HEADER = """ # 100 numpy exercises This is a collection of exercises that have been collected in the numpy mailing list, on stack overflow and in the numpy documentation. The goal of this collection is to offer a quick reference for both old and new users but also to provide a set of exercises for those who teach. If you find an error or think you've a better way to solve some of them, feel free to open an issue at """ SUB_HEADER = "File automatically generated. See the documentation to update questions/answers/hints" \ " programmatically." JUPYTER_INSTRUCTIONS = "Run the `initialize.py` module, then for each question you can query the " \ "answer or an hint with `hint(n)` or `answer(n)` for `n` question number." JUPYTER_INSTRUCTIONS_RAND = "Run the `initialize.py` module, then call a random question with `pick()`" \ "an hint towards its solution with `hint(n)` and the answer with `answer(n)`," \ "where n is the number of the picked question." QHA = { "q1": "Import the numpy package under the name `np` (★☆☆)", "h1": "hint: import … as ", "a1": """ import numpy as np """, "q2": "Print the numpy version and the configuration (★☆☆)", "h2": "hint: np.__version__, np.show_config)", "a2": """ print(np.__version__) np.show_config() """, "q3": "Create a null vector of size 10 (★☆☆)", "h3": "hint: np.zeros", "a3": """ Z = np.zeros(10) print(Z) """, "q4": "How to find the memory size of any array (★☆☆)", "h4": "hint: size, itemsize", "a4": """ Z = np.zeros((10,10)) print("%d bytes" % (Z.size * Z.itemsize)) """, "q5": "How to get the documentation of the numpy add function from the command line? (★☆☆)", "h5": "hint: np.info", "a5": """ %run `python -c "import numpy; numpy.info(numpy.add)"` """, "q6": "Create a null vector of size 10 but the fifth value which is 1 (★☆☆)", "h6": "hint: array[4]", "a6": """ Z = np.zeros(10) Z[4] = 1 print(Z) """, "q7": "Create a vector with values ranging from 10 to 49 (★☆☆)", "h7": "hint: arange", "a7": """ Z = np.arange(10,50) print(Z) """, "q8": "Reverse a vector (first element becomes last) (★☆☆)", "h8": "hint: array[::-1]", "a8": """ Z = np.arange(50) Z = Z[::-1] print(Z) """, "q9": "Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆)", "h9": "hint: reshape", "a9": """ nz = np.nonzero([1,2,0,0,4,0]) print(nz) """, "q10": "Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆)", "h10": "hint: np.nonzero", "a10": """ nz = np.nonzero([1,2,0,0,4,0]) print(nz) """, "q11": "Create a 3x3 identity matrix (★☆☆)", "h11": "hint: np.eye", "a11": """ Z = np.eye(3) print(Z) """, "q12": "Create a 3x3x3 array with random values (★☆☆)", "h12": "hint: np.random.random", "a12": """ Z = np.random.random((3,3,3)) print(Z) """, "q13": "Create a 10x10 array with random values and find the minimum and maximum values (★☆☆)", "h13": "hint: min, max", "a13": """ Z = np.random.random((10,10)) Zmin, Zmax = Z.min(), Z.max() print(Zmin, Zmax) """, "q14": "Create a random vector of size 30 and find the mean value (★☆☆)", "h14": "hint: mean", "a14": """ Z = np.random.random(30) m = Z.mean() print(m) """, "q15": "Create a 2d array with 1 on the border and 0 inside (★☆☆)", "h15": "hint: array[1:-1, 1:-1]", "a15": """ Z = np.ones((10,10)) Z[1:-1,1:-1] = 0 print(Z) """, "q16": "How to add a border (filled with 0's) around an existing array? (★☆☆)", "h16": "hint: np.pad", "a16": """ Z = np.ones((5,5)) Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0) print(Z) """, "q17": """\ What is the result of the following expression? (★☆☆) ```python 0 * np.nan np.nan == np.nan np.inf > np.nan np.nan - np.nan np.nan in set([np.nan]) 0.3 == 3 * 0.1 ```""", "h17": "hint: NaN = not a number, inf = infinity", "a17": """ print(0 * np.nan) print(np.nan == np.nan) print(np.inf > np.nan) print(np.nan - np.nan) print(np.nan in set([np.nan])) print(0.3 == 3 * 0.1) """, "q18": "Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★☆☆)", "h18": "hint: np.diag", "a18": """ Z = np.diag(1+np.arange(4),k=-1) print(Z) """, "q19": "Create a 8x8 matrix and fill it with a checkerboard pattern (★☆☆)", "h19": "hint: array[::2]", "a19": """ Z = np.zeros((8,8),dtype=int) Z[1::2,::2] = 1 Z[::2,1::2] = 1 print(Z) """, "q20": "Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element?", "h20": "hint: np.unravel_index", "a20": """ print(np.unravel_index(99,(6,7,8))) """, "q21": "Create a checkerboard 8x8 matrix using the tile function (★☆☆)", "h21": "hint: np.tile", "a21": """ Z = np.tile( np.array([[0,1],[1,0]]), (4,4)) print(Z) """, "q22": "Normalize a 5x5 random matrix (★☆☆)", "h22": "hint: (x -mean)/std", "a22": """ Z = np.random.random((5,5)) Z = (Z - np.mean (Z)) / (np.std (Z)) print(Z) """, "q23": "Create a custom dtype that describes a color as four unsigned bytes (RGBA) (★☆☆)", "h23": "hint: np.dtype", "a23": """ color = np.dtype([("r", np.ubyte, 1), ("g", np.ubyte, 1), ("b", np.ubyte, 1), ("a", np.ubyte, 1)]) """, "q24": "Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★☆☆)", "h24": "hint: ", "a24": """ Z = np.dot(np.ones((5,3)), np.ones((3,2))) print(Z) # Alternative solution, in Python 3.5 and above Z = np.ones((5,3)) @ np.ones((3,2)) print(Z) """, "q25": "Given a 1D array, negate all elements which are between 3 and 8, in place. (★☆☆)", "h25": "hint: >, <=", "a25": """ # Author: Evgeni Burovski Z = np.arange(11) Z[(3 < Z) & (Z <= 8)] *= -1 print(Z) """, "q26": """\ What is the output of the following script? (★☆☆) ```python # Author: Jake VanderPlas print(sum(range(5),-1)) from numpy import * print(sum(range(5),-1)) ``` """, "h26": "hint: np.sum", "a26": """ # Author: Jake VanderPlas print(sum(range(5),-1)) from numpy import * print(sum(range(5),-1)) """, "q27": """\ Consider an integer vector Z, which of these expressions are legal? (★☆☆) ```python Z**Z 2 << Z >> 2 Z <- Z 1j*Z Z/1/1 ZZ ```""", "h27": "No hints provided...", "a27": """ Z**Z 2 << Z >> 2 Z <- Z 1j*Z Z/1/1 ZZ """, "q28": """\ What are the result of the following expressions? ```python np.array(0) / np.array(0) np.array(0) // np.array(0) np.array([np.nan]).astype(int).astype(float) ``` """, "h28": "No hints provided... ", "a28": """ print(np.array(0) / np.array(0)) print(np.array(0) // np.array(0)) print(np.array([np.nan]).astype(int).astype(float)) """, "q29": "How to round away from zero a float array ? (★☆☆)", "h29": "hint: np.uniform, np.copysign, np.ceil, np.abs", "a29": """ # Author: Charles R Harris Z = np.random.uniform(-10,+10,10) print (np.copysign(np.ceil(np.abs(Z)), Z)) """, "q30": "How to find common values between two arrays? (★☆☆)", "h30": "hint: np.intersect1d", "a30": """ Z1 = np.random.randint(0,10,10) Z2 = np.random.randint(0,10,10) print(np.intersect1d(Z1,Z2)) """, "q31": "How to ignore all numpy warnings (not recommended)? (★☆☆)", "h31": "hint: np.seterr, np.errstate", "a31": """ # Suicide mode on defaults = np.seterr(all="ignore") Z = np.ones(1) / 0 # Back to sanity _ = np.seterr(**defaults) # Equivalently with a context manager nz = np.nonzero([1,2,0,0,4,0]) print(nz) """, "q32": """\ Is the following expressions true? (★☆☆) ```python np.sqrt(-1) == np.emath.sqrt(-1) ``` """, "h32": "hint: imaginary number", "a32": """ np.sqrt(-1) == np.emath.sqrt(-1) """, "q33": "How to get the dates of yesterday, today and tomorrow? (★☆☆)", "h33": "hint: np.datetime64, np.timedelta64", "a33": """ yesterday = np.datetime64('today', 'D') - np.timedelta64(1, 'D') today = np.datetime64('today', 'D') tomorrow = np.datetime64('today', 'D') + np.timedelta64(1, 'D') """, "q34": "How to get all the dates corresponding to the month of July 2016? (★★☆)", "h34": "hint: np.arange(dtype=datetime64['D'])", "a34": """ Z = np.arange('2016-07', '2016-08', dtype='datetime64[D]') print(Z) """, "q35": "How to compute ((A+B)*(-A/2)) in place (without copy)? (★★☆)", "h35": "hint: np.add(out=), np.negative(out=), np.multiply(out=), np.divide(out=)", "a35": """ A = np.ones(3)*1 B = np.ones(3)*2 C = np.ones(3)*3 np.add(A,B,out=B) np.divide(A,2,out=A) np.negative(A,out=A) np.multiply(A,B,out=A) """, "q36": "Extract the integer part of a random array using 5 different methods (★★☆)", "h36": "hint: %, np.floor, np.ceil, astype, np.trunc", "a36": """ Z = np.random.uniform(0,10,10) print (Z - Z%1) print (np.floor(Z)) print (np.ceil(Z)-1) print (Z.astype(int)) print (np.trunc(Z)) """, "q37": "Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆)", "h37": "hint: np.arange", "a37": """ Z = np.zeros((5,5)) Z += np.arange(5) print(Z) """, "q38": "Consider a generator function that generates 10 integers and use it to build an array (★☆☆)", "h38": "hint: np.fromiter", "a38": """ def generate(): for x in range(10): yield x Z = np.fromiter(generate(),dtype=float,count=-1) print(Z) """, "q39": "Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆)", "h39": "hint: np.linspace", "a39": """ Z = np.linspace(0,1,11,endpoint=False)[1:] print(Z) """, "q40": "Create a random vector of size 10 and sort it (★★☆)", "h40": "hint: sort", "a40": """ Z = np.random.random(10) Z.sort() print(Z) """, "q41": "How to sum a small array faster than np.sum? (★★☆)", "h41": "hint: np.add.reduce", "a41": """ # Author: Evgeni Burovski Z = np.arange(10) np.add.reduce(Z) """, "q42": "Consider two random array A and B, check if they are equal (★★☆)", "h42": "hint: np.allclose, np.array_equal", "a42": """ A = np.random.randint(0,2,5) B = np.random.randint(0,2,5) # Assuming identical shape of the arrays and a tolerance for the comparison of values equal = np.allclose(A,B) print(equal) # Checking both the shape and the element values, no tolerance (values have to be exactly equal) equal = np.array_equal(A,B) print(equal) """, "q43": "Make an array immutable (read-only) (★★☆)", "h43": "hint: flags.writeable", "a43": """ Z = np.zeros(10) Z.flags.writeable = False Z[0] = 1 """, "q44": "Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆)", "h44": "hint: np.sqrt, np.arctan2", "a44": """ Z = np.random.random((10,2)) X,Y = Z[:,0], Z[:,1] R = np.sqrt(X**2+Y**2) T = np.arctan2(Y,X) print(R) print(T) """, "q45": "Create random vector of size 10 and replace the maximum value by 0 (★★☆)", "h45": "hint: argmax", "a45": """ Z = np.random.random(10) Z[Z.argmax()] = 0 print(Z) """, "q46": "Create a structured array with `x` and `y` coordinates covering the [0,1]x[0,1] area (★★☆)", "h46": "hint: np.meshgrid", "a46": """ Z = np.zeros((5,5), [('x',float),('y',float)]) Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,5), np.linspace(0,1,5)) print(Z) """, "q47": "Given two arrays, X and Y, construct the Cauchy matrix C (Cij =1/(xi - yj))", "h47": "hint: np.subtract.outer", "a47": """ # Author: Evgeni Burovski X = np.arange(8) Y = X + 0.5 C = 1.0 / np.subtract.outer(X, Y) print(np.linalg.det(C)) """, "q48": "Print the minimum and maximum representable value for each numpy scalar type (★★☆)", "h48": "hint: np.iinfo, np.finfo, eps", "a48": """ for dtype in [np.int8, np.int32, np.int64]: print(np.iinfo(dtype).min) print(np.iinfo(dtype).max) for dtype in [np.float32, np.float64]: print(np.finfo(dtype).min) print(np.finfo(dtype).max) print(np.finfo(dtype).eps) """, "q49": "How to print all the values of an array? (★★☆)", "h49": "hint: np.set_printoptions", "a49": """ np.set_printoptions(threshold=np.nan) Z = np.zeros((16,16)) print(Z) """, "q50": "How to find the closest value (to a given scalar) in a vector? (★★☆)", "h50": "hint: argmin", "a50": """ Z = np.arange(100) v = np.random.uniform(0,100) index = (np.abs(Z-v)).argmin() print(Z[index]) """, "q51": "Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆)", "h51": "hint: dtype", "a51": """ Z = np.zeros(10, [ ('position', [ ('x', float, 1), ('y', float, 1)]), ('color', [ ('r', float, 1), ('g', float, 1), ('b', float, 1)])]) print(Z) """, "q52": "Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆)", "h52": "hint: np.atleast_2d, T, np.sqrt", "a52": """ Z = np.random.random((10,2)) X,Y = np.atleast_2d(Z[:,0], Z[:,1]) D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2) print(D) # Much faster with scipy import scipy # Thanks Gavin Heverly-Coulson (#issue 1) import scipy.spatial Z = np.random.random((10,2)) D = scipy.spatial.distance.cdist(Z,Z) print(D) """, "q53": "How to convert a float (32 bits) array into an integer (32 bits) in place?", "h53": "hint: astype(copy=False)", "a53": """ Z = np.arange(10, dtype=np.float32) Z = Z.astype(np.int32, copy=False) print(Z) """, "q54": """\ How to read the following file? (★★☆) ``` 1, 2, 3, 4, 5 6, , , 7, 8 , , 9,10,11 ``` """, "h54": "hint: np.genfromtxt", "a54": """ from io import StringIO # Fake file s = StringIO('''1, 2, 3, 4, 5\n 6, , , 7, 8\n , , 9,10,11\n''') Z = np.genfromtxt(s, delimiter=",", dtype=np.int) print(Z) """, "q55": "What is the equivalent of enumerate for numpy arrays? (★★☆)", "h55": "hint: np.ndenumerate, np.ndindex", "a55": """ Z = np.arange(9).reshape(3,3) for index, value in np.ndenumerate(Z): print(index, value) for index in np.ndindex(Z.shape): print(index, Z[index]) """, "q56": "Generate a generic 2D Gaussian-like array (★★☆)", "h56": "hint: np.meshgrid, np.exp", "a56": """ X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10)) D = np.sqrt(X*X+Y*Y) sigma, mu = 1.0, 0.0 G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) ) print(G) """, "q57": "How to randomly place p elements in a 2D array? (★★☆)", "h57": "hint: np.put, np.random.choice", "a57": """ # Author: Divakar n = 10 p = 3 Z = np.zeros((n,n)) np.put(Z, np.random.choice(range(n*n), p, replace=False),1) print(Z) """, "q58": "Subtract the mean of each row of a matrix (★★☆)", "h58": "hint: mean(axis=,keepdims=)", "a58": """ # Author: Warren Weckesser X = np.random.rand(5, 10) # Recent versions of numpy Y = X - X.mean(axis=1, keepdims=True) # Older versions of numpy Y = X - X.mean(axis=1).reshape(-1, 1) print(Y) """, "q59": "How to sort an array by the nth column? (★★☆)", "h59": "hint: argsort", "a59": """ # Author: Steve Tjoa Z = np.random.randint(0,10,(3,3)) print(Z) print(Z[Z[:,1].argsort()]) """, "q60": "How to tell if a given 2D array has null columns? (★★☆)", "h60": "hint: any, ~", "a60": """ # Author: Warren Weckesser Z = np.random.randint(0,3,(3,10)) print((~Z.any(axis=0)).any()) """, "q61": "Find the nearest value from a given value in an array (★★☆)", "h61": "hint: np.abs, argmin, flat", "a61": """ Z = np.random.uniform(0,1,10) z = 0.5 m = Z.flat[np.abs(Z - z).argmin()] print(m) """, "q62": "Considering two arrays with shape (1,3) and (3,1), how to compute their sum using an iterator? (★★☆)", "h62": "hint: np.nditer", "a62": """ A = np.arange(3).reshape(3,1) B = np.arange(3).reshape(1,3) it = np.nditer([A,B,None]) for x,y,z in it: z[...] = x + y print(it.operands[2]) """, "q63": "Create an array class that has a name attribute (★★☆)", "h63": "hint: class method", "a63": """ class NamedArray(np.ndarray): def __new__(cls, array, name="no name"): obj = np.asarray(array).view(cls) obj.name = name return obj def __array_finalize__(self, obj): if obj is None: return self.info = getattr(obj, 'name', "no name") Z = NamedArray(np.arange(10), "range_10") print (Z.name) """, "q64": "Consider a given vector, how to add 1 to each element indexed by a second vector " "(be careful with repeated indices)? (★★★)", "h64": "hint: np.bincount | np.add.at", "a64": """ # Author: Brett Olsen Z = np.ones(10) I = np.random.randint(0,len(Z),20) Z += np.bincount(I, minlength=len(Z)) print(Z) # Another solution # Author: Bartosz Telenczuk np.add.at(Z, I, 1) print(Z) """, "q65": "How to accumulate elements of a vector (X) to an array (F) based on an index list (I)? (★★★)", "h65": "hint: np.bincount", "a65": """ # Author: Alan G Isaac X = [1,2,3,4,5,6] I = [1,3,9,3,4,1] F = np.bincount(I,X) print(F) """, "q66": "Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★)", "h66": "hint: np.unique", "a66": """ # Author: Nadav Horesh w,h = 16,16 I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte) F = I[...,0]*256*256 + I[...,1]*256 +I[...,2] n = len(np.unique(F)) print(np.unique(I)) """, "q67": "Considering a four dimensions array, how to get sum over the last two axis at once? (★★★)", "h67": "hint: sum(axis=(-2,-1))", "a67": """ A = np.random.randint(0,10,(3,4,3,4)) # solution by passing a tuple of axes (introduced in numpy 1.7.0) sum = A.sum(axis=(-2,-1)) print(sum) # solution by flattening the last two dimensions into one # (useful for functions that don't accept tuples for axis argument) sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1) print(sum) """, "q68": "Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S " "of same size describing subset indices? (★★★)", "h68": "hint: np.bincount", "a68": """ # Author: Jaime Fernández del Río D = np.random.uniform(0,1,100) S = np.random.randint(0,10,100) D_sums = np.bincount(S, weights=D) D_counts = np.bincount(S) D_means = D_sums / D_counts print(D_means) # Pandas solution as a reference due to more intuitive code import pandas as pd print(pd.Series(D).groupby(S).mean()) """, "q69": "How to get the diagonal of a dot product? (★★★)", "h69": "hint: np.diag", "a69": """ # Author: Mathieu Blondel A = np.random.uniform(0,1,(5,5)) B = np.random.uniform(0,1,(5,5)) # Slow version np.diag(np.dot(A, B)) # Fast version np.sum(A * B.T, axis=1) # Faster version np.einsum("ij,ji->i", A, B) """, "q70": "Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive " "zeros interleaved between each value? (★★★)", "h70": "hint: array[::4]", "a70": """ # Author: Warren Weckesser Z = np.array([1,2,3,4,5]) nz = 3 Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz)) Z0[::nz+1] = Z print(Z0) """, "q71": "Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5)? (★★★)", "h71": "hint: array[:, :, None]", "a71": """ A = np.ones((5,5,3)) B = 2*np.ones((5,5)) print(A * B[:,:,None]) """, "q72": "How to swap two rows of an array? (★★★)", "h72": "hint: array[[]] = array[[]]", "a72": """ # Author: Eelco Hoogendoorn A = np.arange(25).reshape(5,5) A[[0,1]] = A[[1,0]] print(A) """, "q73": "Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the " "set of unique line segments composing all the triangles (★★★)", "h73": "hint: repeat, np.roll, np.sort, view, np.unique", "a73": """ # Author: Nicolas P. Rougier faces = np.random.randint(0,100,(10,3)) F = np.roll(faces.repeat(2,axis=1),-1,axis=1) F = F.reshape(len(F)*3,2) F = np.sort(F,axis=1) G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] ) G = np.unique(G) print(G) """, "q74": "Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C? (★★★)", "h74": "hint: np.repeat", "a74": """ # Author: Jaime Fernández del Río C = np.bincount([1,1,2,3,4,4,6]) A = np.repeat(np.arange(len(C)), C) print(A) """, "q75": "How to compute averages using a sliding window over an array? (★★★)", "h75": "hint: np.cumsum", "a75": """ # Author: Jaime Fernández del Río def moving_average(a, n=3) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n Z = np.arange(20) print(moving_average(Z, n=3)) """, "q76": "Consider a one-dimensional array Z, build a two-dimensional array whose first row is " "(Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be " "(Z[-3],Z[-2],Z[-1]) (★★★)", "h76": "hint: from numpy.lib import stride_tricks", "a76": """ # Author: Joe Kington / Erik Rigtorp from numpy.lib import stride_tricks def rolling(a, window): shape = (a.size - window + 1, window) strides = (a.itemsize, a.itemsize) return stride_tricks.as_strided(a, shape=shape, strides=strides) Z = rolling(np.arange(10), 3) print(Z) """, "q77": "How to negate a boolean, or to change the sign of a float inplace? (★★★)", "h77": "hint: np.logical_not, np.negative", "a77": """ # Author: Nathaniel J. Smith Z = np.random.randint(0,2,100) np.logical_not(Z, out=Z) Z = np.random.uniform(-1.0,1.0,100) np.negative(Z, out=Z) """, "q78": "Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute " "distance from p to each line i (P0[i],P1[i])? (★★★)", "h78": "No hints provided...", "a78": """ def distance(P0, P1, p): T = P1 - P0 L = (T**2).sum(axis=1) U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L U = U.reshape(len(U),1) D = P0 + U*T - p return np.sqrt((D**2).sum(axis=1)) P0 = np.random.uniform(-10,10,(10,2)) P1 = np.random.uniform(-10,10,(10,2)) p = np.random.uniform(-10,10,( 1,2)) print(distance(P0, P1, p)) """, "q79": "Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to " "compute distance from each point j (P[j]) to each line i (P0[i],P1[i])? (★★★)", "h79": "No hints provided...", "a79": """ # Author: Italmassov Kuanysh # based on distance function from previous question P0 = np.random.uniform(-10, 10, (10,2)) P1 = np.random.uniform(-10,10,(10,2)) p = np.random.uniform(-10, 10, (10,2)) print(np.array([distance(P0,P1,p_i) for p_i in p])) """, "q80": "Consider an arbitrary array, write a function that extract a subpart with a fixed " "shape and centered on a given element (pad with a `fill` value when necessary) (★★★)", "h80": "hint: minimum maximum", "a80": """ # Author: Nicolas Rougier Z = np.random.randint(0,10,(10,10)) shape = (5,5) fill = 0 position = (1,1) R = np.ones(shape, dtype=Z.dtype)*fill P = np.array(list(position)).astype(int) Rs = np.array(list(R.shape)).astype(int) Zs = np.array(list(Z.shape)).astype(int) R_start = np.zeros((len(shape),)).astype(int) R_stop = np.array(list(shape)).astype(int) Z_start = (P-Rs//2) Z_stop = (P+Rs//2)+Rs%2 R_start = (R_start - np.minimum(Z_start,0)).tolist() Z_start = (np.maximum(Z_start,0)).tolist() R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist() Z_stop = (np.minimum(Z_stop,Zs)).tolist() r = [slice(start,stop) for start,stop in zip(R_start,R_stop)] z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)] R[r] = Z[z] print(Z) print(R) """, "q81": "Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to " "generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]]? (★★★)", "h81": "hint: stride_tricks.as_strided", "a81": """ # Author: Stefan van der Walt Z = np.arange(1,15,dtype=np.uint32) R = stride_tricks.as_strided(Z,(11,4),(4,4)) print(R) """, "q82": "Compute a matrix rank (★★★) ", "h82": "hint: np.linalg.svd", "a82": """ # Author: Stefan van der Walt Z = np.random.uniform(0,1,(10,10)) U, S, V = np.linalg.svd(Z) # Singular Value Decomposition rank = np.sum(S > 1e-10) print(rank) """, "q83": "How to find the most frequent value in an array?", "h83": "hint: np.bincount, argmax", "a83": """ Z = np.random.randint(0,10,50) print(np.bincount(Z).argmax()) """, "q84": "Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★)", "h84": "hint: stride_tricks.as_strided", "a84": """ # Author: Chris Barker Z = np.random.randint(0,5,(10,10)) n = 3 i = 1 + (Z.shape[0]-3) j = 1 + (Z.shape[1]-3) C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides) print(C) """, "q85": "Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★)", "h85": "hint: class method", "a85": """ # Author: Eric O. Lebigot # Note: only works for 2d array and value setting using indices class Symetric(np.ndarray): def __setitem__(self, index, value): i,j = index super(Symetric, self).__setitem__((i,j), value) super(Symetric, self).__setitem__((j,i), value) def symetric(Z): return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric) S = symetric(np.random.randint(0,10,(5,5))) S[2,3] = 42 print(S) """, "q86": "Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). " "How to compute the sum of of the p matrix products at once? (result has shape (n,1)) (★★★)", "h86": "hint: np.tensordot", "a86": """ # Author: Stefan van der Walt p, n = 10, 20 M = np.ones((p,n,n)) V = np.ones((p,n,1)) S = np.tensordot(M, V, axes=[[0, 2], [0, 1]]) print(S) # It works, because: # M is (p,n,n) # V is (p,n,1) # Thus, summing over the paired axes 0 and 0 (of M and V independently), # and 2 and 1, to remain with a (n,1) vector. """, "q87": "Consider a 16x16 array, how to get the block-sum (block size is 4x4)? (★★★)", "h87": "hint: np.add.reduceat", "a87": """ # Author: Robert Kern Z = np.ones((16,16)) k = 4 S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0), np.arange(0, Z.shape[1], k), axis=1) print(S) """, "q88": "How to implement the Game of Life using numpy arrays? (★★★)", "h88": "No hints provided... ", "a88": """ # Author: Nicolas Rougier def iterate(Z): # Count neighbours N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] + Z[1:-1,0:-2] + Z[1:-1,2:] + Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:]) # Apply rules birth = (N==3) & (Z[1:-1,1:-1]==0) survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1) Z[...] = 0 Z[1:-1,1:-1][birth | survive] = 1 return Z Z = np.random.randint(0,2,(50,50)) for i in range(100): Z = iterate(Z) print(Z) """, "q89": "How to get the n largest values of an array (★★★)", "h89": "hint: np.argsort | np.argpartition", "a89": """ Z = np.arange(10000) np.random.shuffle(Z) n = 5 # Slow print (Z[np.argsort(Z)[-n:]]) # Fast print (Z[np.argpartition(-Z,n)[:n]]) """, "q90": "Given an arbitrary number of vectors, build the cartesian product " "(every combinations of every item) (★★★)", "h90": "hint: np.indices", "a90": """ # Author: Stefan Van der Walt def cartesian(arrays): arrays = [np.asarray(a) for a in arrays] shape = (len(x) for x in arrays) ix = np.indices(shape, dtype=int) ix = ix.reshape(len(arrays), -1).T for n, arr in enumerate(arrays): ix[:, n] = arrays[n][ix[:, n]] return ix print (cartesian(([1, 2, 3], [4, 5], [6, 7]))) """, "q91": "How to create a record array from a regular array? (★★★)", "h91": "hint: np.core.records.fromarrays", "a91": """ Z = np.array([("Hello", 2.5, 3), ("World", 3.6, 2)]) R = np.core.records.fromarrays(Z.T, names='col1, col2, col3', formats = 'S8, f8, i8') print(R) """, "q92": "Consider a large vector Z, compute Z to the power of 3 using 3 different methods (★★★)", "h92": "hint: np.power, *, np.einsum", "a92": """ # Author: Ryan G. x = np.random.rand(int(5e7)) %timeit np.power(x,3) %timeit x*x*x %timeit np.einsum('i,i,i->i',x,x,x) """, "q93": "Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A " "that contain elements of each row of B regardless of the order of the elements in B? (★★★)", "h93": "hint: np.where", "a93": """ # Author: Gabe Schwartz A = np.random.randint(0,5,(8,3)) B = np.random.randint(0,5,(2,2)) C = (A[..., np.newaxis, np.newaxis] == B) rows = np.where(C.any((3,1)).all(1))[0] print(rows) """, "q94": "Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3]) (★★★)", "h94": "No hints provided...", "a94": """ # Author: Robert Kern Z = np.random.randint(0,5,(10,3)) print(Z) # solution for arrays of all dtypes (including string arrays and record arrays) E = np.all(Z[:,1:] == Z[:,:-1], axis=1) U = Z[~E] print(U) # soluiton for numerical arrays only, will work for any number of columns in Z U = Z[Z.max(axis=1) != Z.min(axis=1),:] print(U) """, "q95": "Convert a vector of ints into a matrix binary representation (★★★)", "h95": "hint: np.unpackbits", "a95": """ # Author: Warren Weckesser I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128]) B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int) print(B[:,::-1]) # Author: Daniel T. McDonald I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8) print(np.unpackbits(I[:, np.newaxis], axis=1)) """, "q96": "Given a two dimensional array, how to extract unique rows? (★★★)", "h96": "hint: np.ascontiguousarray | np.unique", "a96": """ # Author: Jaime Fernández del Río Z = np.random.randint(0,2,(6,3)) T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1]))) _, idx = np.unique(T, return_index=True) uZ = Z[idx] print(uZ) # Author: Andreas Kouzelis # NumPy >= 1.13 uZ = np.unique(Z, axis=0) print(uZ) """, "q97": "Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★)", "h97": "hint: np.einsum", "a97": """ # Author: Alex Riley # Make sure to read: http://ajcr.net/Basic-guide-to-einsum/ A = np.random.uniform(0,1,10) B = np.random.uniform(0,1,10) np.einsum('i->', A) # np.sum(A) np.einsum('i,i->i', A, B) # A * B np.einsum('i,i', A, B) # np.inner(A, B) np.einsum('i,j->ij', A, B) # np.outer(A, B) """, "q98": "Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★)?", "h98": "hint: np.cumsum, np.interp ", "a98": """ # Author: Bas Swinckels phi = np.arange(0, 10*np.pi, 0.1) a = 1 x = a*phi*np.cos(phi) y = a*phi*np.sin(phi) dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths r = np.zeros_like(x) r[1:] = np.cumsum(dr) # integrate path r_int = np.linspace(0, r.max(), 200) # regular spaced path x_int = np.interp(r_int, r, x) # integrate path y_int = np.interp(r_int, r, y) """, "q99": "Given an integer n and a 2D array X, select from X the rows which can be interpreted as draws " "from a multinomial distribution with n degrees, i.e., the rows which only contain integers " "and which sum to n. (★★★)", "h99": "hint: np.logical_and.reduce, np.mod", "a99": """ # Author: Evgeni Burovski X = np.asarray([[1.0, 0.0, 3.0, 8.0], [2.0, 0.0, 1.0, 1.0], [1.5, 2.5, 1.0, 0.0]]) n = 4 M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1) M &= (X.sum(axis=-1) == n) print(X[M]) """, "q100": "Compute bootstrapped 95% confidence intervals for the mean of a 1D array X (i.e., " "resample the elements of an array with replacement N times, compute the mean of " "each sample, and then compute percentiles over the means). (★★★)", "h100": "hint: np.percentile", "a100": """ # Author: Jessica B. Hamrick X = np.random.randn(100) # random 1D array N = 1000 # number of bootstrap samples idx = np.random.randint(0, X.size, (N, X.size)) means = X[idx].mean(axis=1) confint = np.percentile(means, [2.5, 97.5]) print(confint) """, }