feat: broadcasting solution exercise 79
This commit is contained in:
parent
4090dc6c5f
commit
adf896fa7c
@ -1118,6 +1118,32 @@ P1 = np.random.uniform(-10,10,(10,2))
|
||||
p = np.random.uniform(-10, 10, (10,2))
|
||||
print(np.array([distance(P0,P1,p_i) for p_i in p]))
|
||||
|
||||
# Author: Yang Wu (Broadcasting)
|
||||
def distance_points_to_lines(p: np.ndarray, p_1: np.ndarray, p_2: np.ndarray) -> np.ndarray:
|
||||
x_0, y_0 = p.T # Shape -> (n points, )
|
||||
x_1, y_1 = p_1.T # Shape -> (n lines, )
|
||||
x_2, y_2 = p_2.T # Shape -> (n lines, )
|
||||
|
||||
# Displacement vector coordinates from p_1 -> p_2
|
||||
dx = x_2 - x_1 # Shape -> (n lines, )
|
||||
dy = y_2 - y_1 # Shape -> (n lines, )
|
||||
|
||||
# The 'cross product' term
|
||||
cross_term = x_2 * y_1 - y_2 * x_1 # Shape -> (n lines, )
|
||||
|
||||
# Broadcast x_0, y_0 (n points, 1) and dx, dy, cross_term (1, n lines) -> (n points, n lines)
|
||||
numerator = np.abs(
|
||||
dy[np.newaxis, :] * x_0[:, np.newaxis]
|
||||
- dx[np.newaxis, :] * y_0[:, np.newaxis]
|
||||
+ cross_term[np.newaxis, :]
|
||||
)
|
||||
denominator = np.sqrt(dx**2 + dy**2) # Shape -> (n lines, )
|
||||
|
||||
# Shape (n points, n lines) / (1, n_lines) -> (n points, n lines)
|
||||
return numerator / denominator[np.newaxis, :]
|
||||
|
||||
distance_points_to_lines(p, P0, P1)
|
||||
|
||||
< q80
|
||||
Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a `fill` value when necessary) (★★★)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user