2021-09-10 12:34:39 -03:00

72 lines
1.8 KiB
Python
Executable File

#!/usr/bin/env python3
"""
procs.py: shows that multiprocessing on a multicore machine
can be faster than sequential code for CPU-intensive work.
"""
# tag::PRIMES_PROC_TOP[]
import sys
from time import perf_counter
from typing import NamedTuple
from multiprocessing import Process, SimpleQueue, cpu_count # <1>
from multiprocessing import queues # <2>
from primes import is_prime, NUMBERS
class PrimeResult(NamedTuple): # <3>
n: int
prime: bool
elapsed: float
JobQueue = queues.SimpleQueue # <4>
ResultQueue = queues.SimpleQueue # <5>
def check(n: int) -> PrimeResult: # <6>
t0 = perf_counter()
res = is_prime(n)
return PrimeResult(n, res, perf_counter() - t0)
def worker(jobs: JobQueue, results: ResultQueue) -> None: # <7>
while True:
n = jobs.get() # <8>
if n == 0:
break
results.put(check(n)) # <9>
# end::PRIMES_PROC_TOP[]
# tag::PRIMES_PROC_MAIN[]
def main() -> None:
if len(sys.argv) < 2: # <1>
workers = cpu_count()
else:
workers = int(sys.argv[1])
print(f'Checking {len(NUMBERS)} numbers with {workers} processes:')
jobs: JobQueue = SimpleQueue() # <2>
results: ResultQueue = SimpleQueue()
t0 = perf_counter()
for n in NUMBERS: # <3>
jobs.put(n)
for _ in range(workers):
proc = Process(target=worker, args=(jobs, results)) # <4>
proc.start() # <5>
jobs.put(0) # <6>
while True:
n, prime, elapsed = results.get() # <7>
label = 'P' if prime else ' '
print(f'{n:16} {label} {elapsed:9.6f}s') # <8>
if jobs.empty(): # <9>
break
elapsed = perf_counter() - t0
print(f'Total time: {elapsed:.2f}s')
if __name__ == '__main__':
main()
# end::PRIMES_PROC_MAIN[]