update multivector examples

This commit is contained in:
Luciano Ramalho 2014-10-16 13:09:08 -03:00
parent b38a2f9c3a
commit 56aa9fa124
5 changed files with 344 additions and 2 deletions

270
classes/multivector_v5.py Normal file
View File

@ -0,0 +1,270 @@
"""
A multi-dimensional ``MultiVector`` class, take 2
A ``MultiVector`` is built from an iterable of numbers::
>>> MultiVector([3.1, 4.2])
MultiVector([3.1, 4.2])
>>> MultiVector((3, 4, 5))
MultiVector([3.0, 4.0, 5.0])
>>> MultiVector(range(10))
MultiVector([0.0, 1.0, 2.0, 3.0, 4.0, ...])
Tests with 2-dimensions (same results as ``vector_v1.py``)::
>>> v1 = MultiVector([3, 4])
>>> x, y = v1
>>> x, y
(3.0, 4.0)
>>> v1
MultiVector([3.0, 4.0])
>>> v1_clone = eval(repr(v1))
>>> v1 == v1_clone
True
>>> print(v1)
(3.0, 4.0)
>>> octets = bytes(v1)
>>> octets
b'\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
>>> abs(v1)
5.0
>>> bool(v1), bool(MultiVector([0, 0]))
(True, False)
Test of ``.frombytes()`` class method:
>>> v1_clone = MultiVector.frombytes(bytes(v1))
>>> v1_clone
MultiVector([3.0, 4.0])
>>> v1 == v1_clone
True
Tests with 3-dimensions::
>>> v1 = MultiVector([3, 4, 5])
>>> x, y, z = v1
>>> x, y, z
(3.0, 4.0, 5.0)
>>> v1
MultiVector([3.0, 4.0, 5.0])
>>> v1_clone = eval(repr(v1))
>>> v1 == v1_clone
True
>>> print(v1)
(3.0, 4.0, 5.0)
>>> abs(v1) # doctest:+ELLIPSIS
7.071067811...
>>> bool(v1), bool(MultiVector([0, 0, 0]))
(True, False)
Tests with many dimensions::
>>> v7 = MultiVector(range(7))
>>> v7
MultiVector([0.0, 1.0, 2.0, 3.0, 4.0, ...])
>>> abs(v7) # doctest:+ELLIPSIS
9.53939201...
Test of ``.__bytes__`` and ``.frombytes()`` methods::
>>> v1 = MultiVector([3, 4, 5])
>>> v1_clone = MultiVector.frombytes(bytes(v1))
>>> v1_clone
MultiVector([3.0, 4.0, 5.0])
>>> v1 == v1_clone
True
Tests of sequence behavior::
>>> v1 = MultiVector([3, 4, 5])
>>> len(v1)
3
>>> v1[0], v1[len(v1)-1], v1[-1]
(3.0, 5.0, 5.0)
Test of slicing::
>>> v7 = MultiVector(range(7))
>>> v7[-1]
6.0
>>> v7[1:4]
MultiVector([1.0, 2.0, 3.0])
>>> v7[-1:]
MultiVector([6.0])
>>> v7[1,2]
Traceback (most recent call last):
...
TypeError: MultiVector indices must be integers
Tests of dynamic attribute access::
>>> v7 = MultiVector(range(10))
>>> v7.x
0.0
>>> v7.y, v7.z, v7.t, v7.u, v7.v, v7.w
(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)
Dynamic attribute lookup failures::
>>> v7.k
Traceback (most recent call last):
...
AttributeError: 'MultiVector' object has no attribute 'k'
>>> v3 = MultiVector(range(3))
>>> v3.t
Traceback (most recent call last):
...
AttributeError: 'MultiVector' object has no attribute 't'
>>> v3.spam
Traceback (most recent call last):
...
AttributeError: 'MultiVector' object has no attribute 'spam'
Tests of hashing::
>>> v1 = MultiVector([3, 4])
>>> v2 = MultiVector([3.1, 4.2])
>>> v3 = MultiVector([3, 4, 5])
>>> v6 = MultiVector(range(6))
>>> hash(v1), hash(v2), hash(v3), hash(v6)
(7, 384307168202284039, 2, 1)
>>> len(set([v1, v2, v3, v6]))
4
Tests of ``format()`` with Cartesian coordinates in 2D:
>>> v1 = MultiVector([3, 4])
>>> format(v1)
'(3.0, 4.0)'
>>> format(v1, '.2f')
'(3.00, 4.00)'
>>> format(v1, '.3e')
'(3.000e+00, 4.000e+00)'
Tests of ``format()`` with Cartesian coordinates in 3D and 7D:
>>> v3 = MultiVector([3, 4, 5])
>>> format(v3)
'(3.0, 4.0, 5.0)'
>>> format(MultiVector(range(7)))
'(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0)'
Tests of the ``angle`` method::
>>> MultiVector([0, 0]).angle()
0.0
>>> MultiVector([1, 0]).angle()
0.0
>>> epsilon = 10**-8
>>> abs(MultiVector([0, 1]).angle() - math.pi/2) < epsilon
True
>>> abs(MultiVector([1, 1]).angle() - math.pi/4) < epsilon
True
Tests of ``format()`` with polar coordinates:
>>> format(MultiVector([1, 1]), 'p') # doctest:+ELLIPSIS
'<1.414213..., 0.785398...>'
>>> format(MultiVector([1, 1]), '.3ep')
'<1.414e+00, 7.854e-01>'
>>> format(MultiVector([1, 1]), '0.5fp')
'<1.41421, 0.78540>'
"""
from array import array
import reprlib
import math
import functools
import operator
class MultiVector:
typecode = 'd'
def __init__(self, components):
self._components = array(self.typecode, components)
def __iter__(self):
return iter(self._components)
def __repr__(self):
components = reprlib.repr(self._components)
components = components[components.find('['):-1]
return 'MultiVector({})'.format(components)
def __str__(self):
return str(tuple(self))
def __bytes__(self):
return bytes(self._components)
def __eq__(self, other):
return tuple(self) == tuple(other)
def __hash__(self):
hashes = (hash(x) for x in self)
return functools.reduce(operator.xor, hashes)
def __abs__(self):
return math.sqrt(sum(x * x for x in self))
def __bool__(self):
return bool(abs(self))
def __len__(self):
return len(self._components)
def __getitem__(self, index):
cls = type(self)
if isinstance(index, slice):
return cls(self._components[index])
elif isinstance(index, int):
return self._components[index]
else:
msg = '{.__name__} indices must be integers'
raise TypeError(msg.format(cls))
shortcut_names = 'xyztuvw'
def __getattr__(self, name):
cls = type(self)
if len(name) == 1:
pos = cls.shortcut_names.find(name)
if 0 <= pos < len(self._components):
return self._components[pos]
msg = '{.__name__!r} object has no attribute {!r}'
raise AttributeError(msg.format(cls, name))
def angle(self):
return math.atan2(self.y, self.x) # <1>
def __format__(self, fmt_spec=''):
if fmt_spec.endswith('p'):
fmt_spec = fmt_spec[:-1]
coords = (abs(self), self.angle())
outer_fmt = '<{}>' # <2>
else:
coords = self
outer_fmt = '({})' # <3>
components = (format(c, fmt_spec) for c in coords)
return outer_fmt.format(', '.join(components)) # <4>
@classmethod
def frombytes(cls, octets):
memv = memoryview(octets).cast(cls.typecode)
return cls(memv)

View File

@ -28,7 +28,7 @@ Test of ``.frombytes()`` class method:
>>> v1 == v1_clone
True
Tests of ``format()`` with rectangular coordinates:
Tests of ``format()`` with Cartesian coordinates:
>>> format(v1)
'(3.0, 4.0)'
@ -37,6 +37,7 @@ Tests of ``format()`` with rectangular coordinates:
>>> format(v1, '.3e')
'(3.000e+00, 4.000e+00)'
Tests of the ``angle`` method::
>>> Vector(0, 0).angle()
@ -49,6 +50,7 @@ Tests of the ``angle`` method::
>>> abs(Vector(1, 1).angle() - math.pi/4) < epsilon
True
Tests of ``format()`` with polar coordinates:
>>> format(Vector(1, 1), 'p') # doctest:+ELLIPSIS

View File

@ -20,6 +20,7 @@ A 2-dimensional vector class
>>> bool(v1), bool(Vector(0, 0))
(True, False)
Test of ``.frombytes()`` class method:
>>> v1_clone = Vector.frombytes(bytes(v1))
@ -28,7 +29,8 @@ Test of ``.frombytes()`` class method:
>>> v1 == v1_clone
True
Tests of ``format()`` with rectangular coordinates:
Tests of ``format()`` with Cartesian coordinates:
>>> format(v1)
'(3.0, 4.0)'
@ -37,6 +39,7 @@ Tests of ``format()`` with rectangular coordinates:
>>> format(v1, '.3e')
'(3.000e+00, 4.000e+00)'
Tests of the ``angle`` method::
>>> Vector(0, 0).angle()
@ -49,6 +52,7 @@ Tests of the ``angle`` method::
>>> abs(Vector(1, 1).angle() - math.pi/4) < epsilon
True
Tests of ``format()`` with polar coordinates:
>>> format(Vector(1, 1), 'p') # doctest:+ELLIPSIS

View File

@ -28,6 +28,38 @@ Test of .frombytes() class method:
>>> v1 == v1_clone
True
Tests of ``format()`` with Cartesian coordinates:
>>> format(v1)
'(3.0, 4.0)'
>>> format(v1, '.2f')
'(3.00, 4.00)'
>>> format(v1, '.3e')
'(3.000e+00, 4.000e+00)'
Tests of the ``angle`` method::
>>> Vector(0, 0).angle()
0.0
>>> Vector(1, 0).angle()
0.0
>>> epsilon = 10**-8
>>> abs(Vector(0, 1).angle() - math.pi/2) < epsilon
True
>>> abs(Vector(1, 1).angle() - math.pi/4) < epsilon
True
Tests of ``format()`` with polar coordinates:
>>> format(Vector(1, 1), 'p') # doctest:+ELLIPSIS
'<1.414213..., 0.785398...>'
>>> format(Vector(1, 1), '.3ep')
'<1.414e+00, 7.854e-01>'
>>> format(Vector(1, 1), '0.5fp')
'<1.41421, 0.78540>'
# BEGIN VECTOR_V3_DEMO
Test of `x` and `y` read-only properties:

View File

@ -20,6 +20,7 @@ A 2-dimensional vector class
>>> bool(v1), bool(Vector(0, 0)) #<7>
(True, False)
Test of .frombytes() class method:
>>> v1_clone = Vector.frombytes(bytes(v1))
@ -28,6 +29,39 @@ Test of .frombytes() class method:
>>> v1 == v1_clone
True
Tests of ``format()`` with Cartesian coordinates:
>>> format(v1)
'(3.0, 4.0)'
>>> format(v1, '.2f')
'(3.00, 4.00)'
>>> format(v1, '.3e')
'(3.000e+00, 4.000e+00)'
Tests of the ``angle`` method::
>>> Vector(0, 0).angle()
0.0
>>> Vector(1, 0).angle()
0.0
>>> epsilon = 10**-8
>>> abs(Vector(0, 1).angle() - math.pi/2) < epsilon
True
>>> abs(Vector(1, 1).angle() - math.pi/4) < epsilon
True
Tests of ``format()`` with polar coordinates:
>>> format(Vector(1, 1), 'p') # doctest:+ELLIPSIS
'<1.414213..., 0.785398...>'
>>> format(Vector(1, 1), '.3ep')
'<1.414e+00, 7.854e-01>'
>>> format(Vector(1, 1), '0.5fp')
'<1.41421, 0.78540>'
# BEGIN VECTOR_V3_DEMO
Test of `x` and `y` read-only properties: