simplified answer.78
This commit is contained in:
parent
dbb54197e8
commit
44df2b0d3c
@ -1095,22 +1095,18 @@ P1 = np.random.uniform(-10,10,(10,2))
|
||||
p = np.random.uniform(-10,10,( 1,2))
|
||||
|
||||
def distance_faster(P0,P1,p):
|
||||
'''
|
||||
Author: Hemanth Pasupuleti
|
||||
Reference: https://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
|
||||
|
||||
---- Explainable solution - Slightly Faster as number of lines scale up exponentially ----
|
||||
'''
|
||||
v = P1- P0 # Shape: (n_lines,2), Compute: [(x2-x1) (y2-y1)]
|
||||
v[:,[0,1]] = v[:,[1,0]] # Shape: (n_lines,2), Swap along axis to Compute: [(y2-y1) (x2-x1)]
|
||||
v[:,1]*=-1 # Shape: (n_lines,2), Compute: [(y2-y1) -(x2-x1)]
|
||||
norm = np.linalg.norm(v,axis=1) # Shape: (n_lines,), Compute: sqrt((x2-x1)**2 + (y2-y1)**2)
|
||||
r = P0 - p # Shape: (n_lines,2), Compute: [(x1-x0) (y1-y0)]
|
||||
|
||||
# np.einsum('ij,ij->i',r,v) is equivalent to np.multiply(r,v)).sum(axis=1) which is scalar product of two matrices across axis 1.
|
||||
#Author: Hemanth Pasupuleti
|
||||
#Reference: https://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
|
||||
|
||||
v = P1- P0
|
||||
v[:,[0,1]] = v[:,[1,0]]
|
||||
v[:,1]*=-1
|
||||
norm = np.linalg.norm(v,axis=1)
|
||||
r = P0 - p
|
||||
d = np.abs(np.einsum("ij,ij->i",r,v)) / norm
|
||||
|
||||
d = np.abs(np.einsum("ij,ij->i",r,v)) / norm # Shape: (n_lines,), Compute: d = |(x1-x0)*(y2-y1)-(y1-y0)*(x1-x0)|/sqrt((x2-x1)**2 + (y2-y1)**2)
|
||||
return d
|
||||
|
||||
print(distance_faster(P0, P1, p))
|
||||
|
||||
##--------------- OR ---------------##
|
||||
@ -1121,6 +1117,7 @@ def distance_slower(P0, P1, p):
|
||||
U = U.reshape(len(U),1)
|
||||
D = P0 + U*T - p
|
||||
return np.sqrt((D**2).sum(axis=1))
|
||||
|
||||
print(distance_slower(P0, P1, p))
|
||||
|
||||
< q79
|
||||
|
Loading…
x
Reference in New Issue
Block a user