32 lines
1.1 KiB
ReStructuredText
32 lines
1.1 KiB
ReStructuredText
>>> metro_data = [
|
|
... ('Tokyo', 'JP', 36.933, (35.689722, 139.691667)),
|
|
... ('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)),
|
|
... ('Mexico City', 'MX', 20.142, (19.433333, -99.133333)),
|
|
... ('New York-Newark', 'US', 20.104, (40.808611, -74.020386)),
|
|
... ('Sao Paulo', 'BR', 19.649, (-23.547778, -46.635833)),
|
|
... ]
|
|
# BEGIN ATTRGETTER_DEMO
|
|
|
|
>>> from collections import namedtuple
|
|
>>> LatLong = namedtuple('LatLong', 'lat long') # <1>
|
|
>>> Metropolis = namedtuple('Metropolis', 'name cc pop coord') # <2>
|
|
>>> metro_areas = [Metropolis(name, cc, pop, LatLong(lat, long_)) # <3>
|
|
... for name, cc, pop, (lat, long_) in metro_data]
|
|
>>> metro_areas[0]
|
|
Metropolis(name='Tokyo', cc='JP', pop=36.933, coord=LatLong(lat=35.689722, long=139.691667))
|
|
>>> metro_areas[0].coord.lat # <4>
|
|
35.689722
|
|
>>> from operator import attrgetter
|
|
>>> name_lat = attrgetter('name', 'coord.lat') # <5>
|
|
>>>
|
|
>>> for city in sorted(metro_areas, key=attrgetter('coord.lat')): # <6>
|
|
... print(name_lat(city)) # <7>
|
|
...
|
|
('Sao Paulo', -23.547778)
|
|
('Mexico City', 19.433333)
|
|
('Delhi NCR', 28.613889)
|
|
('Tokyo', 35.689722)
|
|
('New York-Newark', 40.808611)
|
|
|
|
# END ATTRGETTER_DEMO
|