.0, 0.0 G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) ) print(G) ``` #### 57. How to randomly place p elements in a 2D array? (★★☆) ```python # Author: Divakar n = 10 p = 3 Z = np.zeros((n,n)) np.put(Z, np.random.choice(range(n*n), p, replace=False),1) print(Z) ``` #### 58. Subtract the mean of each row of a matrix (★★☆) ```python # Author: Warren Weckesser X = np.random.rand(5, 10) # Recent versions of numpy Y = X - X.mean(axis=1, keepdims=True) # Older versions of numpy Y = X - X.mean(axis=1).reshape(-1, 1) print(Y) ``` #### 59. How to I sort an array by the nth column? (★★☆) ```python # Author: Steve Tjoa Z = np.random.randint(0,10,(3,3)) print(Z) print(Z[Z[:,1].argsort()]) ``` #### 60. How to tell if a given 2D array has null columns? (★★☆) ```python # Author: Warren Weckesser Z = np.random.randint(0,3,(3,10)) print((~Z.any(axis=0)).any()) ``` #### 61. Find the nearest value from a given value in an array (★★☆) ```python Z = np.random.uniform(0,1,10) z = 0.5 m = Z.flat[np.abs(Z - z).argmin()] print(m) ``` #### 62. Considering two arrays with shape (1,3) and (3,1), how to compute their sum using an iterator? (★★☆) ```python A = np.arange(3).reshape(3,1) B = np.arange(3).reshape(1,3) it = np.nditer([A,B,None]) for x,y,z in it: z[...] = x + y print(it.operands[2]) ``` #### 63. Create an array class that has a name attribute (★★☆) ```python class NamedArray(np.ndarray): def __new__(cls, array, name="no name"): obj = np.asarray(array).view(cls) obj.name = name return obj def __array_finalize__(self, obj): if obj is None: return self.info = getattr(obj, 'name', "no name") Z = NamedArray(np.arange(10), "range_10") print (Z.name) ``` #### 64. Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices)? (★★★) ```python # Author: Brett Olsen Z = np.ones(10) I = np.random.randint(0,len(Z),20) Z += np.bincount(I, minlength=len(Z)) print(Z) # Another solution # Author: Bartosz Telenczuk np.add.at(Z, I, 1) print(Z) ``` #### 65. How to accumulate elements of a vector (X) to an array (F) based on an index list (I)? (★★★) ```python # Author: Alan G Isaac X = [1,2,3,4,5,6] I = [1,3,9,3,4,1] F = np.bincount(I,X) print(F) ``` #### 66. Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★) ```python # Author: Nadav Horesh w,h = 16,16 I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte) F = I[...,0]*256*256 + I[...,1]*256 +I[...,2] n = len(np.unique(F)) print(np.unique(I)) ``` #### 67. Considering a four dimensions array, how to get sum over the last two axis at once? (★★★) ```python A = np.random.randint(0,10,(3,4,3,4)) # solution by passing a tuple of axes (introduced in numpy 1.7.0) sum = A.sum(axis=(-2,-1)) print(sum) # solution by flattening the last two dimensions into one # (useful for functions that don't accept tuples for axis argument) sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1) print(sum) ``` #### 68. Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices? (★★★) ```python # Author: Jaime Fernández del Río D = np.random.uniform(0,1,100) S = np.random.randint(0,10,100) D_sums = np.bincount(S, weights=D) D_counts = np.bincount(S) D_means = D_sums / D_counts print(D_means) # Pandas solution as a reference due to more intuitive code import pandas as pd print(pd.Series(D).groupby(S).mean()) ``` #### 69. How to get the diagonal of a dot product? (★★★) ```python # Author: Mathieu Blondel A = np.random.uniform(0,1,(5,5)) B = np.random.uniform(0,1,(5,5)) # Slow version np.diag(np.dot(A, B)) # Fast version np.sum(A * B.T, axis=1) # Faster version np.einsum("ij,ji->i", A, B) ``` #### 70. Consider the vector \[1, 2, 3, 4, 5\], how to build a new vector with 3 consecutive zeros interleaved between each value? (★★★) ```python # Author: Warren Weckesser Z = np.array([1,2,3,4,5]) nz = 3 Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz)) Z0[::nz+1] = Z print(Z0) ``` #### 71. Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5)? (★★★) ```python A = np.ones((5,5,3)) B = 2*np.ones((5,5)) print(A * B[:,:,None]) ``` #### 72. How to swap two rows of an array? (★★★) ```python # Author: Eelco Hoogendoorn A = np.arange(25).reshape(5,5) A[[0,1]] = A[[1,0]] print(A) ``` #### 73. Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★) ```python # Author: Nicolas P. Rougier faces = np.random.randint(0,100,(10,3)) F = np.roll(faces.repeat(2,axis=1),-1,axis=1) F = F.reshape(len(F)*3,2) F = np.sort(F,axis=1) G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] ) G = np.unique(G) print(G) ``` #### 74. Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C? (★★★) ```python # Author: Jaime Fernández del Río C = np.bincount([1,1,2,3,4,4,6]) A = np.repeat(np.arange(len(C)), C) print(A) ``` #### 75. How to compute averages using a sliding window over an array? (★★★) ```python # Author: Jaime Fernández del Río def moving_average(a, n=3) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n Z = np.arange(20) print(moving_average(Z, n=3)) ``` #### 76. Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z\[0\],Z\[1\],Z\[2\]) and each subsequent row is shifted by 1 (last row should be (Z\[-3\],Z\[-2\],Z\[-1\]) (★★★) ```python # Author: Joe Kington / Erik Rigtorp from numpy.lib import stride_tricks def rolling(a, window): shape = (a.size - window + 1, window) strides = (a.itemsize, a.itemsize) return stride_tricks.as_strided(a, shape=shape, strides=strides) Z = rolling(np.arange(10), 3) print(Z) ``` #### 77. How to negate a boolean, or to change the sign of a float inplace? (★★★) ```python # Author: Nathaniel J. Smith Z = np.random.randint(0,2,100) np.logical_not(Z, out=Z) Z = np.random.uniform(-1.0,1.0,100) np.negative(Z, out=Z) ``` #### 78. Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0\[i\],P1\[i\])? (★★★) ```python def distance(P0, P1, p): T = P1 - P0 L = (T**2).sum(axis=1) U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L U = U.reshape(len(U),1) D = P0 + U*T - p return np.sqrt((D**2).sum(axis=1)) P0 = np.random.uniform(-10,10,(10,2)) P1 = np.random.uniform(-10,10,(10,2)) p = np.random.uniform(-10,10,( 1,2)) print(distance(P0, P1, p)) ``` #### 79. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P\[j\]) to each line i (P0\[i\],P1\[i\])? (★★★) ```python # Author: Italmassov Kuanysh # based on distance function from previous question P0 = np.random.uniform(-10, 10, (10,2)) P1 = np.random.uniform(-10,10,(10,2)) p = np.random.uniform(-10, 10, (10,2)) print(np.array([distance(P0,P1,p_i) for p_i in p])) ``` #### 80. Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a `fill` value when necessary) (★★★) ```python # Author: Nicolas Rougier Z = np.random.randint(0,10,(10,10)) shape = (5,5) fill = 0 position = (1,1) R = np.ones(shape, dtype=Z.dtype)*fill P = np.array(list(position)).astype(int) Rs = np.array(list(R.shape)).astype(int) Zs = np.array(list(Z.shape)).astype(int) R_start = np.zeros((len(shape),)).astype(int) R_stop = np.array(list(shape)).astype(int) Z_start = (P-Rs//2) Z_stop = (P+Rs//2)+Rs%2 R_start = (R_start - np.minimum(Z_start,0)).tolist() Z_start = (np.maximum(Z_start,0)).tolist() R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist() Z_stop = (np.minimum(Z_stop,Zs)).tolist() r = [slice(start,stop) for start,stop in zip(R_start,R_stop)] z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)] R[r] = Z[z] print(Z) print(R) ``` #### 81. Consider an array Z = \[1,2,3,4,5,6,7,8,9,10,11,12,13,14\], how to generate an array R = \[\[1,2,3,4\], \[2,3,4,5\], \[3,4,5,6\], ..., \[11,12,13,14\]\]? (★★★) ```python # Author: Stefan van der Walt Z = np.arange(1,15,dtype=np.uint32) R = stride_tricks.as_strided(Z,(11,4),(4,4)) print(R) ``` #### 82. Compute a matrix rank (★★★) ```python # Author: Stefan van der Walt Z = np.random.uniform(0,1,(10,10)) U, S, V = np.linalg.svd(Z) # Singular Value Decomposition rank = np.sum(S > 1e-10) print(rank) ``` #### 83. How to find the most frequent value in an array? ```python Z = np.random.randint(0,10,50) print(np.bincount(Z).argmax()) ``` #### 84. Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★) ```python # Author: Chris Barker Z = np.random.randint(0,5,(10,10)) n = 3 i = 1 + (Z.shape[0]-3) j = 1 + (Z.shape[1]-3) C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides) print(C) ``` #### 85. Create a 2D array subclass such that Z\[i,j\] == Z\[j,i\] (★★★) ```python # Author: Eric O. Lebigot # Note: only works for 2d array and value setting using indices class Symetric(np.ndarray): def __setitem__(self, index, value): i,j = index super(Symetric, self).__setitem__((i,j), value) super(Symetric, self).__setitem__((j,i), value) def symetric(Z): return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric) S = symetric(np.random.randint(0,10,(5,5))) S[2,3] = 42 print(S) ``` #### 86. Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). How to compute the sum of of the p matrix products at once? (result has shape (n,1)) (★★★) ```python # Author: Stefan van der Walt p, n = 10, 20 M = np.ones((p,n,n)) V = np.ones((p,n,1)) S = np.tensordot(M, V, axes=[[0, 2], [0, 1]]) print(S) # It works, because: # M is (p,n,n) # V is (p,n,1) # Thus, summing over the paired axes 0 and 0 (of M and V independently), # and 2 and 1, to remain with a (n,1) vector. ``` #### 87. Consider a 16x16 array, how to get the block-sum (block size is 4x4)? (★★★) ```python # Author: Robert Kern Z = np.ones((16,16)) k = 4 S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0), np.arange(0, Z.shape[1], k), axis=1) print(S) ``` #### 88. How to implement the Game of Life using numpy arrays? (★★★) ```python # Author: Nicolas Rougier def iterate(Z): # Count neighbours N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] + Z[1:-1,0:-2] + Z[1:-1,2:] + Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:]) # Apply rules birth = (N==3) & (Z[1:-1,1:-1]==0) survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1) Z[...] = 0 Z[1:-1,1:-1][birth | survive] = 1 return Z Z = np.random.randint(0,2,(50,50)) for i in range(100): Z = iterate(Z) print(Z) ``` #### 89. How to get the n largest values of an array (★★★) ```python Z = np.arange(10000) np.random.shuffle(Z) n = 5 # Slow print (Z[np.argsort(Z)[-n:]]) # Fast print (Z[np.argpartition(-Z,n)[:n]]) ``` #### 90. Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★) ```python # Author: Stefan Van der Walt def cartesian(arrays): arrays = [np.asarray(a) for a in arrays] shape = (len(x) for x in arrays) ix = np.indices(shape, dtype=int) ix = ix.reshape(len(arrays), -1).T for n, arr in enumerate(arrays): ix[:, n] = arrays[n][ix[:, n]] return ix print (cartesian(([1, 2, 3], [4, 5], [6, 7]))) ``` #### 91. How to create a record array from a regular array? (★★★) ```python Z = np.array([("Hello", 2.5, 3), ("World", 3.6, 2)]) R = np.core.records.fromarrays(Z.T, names='col1, col2, col3', formats = 'S8, f8, i8') print(R) ``` #### 92. Consider a large vector Z, compute Z to the power of 3 using 3 different methods (★★★) ```python # Author: Ryan G. x = np.random.rand(5e7) %timeit np.power(x,3) %timeit x*x*x %timeit np.einsum('i,i,i->i',x,x,x) ``` #### 93. Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B? (★★★) ```python # Author: Gabe Schwartz A = np.random.randint(0,5,(8,3)) B = np.random.randint(0,5,(2,2)) C = (A[..., np.newaxis, np.newaxis] == B) rows = np.where(C.any((3,1)).all(1))[0] print(rows) ``` #### 94. Considering a 10x3 matrix, extract rows with unequal values (e.g. \[2,2,3\]) (★★★) ```python # Author: Robert Kern Z = np.random.randint(0,5,(10,3)) print(Z) # solution for arrays of all dtypes (including string arrays and record arrays) E = np.all(Z[:,1:] == Z[:,:-1], axis=1) U = Z[~E] print(U) # soluiton for numerical arrays only, will work for any number of columns in Z U = Z[Z.max(axis=1) != Z.min(axis=1),:] print(U) ``` #### 95. Convert a vector of ints into a matrix binary representation (★★★) ```python # Author: Warren Weckesser I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128]) B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int) print(B[:,::-1]) # Author: Daniel T. McDonald I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8) print(np.unpackbits(I[:, np.newaxis], axis=1)) ``` #### 96. Given a two dimensional array, how to extract unique rows? (★★★) ```python # Author: Jaime Fernández del Río Z = np.random.randint(0,2,(6,3)) T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1]))) _, idx = np.unique(T, return_index=True) uZ = Z[idx] print(uZ) ``` #### 97. Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★) ```python # Author: Alex Riley # Make sure to read: http://ajcr.net/Basic-guide-to-einsum/ A = np.random.uniform(0,1,10) B = np.random.uniform(0,1,10) np.einsum('i->', A) # np.sum(A) np.einsum('i,i->i', A, B) # A * B np.einsum('i,i', A, B) # np.inner(A, B) np.einsum('i,j->ij', A, B) # np.outer(A, B) ``` #### 98. Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★)? ```python # Author: Bas Swinckels phi = np.arange(0, 10*np.pi, 0.1) a = 1 x = a*phi*np.cos(phi) y = a*phi*np.sin(phi) dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths r = np.zeros_like(x) r[1:] = np.cumsum(dr) # integrate path r_int = np.linspace(0, r.max(), 200) # regular spaced path x_int = np.interp(r_int, r, x) # integrate path y_int = np.interp(r_int, r, y) ``` #### 99. Given an integer n and a 2D array X, select from X the rows which can be interpreted as draws from a multinomial distribution with n degrees, i.e., the rows which only contain integers and which sum to n. (★★★) ```python # Author: Evgeni Burovski X = np.asarray([[1.0, 0.0, 3.0, 8.0], [2.0, 0.0, 1.0, 1.0], [1.5, 2.5, 1.0, 0.0]]) n = 4 M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1) M &= (X.sum(axis=-1) == n) print(X[M]) ``` #### 100. Compute bootstrapped 95% confidence intervals for the mean of a 1D array X (i.e., resample the elements of an array with replacement N times, compute the mean of each sample, and then compute percentiles over the means). (★★★) ```python # Author: Jessica B. Hamrick X = np.random.randn(100) # random 1D array N = 1000 # number of bootstrap samples idx = np.random.randint(0, X.size, (N, X.size)) means = X[idx].mean(axis=1) confint = np.percentile(means, [2.5, 97.5]) print(confint) ```