ch11: sample code

This commit is contained in:
Luciano Ramalho 2020-06-09 01:16:38 -03:00
parent 5a4065c73c
commit 70132a37c2
14 changed files with 946 additions and 0 deletions

View File

@ -0,0 +1,3 @@
# The Python Data Model
Sample code for Chapter 11 of _Fluent Python 2e_ by Luciano Ramalho (O'Reilly, 2020)

View File

@ -0,0 +1,24 @@
import importlib
import sys
import resource
NUM_VECTORS = 10**7
if len(sys.argv) == 2:
module_name = sys.argv[1].replace('.py', '')
module = importlib.import_module(module_name)
else:
print('Usage: {} <vector-module-to-test>'.format())
sys.exit(1)
fmt = 'Selected Vector2d type: {.__name__}.{.__name__}'
print(fmt.format(module, module.Vector2d))
mem_init = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
print('Creating {:,} Vector2d instances'.format(NUM_VECTORS))
vectors = [module.Vector2d(3.0, 4.0) for i in range(NUM_VECTORS)]
mem_final = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
print('Initial RAM usage: {:14,}'.format(mem_init))
print(' Final RAM usage: {:14,}'.format(mem_final))

View File

@ -0,0 +1,8 @@
public class Confidential {
private String secret = "";
public Confidential(String text) {
secret = text.toUpperCase();
}
}

View File

@ -0,0 +1,25 @@
import java.lang.reflect.Field;
public class Expose {
public static void main(String[] args) {
Confidential message = new Confidential("top secret text");
Field secretField = null;
try {
secretField = Confidential.class.getDeclaredField("secret");
}
catch (NoSuchFieldException e) {
System.err.println(e);
System.exit(1);
}
secretField.setAccessible(true); // break the lock!
try {
String wasHidden = (String) secretField.get(message);
System.out.println("message.secret = " + wasHidden);
}
catch (IllegalAccessException e) {
// this will not happen after setAcessible(true)
System.err.println(e);
}
}
}

View File

@ -0,0 +1,6 @@
import Confidential
message = Confidential('top secret text')
secret_field = Confidential.getDeclaredField('secret')
secret_field.setAccessible(True) # break the lock!
print 'message.secret =', secret_field.get(message)

View File

@ -0,0 +1,11 @@
from java.lang.reflect import Modifier
import Confidential
message = Confidential('top secret text')
fields = Confidential.getDeclaredFields()
for field in fields:
# list private fields only
if Modifier.isPrivate(field.getModifiers()):
field.setAccessible(True) # break the lock
print 'field:', field
print '\t', field.getName(), '=', field.get(message)

View File

@ -0,0 +1,17 @@
"""
In the Jython registry file there is this line:
python.security.respectJavaAccessibility = true
Set this to false and Jython provides access to non-public
fields, methods, and constructors of Java objects.
"""
import Confidential
message = Confidential('top secret text')
for name in dir(message):
attr = getattr(message, name)
if not callable(attr): # non-methods only
print name + '\t=', attr

View File

@ -0,0 +1,64 @@
"""
A 2-dimensional vector class
# tag::VECTOR2D_V0_DEMO[]
>>> v1 = Vector2d(3, 4)
>>> print(v1.x, v1.y) # <1>
3.0 4.0
>>> x, y = v1 # <2>
>>> x, y
(3.0, 4.0)
>>> v1 # <3>
Vector2d(3.0, 4.0)
>>> v1_clone = eval(repr(v1)) # <4>
>>> v1 == v1_clone # <5>
True
>>> print(v1) # <6>
(3.0, 4.0)
>>> octets = bytes(v1) # <7>
>>> octets
b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
>>> abs(v1) # <8>
5.0
>>> bool(v1), bool(Vector2d(0, 0)) # <9>
(True, False)
# end::VECTOR2D_V0_DEMO[]
"""
# tag::VECTOR2D_V0[]
from array import array
import math
class Vector2d:
typecode = 'd' # <1>
def __init__(self, x, y):
self.x = float(x) # <2>
self.y = float(y)
def __iter__(self):
return (i for i in (self.x, self.y)) # <3>
def __repr__(self):
class_name = type(self).__name__
return '{}({!r}, {!r})'.format(class_name, *self) # <4>
def __str__(self):
return str(tuple(self)) # <5>
def __bytes__(self):
return (bytes([ord(self.typecode)]) + # <6>
bytes(array(self.typecode, self))) # <7>
def __eq__(self, other):
return tuple(self) == tuple(other) # <8>
def __abs__(self):
return math.hypot(self.x, self.y) # <9>
def __bool__(self):
return bool(abs(self)) # <10>
# end::VECTOR2D_V0[]

View File

@ -0,0 +1,76 @@
"""
A 2-dimensional vector class
>>> v1 = Vector2d(3, 4)
>>> print(v1.x, v1.y)
3.0 4.0
>>> x, y = v1
>>> x, y
(3.0, 4.0)
>>> v1
Vector2d(3.0, 4.0)
>>> v1_clone = eval(repr(v1))
>>> v1 == v1_clone
True
>>> print(v1)
(3.0, 4.0)
>>> octets = bytes(v1)
>>> octets
b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
>>> abs(v1)
5.0
>>> bool(v1), bool(Vector2d(0, 0))
(True, False)
Test of ``.frombytes()`` class method:
>>> v1_clone = Vector2d.frombytes(bytes(v1))
>>> v1_clone
Vector2d(3.0, 4.0)
>>> v1 == v1_clone
True
"""
from array import array
import math
class Vector2d:
typecode = 'd'
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
def __iter__(self):
return (i for i in (self.x, self.y))
def __repr__(self):
class_name = type(self).__name__
return '{}({!r}, {!r})'.format(class_name, *self)
def __str__(self):
return str(tuple(self))
def __bytes__(self):
return (bytes([ord(self.typecode)]) +
bytes(array(self.typecode, self)))
def __eq__(self, other):
return tuple(self) == tuple(other)
def __abs__(self):
return math.hypot(self.x, self.y)
def __bool__(self):
return bool(abs(self))
# tag::VECTOR2D_V1[]
@classmethod # <1>
def frombytes(cls, octets): # <2>
typecode = chr(octets[0]) # <3>
memv = memoryview(octets[1:]).cast(typecode) # <4>
return cls(*memv) # <5>
# end::VECTOR2D_V1[]

View File

@ -0,0 +1,123 @@
"""
A 2-dimensional vector class
>>> v1 = Vector2d(3, 4)
>>> print(v1.x, v1.y)
3.0 4.0
>>> x, y = v1
>>> x, y
(3.0, 4.0)
>>> v1
Vector2d(3.0, 4.0)
>>> v1_clone = eval(repr(v1))
>>> v1 == v1_clone
True
>>> print(v1)
(3.0, 4.0)
>>> octets = bytes(v1)
>>> octets
b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
>>> abs(v1)
5.0
>>> bool(v1), bool(Vector2d(0, 0))
(True, False)
Test of ``.frombytes()`` class method:
>>> v1_clone = Vector2d.frombytes(bytes(v1))
>>> v1_clone
Vector2d(3.0, 4.0)
>>> v1 == v1_clone
True
Tests of ``format()`` with Cartesian coordinates:
>>> format(v1)
'(3.0, 4.0)'
>>> format(v1, '.2f')
'(3.00, 4.00)'
>>> format(v1, '.3e')
'(3.000e+00, 4.000e+00)'
Tests of the ``angle`` method::
>>> Vector2d(0, 0).angle()
0.0
>>> Vector2d(1, 0).angle()
0.0
>>> epsilon = 10**-8
>>> abs(Vector2d(0, 1).angle() - math.pi/2) < epsilon
True
>>> abs(Vector2d(1, 1).angle() - math.pi/4) < epsilon
True
Tests of ``format()`` with polar coordinates:
>>> format(Vector2d(1, 1), 'p') # doctest:+ELLIPSIS
'<1.414213..., 0.785398...>'
>>> format(Vector2d(1, 1), '.3ep')
'<1.414e+00, 7.854e-01>'
>>> format(Vector2d(1, 1), '0.5fp')
'<1.41421, 0.78540>'
"""
# BEGIN VECTOR2D_V2
from array import array
import math
class Vector2d:
typecode = 'd'
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
def __iter__(self):
return (i for i in (self.x, self.y))
def __repr__(self):
class_name = type(self).__name__
return '{}({!r}, {!r})'.format(class_name, *self)
def __str__(self):
return str(tuple(self))
def __bytes__(self):
return (bytes([ord(self.typecode)]) +
bytes(array(self.typecode, self)))
def __eq__(self, other):
return tuple(self) == tuple(other)
def __abs__(self):
return math.hypot(self.x, self.y)
def __bool__(self):
return bool(abs(self))
def angle(self):
return math.atan2(self.y, self.x)
def __format__(self, fmt_spec=''):
if fmt_spec.endswith('p'):
fmt_spec = fmt_spec[:-1]
coords = (abs(self), self.angle())
outer_fmt = '<{}, {}>'
else:
coords = self
outer_fmt = '({}, {})'
components = (format(c, fmt_spec) for c in coords)
return outer_fmt.format(*components)
@classmethod
def frombytes(cls, octets):
typecode = chr(octets[0])
memv = memoryview(octets[1:]).cast(typecode)
return cls(*memv)
# END VECTOR2D_V2

View File

@ -0,0 +1,119 @@
"""
A 2-dimensional vector class
>>> v1 = Vector2d(3, 4)
>>> x, y = v1
>>> x, y
(3.0, 4.0)
>>> v1
Vector2d(3.0, 4.0)
>>> v1_clone = eval(repr(v1))
>>> v1 == v1_clone
True
>>> print(v1)
(3.0, 4.0)
>>> octets = bytes(v1)
>>> octets
b'\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
>>> abs(v1)
5.0
>>> bool(v1), bool(Vector2d(0, 0))
(True, False)
Test of ``.frombytes()`` class method:
>>> v1_clone = Vector2d.frombytes(bytes(v1))
>>> v1_clone
Vector2d(3.0, 4.0)
>>> v1 == v1_clone
True
Tests of ``format()`` with Cartesian coordinates:
>>> format(v1)
'(3.0, 4.0)'
>>> format(v1, '.2f')
'(3.00, 4.00)'
>>> format(v1, '.3e')
'(3.000e+00, 4.000e+00)'
Tests of the ``angle`` method::
>>> Vector2d(0, 0).angle()
0.0
>>> Vector2d(1, 0).angle()
0.0
>>> epsilon = 10**-8
>>> abs(Vector2d(0, 1).angle() - math.pi/2) < epsilon
True
>>> abs(Vector2d(1, 1).angle() - math.pi/4) < epsilon
True
Tests of ``format()`` with polar coordinates:
>>> format(Vector2d(1, 1), 'p') # doctest:+ELLIPSIS
'<1.414213..., 0.785398...>'
>>> format(Vector2d(1, 1), '.3ep')
'<1.414e+00, 7.854e-01>'
>>> format(Vector2d(1, 1), '0.5fp')
'<1.41421, 0.78540>'
"""
from array import array
import math
class Vector2d:
typecode = 'd'
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
def __iter__(self):
return (i for i in (self.x, self.y))
def __repr__(self):
class_name = type(self).__name__
return '{}({!r}, {!r})'.format(class_name, *self)
def __str__(self):
return str(tuple(self))
def __bytes__(self):
return bytes(array(Vector2d.typecode, self))
def __eq__(self, other):
return tuple(self) == tuple(other)
def __abs__(self):
return math.hypot(self.x, self.y)
def __bool__(self):
return bool(abs(self))
def angle(self):
return math.atan2(self.y, self.x)
# tag::VECTOR2D_V2_FORMAT[]
def __format__(self, fmt_spec=''):
if fmt_spec.endswith('p'): # <1>
fmt_spec = fmt_spec[:-1] # <2>
coords = (abs(self), self.angle()) # <3>
outer_fmt = '<{}, {}>' # <4>
else:
coords = self # <5>
outer_fmt = '({}, {})' # <6>
components = (format(c, fmt_spec) for c in coords) # <7>
return outer_fmt.format(*components) # <8>
# end::VECTOR2D_V2_FORMAT[]
@classmethod
def frombytes(cls, octets):
memv = memoryview(octets).cast(cls.typecode)
return cls(*memv)

View File

@ -0,0 +1,151 @@
"""
A two-dimensional vector class
>>> v1 = Vector2d(3, 4)
>>> print(v1.x, v1.y)
3.0 4.0
>>> x, y = v1
>>> x, y
(3.0, 4.0)
>>> v1
Vector2d(3.0, 4.0)
>>> v1_clone = eval(repr(v1))
>>> v1 == v1_clone
True
>>> print(v1)
(3.0, 4.0)
>>> octets = bytes(v1)
>>> octets
b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
>>> abs(v1)
5.0
>>> bool(v1), bool(Vector2d(0, 0))
(True, False)
Test of ``.frombytes()`` class method:
>>> v1_clone = Vector2d.frombytes(bytes(v1))
>>> v1_clone
Vector2d(3.0, 4.0)
>>> v1 == v1_clone
True
Tests of ``format()`` with Cartesian coordinates:
>>> format(v1)
'(3.0, 4.0)'
>>> format(v1, '.2f')
'(3.00, 4.00)'
>>> format(v1, '.3e')
'(3.000e+00, 4.000e+00)'
Tests of the ``angle`` method::
>>> Vector2d(0, 0).angle()
0.0
>>> Vector2d(1, 0).angle()
0.0
>>> epsilon = 10**-8
>>> abs(Vector2d(0, 1).angle() - math.pi/2) < epsilon
True
>>> abs(Vector2d(1, 1).angle() - math.pi/4) < epsilon
True
Tests of ``format()`` with polar coordinates:
>>> format(Vector2d(1, 1), 'p') # doctest:+ELLIPSIS
'<1.414213..., 0.785398...>'
>>> format(Vector2d(1, 1), '.3ep')
'<1.414e+00, 7.854e-01>'
>>> format(Vector2d(1, 1), '0.5fp')
'<1.41421, 0.78540>'
Tests of `x` and `y` read-only properties:
>>> v1.x, v1.y
(3.0, 4.0)
>>> v1.x = 123
Traceback (most recent call last):
...
AttributeError: can't set attribute
Tests of hashing:
>>> v1 = Vector2d(3, 4)
>>> v2 = Vector2d(3.1, 4.2)
>>> hash(v1), hash(v2)
(7, 384307168202284039)
>>> len(set([v1, v2]))
2
"""
from array import array
import math
class Vector2d:
typecode = 'd'
def __init__(self, x, y):
self.__x = float(x)
self.__y = float(y)
@property
def x(self):
return self.__x
@property
def y(self):
return self.__y
def __iter__(self):
return (i for i in (self.x, self.y))
def __repr__(self):
class_name = type(self).__name__
return '{}({!r}, {!r})'.format(class_name, *self)
def __str__(self):
return str(tuple(self))
def __bytes__(self):
return (bytes([ord(self.typecode)]) +
bytes(array(self.typecode, self)))
def __eq__(self, other):
return tuple(self) == tuple(other)
def __hash__(self):
return hash(self.x) ^ hash(self.y)
def __abs__(self):
return math.hypot(self.x, self.y)
def __bool__(self):
return bool(abs(self))
def angle(self):
return math.atan2(self.y, self.x)
def __format__(self, fmt_spec=''):
if fmt_spec.endswith('p'):
fmt_spec = fmt_spec[:-1]
coords = (abs(self), self.angle())
outer_fmt = '<{}, {}>'
else:
coords = self
outer_fmt = '({}, {})'
components = (format(c, fmt_spec) for c in coords)
return outer_fmt.format(*components)
@classmethod
def frombytes(cls, octets):
typecode = chr(octets[0])
memv = memoryview(octets[1:]).cast(typecode)
return cls(*memv)

View File

@ -0,0 +1,161 @@
"""
A 2-dimensional vector class
>>> v1 = Vector2d(3, 4)
>>> print(v1.x, v1.y)
3.0 4.0
>>> x, y = v1
>>> x, y
(3.0, 4.0)
>>> v1
Vector2d(3.0, 4.0)
>>> v1_clone = eval(repr(v1))
>>> v1 == v1_clone
True
>>> print(v1)
(3.0, 4.0)
>>> octets = bytes(v1)
>>> octets
b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
>>> abs(v1)
5.0
>>> bool(v1), bool(Vector2d(0, 0))
(True, False)
Test of ``.frombytes()`` class method:
>>> v1_clone = Vector2d.frombytes(bytes(v1))
>>> v1_clone
Vector2d(3.0, 4.0)
>>> v1 == v1_clone
True
Tests of ``format()`` with Cartesian coordinates:
>>> format(v1)
'(3.0, 4.0)'
>>> format(v1, '.2f')
'(3.00, 4.00)'
>>> format(v1, '.3e')
'(3.000e+00, 4.000e+00)'
Tests of the ``angle`` method::
>>> Vector2d(0, 0).angle()
0.0
>>> Vector2d(1, 0).angle()
0.0
>>> epsilon = 10**-8
>>> abs(Vector2d(0, 1).angle() - math.pi/2) < epsilon
True
>>> abs(Vector2d(1, 1).angle() - math.pi/4) < epsilon
True
Tests of ``format()`` with polar coordinates:
>>> format(Vector2d(1, 1), 'p') # doctest:+ELLIPSIS
'<1.414213..., 0.785398...>'
>>> format(Vector2d(1, 1), '.3ep')
'<1.414e+00, 7.854e-01>'
>>> format(Vector2d(1, 1), '0.5fp')
'<1.41421, 0.78540>'
# tag::VECTOR2D_V3_DEMO[]
Tests of `x` and `y` read-only properties:
>>> v1.x, v1.y
(3.0, 4.0)
>>> v1.x = 123
Traceback (most recent call last):
...
AttributeError: can't set attribute
# end::VECTOR2D_V3_HASH_DEMO[]
Tests of hashing:
# tag::VECTOR2D_V3_HASH_DEMO[]
>>> v1 = Vector2d(3, 4)
>>> v2 = Vector2d(3.1, 4.2)
>>> hash(v1), hash(v2)
(7, 384307168202284039)
>>> len(set([v1, v2]))
2
# end::VECTOR2D_V3_DEMO[]
"""
from array import array
import math
# tag::VECTOR2D_V3_PROP[]
class Vector2d:
typecode = 'd'
def __init__(self, x, y):
self.__x = float(x) # <1>
self.__y = float(y)
@property # <2>
def x(self): # <3>
return self.__x # <4>
@property # <5>
def y(self):
return self.__y
def __iter__(self):
return (i for i in (self.x, self.y)) # <6>
# remaining methods follow (omitted in book listing)
# end::VECTOR2D_V3_PROP[]
def __repr__(self):
class_name = type(self).__name__
return '{}({!r}, {!r})'.format(class_name, *self)
def __str__(self):
return str(tuple(self))
def __bytes__(self):
return (bytes([ord(self.typecode)]) +
bytes(array(self.typecode, self)))
def __eq__(self, other):
return tuple(self) == tuple(other)
# tag::VECTOR_V3_HASH[]
def __hash__(self):
return hash(self.x) ^ hash(self.y)
# end::VECTOR_V3_HASH[]
def __abs__(self):
return math.hypot(self.x, self.y)
def __bool__(self):
return bool(abs(self))
def angle(self):
return math.atan2(self.y, self.x)
def __format__(self, fmt_spec=''):
if fmt_spec.endswith('p'):
fmt_spec = fmt_spec[:-1]
coords = (abs(self), self.angle())
outer_fmt = '<{}, {}>'
else:
coords = self
outer_fmt = '({}, {})'
components = (format(c, fmt_spec) for c in coords)
return outer_fmt.format(*components)
@classmethod
def frombytes(cls, octets):
typecode = chr(octets[0])
memv = memoryview(octets[1:]).cast(typecode)
return cls(*memv)

View File

@ -0,0 +1,158 @@
"""
A 2-dimensional vector class
>>> v1 = Vector2d(3, 4)
>>> print(v1.x, v1.y)
3.0 4.0
>>> x, y = v1
>>> x, y
(3.0, 4.0)
>>> v1
Vector2d(3.0, 4.0)
>>> v1_clone = eval(repr(v1))
>>> v1 == v1_clone
True
>>> print(v1)
(3.0, 4.0)
>>> octets = bytes(v1)
>>> octets
b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
>>> abs(v1)
5.0
>>> bool(v1), bool(Vector2d(0, 0))
(True, False)
Test of ``.frombytes()`` class method:
>>> v1_clone = Vector2d.frombytes(bytes(v1))
>>> v1_clone
Vector2d(3.0, 4.0)
>>> v1 == v1_clone
True
Tests of ``format()`` with Cartesian coordinates:
>>> format(v1)
'(3.0, 4.0)'
>>> format(v1, '.2f')
'(3.00, 4.00)'
>>> format(v1, '.3e')
'(3.000e+00, 4.000e+00)'
Tests of the ``angle`` method::
>>> Vector2d(0, 0).angle()
0.0
>>> Vector2d(1, 0).angle()
0.0
>>> epsilon = 10**-8
>>> abs(Vector2d(0, 1).angle() - math.pi/2) < epsilon
True
>>> abs(Vector2d(1, 1).angle() - math.pi/4) < epsilon
True
Tests of ``format()`` with polar coordinates:
>>> format(Vector2d(1, 1), 'p') # doctest:+ELLIPSIS
'<1.414213..., 0.785398...>'
>>> format(Vector2d(1, 1), '.3ep')
'<1.414e+00, 7.854e-01>'
>>> format(Vector2d(1, 1), '0.5fp')
'<1.41421, 0.78540>'
Tests of `x` and `y` read-only properties:
>>> v1.x, v1.y
(3.0, 4.0)
>>> v1.x = 123
Traceback (most recent call last):
...
AttributeError: can't set attribute
Tests of hashing:
>>> v1 = Vector2d(3, 4)
>>> v2 = Vector2d(3.1, 4.2)
>>> hash(v1), hash(v2)
(7, 384307168202284039)
>>> len(set([v1, v2]))
2
# end::VECTOR2D_V3_DEMO[]
"""
from array import array
import math
# tag::VECTOR2D_V3_SLOTS[]
class Vector2d:
__slots__ = ('__x', '__y')
typecode = 'd'
# methods follow (omitted in book listing)
# end::VECTOR2D_V3_SLOTS[]
def __init__(self, x, y):
self.__x = float(x)
self.__y = float(y)
@property
def x(self):
return self.__x
@property
def y(self):
return self.__y
def __iter__(self):
return (i for i in (self.x, self.y))
def __repr__(self):
class_name = type(self).__name__
return '{}({!r}, {!r})'.format(class_name, *self)
def __str__(self):
return str(tuple(self))
def __bytes__(self):
return (bytes([ord(self.typecode)]) +
bytes(array(self.typecode, self)))
def __eq__(self, other):
return tuple(self) == tuple(other)
def __hash__(self):
return hash(self.x) ^ hash(self.y)
def __abs__(self):
return math.hypot(self.x, self.y)
def __bool__(self):
return bool(abs(self))
def angle(self):
return math.atan2(self.y, self.x)
def __format__(self, fmt_spec=''):
if fmt_spec.endswith('p'):
fmt_spec = fmt_spec[:-1]
coords = (abs(self), self.angle())
outer_fmt = '<{}, {}>'
else:
coords = self
outer_fmt = '({}, {})'
components = (format(c, fmt_spec) for c in coords)
return outer_fmt.format(*components)
@classmethod
def frombytes(cls, octets):
typecode = chr(octets[0])
memv = memoryview(octets[1:]).cast(typecode)
return cls(*memv)