diff --git a/README.rst b/100 Numpy exercises.rst similarity index 100% rename from README.rst rename to 100 Numpy exercises.rst diff --git a/README.html b/README.html deleted file mode 100644 index 3963267..0000000 --- a/README.html +++ /dev/null @@ -1,1035 +0,0 @@ - - - - - - -100 numpy exercises - - - -
-

100 numpy exercises

-

A joint effort of the numpy community

- -

The goal is both to offer a quick reference for new and old users and to -provide also a set of exercices for those who teach. If you remember having -asked or answered a (short) problem, you can send a pull request. The format -is:

-
-#. Find indices of non-zero elements from [1,2,0,0,4,0]
-
-   .. code:: python
-
-      # Author: Somebody
-
-      print(np.nonzero([1,2,0,0,4,0]))
-
-

Here is what the page looks like so far: -http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html

-

Repository is at: https://github.com/rougier/numpy-100

-

Thanks to Michiaki Ariga, there is now a -Julia version.

-
    -
  1. Import the numpy package under the name np (★☆☆)

    -
    -import numpy as np
    -
    -
  2. -
  3. Print the numpy version and the configuration (★☆☆)

    -
    -print(np.__version__)
    -np.show_config()
    -
    -
  4. -
  5. Create a null vector of size 10 (★☆☆)

    -
    -Z = np.zeros(10)
    -print(Z)
    -
    -
  6. -
  7. How to find the memory size of any array (★☆☆)

    -
    -Z = np.zeros((10,10))
    -print("%d bytes" % (Z.size * Z.itesize))
    -
    -
  8. -
  9. How to get the documentation of the numpy add function from the command line? (★☆☆)

    -
    -python -c "import numpy; numpy.info(numpy.add)"
    -
    -
  10. -
  11. Create a null vector of size 10 but the fifth value which is 1 (★☆☆)

    -
    -Z = np.zeros(10)
    -Z[4] = 1
    -print(Z)
    -
    -
  12. -
  13. Create a vector with values ranging from 10 to 49 (★☆☆)

    -
    -Z = np.arange(10,50)
    -print(Z)
    -
    -
  14. -
  15. Reverse a vector (first element becomes last) (★☆☆)

    -
    -Z = np.arange(50)
    -Z = Z[::-1]
    -
    -
  16. -
  17. Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆)

    -
    -Z = np.arange(9).reshape(3,3)
    -print(Z)
    -
    -
  18. -
  19. Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆)

    -
    -nz = np.nonzero([1,2,0,0,4,0])
    -print(nz)
    -
    -
  20. -
  21. Create a 3x3 identity matrix (★☆☆)

    -
    -Z = np.eye(3)
    -print(Z)
    -
    -
  22. -
  23. Create a 3x3x3 array with random values (★☆☆)

    -
    -Z = np.random.random((3,3,3))
    -print(Z)
    -
    -
  24. -
  25. Create a 10x10 array with random values and find the minimum and maximum values (★☆☆)

    -
    -Z = np.random.random((10,10))
    -Zmin, Zmax = Z.min(), Z.max()
    -print(Zmin, Zmax)
    -
    -
  26. -
  27. Create a random vector of size 30 and find the mean value (★☆☆)

    -
    -Z = np.random.random(30)
    -m = Z.mean()
    -print(m)
    -
    -
  28. -
  29. Create a 2d array with 1 on the border and 0 inside (★☆☆)

    -
    -Z = np.ones((10,10))
    -Z[1:-1,1:-1] = 0
    -
    -
  30. -
  31. How to add a border (filled with 0's) around an existing array ? (★☆☆)

    -
    -Z = np.ones((5,5))
    -Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0)
    -
    -
  32. -
  33. What is the result of the following expression? (★☆☆)

    -
    -0 * np.nan
    -np.nan == np.nan
    -np.inf > np.nan
    -np.nan - np.nan
    -0.3 == 3 * 0.1
    -
    -
  34. -
  35. Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★☆☆)

    -
    -Z = np.diag(1+np.arange(4),k=-1)
    -print(Z)
    -
    -
  36. -
  37. Create a 8x8 matrix and fill it with a checkerboard pattern (★☆☆)

    -
    -Z = np.zeros((8,8),dtype=int)
    -Z[1::2,::2] = 1
    -Z[::2,1::2] = 1
    -print(Z)
    -
    -
  38. -
  39. Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element?

    -
    -print(np.unravel_index(100,(6,7,8)))
    -
    -
  40. -
  41. Create a checkerboard 8x8 matrix using the tile function (★☆☆)

    -
    -Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
    -print(Z)
    -
    -
  42. -
  43. Normalize a 5x5 random matrix (★☆☆)

    -
    -Z = np.random.random((5,5))
    -Zmax, Zmin = Z.max(), Z.min()
    -Z = (Z - Zmin)/(Zmax - Zmin)
    -print(Z)
    -
    -
  44. -
  45. Create a custom dtype that describes a color as four unisgned bytes (RGBA) (★☆☆)

    -
    -color = np.dtype([("r", np.ubyte, 1),
    -                  ("g", np.ubyte, 1),
    -                  ("b", np.ubyte, 1),
    -                  ("a", np.ubyte, 1)])
    -
    -
  46. -
  47. Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★☆☆)

    -
    -Z = np.dot(np.ones((5,3)), np.ones((3,2)))
    -print(Z)
    -
    -
  48. -
  49. Given a 1D array, negate all elements which are between 3 and 8, in place. (★☆☆)

    -
    -# Author: Evgeni Burovski
    -
    -Z = np.arange(11)
    -Z[(3 < Z) & (Z <= 8)] *= -1
    -
    -
  50. -
  51. What is the output of the following script? (★☆☆)

    -
    -# Author: Jake VanderPlas
    -
    -print(sum(range(5),-1))
    -from numpy import *
    -print(sum(range(5),-1))
    -
    -
  52. -
  53. Consider an integer vector Z, which of these expressions are legal? (★☆☆)

    -
    -Z**Z
    -2 << Z >> 2
    -Z <- Z
    -1j*Z
    -Z/1/1
    -Z<Z>Z
    -
    -
  54. -
  55. What are the result of the following expressions?

    -
    -np.array(0) / np.array(0)
    -np.array(0) // np.array(0)
    -np.array([np.nan]).astype(int).astype(float)
    -
    -
  56. -
  57. How to round away from zero a float array ? (★☆☆)

    -
    -# Author: Charles R Harris
    -
    -Z = np.random.uniform(-10,+10,10)
    -print (np.trunc(Z + np.copysign(0.5, Z)))
    -
    -
  58. -
  59. How to find common values between two arrays? (★☆☆)

    -
    -Z1 = np.random.randint(0,10,10)
    -Z2 = np.random.randint(0,10,10)
    -print(np.intersect1d(Z1,Z2))
    -
    -
  60. -
  61. How to ignore all numpy warnings (not recommended)? (★☆☆)

    -
    -# Suicide mode on
    -defaults = np.seterr(all="ignore")
    -Z = np.ones(1)/0
    -
    -# Back to sanity
    -np.seterr(**defaults)
    -
    -
  62. -
  63. Is the following expressions true? (★☆☆)

    -
    -np.sqrt(-1) == np.emath.sqrt(-1)
    -
    -
  64. -
  65. How to get the dates of yesterday, today and tomorrow? (★☆☆)

    -
    -yesterday = np.datetime64('today', 'D') - np.timedelta64(1, 'D')
    -today     = np.datetime64('today', 'D')
    -tomorrow  = np.datetime64('today', 'D') + np.timedelta64(1, 'D')
    -
    -
  66. -
  67. How to get all the dates corresponding to the month of July 2016? (★★☆)

    -
    -Z = np.arange('2016-07', '2016-08', dtype='datetime64[D]')
    -print(Z)
    -
    -
  68. -
  69. How to compute ((A+B)*(-A/2)) in place (without copy)? (★★☆)

    -
    -A = np.ones(3)*1
    -B = np.ones(3)*2
    -C = np.ones(3)*3
    -np.add(A,B,out=B)
    -np.divide(A,2,out=A)
    -np.negative(A,out=A)
    -np.multiply(A,B,out=A)
    -
    -
  70. -
  71. Extract the integer part of a random array using 5 different methods (★★☆)

    -
    -Z = np.random.uniform(0,10,10)
    -
    -print (Z - Z%1)
    -print (np.floor(Z))
    -print (np.ceil(Z)-1)
    -print (Z.astype(int))
    -print (np.trunc(Z))
    -
    -
  72. -
  73. Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆)

    -
    -Z = np.zeros((5,5))
    -Z += np.arange(5)
    -print(Z)
    -
    -
  74. -
  75. Consider a generator function that generates 10 integers and use it to build an -array (★☆☆)

    -
    -def generate():
    -    for x in xrange(10):
    -        yield x
    -Z = np.fromiter(generate(),dtype=float,count=-1)
    -print(Z)
    -
    -
  76. -
  77. Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆)

    -
    -Z = np.linspace(0,1,12,endpoint=True)[1:-1]
    -print(Z)
    -
    -
  78. -
  79. Create a random vector of size 10 and sort it (★★☆)

    -
    -Z = np.random.random(10)
    -Z.sort()
    -print(Z)
    -
    -
  80. -
  81. How to sum a small array faster than np.sum? (★★☆)

    -
    -# Author: Evgeni Burovski
    -
    -Z = np.arange(10)
    -np.add.reduce(Z)
    -
    -
  82. -
  83. Consider two random array A anb B, check if they are equal (★★☆)

    -
    -A = np.random.randint(0,2,5)
    -B = np.random.randint(0,2,5)
    -equal = np.allclose(A,B)
    -print(equal)
    -
    -
  84. -
  85. Make an array immutable (read-only) (★★☆)

    -
    -Z = np.zeros(10)
    -Z.flags.writeable = False
    -Z[0] = 1
    -
    -
  86. -
  87. Consider a random 10x2 matrix representing cartesian coordinates, convert -them to polar coordinates (★★☆)

    -
    -Z = np.random.random((10,2))
    -X,Y = Z[:,0], Z[:,1]
    -R = np.sqrt(X**2+Y**2)
    -T = np.arctan2(Y,X)
    -print(R)
    -print(T)
    -
    -
  88. -
  89. Create random vector of size 10 and replace the maximum value by 0 (★★☆)

    -
    -Z = np.random.random(10)
    -Z[Z.argmax()] = 0
    -print(Z)
    -
    -
  90. -
  91. Create a structured array with x and y coordinates covering the -[0,1]x[0,1] area (★★☆)

    -
    -Z = np.zeros((10,10), [('x',float),('y',float)])
    -Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,10),
    -                             np.linspace(0,1,10))
    -print(Z)
    -
    -
  92. -
  93. Given two arrays, X and Y, construct the Cauchy matrix C (Cij = 1/(xi - yj))

    -
    -# Author: Evgeni Burovski
    -
    -X = np.arange(8)
    -Y = X + 0.5
    -C = 1.0 / np.subtract.outer(X, Y)
    -print(np.linalg.det(C))
    -
    -
  94. -
  95. Print the minimum and maximum representable value for each numpy scalar type (★★☆)

    -
    -for dtype in [np.int8, np.int32, np.int64]:
    -   print(np.iinfo(dtype).min)
    -   print(np.iinfo(dtype).max)
    -for dtype in [np.float32, np.float64]:
    -   print(np.finfo(dtype).min)
    -   print(np.finfo(dtype).max)
    -   print(np.finfo(dtype).eps)
    -
    -
  96. -
  97. How to print all the values of an array? (★★☆)

    -
    -np.set_printoptions(threshold=np.nan)
    -Z = np.zeros((25,25))
    -print(Z)
    -
    -
  98. -
  99. How to find the closest value (to a given scalar) in an array? (★★☆)

    -
    -Z = np.arange(100)
    -v = np.random.uniform(0,100)
    -index = (np.abs(Z-v)).argmin()
    -print(Z[index])
    -
    -
  100. -
  101. Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆)

    -
    - Z = np.zeros(10, [ ('position', [ ('x', float, 1),
    -                                   ('y', float, 1)]),
    -                    ('color',    [ ('r', float, 1),
    -                                   ('g', float, 1),
    -                                   ('b', float, 1)])])
    -print(Z)
    -
    -
  102. -
  103. Consider a random vector with shape (100,2) representing coordinates, find -point by point distances (★★☆)

    -
    -Z = np.random.random((10,2))
    -X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1])
    -D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
    -print(D)
    -
    -# Much faster with scipy
    -import scipy
    -# Thanks Gavin Heverly-Coulson (#issue 1)
    -import scipy.spatial
    -
    -Z = np.random.random((10,2))
    -D = scipy.spatial.distance.cdist(Z,Z)
    -print(D)
    -
    -
  104. -
  105. How to convert a float (32 bits) array into an integer (32 bits) in place?

    -
    -Z = np.arange(10, dtype=np.int32)
    -Z = Z.astype(np.float32, copy=False)
    -
    -
  106. -
  107. How to read the following file? (★★☆)

    -
    -# File content:
    -# -------------
    -1,2,3,4,5
    -6,,,7,8
    -,,9,10,11
    -# -------------
    -
    -Z = np.genfromtxt("missing.dat", delimiter=",")
    -
    -
  108. -
  109. What is the equivalent of enumerate for numpy arrays? (★★☆)

    -
    -Z = np.arange(9).reshape(3,3)
    -for index, value in np.ndenumerate(Z):
    -    print(index, value)
    -for index in np.ndindex(Z.shape):
    -    print(index, Z[index])
    -
    -
  110. -
  111. Generate a generic 2D Gaussian-like array (★★☆)

    -
    -X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
    -D = np.sqrt(X*X+Y*Y)
    -sigma, mu = 1.0, 0.0
    -G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
    -print(G)
    -
    -
  112. -
  113. How to randomly place p elements in a 2D array? (★★☆)

    -
    -# Author: Divakar
    -
    -n = 10
    -p = 3
    -Z = np.zeros((n,n))
    -np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
    -
    -
  114. -
  115. Subtract the mean of each row of a matrix (★★☆)

    -
    -# Author: Warren Weckesser
    -
    -X = np.random.rand(5, 10)
    -
    -# Recent versions of numpy
    -Y = X - X.mean(axis=1, keepdims=True)
    -
    -# Older versions of numpy
    -Y = X - X.mean(axis=1).reshape(-1, 1)
    -
    -
  116. -
  117. How to I sort an array by the nth column? (★★☆)

    -
    -# Author: Steve Tjoa
    -
    -Z = np.random.randint(0,10,(3,3))
    -print(Z)
    -print(Z[Z[:,1].argsort()])
    -
    -
  118. -
  119. How to tell if a given 2D array has null columns? (★★☆)

    -
    -# Author: Warren Weckesser
    -
    -Z = np.random.randint(0,3,(3,10))
    -print((~Z.any(axis=0)).any())
    -
    -
  120. -
  121. Find the nearest value from a given value in an array (★★☆)

    -
    -Z = np.random.uniform(0,1,10)
    -z = 0.5
    -m = Z.flat[np.abs(Z - z).argmin()]
    -print(m)
    -
    -
  122. -
  123. Considering two arrays with shape (1,3) and (3,1), how to compute their sum -using an iterator? (★★☆)

    -
    -A = np.arange(3).reshape(3,1)
    -B = np.arange(3).reshape(1,3)
    -it = np.nditer([A,B,None]):
    -for x,y,z in it: z[...] = x + y
    -C = it.operands[2]
    -
    -
  124. -
  125. Create an array class that has a name attribute (★★☆)

    -
    -class NamedArray(np.ndarray):
    -    def __new__(cls, array, name="no name"):
    -        obj = np.asarray(array).view(cls)
    -        obj.name = name
    -        return obj
    -    def __array_finalize__(self, obj):
    -        if obj is None: return
    -        self.info = getattr(obj, 'name', "no name")
    -
    -Z = NamedArray(np.arange(10), "range_10")
    -print (Z.name)
    -
    -
  126. -
  127. Consider a given vector, how to add 1 to each element indexed by a second -vector (be careful with repeated indices)? (★★★)

    -
    -# Author: Brett Olsen
    -
    -Z = np.ones(10)
    -I = np.random.randint(0,len(Z),20)
    -Z += np.bincount(I, minlength=len(Z))
    -print(Z)
    -
    -
  128. -
  129. How to accumulate elements of a vector (X) to an array (F) based on an index -list (I)? (★★★)

    -
    -# Author: Alan G Isaac
    -
    -X = [1,2,3,4,5,6]
    -I = [1,3,9,3,4,1]
    -F = np.bincount(I,X)
    -print(F)
    -
    -
  130. -
  131. Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique -colors (★★★)

    -
    -# Author: Nadav Horesh
    -
    -w,h = 16,16
    -I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
    -F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
    -n = len(np.unique(F))
    -print(np.unique(I))
    -
    -
  132. -
  133. Considering a four dimensions array, how to get sum over the last two axis -at once? (★★★)

    -
    -A = np.random.randint(0,10,(3,4,3,4))
    -sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
    -print(sum)
    -
    -
  134. -
  135. Considering a one-dimensional vector D, how to compute means of subsets of D -using a vector S of same size describing subset indices? (★★★)

    -
    -# Author: Jaime Fernández del Río
    -
    -D = np.random.uniform(0,1,100)
    -S = np.random.randint(0,10,100)
    -D_sums = np.bincount(S, weights=D)
    -D_counts = np.bincount(S)
    -D_means = D_sums / D_counts
    -print(D_means)
    -
    -
  136. -
  137. How to get the diagonal of a dot product? (★★★)

    -
    -# Author: Mathieu Blondel
    -
    -# Slow version
    -np.diag(np.dot(A, B))
    -
    -# Fast version
    -np.sum(A * B.T, axis=1)
    -
    -# Faster version
    -np.einsum("ij,ji->i", A, B).
    -
    -
  138. -
  139. Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 -consecutive zeros interleaved between each value? (★★★)

    -
    -# Author: Warren Weckesser
    -
    -Z = np.array([1,2,3,4,5])
    -nz = 3
    -Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
    -Z0[::nz+1] = Z
    -print(Z0)
    -
    -
  140. -
  141. Consider an array of dimension (5,5,3), how to mulitply it by an array with -dimensions (5,5)? (★★★)

    -
    -A = np.ones((5,5,3))
    -B = 2*np.ones((5,5))
    -print(A * B[:,:,None])
    -
    -
  142. -
  143. How to swap two rows of an array? (★★★)

    -
    -# Author: Eelco Hoogendoorn
    -
    -A = np.arange(25).reshape(5,5)
    -A[[0,1]] = A[[1,0]]
    -print(A)
    -
    -
  144. -
  145. Consider a set of 10 triplets describing 10 triangles (with shared -vertices), find the set of unique line segments composing all the triangles (★★★)

    -
    -# Author: Nicolas P. Rougier
    -
    -faces = np.random.randint(0,100,(10,3))
    -F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
    -F = F.reshape(len(F)*3,2)
    -F = np.sort(F,axis=1)
    -G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
    -G = np.unique(G)
    -print(G)
    -
    -
  146. -
  147. Given an array C that is a bincount, how to produce an array A such that -np.bincount(A) == C? (★★★)

    -
    -# Author: Jaime Fernández del Río
    -
    -C = np.bincount([1,1,2,3,4,4,6])
    -A = np.repeat(np.arange(len(C)), C)
    -print(A)
    -
    -
  148. -
  149. How to compute averages using a sliding window over an array? (★★★)

    -
    -# Author: Jaime Fernández del Río
    -
    -def moving_average(a, n=3) :
    -    ret = np.cumsum(a, dtype=float)
    -    ret[n:] = ret[n:] - ret[:-n]
    -    return ret[n - 1:] / n
    -Z = np.arange(20)
    -print(moving_average(Z, n=3))
    -
    -
  150. -
  151. Consider a one-dimensional array Z, build a two-dimensional array whose -first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last -row should be (Z[-3],Z[-2],Z[-1]) (★★★)

    -
    -# Author: Joe Kington / Erik Rigtorp
    -from numpy.lib import stride_tricks
    -
    -def rolling(a, window):
    -    shape = (a.size - window + 1, window)
    -    strides = (a.itemsize, a.itemsize)
    -    return stride_tricks.as_strided(a, shape=shape, strides=strides)
    -Z = rolling(np.arange(10), 3)
    -print(Z)
    -
    -
  152. -
  153. How to negate a boolean, or to change the sign of a float inplace? (★★★)

    -
    -# Author: Nathaniel J. Smith
    -
    -Z = np.random.randint(0,2,100)
    -np.logical_not(arr, out=arr)
    -
    -Z = np.random.uniform(-1.0,1.0,100)
    -np.negative(arr, out=arr)
    -
    -
  154. -
  155. Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to -compute distance from p to each line i (P0[i],P1[i])? (★★★)

    -
    -def distance(P0, P1, p):
    -    T = P1 - P0
    -    L = (T**2).sum(axis=1)
    -    U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
    -    U = U.reshape(len(U),1)
    -    D = P0 + U*T - p
    -    return np.sqrt((D**2).sum(axis=1))
    -
    -P0 = np.random.uniform(-10,10,(10,2))
    -P1 = np.random.uniform(-10,10,(10,2))
    -p  = np.random.uniform(-10,10,( 1,2))
    -print(distance(P0, P1, p))
    -
    -
  156. -
  157. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, -how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i])? (★★★)

    -
    -# Author: Italmassov Kuanysh
    -# based on distance function from previous question
    -P0 = np.random.uniform(-10, 10, (10,2))
    -P1 = np.random.uniform(-10,10,(10,2))
    -p = np.random.uniform(-10, 10, (10,2))
    -print np.array([distance(P0,P1,p_i) for p_i in p])
    -
    -
  158. -
  159. Consider an arbitrary array, write a function that extract a subpart with a -fixed shape and centered on a given element (pad with a fill value when -necessary) (★★★)

    -
    -# Author: Nicolas Rougier
    -
    -Z = np.random.randint(0,10,(10,10))
    -shape = (5,5)
    -fill  = 0
    -position = (1,1)
    -
    -R = np.ones(shape, dtype=Z.dtype)*fill
    -P  = np.array(list(position)).astype(int)
    -Rs = np.array(list(R.shape)).astype(int)
    -Zs = np.array(list(Z.shape)).astype(int)
    -
    -R_start = np.zeros((len(shape),)).astype(int)
    -R_stop  = np.array(list(shape)).astype(int)
    -Z_start = (P-Rs//2)
    -Z_stop  = (P+Rs//2)+Rs%2
    -
    -R_start = (R_start - np.minimum(Z_start,0)).tolist()
    -Z_start = (np.maximum(Z_start,0)).tolist()
    -R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
    -Z_stop = (np.minimum(Z_stop,Zs)).tolist()
    -
    -r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
    -z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
    -R[r] = Z[z]
    -print(Z)
    -print(R)
    -
    -
  160. -
  161. Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an -array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]]? (★★★)

    -
    -# Author: Stefan van der Walt
    -
    -Z = np.arange(1,15,dtype=uint32)
    -R = stride_tricks.as_strided(Z,(11,4),(4,4))
    -print(R)
    -
    -
  162. -
  163. Compute a matrix rank (★★★)

    -
    -# Author: Stefan van der Walt
    -
    -Z = np.random.uniform(0,1,(10,10))
    -U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
    -rank = np.sum(S > 1e-10)
    -
    -
  164. -
  165. How to find the most frequent value in an array?

    -
    -Z = np.random.randint(0,10,50)
    -print(np.bincount(Z).argmax())
    -
    -
  166. -
  167. Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★)

    -
    -# Author: Chris Barker
    -
    -Z = np.random.randint(0,5,(10,10))
    -n = 3
    -i = 1 + (Z.shape[0]-3)
    -j = 1 + (Z.shape[1]-3)
    -C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
    -print(C)
    -
    -
  168. -
  169. Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★)

    -
    -# Author: Eric O. Lebigot
    -# Note: only works for 2d array and value setting using indices
    -
    -class Symetric(np.ndarray):
    -    def __setitem__(self, (i,j), value):
    -        super(Symetric, self).__setitem__((i,j), value)
    -        super(Symetric, self).__setitem__((j,i), value)
    -
    -def symetric(Z):
    -    return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)
    -
    -S = symetric(np.random.randint(0,10,(5,5)))
    -S[2,3] = 42
    -print(S)
    -
    -
  170. -
  171. Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). -How to compute the sum of of the p matrix products at once? (result has shape (n,1)) (★★★)

    -
    -# Author: Stefan van der Walt
    -
    -p, n = 10, 20
    -M = np.ones((p,n,n))
    -V = np.ones((p,n,1))
    -S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
    -print(S)
    -
    -# It works, because:
    -# M is (p,n,n)
    -# V is (p,n,1)
    -# Thus, summing over the paired axes 0 and 0 (of M and V independently),
    -# and 2 and 1, to remain with a (n,1) vector.
    -
    -
  172. -
  173. Consider a 16x16 array, how to get the block-sum (block size is 4x4)? (★★★)

    -
    -# Author: Robert Kern
    -
    -Z = np.ones(16,16)
    -k = 4
    -S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
    -                                       np.arange(0, Z.shape[1], k), axis=1)
    -
    -
  174. -
  175. How to implement the Game of Life using numpy arrays? (★★★)

    -
    -# Author: Nicolas Rougier
    -
    -def iterate(Z):
    -    # Count neighbours
    -    N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
    -         Z[1:-1,0:-2]                + Z[1:-1,2:] +
    -         Z[2:  ,0:-2] + Z[2:  ,1:-1] + Z[2:  ,2:])
    -
    -    # Apply rules
    -    birth = (N==3) & (Z[1:-1,1:-1]==0)
    -    survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
    -    Z[...] = 0
    -    Z[1:-1,1:-1][birth | survive] = 1
    -    return Z
    -
    -Z = np.random.randint(0,2,(50,50))
    -for i in range(100): Z = iterate(Z)
    -
    -
  176. -
  177. How to get the n largest values of an array (★★★)

    -
    -Z = np.arange(10000)
    -np.random.shuffle(Z)
    -n = 5
    -
    -# Slow
    -print (Z[np.argsort(Z)[-n:]])
    -
    -# Fast
    -print (Z[np.argpartition(-Z,n)[:n]])
    -
    -
  178. -
  179. Given an arbitrary number of vectors, build the cartesian product (every -combinations of every item) (★★★)

    -
    -# Author: Stefan Van der Walt
    -
    -def cartesian(arrays):
    -    arrays = [np.asarray(a) for a in arrays]
    -    shape = (len(x) for x in arrays)
    -
    -    ix = np.indices(shape, dtype=int)
    -    ix = ix.reshape(len(arrays), -1).T
    -
    -    for n, arr in enumerate(arrays):
    -        ix[:, n] = arrays[n][ix[:, n]]
    -
    -    return ix
    -
    -print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
    -
    -
  180. -
  181. How to create a record array from a regular array? (★★★)

    -
    -Z = np.array([("Hello", 2.5, 3),
    -              ("World", 3.6, 2)])
    -R = np.core.records.fromarrays(Z.T,
    -                               names='col1, col2, col3',
    -                               formats = 'S8, f8, i8')
    -
    -
  182. -
  183. Consider a large vector Z, compute Z to the power of 3 using 3 different -methods (★★★)

    -
    -Author: Ryan G.
    -
    -x = np.random.rand(5e7)
    -
    -%timeit np.power(x,3)
    -1 loops, best of 3: 574 ms per loop
    -
    -%timeit x*x*x
    -1 loops, best of 3: 429 ms per loop
    -
    -%timeit np.einsum('i,i,i->i',x,x,x)
    -1 loops, best of 3: 244 ms per loop
    -
    -
  184. -
  185. Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A -that contain elements of each row of B regardless of the order of the elements -in B? (★★★)

    -
    -# Author: Gabe Schwartz
    -
    -A = np.random.randint(0,5,(8,3))
    -B = np.random.randint(0,5,(2,2))
    -
    -C = (A[..., np.newaxis, np.newaxis] == B)
    -rows = (C.sum(axis=(1,2,3)) >= B.shape[1]).nonzero()[0]
    -print(rows)
    -
    -
  186. -
  187. Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3]) (★★★)

    -
    -# Author: Robert Kern
    -
    -Z = np.random.randint(0,5,(10,3))
    -E = np.logical_and.reduce(Z[:,1:] == Z[:,:-1], axis=1)
    -U = Z[~E]
    -print(Z)
    -print(U)
    -
    -
  188. -
  189. Convert a vector of ints into a matrix binary representation (★★★)

    -
    -# Author: Warren Weckesser
    -
    -I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
    -B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
    -print(B[:,::-1])
    -
    -# Author: Daniel T. McDonald
    -
    -I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)
    -print(np.unpackbits(I[:, np.newaxis], axis=1))
    -
    -
  190. -
  191. Given a two dimensional array, how to extract unique rows? (★★★)

    -
    -# Author: Jaime Fernández del Río
    -
    -Z = np.random.randint(0,2,(6,3))
    -T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
    -_, idx = np.unique(T, return_index=True)
    -uZ = Z[idx]
    -print(uZ)
    -
    -
  192. -
  193. Considering 2 vectors A & B, write the einsum equivalent of inner, outer, -sum, and mul function (★★★)

    -
    -# Author: Alex Riley
    -# Make sure to read: http://ajcr.net/Basic-guide-to-einsum/
    -
    -np.einsum('i->', A)       # np.sum(A)
    -np.einsum('i,i->i', A, B) # A * B
    -np.einsum('i,i', A, B)    # np.inner(A, B)
    -np.einsum('i,j', A, B)    # np.outer(A, B)
    -
    -
  194. -
  195. Considering a path described by two vectors (X,Y), how to sample it using -equidistant samples (★★★)?

    -
    -# Author: Bas Swinckels
    -
    -phi = np.arange(0, 10*np.pi, 0.1)
    -a = 1
    -x = a*phi*np.cos(phi)
    -y = a*phi*np.sin(phi)
    -
    -dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
    -r = np.zeros_like(x)
    -r[1:] = np.cumsum(dr)                # integrate path
    -r_int = np.linspace(0, r.max(), 200) # regular spaced path
    -x_int = np.interp(r_int, r, x)       # integrate path
    -y_int = np.interp(r_int, r, y)
    -
    -
  196. -
  197. Given an integer n and a 2D array X, select from X the rows which can be -interpreted as draws from a multinomial distribution with n degrees, i.e., -the rows which only contain integers and which sum to n. (★★★)

    -
    -# Author: Evgeni Burovski
    -
    -X = np.asarray([[1.0, 0.0, 3.0, 8.0],
    -                [2.0, 0.0, 1.0, 1.0],
    -                [1.5, 2.5, 1.0, 0.0]])
    -n = 4
    -M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1)
    -M &= (X.sum(axis=-1) == n)
    -print(X[M])
    -
    -
  198. -
  199. Compute bootstrapped 95% confidence intervals for the mean of a 1D array X -(i.e., resample the elements of an array with replacement N times, compute -the mean of each sample, and then compute percentiles over the means). (★★★)

    -
    -# Author: Jessica B. Hamrick
    -
    -X = np.random.randn(100) # random 1D array
    -N = 1000 # number of bootstrap samples
    -idx = np.random.randint(0, X.size, (N, X.size))
    -means = X[idx].mean(axis=1)
    -confint = np.percentile(means, [2.5, 97.5])
    -print(confint)
    -
    -
  200. -
-
- - diff --git a/README.md b/README.md new file mode 100644 index 0000000..aacf4e4 --- /dev/null +++ b/README.md @@ -0,0 +1,11 @@ +## 100 numpy exercises + +This is a collection of exercises that have been collected in the numpy mailing +list, on stack overflow and in the numpy documentation. I've also created some +to reach the 100 limit. The goal of this collection is to offer a quick +reference for both old and new users but also to provide a set of exercices for +those who teach. + +[![Binder](http://mybinder.org/badge.svg)](http://mybinder.org:/repo/rougier/numpy-100) + +[Link to exercices](100 Numpy exercises.rst)