diff --git a/100 Numpy exercises.ipynb b/100 Numpy exercises.ipynb index dbfeb20..ff17b65 100644 --- a/100 Numpy exercises.ipynb +++ b/100 Numpy exercises.ipynb @@ -2242,7 +2242,7 @@ "np.einsum('i->', A) # np.sum(A)\n", "np.einsum('i,i->i', A, B) # A * B\n", "np.einsum('i,i', A, B) # np.inner(A, B)\n", - "np.einsum('i,j', A, B) # np.outer(A, B)" + "np.einsum('i,j->ij', A, B) # np.outer(A, B)" ] }, { diff --git a/100 Numpy exercises.md b/100 Numpy exercises.md index 3bbc780..e1f37d7 100644 --- a/100 Numpy exercises.md +++ b/100 Numpy exercises.md @@ -1171,7 +1171,7 @@ B = np.random.uniform(0,1,10) np.einsum('i->', A) # np.sum(A) np.einsum('i,i->i', A, B) # A * B np.einsum('i,i', A, B) # np.inner(A, B) -np.einsum('i,j', A, B) # np.outer(A, B) +np.einsum('i,j->ij', A, B) # np.outer(A, B) ``` #### 98. Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★)?