diff --git a/README.html b/README.html
index 7cdb9f4..76e812e 100644
--- a/README.html
+++ b/README.html
@@ -164,6 +164,18 @@ python -c "import numpy; numpy.info(num
print(Z)
+ Given a 1D array, negate all elements which are between 3 and 8, in place. (★☆☆)
+.. code-block:: python # Author: Evgeni Burovski Z = np.arange(11)
+Z[(3 < Z) & (Z <= 8)] *= -1 Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆)
+
+
Z = np.zeros((5,5))
@@ -187,13 +199,21 @@ array (★☆☆)
Create a random vector of size 10 and sort it (★★☆)
+Create a random vector of size 10 and sort it (★★☆)
Z = np.random.random(10) Z.sort() print(Z)
How to sum a small array faster than np.sum ? (★★☆)
++# Author: Evgeni Burovski + +Z = np.arange(10) +np.add.reduce(Z) ++
Consider two random array A anb B, check if they are equal (★★☆)
A = np.random.randint(0,2,5) @@ -236,6 +256,16 @@ them to polar coordinates (★★☆) print(Z)
Given two arrays, X and Y, construct the Cauchy matrix C (Cij = 1/(xi - yj))
++# Author: Evgeni Burovski + +X = np.arange(8) +Y = X + 0.5 +C = 1.0 / np.subtract.outer(X, Y) +print(np.linalg.det(C)) ++
Print the minimum and maximum representable value for each numpy scalar type (★★☆)
for dtype in [np.int8, np.int32, np.int64]: @@ -254,13 +284,6 @@ them to polar coordinates (★★☆) print(Z)
How to print all the values of an array ? (★★☆)
--np.set_printoptions(threshold=np.nan) -Z = np.zeros((25,25)) -print(Z) --
How to find the closest value (to a given scalar) in an array ? (★★☆)
Z = np.arange(100) @@ -706,7 +729,6 @@ How to compute the sum of of the p matrix products at once ? (result has shape (
How to get the n largest values of an array (★★★)
-Z = np.arange(10000) np.random.shuffle(Z) @@ -718,7 +740,6 @@ How to compute the sum of of the p matrix products at once ? (result has shape ( # Fast print (Z[np.argpartition(-Z,n)[:n]])-
Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★)
@@ -846,6 +867,21 @@ equidistant samples (★★★) ? y_int = np.interp(r_int, r, y)Given an integer n and a 2D array X, select from X the rows which can be +interpreted as draws from a multinomial distribution with n degrees, i.e., +the rows which only contain integers and which sum to n. (★★★)
++# Author: Evgeni Burovski + +X = np.asarray([[1.0, 0.0, 3.0, 8.0], + [2.0, 0.0, 1.0, 1.0], + [1.5, 2.5, 1.0, 0.0]]) +n = 4 +M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1) +M &= (X.sum(axis=-1) == n) +print(X[M]) ++