From 3a048024493689fb785d6f62964c7b0a245e842b Mon Sep 17 00:00:00 2001
From: Nicolas Rougier
The level names came from an old-game (Dungeon Master)
Repository is at: https://github.com/rougier/numpy-100
+The corresponding IPython notebook is available +from the github repo, thanks to the rst2ipynb conversion tool by Valentin Haenel
+Thanks to Michiaki Ariga, there is now a Julia version.
Create a null vector of size 10
Z = np.zeros(10) +print Z
Create a null vector of size 10 but the fifth value which is 1
Z = np.zeros(10) Z[4] = 1 +print Z
Create a vector with values ranging from 10 to 99
+Create a vector with values ranging from 10 to 49
-Z = np.arange(10,100) +Z = np.arange(10,50) +print Z
Create a 3x3 matrix with values ranging from 0 to 8
Z = np.arange(9).reshape(3,3) +print Z
Find indices of non-zero elements from [1,2,0,0,4,0]
nz = np.nonzero([1,2,0,0,4,0]) +print nz
Create a 3x3 identity matrix
Z = np.eye(3) +print Z
Create a 5x5 matrix with values 1,2,3,4 just below the diagonal
Z = np.diag(1+np.arange(4),k=-1) +print Z
Create a 10x10x10 array with random values
+Create a 3x3x3 array with random values
-Z = np.random.random((10,10,10)) +Z = np.random.random((3,3,3)) +print Z
Create a 8x8 matrix and fill it with a checkerboard pattern
-Z = np.zeros((8,8)) +Z = np.zeros((8,8),dtype=int) Z[1::2,::2] = 1 Z[::2,1::2] = 1 +print Z
Create a 10x10 array with random values and find the minimum and maximum values
Z = np.random.random((10,10)) Zmin, Zmax = Z.min(), Z.max() +print Zmin, Zmax
Create a checkerboard 8x8 matrix using the tile function
Z = np.tile( np.array([[0,1],[1,0]]), (4,4)) +print Z
Normalize a 5x5 random matrix (between 0 and 1)
@@ -115,41 +129,48 @@ is: Z = np.random.random((5,5)) Zmax,Zmin = Z.max(), Z.min() Z = (Z - Zmin)/(Zmax - Zmin) +print ZMultiply a 5x3 matrix by a 3x2 matrix (real matrix product)
Z = np.dot(np.ones((5,3)), np.ones((3,2))) +print Z
Create a 10x10 matrix with row values ranging from 0 to 9
+Create a 5x5 matrix with row values ranging from 0 to 4
-Z = np.zeros((10,10)) -Z += np.arange(10) +Z = np.zeros((5,5)) +Z += np.arange(5) +print Z
Create a vector of size 1000 with values ranging from 0 to 1, both excluded
+Create a vector of size 10 with values ranging from 0 to 1, both excluded
-Z = np.random.linspace(0,1,1002,endpoint=True)[1:-1] +Z = np.linspace(0,1,12,endpoint=True)[1:-1] +print Z
Create a random vector of size 100 and sort it
+Create a random vector of size 10 and sort it
-Z = np.random.random(100) +Z = np.random.random(10) Z.sort() +print Z
Consider two random matrices A anb B, check if they are equal.
+Consider two random array A anb B, check if they are equal.
-A = np.random.randint(0,2,(2,2)) -B = np.random.randint(0,2,(2,2)) +A = np.random.randint(0,2,5) +B = np.random.randint(0,2,5) equal = np.allclose(A,B) +print equal
Create a random vector of size 1000 and find the mean value
+Create a random vector of size 30 and find the mean value
-Z = np.random.random(1000) +Z = np.random.random(30) m = Z.mean() +print m
Z = np.zeros(10) Z.flags.writeable = False +Z[0] = 1-
Consider a random 100x2 matrix representing cartesian coordinates, convert +
Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates
-Z = np.random.random((100,2)) +Z = np.random.random((10,2)) X,Y = Z[:,0], Z[:,1] R = np.sqrt(X**2+Y**2) T = np.arctan2(Y,X) +print R +print T
Create random vector of size 100 and replace the maximum value by 0
+Create random vector of size 10 and replace the maximum value by 0
-Z = np.random.random(100) +Z = np.random.random(10) Z[Z.argmax()] = 0 +print Z
Create a structured array with x and y coordinates covering the @@ -184,6 +209,7 @@ them to polar coordinates
Z = np.zeros((10,10), [('x',float),('y',float)]) Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,10), np.linspace(0,1,10)) +print ZPrint the minimum and maximum representable value for each numpy scalar type
@@ -199,11 +225,12 @@ them to polar coordinatesCreate a structured array representing a position (x,y) and a color (r,g,b)
-Z = np.zeros(10, [ ('position', [ ('x', float, 1), - ('y', float, 1)]), - ('color', [ ('r', float, 1), - ('g', float, 1), - ('b', float, 1)])]) + Z = np.zeros(10, [ ('position', [ ('x', float, 1), + ('y', float, 1)]), + ('color', [ ('r', float, 1), + ('g', float, 1), + ('b', float, 1)])]) +print Z
Consider a random vector with shape (100,2) representing coordinates, find @@ -212,18 +239,22 @@ point by point distances
Z = np.random.random((10,2)) X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1]) D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2) +print D # Much faster with scipy +import scipy Z = np.random.random((10,2)) D = scipy.spatial.distance.cdist(Z,Z) +print DGenerate a generic 2D Gaussian-like array
-X, Y = np.meshgrid(np.linspace(-1,1,100), np.linspace(-1,1,100)) +X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10)) D = np.sqrt(X*X+Y*Y) sigma, mu = 1.0, 0.0 G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) ) +print G
Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 @@ -235,11 +266,15 @@ consecutive zeros interleaved between each value ?
nz = 3 Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz)) Z0[::nz+1] = Z +print Z0Find the nearest value from a given value in an array
-Z.flat[np.abs(Z - z).argmin()] +Z = np.random.uniform(0,1,10) +z = 0.5 +m = Z.flat[np.abs(Z - z).argmin()] +print m
How to read it ?
-Z = genfromtxt("missing.dat", delimiter=",") +Z = np.genfromtxt("missing.dat", delimiter=",")
Consider a generator function that generates 10 integers and use it to build an @@ -265,6 +300,7 @@ array
for x in xrange(10): yield x Z = np.fromiter(generate(),dtype=float,count=-1) +print ZConsider a given vector, how to add 1 to each element indexed by a second @@ -275,6 +311,7 @@ vector (be careful with repeated indices) ?
Z = np.ones(10) I = np.random.randint(0,len(Z),20) Z += np.bincount(I, minlength=len(Z)) +print ZHow to accumulate elements of a vector (X) to an array (F) based on an index @@ -285,6 +322,7 @@ list (I) ?
X = [1,2,3,4,5,6] I = [1,3,9,3,4,1] F = np.bincount(I,X) +print FConsidering a (w,h,3) image of (dtype=ubyte), compute the number of unique @@ -296,26 +334,27 @@ colors
I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte) F = I[...,0]*256*256 + I[...,1]*256 +I[...,2] n = len(np.unique(F)) - -np.unique(I) +print np.unique(I)Considering a four dimensions array, how to get sum over the last two axis at once ?
A = np.random.randint(0,10,(3,4,3,4)) sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1) +print
Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices ?
-# Jaime Fernández del Río +# Author: Jaime Fernández del Río D = np.random.uniform(0,1,100) S = np.random.randint(0,10,100) D_sums = np.bincount(S, weights=D) D_counts = np.bincount(S) D_means = D_sums / D_counts +print D_means
# Author: Joe Kington / Erik Rigtorp +from numpy.lib import stride_tricks def rolling(a, window): shape = (a.size - window + 1, window) strides = (a.itemsize, a.itemsize) - return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) - -Z = rolling(np.arange(100), 3) + return stride_tricks.as_strided(a, shape=shape, strides=strides) +Z = rolling(np.arange(10), 3) +print Z-
Consider a set of 100 triplets describing 100 triangles (with shared +
Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles.
-# Author: Nicolas Rougier - -faces = np.random.randint(0,100,(100,3)) +# Author: Nicolas P. Rougier +faces = np.random.randint(0,100,(10,3)) F = np.roll(faces.repeat(2,axis=1),-1,axis=1) F = F.reshape(len(F)*3,2) F = np.sort(F,axis=1) G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] ) G = np.unique(G) +print G
Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C ?
-# Jaime Fernández del Río +# Author: Jaime Fernández del Río C = np.bincount([1,1,2,3,4,4,6]) A = np.repeat(np.arange(len(C)), C) +print A ++
How to compute averages using a sliding window over an array ?
++# Author: Jaime Fernández del Río + +def moving_average(a, n=3) : + ret = np.cumsum(a, dtype=float) + ret[n:] = ret[n:] - ret[:-n] + return ret[n - 1:] / n +Z = np.arange(20) +print moving_average(Z, n=3)
Considering a 100x3 matrix, extract rows with unequal values (e.g. [2,2,3])
+Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3])
# Author: Robert Kern -Z = np.random.randint(0,5,(100,3)) +Z = np.random.randint(0,5,(10,3)) E = np.logical_and.reduce(Z[:,1:] == Z[:,:-1], axis=1) U = Z[~E] +print Z +print U
Convert a vector of ints into a matrix binary representation.
@@ -380,12 +435,12 @@ np.bincount(A) == C ? I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128]) B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int) -B = B[:,::-1] +print B[:,::-1] # Author: Daniel T. McDonald I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8) -np.unpackbits(I[:, np.newaxis], axis=1) +print np.unpackbits(I[:, np.newaxis], axis=1)# Author: Nicolas Rougier -Z = np.random.random((25,25)) -shape = (3,3) +Z = np.random.randint(0,10,(10,10)) +shape = (5,5) fill = 0 -position = (0,0) +position = (1,1) R = np.ones(shape, dtype=Z.dtype)*fill P = np.array(list(position)).astype(int) @@ -422,15 +477,18 @@ necessary) r = [slice(start,stop) for start,stop in zip(R_start,R_stop)] z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)] R[r] = Z[z] +print Z +print R
Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]] ?
-# Stéfan van der Walt +# Author: Stéfan van der Walt -Z = np.arange(1,15) -R = as_strided(Z,(11,4),(4,4)) +Z = np.arange(1,15,dtype=uint32) +R = stride_tricks.as_strided(Z,(11,4),(4,4)) +print R
Extract all the contiguous 3x3 blocks from a random 10x10 matrix.
-# Chris Barker +# Author: Chris Barker Z = np.random.randint(0,5,(10,10)) n = 3 i = 1 + (Z.shape[0]-3) j = 1 + (Z.shape[1]-3) C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides) +print C
Create a 2D array subclass such that Z[i,j] == Z[j,i]
-# Eric O. Lebigot +# Author: Eric O. Lebigot # Note: only works for 2d array and value setting using indices class Symetric(np.ndarray): @@ -475,11 +535,29 @@ in B ? def symetric(Z): return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric) -S = symetric(np.random.randint(0,10,(5,5)) +S = symetric(np.random.randint(0,10,(5,5))) S[2,3] = 42 print S
Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). +How to compute the sum of of the p matrix products at once ? (result has shape (n,1))
++# Author: Stéfan van der Walt + +p, n = 10, 20 +M = np.ones((p,n,n)) +V = np.ones((p,n,1)) +S = np.tensordot(M, V, axes=[[0, 2], [0, 1]]) +print S + +# It works, because: +# M is (p,n,n) +# V is (p,n,1) +# Thus, summing over the paired axes 0 and 0 (of M and V independently), +# and 2 and 1, to remain with a (n,1) vector. ++
See stackoverflow for explanations.
-# Jaime Fernández del Río +# Author: Jaime Fernández del Río -Z = np.random.randint(0,2,(6,6)) +Z = np.random.randint(0,2,(6,3)) T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1]))) _, idx = np.unique(T, return_index=True) uZ = Z[idx] +print uZdiff --git a/README.ipynb b/README.ipynb index 64db89e..061f47a 100644 --- a/README.ipynb +++ b/README.ipynb @@ -77,6 +77,14 @@ "[Valentin Haenel](http://haenel.co)\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Thanks to Michiaki Ariga, there is now a [Julia\n", + "version](https://github.com/chezou/julia-100-exercises).\n" + ] + }, { "cell_type": "heading", "level": 2, @@ -859,7 +867,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Jaime Fern\u00e1ndez del R\u00edo\n", + "# Author: Jaime Fern\u00e1ndez del R\u00edo\n", "\n", "D = np.random.uniform(0,1,100)\n", "S = np.random.randint(0,10,100)\n", @@ -920,7 +928,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Author: Nicolas Rougier\n", + "# Author: Nicolas P. Rougier\n", "\n", "faces = np.random.randint(0,100,(10,3))\n", "F = np.roll(faces.repeat(2,axis=1),-1,axis=1)\n", @@ -946,7 +954,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Jaime Fern\u00e1ndez del R\u00edo\n", + "# Author: Jaime Fern\u00e1ndez del R\u00edo\n", "\n", "C = np.bincount([1,1,2,3,4,4,6])\n", "A = np.repeat(np.arange(len(C)), C)\n", @@ -1180,7 +1188,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Eric O. Lebigot\n", + "# Author: Eric O. Lebigot\n", "# Note: only works for 2d array and value setting using indices\n", "\n", "class Symetric(np.ndarray):\n", @@ -1212,7 +1220,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# St\u00e9fan van der Walt\n", + "# Author: St\u00e9fan van der Walt\n", "\n", "p, n = 10, 20\n", "M = np.ones((p,n,n))\n", @@ -1221,10 +1229,10 @@ "print S\n", "\n", "# It works, because:\n", - "# M is (P, N, N)\n", - "# V is (P, N, 1)\n", + "# M is (p,n,n)\n", + "# V is (p,n,1)\n", "# Thus, summing over the paired axes 0 and 0 (of M and V independently),\n", - "# and 2 and 1, to remain with a Mx1 vector." + "# and 2 and 1, to remain with a (n,1) vector." ], "language": "python", "metadata": {}, @@ -1266,7 +1274,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Jaime Fern\u00e1ndez del R\u00edo\n", + "# Author: Jaime Fern\u00e1ndez del R\u00edo\n", "\n", "Z = np.random.randint(0,2,(6,3))\n", "T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))\n", diff --git a/README.rst b/README.rst index 601568a..f063b9c 100644 --- a/README.rst +++ b/README.rst @@ -34,6 +34,9 @@ from the github repo, thanks to the `rst2ipynb