ch20: minor edits

This commit is contained in:
Luciano Ramalho 2021-02-12 23:23:26 -03:00
parent 33f73a18a1
commit 916ceaa88f
5 changed files with 58 additions and 35 deletions

View File

@ -1,3 +1,5 @@
#!/usr/bin/env python3
import math
@ -27,7 +29,7 @@ PRIME_FIXTURE = [
NUMBERS = [n for n, _ in PRIME_FIXTURE]
# tag::IS_PRIME[]
def is_prime(n) -> bool:
def is_prime(n: int) -> bool:
if n < 2:
return False
if n == 2:
@ -35,7 +37,7 @@ def is_prime(n) -> bool:
if n % 2 == 0:
return False
root = math.floor(math.sqrt(n))
root = math.isqrt(n)
for i in range(3, root + 1, 2):
if n % i == 0:
return False

View File

@ -1,28 +1,35 @@
#!/usr/bin/env python3
"""
procs.py: shows that multiprocessing on a multicore machine
can be faster than sequential code for CPU-intensive work.
"""
# tag::PRIMES_PROC_TOP[]
from time import perf_counter
from typing import Tuple, NamedTuple
from typing import NamedTuple
from multiprocessing import Process, SimpleQueue, cpu_count # <1>
from multiprocessing import queues # <2>
import sys
from primes import is_prime, NUMBERS
class Result(NamedTuple): # <3>
flag: bool
class PrimeResult(NamedTuple): # <3>
n: int
prime: bool
elapsed: float
JobQueue = queues.SimpleQueue[int] # <4>
ResultQueue = queues.SimpleQueue[Tuple[int, Result]] # <5>
ResultQueue = queues.SimpleQueue[PrimeResult] # <5>
def check(n: int) -> Result: # <6>
def check(n: int) -> PrimeResult: # <6>
t0 = perf_counter()
res = is_prime(n)
return Result(res, perf_counter() - t0)
return PrimeResult(n, res, perf_counter() - t0)
def worker(jobs: JobQueue, results: ResultQueue) -> None: # <7>
while n := jobs.get(): # <8>
result = check(n) # <9>
results.put((n, result)) # <10>
results.put(check(n)) # <9>
# end::PRIMES_PROC_TOP[]
# tag::PRIMES_PROC_MAIN[]
@ -32,11 +39,11 @@ def main() -> None:
else:
workers = int(sys.argv[1])
t0 = perf_counter()
print(f'Checking {len(NUMBERS)} numbers with {workers} processes:')
jobs: JobQueue = SimpleQueue() # <2>
results: ResultQueue = SimpleQueue()
print(f'Checking {len(NUMBERS)} numbers with {workers} processes:')
t0 = perf_counter()
for n in NUMBERS: # <3>
jobs.put(n)
@ -47,7 +54,7 @@ def main() -> None:
jobs.put(0) # <6>
while True:
n, (prime, elapsed) = results.get() # <7>
n, prime, elapsed = results.get() # <7>
label = 'P' if prime else ' '
print(f'{n:16} {label} {elapsed:9.6f}s') # <8>
if jobs.empty(): # <9>

View File

@ -1,18 +1,26 @@
#!/usr/bin/env python3
"""
sequential.py: baseline for comparing sequential, multiprocessing,
and threading code for CPU-intensive work.
"""
from time import perf_counter
from typing import NamedTuple
from primes import is_prime, NUMBERS
class Result(NamedTuple): # <1>
flag: bool
prime: bool
elapsed: float
def check(n: int) -> Result: # <2>
t0 = perf_counter()
flag = is_prime(n)
return Result(flag, perf_counter() - t0)
prime = is_prime(n)
return Result(prime, perf_counter() - t0)
def main() -> None:
print(f'Checking {len(NUMBERS)} numbers sequentially:')
t0 = perf_counter()
for n in NUMBERS: # <3>
prime, elapsed = check(n)

View File

@ -1,4 +1,4 @@
# spinner_async_experiment.py
# spinner_prime_async_nap.py
# credits: Example by Luciano Ramalho inspired by
# Michele Simionato's multiprocessing example in the python-list:
@ -8,7 +8,7 @@ import asyncio
import itertools
import math
# tag::SPINNER_ASYNC_NAP[]
# tag::PRIME_NAP[]
async def is_prime(n):
if n < 2:
return False
@ -17,15 +17,14 @@ async def is_prime(n):
if n % 2 == 0:
return False
sleep = asyncio.sleep # <1>
root = math.floor(math.sqrt(n))
root = math.isqrt(n)
for i in range(3, root + 1, 2):
if n % i == 0:
return False
if i % 100_000 == 1: # <2>
await sleep(0)
await asyncio.sleep(0)
return True
# end::SPINNER_ASYNC_NAP[]
# end::PRIME_NAP[]
async def spin(msg: str) -> None:

View File

@ -1,5 +1,12 @@
#!/usr/bin/env python3
"""
threads.py: shows that Python threads are slower than
sequential code for CPU-intensive work.
"""
from time import perf_counter
from typing import Tuple, NamedTuple
from typing import NamedTuple
from threading import Thread
from queue import SimpleQueue
import sys
@ -7,22 +14,22 @@ import os
from primes import is_prime, NUMBERS
class Result(NamedTuple):
flag: bool
class PrimeResult(NamedTuple): # <3>
n: int
prime: bool
elapsed: float
JobQueue = SimpleQueue[int]
ResultQueue = SimpleQueue[Tuple[int, Result]]
ResultQueue = SimpleQueue[PrimeResult]
def check(n: int) -> Result:
def check(n: int) -> PrimeResult:
t0 = perf_counter()
res = is_prime(n)
return Result(res, perf_counter() - t0)
return PrimeResult(n, res, perf_counter() - t0)
def worker(jobs: JobQueue, results: ResultQueue) -> None:
while n := jobs.get():
result = check(n)
results.put((n, result))
results.put(check(n))
def main() -> None:
if len(sys.argv) < 2: # <1>
@ -30,11 +37,11 @@ def main() -> None:
else:
workers = int(sys.argv[1])
t0 = perf_counter()
print(f'Checking {len(NUMBERS)} numbers with {workers} threads:')
jobs: JobQueue = SimpleQueue() # <2>
results: ResultQueue = SimpleQueue()
print(f'Checking {len(NUMBERS)} numbers with {workers} threads:')
t0 = perf_counter()
for n in NUMBERS: # <3>
jobs.put(n)
@ -45,7 +52,7 @@ def main() -> None:
jobs.put(0) # <6>
while True:
n, (prime, elapsed) = results.get() # <7>
n, prime, elapsed = results.get() # <7>
label = 'P' if prime else ' '
print(f'{n:16} {label} {elapsed:9.6f}s')
if jobs.empty(): # <8>