YouTube-simulations/sub_lj.c

3222 lines
106 KiB
C

/*********************/
/* Graphics routines */
/*********************/
#include "colors_waves.c"
#define HUE_TYPE0 300.0 /* hue of particles of type 0 */
#define HUE_TYPE1 90.0 /* hue of particles of type 1 */
int writetiff(char *filename, char *description, int x, int y, int width, int height, int compression)
{
TIFF *file;
GLubyte *image, *p;
int i;
file = TIFFOpen(filename, "w");
if (file == NULL)
{
return 1;
}
image = (GLubyte *) malloc(width * height * sizeof(GLubyte) * 3);
/* OpenGL's default 4 byte pack alignment would leave extra bytes at the
end of each image row so that each full row contained a number of bytes
divisible by 4. Ie, an RGB row with 3 pixels and 8-bit componets would
be laid out like "RGBRGBRGBxxx" where the last three "xxx" bytes exist
just to pad the row out to 12 bytes (12 is divisible by 4). To make sure
the rows are packed as tight as possible (no row padding), set the pack
alignment to 1. */
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(x, y, width, height, GL_RGB, GL_UNSIGNED_BYTE, image);
TIFFSetField(file, TIFFTAG_IMAGEWIDTH, (uint32) width);
TIFFSetField(file, TIFFTAG_IMAGELENGTH, (uint32) height);
TIFFSetField(file, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(file, TIFFTAG_COMPRESSION, compression);
TIFFSetField(file, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
TIFFSetField(file, TIFFTAG_ORIENTATION, ORIENTATION_BOTLEFT);
TIFFSetField(file, TIFFTAG_SAMPLESPERPIXEL, 3);
TIFFSetField(file, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField(file, TIFFTAG_ROWSPERSTRIP, 1);
TIFFSetField(file, TIFFTAG_IMAGEDESCRIPTION, description);
p = image;
for (i = height - 1; i >= 0; i--)
{
// if (TIFFWriteScanline(file, p, height - i - 1, 0) < 0)
if (TIFFWriteScanline(file, p, i, 0) < 0)
{
free(image);
TIFFClose(file);
return 1;
}
p += width * sizeof(GLubyte) * 3;
}
TIFFClose(file);
return 0;
}
void init() /* initialisation of window */
{
glLineWidth(3);
glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
glOrtho(XMIN, XMAX, YMIN, YMAX , -1.0, 1.0);
// glOrtho(0.0, NX, 0.0, NY, -1.0, 1.0);
}
void blank()
{
if (BLACK) glClearColor(0.0, 0.0, 0.0, 1.0);
else glClearColor(1.0, 1.0, 1.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
}
void save_frame_lj()
{
static int counter = 0;
char *name="lj.", n2[100];
char format[6]=".%05i";
counter++;
// printf (" p2 counter = %d \n",counter);
strcpy(n2, name);
sprintf(strstr(n2,"."), format, counter);
strcat(n2, ".tif");
printf(" saving frame %s \n",n2);
writetiff(n2, "Particles with Lennard-Jones interaction in a planar domain", 0, 0,
WINWIDTH, WINHEIGHT, COMPRESSION_LZW);
}
void save_frame_lj_counter(int counter)
{
char *name="lj.", n2[100];
char format[6]=".%05i";
strcpy(n2, name);
sprintf(strstr(n2,"."), format, counter);
strcat(n2, ".tif");
printf(" saving frame %s \n",n2);
writetiff(n2, "Particles with Lennard-Jones interaction in a planar domain", 0, 0,
WINWIDTH, WINHEIGHT, COMPRESSION_LZW);
}
void write_text_fixedwidth( double x, double y, char *st)
{
int l, i;
l=strlen( st ); // see how many characters are in text string.
glRasterPos2d( x, y); // location to start printing text
for( i=0; i < l; i++) // loop until i is greater then l
{
// glutBitmapCharacter(GLUT_BITMAP_TIMES_ROMAN_24, st[i]); // Print a character on the screen
// glutBitmapCharacter(GLUT_BITMAP_8_BY_13, st[i]); // Print a character on the screen
glutBitmapCharacter(GLUT_BITMAP_9_BY_15, st[i]); // Print a character on the screen
}
}
void write_text( double x, double y, char *st)
{
int l,i;
l=strlen( st ); // see how many characters are in text string.
glRasterPos2d( x, y); // location to start printing text
for( i=0; i < l; i++) // loop until i is greater then l
{
glutBitmapCharacter(GLUT_BITMAP_TIMES_ROMAN_24, st[i]); // Print a character on the screen
// glutBitmapCharacter(GLUT_BITMAP_8_BY_13, st[i]); // Print a character on the screen
}
}
/*********************/
/* some basic math */
/*********************/
double vabs(double x) /* absolute value */
{
double res;
if (x<0.0) res = -x;
else res = x;
return(res);
}
double module2(double x, double y) /* Euclidean norm */
{
double m;
m = sqrt(x*x + y*y);
return(m);
}
double argument(double x, double y)
{
double alph;
if (x!=0.0)
{
alph = atan(y/x);
if (x<0.0)
alph += PI;
}
else
{
alph = PID;
if (y<0.0)
alph = PI*1.5;
}
return(alph);
}
double ipow(double x, int n)
{
double y;
int i;
y = x;
for (i=1; i<n; i++) y *= x;
return(y);
}
double gaussian()
/* returns standard normal random variable, using Box-Mueller algorithm */
{
static double V1, V2, S;
static int phase = 0;
double X;
if (phase == 0)
{
do
{
double U1 = (double)rand() / RAND_MAX;
double U2 = (double)rand() / RAND_MAX;
V1 = 2 * U1 - 1;
V2 = 2 * U2 - 1;
S = V1 * V1 + V2 * V2;
}
while(S >= 1 || S == 0);
X = V1 * sqrt(-2 * log(S) / S);
}
else X = V2 * sqrt(-2 * log(S) / S);
phase = 1 - phase;
return X;
}
/*********************/
/* drawing routines */
/*********************/
void erase_area(double x, double y, double dx, double dy)
{
double pos[2], rgb[3];
hsl_to_rgb(220.0, 0.8, 0.7, rgb);
glColor3f(rgb[0], rgb[1], rgb[2]);
glBegin(GL_QUADS);
glVertex2d(x - dx, y - dy);
glVertex2d(x + dx, y - dy);
glVertex2d(x + dx, y + dy);
glVertex2d(x - dx, y + dy);
glEnd();
}
void erase_area_rgb(double x, double y, double dx, double dy, double rgb[3])
{
double pos[2];
glColor3f(rgb[0], rgb[1], rgb[2]);
glBegin(GL_QUADS);
glVertex2d(x - dx, y - dy);
glVertex2d(x + dx, y - dy);
glVertex2d(x + dx, y + dy);
glVertex2d(x - dx, y + dy);
glEnd();
}
void erase_area_hsl(double x, double y, double dx, double dy, double h, double s, double l)
{
double pos[2], rgb[3];
hsl_to_rgb(h, s, l, rgb);
erase_area_rgb(x, y, dx, dy, rgb);
}
void erase_area_hsl_turbo(double x, double y, double dx, double dy, double h, double s, double l)
{
double pos[2], rgb[3];
hsl_to_rgb_turbo(h, s, l, rgb);
erase_area_rgb(x, y, dx, dy, rgb);
}
void draw_line(double x1, double y1, double x2, double y2)
{
glBegin(GL_LINE_STRIP);
glVertex2d(x1, y1);
glVertex2d(x2, y2);
glEnd();
}
void draw_rectangle(double x1, double y1, double x2, double y2)
{
glBegin(GL_LINE_LOOP);
glVertex2d(x1, y1);
glVertex2d(x2, y1);
glVertex2d(x2, y2);
glVertex2d(x1, y2);
glEnd();
}
void draw_colored_rectangle(double x1, double y1, double x2, double y2, double rgb[3])
{
glColor3f(rgb[0], rgb[1], rgb[2]);
glBegin(GL_TRIANGLE_FAN);
glVertex2d(x1, y1);
glVertex2d(x2, y1);
glVertex2d(x2, y2);
glVertex2d(x1, y2);
glEnd();
}
void draw_triangle(double x1, double y1, double x2, double y2, double x3, double y3)
{
glBegin(GL_LINE_LOOP);
glVertex2d(x1, y1);
glVertex2d(x2, y2);
glVertex2d(x3, y3);
glEnd();
}
void draw_colored_triangle(double x1, double y1, double x2, double y2, double x3, double y3, double rgb[3])
{
glColor3f(rgb[0], rgb[1], rgb[2]);
glBegin(GL_TRIANGLE_FAN);
glVertex2d(x1, y1);
glVertex2d(x2, y2);
glVertex2d(x3, y3);
glEnd();
}
void draw_circle(double x, double y, double r, int nseg)
{
int i;
double pos[2], alpha, dalpha;
dalpha = DPI/(double)nseg;
glBegin(GL_LINE_LOOP);
for (i=0; i<=nseg; i++)
{
alpha = (double)i*dalpha;
glVertex2d(x + r*cos(alpha), y + r*sin(alpha));
}
glEnd();
}
void draw_colored_circle(double x, double y, double r, int nseg, double rgb[3])
{
int i;
double pos[2], alpha, dalpha;
dalpha = DPI/(double)nseg;
glColor3f(rgb[0], rgb[1], rgb[2]);
glBegin(GL_TRIANGLE_FAN);
glVertex2d(x, y);
for (i=0; i<=nseg; i++)
{
alpha = (double)i*dalpha;
glVertex2d(x + r*cos(alpha), y + r*sin(alpha));
}
glEnd();
}
void draw_polygon(double x, double y, double r, int nsides, double angle)
{
int i;
double pos[2], alpha, dalpha;
dalpha = DPI/(double)nsides;
glBegin(GL_LINE_LOOP);
for (i=0; i<=nsides; i++)
{
alpha = angle + (double)i*dalpha;
glVertex2d(x + r*cos(alpha), y + r*sin(alpha));
}
glEnd();
}
void draw_colored_polygon(double x, double y, double r, int nsides, double angle, double rgb[3])
{
int i;
double pos[2], alpha, dalpha;
dalpha = DPI/(double)nsides;
glColor3f(rgb[0], rgb[1], rgb[2]);
glBegin(GL_TRIANGLE_FAN);
glVertex2d(x, y);
for (i=0; i<=nsides; i++)
{
alpha = angle + (double)i*dalpha;
glVertex2d(x + r*cos(alpha), y + r*sin(alpha));
}
glEnd();
}
void draw_rhombus(double x, double y, double r, double angle)
{
int i;
static int first = 1;
static double ratio;
if (first)
{
ratio = tan(0.1*PI);
first = 0;
}
glBegin(GL_LINE_LOOP);
glVertex2d(x + r*cos(angle), y + r*sin(angle));
glVertex2d(x - ratio*r*sin(angle), y + ratio*r*cos(angle));
glVertex2d(x - r*cos(angle), y - r*sin(angle));
glVertex2d(x + ratio*r*sin(angle), y - ratio*r*cos(angle));
glEnd();
}
void draw_colored_rhombus(double x, double y, double r, double angle, double rgb[3])
{
int i;
static int first = 1;
static double ratio;
if (first)
{
ratio = tan(0.1*PI);
first = 0;
}
glColor3f(rgb[0], rgb[1], rgb[2]);
glBegin(GL_TRIANGLE_FAN);
glVertex2d(x, y);
glVertex2d(x + r*cos(angle), y + r*sin(angle));
glVertex2d(x - ratio*r*sin(angle), y + ratio*r*cos(angle));
glVertex2d(x - r*cos(angle), y - r*sin(angle));
glVertex2d(x + ratio*r*sin(angle), y - ratio*r*cos(angle));
glVertex2d(x + r*cos(angle), y + r*sin(angle));
glEnd();
}
void draw_colored_sector(double xc, double yc, double r1, double r2, double angle1, double angle2, double rgb[3], int nsides)
{
int i;
double angle, dangle;
dangle = (angle2 - angle1)/(double)nsides;
glColor3f(rgb[0], rgb[1], rgb[2]);
glBegin(GL_TRIANGLE_FAN);
glVertex2d(xc + r1*cos(angle1), yc + r1*sin(angle1));
for (i = 0; i < nsides+1; i++)
{
angle = angle1 + dangle*(double)i;
glVertex2d(xc + r2*cos(angle), yc + r2*sin(angle));
}
glEnd();
glBegin(GL_TRIANGLE_FAN);
glVertex2d(xc + r2*cos(angle2), yc + r2*sin(angle2));
for (i = 0; i < nsides+1; i++)
{
angle = angle1 + dangle*(double)i;
glVertex2d(xc + r1*cos(angle), yc + r1*sin(angle));
}
glEnd();
}
void init_particle_config(t_particle particles[NMAXCIRCLES])
/* initialise particle configuration */
{
int i, j, k, n, ncirc0, n_p_active, ncandidates = PDISC_CANDIDATES, naccepted;
double dx, dy, p, phi, r, r0, ra[5], sa[5], height, x, y = 0.0, gamma, dpoisson = PDISC_DISTANCE*MU, xx[4], yy[4];
short int active_poisson[NMAXCIRCLES], far;
switch (CIRCLE_PATTERN) {
case (C_SQUARE):
{
ncircles = NGRIDX*NGRIDY;
dy = (YMAX - YMIN)/((double)NGRIDY);
for (i = 0; i < NGRIDX; i++)
for (j = 0; j < NGRIDY; j++)
{
n = NGRIDY*i + j;
particles[n].xc = ((double)(i-NGRIDX/2) + 0.5)*dy;
particles[n].yc = YMIN + ((double)j + 0.5)*dy;
particles[n].radius = MU;
particles[n].active = 1;
}
break;
}
case (C_HEX):
{
ncircles = NGRIDX*(NGRIDY+1);
dx = (INITXMAX - INITXMIN)/((double)NGRIDX);
dy = (INITYMAX - INITYMIN)/((double)NGRIDY);
// dx = dy*0.5*sqrt(3.0);
for (i = 0; i < NGRIDX; i++)
for (j = 0; j < NGRIDY+1; j++)
{
n = (NGRIDY+1)*i + j;
particles[n].xc = ((double)(i-NGRIDX/2) + 0.5)*dx; /* is +0.5 needed? */
particles[n].yc = INITYMIN + ((double)j - 0.5)*dy;
if ((i+NGRIDX)%2 == 1) particles[n].yc += 0.5*dy;
particles[n].radius = MU;
/* activate only circles that intersect the domain */
if ((particles[n].yc < INITYMAX + MU)&&(particles[n].yc > INITYMIN - MU)) particles[n].active = 1;
else particles[n].active = 0;
}
break;
}
case (C_RAND_DISPLACED):
{
ncircles = NGRIDX*NGRIDY;
dy = (YMAX - YMIN)/((double)NGRIDY);
for (i = 0; i < NGRIDX; i++)
for (j = 0; j < NGRIDY; j++)
{
n = NGRIDY*i + j;
particles[n].xc = ((double)(i-NGRIDX/2) + 0.5*((double)rand()/RAND_MAX - 0.5))*dy;
particles[n].yc = YMIN + ((double)j + 0.5 + 0.5*((double)rand()/RAND_MAX - 0.5))*dy;
particles[n].radius = MU;
// particles[n].radius = MU*sqrt(1.0 + 0.8*((double)rand()/RAND_MAX - 0.5));
particles[n].active = 1;
}
break;
}
case (C_RAND_PERCOL):
{
ncircles = NGRIDX*NGRIDY;
dy = (YMAX - YMIN)/((double)NGRIDY);
for (i = 0; i < NGRIDX; i++)
for (j = 0; j < NGRIDY; j++)
{
n = NGRIDY*i + j;
particles[n].xc = ((double)(i-NGRIDX/2) + 0.5)*dy;
particles[n].yc = YMIN + ((double)j + 0.5)*dy;
particles[n].radius = MU;
p = (double)rand()/RAND_MAX;
if (p < P_PERCOL) particles[n].active = 1;
else particles[n].active = 0;
}
break;
}
case (C_RAND_POISSON):
{
ncircles = NPOISSON;
for (n = 0; n < NPOISSON; n++)
{
// particles[n].xc = LAMBDA*(2.0*(double)rand()/RAND_MAX - 1.0);
particles[n].xc = (XMAX - XMIN)*(double)rand()/RAND_MAX + XMIN;
particles[n].yc = (YMAX - YMIN)*(double)rand()/RAND_MAX + YMIN;
particles[n].radius = MU;
particles[n].active = 1;
}
break;
}
case (C_CLOAK):
{
ncircles = 200;
for (i = 0; i < 40; i++)
for (j = 0; j < 5; j++)
{
n = 5*i + j;
phi = (double)i*DPI/40.0;
r = LAMBDA*0.5*(1.0 + (double)j/5.0);
particles[n].xc = r*cos(phi);
particles[n].yc = r*sin(phi);
particles[n].radius = MU;
particles[n].active = 1;
}
break;
}
case (C_CLOAK_A): /* optimized model A1 by C. Jo et al */
{
ncircles = 200;
ra[0] = 0.0731; sa[0] = 1.115;
ra[1] = 0.0768; sa[1] = 1.292;
ra[2] = 0.0652; sa[2] = 1.464;
ra[3] = 0.056; sa[3] = 1.633;
ra[4] = 0.0375; sa[4] = 1.794;
for (i = 0; i < 40; i++)
for (j = 0; j < 5; j++)
{
n = 5*i + j;
phi = (double)i*DPI/40.0;
r = LAMBDA*sa[j];
particles[n].xc = r*cos(phi);
particles[n].yc = r*sin(phi);
particles[n].radius = LAMBDA*ra[j];
particles[n].active = 1;
}
break;
}
case (C_LASER):
{
ncircles = 17;
xx[0] = 0.5*(X_SHOOTER + X_TARGET);
xx[1] = LAMBDA - 0.5*(X_TARGET - X_SHOOTER);
xx[2] = -xx[0];
xx[3] = -xx[1];
yy[0] = 0.5*(Y_SHOOTER + Y_TARGET);
yy[1] = 1.0 - 0.5*(Y_TARGET - Y_SHOOTER);
yy[2] = -yy[0];
yy[3] = -yy[1];
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
{
particles[4*i + j].xc = xx[i];
particles[4*i + j].yc = yy[j];
}
particles[ncircles - 1].xc = X_TARGET;
particles[ncircles - 1].yc = Y_TARGET;
for (i=0; i<ncircles - 1; i++)
{
particles[i].radius = MU;
particles[i].active = 1;
}
particles[ncircles - 1].radius = 0.5*MU;
particles[ncircles - 1].active = 2;
break;
}
case (C_POISSON_DISC):
{
printf("Generating Poisson disc sample\n");
/* generate first circle */
// particles[0].xc = LAMBDA*(2.0*(double)rand()/RAND_MAX - 1.0);
particles[0].xc = (INITXMAX - INITXMIN)*(double)rand()/RAND_MAX + INITXMIN;
particles[0].yc = (INITYMAX - INITYMIN)*(double)rand()/RAND_MAX + INITYMIN;
active_poisson[0] = 1;
// particles[0].active = 1;
n_p_active = 1;
ncircles = 1;
while ((n_p_active > 0)&&(ncircles < NMAXCIRCLES))
{
/* randomly select an active circle */
i = rand()%(ncircles);
while (!active_poisson[i]) i = rand()%(ncircles);
// printf("Starting from circle %i at (%.3f,%.3f)\n", i, particles[i].xc, particles[i].yc);
/* generate new candidates */
naccepted = 0;
for (j=0; j<ncandidates; j++)
{
r = dpoisson*(2.0*(double)rand()/RAND_MAX + 1.0);
phi = DPI*(double)rand()/RAND_MAX;
x = particles[i].xc + r*cos(phi);
y = particles[i].yc + r*sin(phi);
// printf("Testing new circle at (%.3f,%.3f)\t", x, y);
far = 1;
for (k=0; k<ncircles; k++) if ((k!=i))
{
/* new circle is far away from circle k */
far = far*((x - particles[k].xc)*(x - particles[k].xc) + (y - particles[k].yc)*(y - particles[k].yc) >= dpoisson*dpoisson);
/* new circle is in domain */
far = far*(x < INITXMAX)*(x > INITXMIN)*(y < INITYMAX)*(y > INITYMIN);
// far = far*(vabs(x) < LAMBDA)*(y < INITYMAX)*(y > INITYMIN);
}
if (far) /* accept new circle */
{
printf("New circle at (%.3f,%.3f) accepted\n", x, y);
particles[ncircles].xc = x;
particles[ncircles].yc = y;
particles[ncircles].radius = MU;
particles[ncircles].active = 1;
active_poisson[ncircles] = 1;
ncircles++;
n_p_active++;
naccepted++;
}
// else printf("Rejected\n");
}
if (naccepted == 0) /* inactivate circle i */
{
// printf("No candidates work, inactivate circle %i\n", i);
active_poisson[i] = 0;
n_p_active--;
}
printf("%i active circles\n", n_p_active);
}
printf("Generated %i circles\n", ncircles);
break;
}
case (C_GOLDEN_MEAN):
{
ncircles = 300;
gamma = (sqrt(5.0) - 1.0)*0.5; /* golden mean */
height = YMAX - YMIN;
dx = 2.0*LAMBDA/((double)ncircles);
for (n = 0; n < ncircles; n++)
{
particles[n].xc = -LAMBDA + n*dx;
particles[n].yc = y;
y += height*gamma;
if (y > YMAX) y -= height;
particles[n].radius = MU;
particles[n].active = 1;
}
/* test for circles that overlap top or bottom boundary */
ncirc0 = ncircles;
for (n=0; n < ncirc0; n++)
{
if (particles[n].yc + particles[n].radius > YMAX)
{
particles[ncircles].xc = particles[n].xc;
particles[ncircles].yc = particles[n].yc - height;
particles[ncircles].radius = MU;
particles[ncircles].active = 1;
ncircles ++;
}
else if (particles[n].yc - particles[n].radius < YMIN)
{
particles[ncircles].xc = particles[n].xc;
particles[ncircles].yc = particles[n].yc + height;
particles[ncircles].radius = MU;
particles[ncircles].active = 1;
ncircles ++;
}
}
break;
}
case (C_GOLDEN_SPIRAL):
{
ncircles = 1;
particles[0].xc = 0.0;
particles[0].yc = 0.0;
gamma = (sqrt(5.0) - 1.0)*PI; /* golden mean times 2Pi */
phi = 0.0;
r0 = 2.0*MU;
r = r0 + MU;
for (i=0; i<1000; i++)
{
x = r*cos(phi);
y = r*sin(phi);
phi += gamma;
r += MU*r0/r;
if ((vabs(x) < LAMBDA)&&(vabs(y) < YMAX + MU))
{
particles[ncircles].xc = x;
particles[ncircles].yc = y;
ncircles++;
}
}
for (i=0; i<ncircles; i++)
{
particles[i].radius = MU;
/* inactivate circles outside the domain */
if ((particles[i].yc < YMAX + MU)&&(particles[i].yc > YMIN - MU)) particles[i].active = 1;
// printf("i = %i, circlex = %.3lg, circley = %.3lg\n", i, particles[i].xc, particles[i].yc);
}
break;
}
case (C_SQUARE_HEX):
{
ncircles = NGRIDX*(NGRIDY+1);
dy = (YMAX - YMIN)/((double)NGRIDY);
dx = dy*0.5*sqrt(3.0);
for (i = 0; i < NGRIDX; i++)
for (j = 0; j < NGRIDY+1; j++)
{
n = (NGRIDY+1)*i + j;
particles[n].xc = ((double)(i-NGRIDX/2) + 0.5)*dy; /* is +0.5 needed? */
particles[n].yc = YMIN + ((double)j - 0.5)*dy;
if (((i+NGRIDX)%4 == 2)||((i+NGRIDX)%4 == 3)) particles[n].yc += 0.5*dy;
particles[n].radius = MU;
/* activate only circles that intersect the domain */
if ((particles[n].yc < YMAX + MU)&&(particles[n].yc > YMIN - MU)) particles[n].active = 1;
else particles[n].active = 0;
}
break;
}
case (C_ONE):
{
particles[ncircles].xc = 0.0;
particles[ncircles].yc = 0.0;
particles[ncircles].radius = MU;
particles[ncircles].active = 1;
ncircles += 1;
break;
}
case (C_TWO): /* used for comparison with cloak */
{
particles[ncircles].xc = 0.0;
particles[ncircles].yc = 0.0;
particles[ncircles].radius = MU;
particles[ncircles].active = 2;
ncircles += 1;
particles[ncircles].xc = 0.0;
particles[ncircles].yc = 0.0;
particles[ncircles].radius = 2.0*MU;
particles[ncircles].active = 1;
ncircles += 1;
break;
}
case (C_NOTHING):
{
ncircles += 0;
break;
}
default:
{
printf("Function init_circle_config not defined for this pattern \n");
}
}
}
void init_people_config(t_person people[NMAXCIRCLES])
/* initialise particle configuration */
{
t_particle particles[NMAXCIRCLES];
int n;
init_particle_config(particles);
for (n=0; n<ncircles; n++)
{
people[n].xc = particles[n].xc;
people[n].yc = particles[n].yc;
people[n].radius = particles[n].radius;
people[n].active = particles[n].active;
}
}
void init_obstacle_config(t_obstacle obstacle[NMAXOBSTACLES])
/* initialise particle configuration */
{
int i, j, n;
double x, y, dx, dy;
switch (OBSTACLE_PATTERN) {
case (O_CORNERS):
{
n = 0;
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
{
obstacle[n].xc = BCXMIN + ((double)i)*(BCXMAX - BCXMIN);
obstacle[n].yc = BCYMIN + ((double)j)*(BCYMAX - BCYMIN);
obstacle[n].radius = OBSTACLE_RADIUS;
obstacle[n].active = 1;
n++;
}
nobstacles = n;
break;
}
case (O_GALTON_BOARD):
{
dy = (YMAX - YMIN)/((double)NGRIDX + 3);
dx = dy/cos(PI/6.0);
n = 0;
for (i = 0; i < NGRIDX + 1; i++)
for (j = 0; j < i; j++)
{
obstacle[n].yc = YMAX - ((double)i)*dy;
obstacle[n].xc = ((double)j - 0.5*(double)i + 0.5)*dx;
obstacle[n].radius = OBSTACLE_RADIUS;
obstacle[n].active = 1;
n++;
}
nobstacles = n;
break;
}
default:
{
printf("Function init_obstacle_config not defined for this pattern \n");
}
}
}
/* Computation of interaction force */
double lennard_jones_force(double r, t_particle particle)
{
int i;
double rmin = 0.01, rplus, ratio = 1.0;
if (r > REPEL_RADIUS*particle.radius) return(0.0);
else
{
if (r > rmin) rplus = r;
else rplus = rmin;
// ratio = ipow(particle.eq_dist*particle.radius/rplus, 6);
ratio = ipow(particle.eq_dist*particle.radius/rplus, 3);
ratio = ratio*ratio;
return((ratio - 2.0*ratio*ratio)/rplus);
}
}
void aniso_lj_force(double r, double ca, double sa, double ca_rel, double sa_rel, double force[2], t_particle particle)
{
int i;
double rmin = 0.01, rplus, ratio = 1.0, c2, s2, c4, s4, a, aprime, f1, f2;
if (r > REPEL_RADIUS*particle.radius)
{
force[0] = 0.0;
force[1] = 0.0;
}
else
{
if (r > rmin) rplus = r;
else rplus = rmin;
// ratio = ipow(particle.eq_dist*particle.radius/rplus, 6);
ratio = ipow(particle.eq_dist*particle.radius/rplus, 3);
ratio = ratio*ratio;
/* cos(2phi) and sin(2phi) */
c2 = ca_rel*ca_rel - sa_rel*sa_rel;
s2 = 2.0*ca_rel*sa_rel;
/* cos(4phi) and sin(4phi) */
c4 = c2*c2 - s2*s2;
s4 = 2.0*c2*s2;
a = 0.5*(9.0 - 7.0*c4);
aprime = 14.0*s4;
f1 = ratio*(a - ratio)/rplus;
f2 = ratio*aprime/rplus;
force[0] = f1*ca - f2*sa;
force[1] = f1*sa + f2*ca;
}
}
void penta_lj_force(double r, double ca, double sa, double ca_rel, double sa_rel, double force[2], t_particle particle)
{
int i;
double rmin = 0.01, rplus, ratio = 1.0, c2, s2, c4, s4, c5, s5, a, aprime, f1, f2;
static double a0, b0;
static int first = 1;
if (first)
{
a0 = cos(0.1*PI) + 0.5;
b0 = a0 - 1.0;
first = 0;
}
if (r > REPEL_RADIUS*particle.radius)
{
force[0] = 0.0;
force[1] = 0.0;
}
else
{
if (r > rmin) rplus = r;
else rplus = rmin;
// ratio = ipow(particle.eq_dist*particle.radius/rplus, 6);
ratio = ipow(particle.eq_dist*particle.radius/rplus, 3);
ratio = ratio*ratio;
/* cos(2phi) and sin(2phi) */
c2 = ca_rel*ca_rel - sa_rel*sa_rel;
s2 = 2.0*ca_rel*sa_rel;
/* cos(4phi) and sin(4phi) */
c4 = c2*c2 - s2*s2;
s4 = 2.0*c2*s2;
/* cos(5phi) and sin(5phi) */
c5 = ca_rel*c4 - sa_rel*s4;
s5 = sa_rel*c4 + ca_rel*s4;
a = a0 - b0*c5;
aprime = 5.0*b0*s5;
f1 = ratio*(a - ratio)/rplus;
f2 = ratio*aprime/rplus;
force[0] = f1*ca - f2*sa;
force[1] = f1*sa + f2*ca;
}
}
double old_golden_ratio_force(double r, t_particle particle)
/* potential with two minima at distances whose ratio is the golden ratio Phi */
/* old version that does not work very well */
{
int i;
double x, y, z, rplus, ratio = 1.0, phi, a, phi3;
static int first = 1;
static double rmin, b, c, d;
if (first)
{
rmin = 0.5*particle.radius;
phi = 0.5*(1.0 + sqrt(5.0));
phi3 = 1.0/(phi*phi*phi);
a = 0.66;
b = 1.0 + phi3 + a;
d = phi3*a;
c = phi3 + a + d;
// b = 7.04;
// c = 13.66;
// d = 6.7;
first = 0;
printf("a = %.4lg, b = %.4lg, c = %.4lg, d = %.4lg\n", a, b, c, d);
}
if (r > REPEL_RADIUS*particle.radius) return(0.0);
else
{
if (r > rmin) rplus = r;
else rplus = rmin;
x = particle.eq_dist*particle.radius/rplus;
y = x*x*x;
z = d - c*y + b*y*y - y*y*y;
return(x*z/rplus);
}
}
double golden_ratio_force(double r, t_particle particle)
/* potential with two minima at distances whose ratio is the golden ratio Phi */
/* piecewise polynomial/LJ version */
{
int i;
double x, rplus, xm6, y1;
static int first = 1;
static double rmin, phi, a, h1, h2, phi6;
if (first)
{
rmin = 0.5*particle.radius;
phi = 0.5*(1.0 + sqrt(5.0));
a = 1.2;
h1 = 1.0; /* inner potential well depth */
h2 = 10.0; /* outer potential well depth */
phi6 = ipow(phi, 6);
first = 0;
}
if (r > REPEL_RADIUS*particle.radius) return(0.0);
else
{
if (r > rmin) rplus = r;
else rplus = rmin;
x = rplus/(particle.eq_dist*particle.radius);
// xm6 = 1.0/ipow(x, 6);
xm6 = 1.0/ipow(x, 3);
xm6 = xm6*xm6;
if (x <= 1.0) return(12.0*h1*xm6*(1.0 - xm6)/x);
else if (x <= a)
{
y1 = ipow(a - 1.0, 3);
return(6.0*h1*(x - 1.0)*(a - x)/y1);
}
else if (x <= phi)
{
y1 = ipow(phi - a, 3);
return(6.0*h2*(x - a)*(x - phi)/y1);
}
else return(12.0*h2*phi6*(1.0 - phi6*xm6)*xm6/x);
}
}
void dipole_lj_force(double r, double ca, double sa, double ca_rel, double sa_rel, double force[2], t_particle particle)
{
int i;
double rmin = 0.01, rplus, ratio = 1.0, a, aprime, f1, f2;
if (r > REPEL_RADIUS*MU)
{
force[0] = 0.0;
force[1] = 0.0;
}
else
{
if (r > rmin) rplus = r;
else rplus = rmin;
// ratio = ipow(particle.eq_dist*particle.radius/rplus, 6);
ratio = ipow(particle.eq_dist*particle.radius/rplus, 3);
ratio = ratio*ratio;
a = 1.0 + 0.25*ca_rel;
aprime = -0.25*sa_rel;
f1 = ratio*(a - ratio)/rplus;
f2 = ratio*aprime/rplus;
force[0] = f1*ca - f2*sa;
force[1] = f1*sa + f2*ca;
}
}
void quadrupole_lj_force(double r, double ca, double sa, double ca_rel, double sa_rel, double force[2], t_particle particle)
{
int i;
double rmin = 0.01, rplus, ratio = 1.0, a, aprime, f1, f2, ca2, sa2, x, y, dplus, dminus;
static int first = 1;
static double a0, b0, aplus, aminus;
if (first)
{
dplus = cos(0.2*PI)*cos(0.1*PI);
// dminus = 0.8*dplus;
dminus = QUADRUPOLE_RATIO*dplus;
aplus = ipow(1.0/dplus, 6);
aminus = ipow(1.0/dminus, 6);
// aminus = ipow(cos(0.2*PI)*(0.25 + 0.5*sin(0.1*PI)), 6);
a0 = 0.5*(aplus + aminus);
b0 = 0.5*(aplus - aminus);
first = 0;
}
if (r > REPEL_RADIUS*particle.radius)
{
force[0] = 0.0;
force[1] = 0.0;
}
else
{
if (r > rmin) rplus = r;
else rplus = rmin;
// ratio = ipow(particle.eq_dist*particle.radius/rplus, 6);
ratio = ipow(particle.eq_dist*particle.radius/rplus, 3);
ratio = ratio*ratio;
/* cos(2*phi) and sin(2*phi) */
ca2 = ca_rel*ca_rel - sa_rel*sa_rel;
sa2 = 2.0*ca_rel*sa_rel;
a = a0 + b0*ca2;
// if (a == 0.0) a = 1.0e-10;
aprime = -2.0*b0*sa2;
f1 = ratio*(a - ratio)/rplus;
f2 = ratio*aprime/rplus;
force[0] = f1*ca - f2*sa;
force[1] = f1*sa + f2*ca;
}
}
void quadrupole_lj_force2(double r, double ca, double sa, double ca_rel, double sa_rel, double force[2], t_particle particle)
{
int i;
double rmin = 0.01, rplus, ratio = 1.0, a, aprime, f1, f2, ca2, sa2, x, y, eqdist;
static int first = 1;
static double aplus, aminus, a0, b0;
if (first)
{
aplus = ipow(cos(0.2*PI)*cos(0.1*PI), 6);
aminus = 0.1*aplus;
// aminus = 0.0;
// aminus = -2.0*ipow(cos(0.2*PI)*(0.5*sin(0.1*PI)), 6);
// aminus = ipow(cos(0.2*PI)*(0.25 + 0.5*sin(0.1*PI)), 6);
a0 = 0.5*(aplus + aminus);
b0 = 0.5*(aplus - aminus);
first = 0;
}
if (r > REPEL_RADIUS*particle.radius)
{
force[0] = 0.0;
force[1] = 0.0;
}
else
{
if (r > rmin) rplus = r;
else rplus = rmin;
/* correct distance */
// ratio = ipow(particle.eq_dist*particle.radius/rplus, 6);
ratio = ipow(particle.eq_dist*particle.radius/rplus, 3);
ratio = ratio*ratio;
/* cos(2*phi) and sin(2*phi) */
ca2 = ca_rel*ca_rel - sa_rel*sa_rel;
sa2 = 2.0*ca_rel*sa_rel;
a = a0 + b0*ca2;
if (a == 0.0) a = 1.0e-10;
aprime = -2.0*b0*sa2;
// f1 = ratio*(a - ratio)/rplus;
// f2 = ratio*aprime/rplus;
f1 = ratio*(aplus - ratio)/(rplus);
f2 = ratio*(aminus - ratio)/(rplus);
// force[0] = f1*ca_rel - f2*sa_rel;
// force[1] = f1*sa_rel + f2*ca_rel;
force[0] = f1*ca - f2*sa;
force[1] = f1*sa + f2*ca;
}
}
double water_torque(double r, double ca, double sa, double ca_rel, double sa_rel, double ck_rel, double sk_rel)
/* compute torque of water molecule #k on water molecule #j (for interaction I_LJ_WATER) - OLD VERSION */
{
double c1p, c1m, c2p, c2m, s2p, s2m, s21, s21p, s21m, c21, c21p, c21m, torque;
double r2, rd, rd2, rr[3][3];
static double cw = -0.5, sw = 0.866025404, delta = 1.5*MU, d2 = 2.25*MU*MU;
int i, j;
c1p = ck_rel*cw - sk_rel*sw;
c1m = ck_rel*cw + sk_rel*sw;
c2p = ca_rel*cw - sa_rel*sw;
c2m = ca_rel*cw + sa_rel*sw;
s2p = sa_rel*cw + ca_rel*sw;
s2m = sa_rel*cw - ca_rel*sw;
s21 = sa_rel*ck_rel - ca_rel*sk_rel;
c21 = ca_rel*ck_rel + sa_rel*sk_rel;
s21p = s21*cw - c21*sw;
s21m = s21*cw + c21*sw;
c21p = c21*cw + s21*sw;
c21m = c21*cw - s21*sw;
r2 = r*r;
rd = 2.0*r*delta;
rd2 = r2 + d2;
rr[0][0] = r;
rr[0][1] = sqrt(rd2 + rd*c2p);
rr[0][2] = sqrt(rd2 + rd*c2m);
rr[1][0] = sqrt(rd2 - rd*c1p);
rr[2][0] = sqrt(rd2 - rd*c1m);
rr[1][1] = sqrt(r2 + rd*(c2p - c1p) + 2.0*d2*(1.0 - c21));
rr[1][2] = sqrt(r2 + rd*(c2m - c1p) + 2.0*d2*(1.0 - c21m));
rr[2][1] = sqrt(r2 + rd*(c2p - c1m) + 2.0*d2*(1.0 - c21p));
rr[2][2] = sqrt(r2 + rd*(c2m - c1m) + 2.0*d2*(1.0 - c21));
for (i=0; i<3; i++) for (j=0; j<3; j++)
{
if (rr[i][j] < 1.0e-4) rr[i][j] = 1.0e-4;
rr[i][j] = rr[i][j]*rr[i][j]*rr[i][j];
}
torque = rd*(s2p/rr[0][1] + s2m/rr[0][2]);
torque += -0.5*rd*(s2p/rr[1][1] + s2p/rr[2][1] + s2m/rr[1][2] + s2m/rr[2][2]);
torque += d2*(s21/rr[1][1] + s21/rr[2][2] + s21m/rr[1][2] + s21p/rr[2][1]);
return(torque);
}
double water_force(double r, double ca, double sa, double ca_rel, double sa_rel, double ck_rel, double sk_rel, double f[2])
/* compute force and torque of water molecule #k on water molecule #j (for interaction I_LJ_WATER) */
{
double x1[3], y1[3], x2[3], y2[3], rr[3][3], dx[3][3], dy[3][3], fx[3][3], fy[3][3], m[3][3], torque = 0.0;
static double cw[3], sw[3], q[3], d[3], delta = 1.25*MU, dmin = 0.5*MU, fscale = 1.0;
int i, j;
static int first = 1;
if (first)
{
cw[0] = 1.0; cw[1] = -0.5; cw[2] = -0.5;
sw[0] = 0.0; sw[1] = 866025404; sw[2] = -866025404; /* sines and cosines of angles */
q[0] = -2.0; q[1] = 1.0; q[2] = 1.0; /* charges */
d[0] = 0.5*delta; d[1] = delta; d[2] = delta; /* distances to center */
first = 0;
}
/* positions of O and H atoms */
for (i=0; i<3; i++)
{
x1[i] = d[i]*(ca_rel*cw[i] - sa_rel*sw[i]);
y1[i] = d[i]*(ca_rel*sw[i] + sa_rel*cw[i]);
x2[i] = r + d[i]*(ck_rel*cw[i] - sk_rel*sw[i]);
y2[i] = d[i]*(ck_rel*sw[i] + sk_rel*cw[i]);
}
/* relative positions */
for (i=0; i<3; i++) for (j=0; j<3; j++)
{
dx[i][j] = x2[j] - x1[i];
dy[i][j] = y2[j] - y1[i];
rr[i][j] = module2(dx[i][j], dy[i][j]);
if (rr[i][j] < dmin) rr[i][j] = dmin;
rr[i][j] = ipow(rr[i][j],3);
// rr[i][j] = rr[i][j]*rr[i][j]*rr[i][j];
}
/* forces between particles */
for (i=0; i<3; i++) for (j=0; j<3; j++)
{
fx[i][j] = -q[i]*q[j]*dx[i][j]/rr[i][j];
fy[i][j] = -q[i]*q[j]*dy[i][j]/rr[i][j];
}
/* torques between particles */
for (i=0; i<3; i++) for (j=0; j<3; j++)
{
m[i][j] = x1[i]*fy[i][j] - y1[i]*fx[i][j];
}
/* total force */
f[0] = 0.0;
f[1] = 0.0;
for (i=0; i<3; i++) for (j=0; j<3; j++)
{
f[0] += fscale*fx[i][j];
f[1] += fscale*fy[i][j];
torque += fscale*m[i][j];
}
return(torque);
}
int compute_particle_interaction(int i, int k, double force[2], double *torque, t_particle* particle,
double distance, double krepel, double ca, double sa, double ca_rel, double sa_rel)
/* compute repelling force and torque of particle #k on particle #i */
/* returns 1 if distance between particles is smaller than NBH_DIST_FACTOR*MU */
{
double x1, y1, x2, y2, r, f, angle, aniso, fx, fy, ff[2], dist_scaled, spin_f, ck, sk, ck_rel, sk_rel;
static double dxhalf = 0.5*(BCXMAX - BCXMIN), dyhalf = 0.5*(BCYMAX - BCYMIN);
int wwrapx, wwrapy;
x1 = particle[i].xc;
y1 = particle[i].yc;
x2 = particle[k].xc;
y2 = particle[k].yc;
wwrapx = ((BOUNDARY_COND == BC_KLEIN)||(BOUNDARY_COND == BC_BOY))&&(vabs(x2 - x1) > dxhalf);
wwrapy = (BOUNDARY_COND == BC_BOY)&&(vabs(y2 - y1) > dyhalf);
switch (particle[k].interaction) {
case (I_COULOMB):
{
f = -krepel/(1.0e-8 + distance*distance);
force[0] = f*ca;
force[1] = f*sa;
break;
}
case (I_LENNARD_JONES):
{
f = krepel*lennard_jones_force(distance, particle[k]);
force[0] = f*ca;
force[1] = f*sa;
break;
}
case (I_LJ_DIRECTIONAL):
{
aniso_lj_force(distance, ca, sa, ca_rel, sa_rel, ff, particle[k]);
force[0] = krepel*ff[0];
force[1] = krepel*ff[1];
break;
}
case (I_LJ_PENTA):
{
penta_lj_force(distance, ca, sa, ca_rel, sa_rel, ff, particle[k]);
force[0] = krepel*ff[0];
force[1] = krepel*ff[1];
break;
}
case (I_GOLDENRATIO):
{
f = krepel*golden_ratio_force(distance, particle[k]);
force[0] = f*ca;
force[1] = f*sa;
break;
}
case (I_LJ_DIPOLE):
{
dipole_lj_force(distance, ca, sa, ca_rel, sa_rel, ff, particle[k]);
force[0] = krepel*ff[0];
force[1] = krepel*ff[1];
break;
}
case (I_LJ_QUADRUPOLE):
{
quadrupole_lj_force(distance, ca, sa, ca_rel, sa_rel, ff, particle[k]);
force[0] = krepel*ff[0];
force[1] = krepel*ff[1];
break;
}
case (I_LJ_WATER):
{
f = krepel*lennard_jones_force(distance, particle[k]);
force[0] = f*ca;
force[1] = f*sa;
break;
}
}
if (ROTATION)
{
dist_scaled = distance/(particle[i].spin_range*particle[i].radius);
switch (particle[k].interaction) {
case (I_LJ_WATER):
{
ck = cos(particle[k].angle);
sk = sin(particle[k].angle);
ck_rel = ca*ck + sa*sk;
sk_rel = sa*ck - ca*sk;
// *torque = (-3.0*ca_rel*sk_rel + 2.0*sa_rel*ck_rel)/(1.0e-12 + dist_scaled*dist_scaled*dist_scaled);
// *torque = water_torque(distance, ca, sa, ca_rel, sa_rel, ck_rel, sk_rel);
// *torque = (0.5*sin(angle) + 0.5*sin(2.0*angle) - 0.45*sin(3.0*angle))/(1.0e-12 + dist_scaled*dist_scaled*dist_scaled);
*torque = water_force(distance, ca, sa, ca_rel, sa_rel, ck_rel, sk_rel, ff);
force[0] += ff[0];
force[1] += ff[1];
// printf("force = (%.3lg, %.3lg)\n", ff[0], ff[1]);
break;
}
default:
{
spin_f = particle[i].spin_freq;
if (wwrapx||wwrapy) *torque = sin(spin_f*(-particle[k].angle - particle[i].angle))/(1.0e-8 + dist_scaled*dist_scaled);
else
*torque = sin(spin_f*(particle[k].angle - particle[i].angle))/(1.0e-8 + dist_scaled*dist_scaled);
}
}
if (particle[i].type == particle[k].type)
{
if (particle[i].type == 0) *torque *= KTORQUE;
else *torque *= KTORQUE_B;
}
else *torque *= KTORQUE_DIFF;
}
else *torque = 0.0;
if ((distance < NBH_DIST_FACTOR*particle[i].radius)&&(k != i)) return(1);
// if ((distance < NBH_DIST_FACTOR*particle[i].radius)) return(1);
else return(0);
}
int compute_repelling_force(int i, int j, double force[2], double *torque, t_particle* particle, double krepel)
/* compute repelling force of neighbour #j on particle #i */
/* returns 1 if distance between particles is smaller than NBH_DIST_FACTOR*MU */
{
double distance, ca, sa, cj, sj, ca_rel, sa_rel, f[2], ff[2], torque1, ck, sk, ck_rel, sk_rel;
static double distmin = 10.0*((XMAX - XMIN)/HASHX + (YMAX - YMIN)/HASHY);
int interact, k;
k = particle[i].hashneighbour[j];
distance = module2(particle[i].deltax[j], particle[i].deltay[j]);
/* for monitoring purposes */
if (distance > distmin)
{
printf("i = %i, hashcell %i, j = %i, hashcell %i\n", i, particle[i].hashcell, k, particle[k].hashcell);
printf("X = (%.3lg, %.3lg)\n", particle[i].xc, particle[i].yc);
printf("Y = (%.3lg, %.3lg) d = %.3lg\n", particle[k].xc, particle[k].yc, distance);
}
if ((distance == 0.0)||(i == k))
{
force[0] = 0.0;
force[1] = 0.0;
*torque = 0.0;
return(1);
}
else if (distance > REPEL_RADIUS*particle[i].radius)
{
force[0] = 0.0;
force[1] = 0.0;
*torque = 0.0;
return(0);
}
else
{
/* to avoid numerical problems, assign minimal value to distance */
if (distance < 0.1*particle[i].radius) distance = 0.1*particle[i].radius;
ca = (particle[i].deltax[j])/distance;
sa = (particle[i].deltay[j])/distance;
/* compute relative angle in case particles can rotate */
if (ROTATION)
{
cj = cos(particle[j].angle);
sj = sin(particle[j].angle);
ca_rel = ca*cj + sa*sj;
sa_rel = sa*cj - ca*sj;
}
else
{
ca_rel = ca;
sa_rel = sa;
}
interact = compute_particle_interaction(i, k, f, torque, particle, distance, krepel, ca, sa, ca_rel, sa_rel);
if (SYMMETRIZE_FORCE)
{
torque1 = *torque;
// compute_particle_interaction(k, i, ff, torque, particle, distance, krepel, ca, sa, ca_rel, sa_rel);
ck = cos(particle[j].angle);
sk = sin(particle[j].angle);
ck_rel = ca*ck + sa*sk;
sk_rel = sa*ck - ca*sk;
compute_particle_interaction(k, i, ff, torque, particle, distance, krepel, -ca, -sa, -ck_rel, -sk_rel);
force[0] = 0.5*(f[0] - ff[0]);
force[1] = 0.5*(f[1] - ff[1]);
*torque = 0.5*(torque1 - *torque);
// *torque = 0.5*(*torque + torque1);
}
else
{
force[0] = f[0];
force[1] = f[1];
}
// printf("force = (%.3lg, %.3lg), torque = %.3lg\n", f[0], f[1], *torque);
return(interact);
}
}
int resample_particle(int n, int maxtrials, t_particle particle[NMAXCIRCLES])
/* resample y coordinate of particle n, returns 1 if no collision is created */
{
double x, y, dist, dmin = 10.0;
int i, j, closeby = 0, success = 0, trials = 0;
while ((!success)&&(trials < maxtrials))
{
success = 1;
x = particle[n].xc - MU*(double)rand()/RAND_MAX;
y = 0.9*(BCYMIN + (BCYMAX - BCYMIN)*(double)rand()/RAND_MAX);
i = 0;
while ((success)&&(i<ncircles))
{
if ((i!=n)&&(particle[i].active))
{
// dist = module2(x - particle[i].xc, y - particle[i].yc);
for (j=-1; j<2; j++)
{
dist = module2(x - particle[i].xc - (double)j*(BCXMAX - BCXMIN), y - particle[i].yc);
if (dist < dmin) dmin = dist;
}
if (dmin < SAFETY_FACTOR*MU) success = 0;
}
i++;
}
trials++;
// printf("Trial no %i - (%.3lg, %.3lg)\t", trials, x, y);
}
if (success)
{
printf("\nTrial %i succesful\n", trials);
printf("Moving particle %i from (%.3lg, %.3lg) to (%.3lg, %.3lg)\n\n", n, particle[n].xc, particle[n].yc, x, y);
particle[n].xc = x;
particle[n].yc = y;
particle[n].vx = V_INITIAL*gaussian();
particle[n].vy = V_INITIAL*gaussian();
// particle[n].vy = V_INITIAL*(double)rand()/RAND_MAX;
return(1);
}
else
{
printf("\nCannot move particle %i\n\n", n);
return(0);
}
}
int add_particle(double x, double y, double vx, double vy, double mass, short int type, t_particle particle[NMAXCIRCLES])
{
int i, closeby = 0;
double dist;
/* test distance to other particles */
for (i=0; i<ncircles; i++)
{
dist = module2(x - particle[i].xc, y - particle[i].yc);
if ((particle[i].active)&&(dist < SAFETY_FACTOR*MU)) closeby = 1;
}
if ((closeby)||(ncircles >= NMAXCIRCLES))
{
printf("Cannot add particle at (%.3lg, %.3lg)\n", x, y);
return(0);
}
else
{
i = ncircles;
particle[i].type = type;
particle[i].xc = x;
particle[i].yc = y;
particle[i].radius = MU*sqrt(mass);
particle[i].active = 1;
particle[i].neighb = 0;
particle[i].thermostat = 1;
particle[i].energy = 0.0;
if (RANDOM_RADIUS) particle[i].radius = particle[i].radius*(0.75 + 0.5*((double)rand()/RAND_MAX));
particle[i].mass_inv = 1.0/mass;
if (particle[i].type == 0) particle[i].inertia_moment_inv = 1.0/PARTICLE_INERTIA_MOMENT;
else particle[i].inertia_moment_inv = 1.0/PARTICLE_INERTIA_MOMENT;
particle[i].vx = vx;
particle[i].vy = vy;
particle[i].energy = (particle[i].vx*particle[i].vx + particle[i].vy*particle[i].vy)*particle[i].mass_inv;
particle[i].angle = DPI*(double)rand()/RAND_MAX;
particle[i].omega = 0.0;
if (particle[i].type == 1)
{
particle[i].interaction = INTERACTION_B;
particle[i].eq_dist = EQUILIBRIUM_DIST_B;
particle[i].spin_range = SPIN_RANGE_B;
particle[i].spin_freq = SPIN_INTER_FREQUENCY_B;
}
ncircles++;
printf("Added particle at (%.3lg, %.3lg)\n", x, y);
printf("Number of particles: %i\n", ncircles);
return(1);
}
}
double neighbour_color(int nnbg)
{
if (nnbg > 7) nnbg = 7;
switch(nnbg){
case (7): return(340.0);
case (6): return(310.0);
case (5): return(260.0);
case (4): return(200.0);
case (3): return(140.0);
case (2): return(100.0);
case (1): return(70.0);
default: return(30.0);
}
}
void compute_entropy(t_particle particle[NMAXCIRCLES], double entropy[2])
{
int i, nleft1 = 0, nleft2 = 0;
double p1, p2;
static int first = 1, ntot1 = 0, ntot2 = 0;
static double log2;
if (first)
{
log2 = log(2.0);
for (i=0; i<ncircles; i++) if (particle[i].type == 0) ntot1++;
else ntot2++;
first = 0;
}
for (i=0; i<ncircles; i++)
{
if (particle[i].type == 0)
{
if (particle[i].xc < 0.0) nleft1++;
}
else
{
if (particle[i].xc < 0.0) nleft2++;
}
}
p1 = (double)nleft1/(double)ntot1;
p2 = (double)nleft2/(double)ntot2;
printf("Type 1: nleft = %i, ntot = %i, p = %.3lg\n", nleft1, ntot1, p1);
printf("Type 2: nleft = %i, ntot = %i, p = %.3lg\n", nleft2, ntot2, p2);
if ((p1==0.0)||(p1==1.0)) entropy[0] = 0.0;
else entropy[0] = -(p1*log(p1) + (1.0-p1)*log(1.0-p1)/log2);
if ((p2==0.0)||(p2==1.0)) entropy[1] = 0.0;
else entropy[1] = -(p2*log(p2) + (1.0-p2)*log(1.0-p2)/log2);
}
void draw_one_particle(t_particle particle, double xc, double yc, double radius, double angle, int nsides, double width, double rgb[3])
/* draw one of the particles */
{
double ca, sa, x1, x2, y1, y2, xc1, wangle;
int wsign;
if (CENTER_VIEW_ON_OBSTACLE) xc1 = xc - xshift;
else xc1 = xc;
glColor3f(rgb[0], rgb[1], rgb[2]);
if ((particle.interaction == I_LJ_QUADRUPOLE)||(particle.interaction == I_LJ_DIPOLE))
draw_colored_rhombus(xc1, yc, radius, angle + APOLY*PID, rgb);
else draw_colored_polygon(xc1, yc, radius, nsides, angle + APOLY*PID, rgb);
/* draw crosses on particles of second type */
if ((TWO_TYPES)&&(DRAW_CROSS))
if (particle.type == 1)
{
if (ROTATION) angle = angle + APOLY*PID;
else angle = APOLY*PID;
ca = cos(angle);
sa = sin(angle);
glLineWidth(3);
glColor3f(0.0, 0.0, 0.0);
x1 = xc1 - MU_B*ca;
y1 = yc - MU_B*sa;
x2 = xc1 + MU_B*ca;
y2 = yc + MU_B*sa;
draw_line(x1, y1, x2, y2);
x1 = xc1 - MU_B*sa;
y1 = yc + MU_B*ca;
x2 = xc1 + MU_B*sa;
y2 = yc - MU_B*ca;
draw_line(x1, y1, x2, y2);
}
glLineWidth(width);
glColor3f(1.0, 1.0, 1.0);
if ((particle.interaction == I_LJ_QUADRUPOLE)||(particle.interaction == I_LJ_DIPOLE))
draw_rhombus(xc1, yc, radius, angle + APOLY*PID);
else draw_polygon(xc1, yc, radius, nsides, angle + APOLY*PID);
if (particle.interaction == I_LJ_WATER) for (wsign = -1; wsign <= 1; wsign+=2)
{
wangle = particle.angle + (double)wsign*DPI/3.0;
x1 = xc1 + particle.radius*cos(wangle);
y1 = yc + particle.radius*sin(wangle);
draw_colored_polygon(x1, y1, 0.5*radius, nsides, angle + APOLY*PID, rgb);
glColor3f(1.0, 1.0, 1.0);
draw_polygon(x1, y1, 0.5*radius, nsides, angle + APOLY*PID);
}
}
void draw_trajectory(t_tracer trajectory[TRAJECTORY_LENGTH], int traj_position, int traj_length)
/* draw tracer particle trajectory */
{
int i, time;
double x1, x2, y1, y2, rgb[3], lum;
blank();
glLineWidth(TRAJECTORY_WIDTH);
hsl_to_rgb(70.0, 0.9, 0.5, rgb);
glColor3f(rgb[0], rgb[1], rgb[2]);
if (traj_length < TRAJECTORY_LENGTH)
for (i=0; i < traj_length-1; i++)
{
x1 = trajectory[i].xc;
x2 = trajectory[i+1].xc;
y1 = trajectory[i].yc;
y2 = trajectory[i+1].yc;
time = traj_length - i;
lum = 1.0 - (double)time/(double)TRAJECTORY_LENGTH;
glColor3f(lum*rgb[0], lum*rgb[1], lum*rgb[2]);
if (module2(x2 - x1, y2 - y1) < 0.25*(YMAX - YMIN)) draw_line(x1, y1, x2, y2);
}
else
{
for (i = traj_position + 1; i < traj_length-1; i++)
{
x1 = trajectory[i].xc;
x2 = trajectory[i+1].xc;
y1 = trajectory[i].yc;
y2 = trajectory[i+1].yc;
time = traj_position + traj_length - i;
lum = 1.0 - (double)time/(double)TRAJECTORY_LENGTH;
glColor3f(lum*rgb[0], lum*rgb[1], lum*rgb[2]);
if (module2(x2 - x1, y2 - y1) < 0.1*(YMAX - YMIN)) draw_line(x1, y1, x2, y2);
}
for (i=0; i < traj_position-1; i++)
{
x1 = trajectory[i].xc;
x2 = trajectory[i+1].xc;
y1 = trajectory[i].yc;
y2 = trajectory[i+1].yc;
time = traj_position - i;
lum = 1.0 - (double)time/(double)TRAJECTORY_LENGTH;
glColor3f(lum*rgb[0], lum*rgb[1], lum*rgb[2]);
if (module2(x2 - x1, y2 - y1) < 0.1*(YMAX - YMIN)) draw_line(x1, y1, x2, y2);
}
}
}
void draw_particles(t_particle particle[NMAXCIRCLES], int plot)
{
int i, j, k, m, width, nnbg, nsides;
double ej, hue, huex, huey, rgb[3], rgbx[3], rgby[3], radius, x1, y1, x2, y2, angle, ca, sa, length, linkcolor, sign = 1.0, angle1, signy = 1.0;
char message[100];
if (!TRACER_PARTICLE) blank();
glColor3f(1.0, 1.0, 1.0);
/* draw the bonds first */
if (plot == P_BONDS)
{
glLineWidth(LINK_WIDTH);
for (j=0; j<ncircles; j++) if (particle[j].active)
{
// radius = particle[j].radius;
for (k = 0; k < particle[j].hash_nneighb; k++)
{
x1 = particle[j].xc;
y1 = particle[j].yc;
x2 = x1 + particle[j].deltax[k];
y2 = y1 + particle[j].deltay[k];
length = module2(particle[j].deltax[k], particle[j].deltay[k])/particle[j].radius;
if (COLOR_BONDS)
{
if (length < 1.5) linkcolor = 1.0;
else linkcolor = 1.0 - 0.75*(length - 1.5)/(NBH_DIST_FACTOR - 1.5);
glColor3f(linkcolor, linkcolor, linkcolor);
}
if (length < 1.0*NBH_DIST_FACTOR)
draw_line(x1, y1, x2, y2);
}
// sprintf(message, "%i - %i", particle[j].hash_nneighb, particle[j].hashcell);
// write_text(particle[j].xc, particle[j].yc, message);
}
}
/* determine particle color and size */
for (j=0; j<ncircles; j++) if (particle[j].active)
{
switch (plot) {
case (P_KINETIC):
{
ej = particle[j].energy;
if (ej > 0.0)
{
hue = ENERGY_HUE_MIN + (ENERGY_HUE_MAX - ENERGY_HUE_MIN)*ej/PARTICLE_EMAX;
if (hue > ENERGY_HUE_MIN) hue = ENERGY_HUE_MIN;
if (hue < ENERGY_HUE_MAX) hue = ENERGY_HUE_MAX;
}
radius = particle[j].radius;
width = BOUNDARY_WIDTH;
break;
}
case (P_NEIGHBOURS):
{
hue = neighbour_color(particle[j].neighb);
radius = particle[j].radius;
width = BOUNDARY_WIDTH;
break;
}
case (P_BONDS):
{
// if (particle[j].type == 1) hue = 70.0; /* to make second particle type more visible */
// if (particle[j].type == 1) hue = neighbour_color(7 - particle[j].neighb);
// else
hue = neighbour_color(particle[j].neighb);
radius = particle[j].radius;
width = 1;
break;
}
case (P_ANGLE):
{
angle = particle[j].angle;
hue = angle*particle[j].spin_freq/DPI;
hue -= (double)((int)hue);
huex = (DPI - angle)*particle[j].spin_freq/DPI;
huex -= (double)((int)huex);
angle = PI - angle;
if (angle < 0.0) angle += DPI;
huey = angle*particle[j].spin_freq/DPI;
huey -= (double)((int)huey);
hue = PARTICLE_HUE_MIN + (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*hue;
huex = PARTICLE_HUE_MIN + (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*huex;
huey = PARTICLE_HUE_MIN + (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*huey;
radius = particle[j].radius;
width = BOUNDARY_WIDTH;
break;
}
case (P_TYPE):
{
// if (particle[j].type == 0) hue = 310.0;
// else hue = 70.0;
if (particle[j].type == 0) hue = HUE_TYPE0;
else hue = HUE_TYPE1;
radius = particle[j].radius;
width = BOUNDARY_WIDTH;
break;
}
case (P_DIRECTION):
{
hue = argument(particle[j].vx, particle[j].vy);
if (hue > DPI) hue -= DPI;
if (hue < 0.0) hue += DPI;
hue = PARTICLE_HUE_MIN + (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*hue/DPI;
radius = particle[j].radius;
width = BOUNDARY_WIDTH;
break;
}
case (P_ANGULAR_SPEED):
{
hue = 160.0*(1.0 + tanh(SLOPE*particle[j].omega));
// printf("omega = %.3lg, hue = %.3lg\n", particle[j].omega, hue);
radius = particle[j].radius;
width = BOUNDARY_WIDTH;
break;
}
}
switch (particle[j].interaction) {
case (I_LJ_DIRECTIONAL):
{
nsides = 4;
break;
}
case (I_LJ_PENTA):
{
nsides = 5;
break;
}
case (I_LJ_QUADRUPOLE):
{
nsides = 4;
break;
}
case (I_LJ_WATER):
{
nsides = NSEG;
radius *= 0.75;
break;
}
default: nsides = NSEG;
}
switch (plot) {
case (P_KINETIC):
{
hsl_to_rgb_turbo(hue, 0.9, 0.5, rgb);
hsl_to_rgb_turbo(hue, 0.9, 0.5, rgbx);
hsl_to_rgb_turbo(hue, 0.9, 0.5, rgby);
break;
}
case (P_BONDS):
{
hsl_to_rgb_turbo(hue, 0.9, 0.5, rgb);
hsl_to_rgb_turbo(hue, 0.9, 0.5, rgbx);
hsl_to_rgb_turbo(hue, 0.9, 0.5, rgby);
break;
}
case (P_DIRECTION):
{
hsl_to_rgb_twilight(hue, 0.9, 0.5, rgb);
hsl_to_rgb_twilight(hue, 0.9, 0.5, rgbx);
hsl_to_rgb_twilight(hue, 0.9, 0.5, rgby);
break;
}
default:
{
hsl_to_rgb(hue, 0.9, 0.5, rgb);
hsl_to_rgb(hue, 0.9, 0.5, rgbx);
hsl_to_rgb(hue, 0.9, 0.5, rgby);
}
}
angle = particle[j].angle + APOLY*DPI;
draw_one_particle(particle[j], particle[j].xc, particle[j].yc, radius, angle, nsides, width, rgb);
/* in case of periodic b.c., draw translates of particles */
if (PERIODIC_BC)
{
x1 = particle[j].xc;
y1 = particle[j].yc;
for (i=-2; i<3; i++)
for (k=-1; k<2; k++)
draw_one_particle(particle[j], x1 + (double)i*(BCXMAX - BCXMIN), y1 + (double)k*(BCYMAX - BCYMIN), radius, angle, nsides, width, rgb);
}
else if (BOUNDARY_COND == BC_KLEIN)
{
x1 = particle[j].xc;
y1 = particle[j].yc;
for (i=-2; i<3; i++)
{
if (vabs(i) == 1) sign = -1.0;
else sign = 1.0;
angle1 = angle*sign;
for (k=-1; k<2; k++)
draw_one_particle(particle[j], x1 + (double)i*(BCXMAX - BCXMIN), sign*(y1 + (double)k*(BCYMAX - BCYMIN)),
radius, angle1, nsides, width, rgb);
}
}
else if (BOUNDARY_COND == BC_BOY)
{
x1 = particle[j].xc;
y1 = particle[j].yc;
for (i=-1; i<2; i++) for (k=-1; k<2; k++)
{
if (vabs(i) == 1) sign = -1.0;
else sign = 1.0;
if (vabs(k) == 1) signy = -1.0;
else signy = 1.0;
if (signy == 1.0) angle1 = angle*sign;
else angle1 = PI - angle;
if (sign == -1.0) draw_one_particle(particle[j], signy*(x1 + (double)i*(BCXMAX - BCXMIN)),
sign*(y1 + (double)k*(BCYMAX - BCYMIN)), radius, angle1, nsides, width, rgbx);
else if (signy == -1.0) draw_one_particle(particle[j], signy*(x1 + (double)i*(BCXMAX - BCXMIN)),
sign*(y1 + (double)k*(BCYMAX - BCYMIN)), radius, angle1, nsides, width, rgby);
else draw_one_particle(particle[j], signy*(x1 + (double)i*(BCXMAX - BCXMIN)),
sign*(y1 + (double)k*(BCYMAX - BCYMIN)), radius, angle1, nsides, width, rgb);
}
}
}
// /* draw spin vectors */
if ((DRAW_SPIN)||(DRAW_SPIN_B))
{
glLineWidth(width);
for (j=0; j<ncircles; j++)
if ((particle[j].active)&&(((DRAW_SPIN)&&(particle[j].type == 0))||((DRAW_SPIN_B)&&(particle[j].type == 1))))
{
// x1 = particle[j].xc - 2.0*MU*cos(particle[j].angle);
// y1 = particle[j].yc - 2.0*MU*sin(particle[j].angle);
x1 = particle[j].xc;
// if (CENTER_VIEW_ON_OBSTACLE) x1 -= xshift;
y1 = particle[j].yc;
x2 = particle[j].xc + 2.0*MU*cos(particle[j].angle);
// if (CENTER_VIEW_ON_OBSTACLE) x2 -= xshift;
y2 = particle[j].yc + 2.0*MU*sin(particle[j].angle);
draw_line(x1, y1, x2, y2);
}
}
}
void draw_container(double xmin, double xmax, t_obstacle obstacle[NMAXOBSTACLES])
/* draw the container, for certain boundary conditions */
{
int i, j;
double rgb[3], x, phi, angle, dx, dy, ybin, x1, x2, h;
char message[100];
switch (BOUNDARY_COND) {
case (BC_SCREEN):
{
/* do nothing */
break;
}
case (BC_RECTANGLE):
{
glColor3f(1.0, 1.0, 1.0);
glLineWidth(CONTAINER_WIDTH);
draw_line(INITXMIN, INITYMIN, INITXMAX, INITYMIN);
draw_line(INITXMIN, INITYMAX, INITXMAX, INITYMAX);
if (!SYMMETRIC_DECREASE) draw_line(INITXMAX, INITYMIN, INITXMAX, INITYMAX);
draw_line(xmin, INITYMIN, xmin, INITYMAX);
draw_line(XMIN, 0.5*(INITYMIN + INITYMAX), xmin, 0.5*(INITYMIN + INITYMAX));
if (SYMMETRIC_DECREASE)
{
draw_line(xmax, INITYMIN, xmax, INITYMAX);
draw_line(XMAX, 0.5*(INITYMIN + INITYMAX), xmax, 0.5*(INITYMIN + INITYMAX));
}
break;
}
case (BC_CIRCLE):
{
glLineWidth(CONTAINER_WIDTH);
hsl_to_rgb(300.0, 0.1, 0.5, rgb);
for (i=-1; i<2; i++)
{
if (CENTER_VIEW_ON_OBSTACLE) x = 0.0;
else x = xmin + (double)i*(OBSXMAX - OBSXMIN);
draw_colored_circle(x, 0.0, OBSTACLE_RADIUS, NSEG, rgb);
glColor3f(1.0, 1.0, 1.0);
draw_circle(x, 0.0, OBSTACLE_RADIUS, NSEG);
glColor3f(0.0, 0.0, 0.0);
sprintf(message, "Mach %.3f", xspeed/20.0);
// sprintf(message, "Speed %.2f", xspeed);
write_text(x-0.17, -0.025, message);
}
break;
}
case (BC_PERIODIC_CIRCLE):
{
glLineWidth(CONTAINER_WIDTH);
hsl_to_rgb(300.0, 0.1, 0.5, rgb);
for (i=-1; i<2; i++)
{
if (CENTER_VIEW_ON_OBSTACLE) x = 0.0;
else x = xmin + (double)i*(OBSXMAX - OBSXMIN);
draw_colored_circle(x, 0.0, OBSTACLE_RADIUS, NSEG, rgb);
glColor3f(1.0, 1.0, 1.0);
draw_circle(x, 0.0, OBSTACLE_RADIUS, NSEG);
glColor3f(0.0, 0.0, 0.0);
sprintf(message, "Mach %.2f", xspeed/20.0);
// sprintf(message, "Speed %.2f", xspeed);
write_text(x-0.17, -0.025, message);
}
break;
}
case (BC_PERIODIC_TRIANGLE):
{
glLineWidth(CONTAINER_WIDTH);
hsl_to_rgb(300.0, 0.1, 0.5, rgb);
for (i=-1; i<2; i++)
{
if (CENTER_VIEW_ON_OBSTACLE) x = 0.0;
else x = xmin + (double)i*(OBSXMAX - OBSXMIN);
x1 = x + OBSTACLE_RADIUS;
x2 = x - OBSTACLE_RADIUS;
h = 2.0*OBSTACLE_RADIUS*tan(APOLY*PID);
draw_colored_triangle(x1, 0.0, x2, h, x2, -h, rgb);
glColor3f(1.0, 1.0, 1.0);
draw_triangle(x1, 0.0, x2, h, x2, -h);
glColor3f(0.0, 0.0, 0.0);
sprintf(message, "Mach %.2f", xspeed/20.0);
write_text(x-0.18, -0.025, message);
}
break;
}
case (BC_PERIODIC_FUNNEL):
{
glLineWidth(CONTAINER_WIDTH);
hsl_to_rgb(300.0, 0.1, 0.5, rgb);
for (i=-1; i<2; i++)
{
if (CENTER_VIEW_ON_OBSTACLE) x = 0.0;
else x = xmin + (double)i*(OBSXMAX - OBSXMIN);
for (j=-1; j<2; j+=2)
{
draw_colored_circle(x, (double)j*(FUNNEL_WIDTH + OBSTACLE_RADIUS), OBSTACLE_RADIUS, NSEG, rgb);
glColor3f(1.0, 1.0, 1.0);
draw_circle(x, (double)j*(FUNNEL_WIDTH + OBSTACLE_RADIUS), OBSTACLE_RADIUS, NSEG);
}
glColor3f(0.0, 0.0, 0.0);
sprintf(message, "Mach %.2f", xspeed/20.0);
write_text(x-0.17, 0.75, message);
}
break;
}
case (BC_RECTANGLE_LID):
{
glColor3f(1.0, 1.0, 1.0);
glLineWidth(CONTAINER_WIDTH);
draw_line(BCXMIN, BCYMIN, BCXMAX, BCYMIN);
draw_line(BCXMIN, BCYMIN, BCXMIN, BCYMAX);
draw_line(BCXMAX, BCYMIN, BCXMAX, BCYMAX);
hsl_to_rgb(300.0, 0.1, 0.5, rgb);
draw_colored_rectangle(BCXMIN + 0.05, ylid, BCXMAX - 0.05, ylid + LID_WIDTH, rgb);
glColor3f(1.0, 1.0, 1.0);
draw_rectangle(BCXMIN + 0.05, ylid, BCXMAX - 0.05, ylid + LID_WIDTH);
break;
}
case (BC_EHRENFEST):
{
glLineWidth(CONTAINER_WIDTH);
glColor3f(1.0, 1.0, 1.0);
phi = asin(EHRENFEST_WIDTH/EHRENFEST_RADIUS);
glBegin(GL_LINE_LOOP);
for (i=0; i<=NSEG; i++)
{
angle = -PI + phi + (double)i*2.0*(PI - phi)/(double)NSEG;
glVertex2d(1.0 + EHRENFEST_RADIUS*cos(angle), EHRENFEST_RADIUS*sin(angle));
}
for (i=0; i<=NSEG; i++)
{
angle = phi + (double)i*2.0*(PI - phi)/(double)NSEG;
glVertex2d(-1.0 + EHRENFEST_RADIUS*cos(angle), EHRENFEST_RADIUS*sin(angle));
}
glEnd();
break;
}
case (BC_SCREEN_BINS):
{
glLineWidth(CONTAINER_WIDTH);
glColor3f(1.0, 1.0, 1.0);
dy = (YMAX - YMIN)/((double)NGRIDX + 3);
dx = dy/cos(PI/6.0);
ybin = 2.75*dy;
for (i=-1; i<=NGRIDX; i++)
{
x = ((double)i - 0.5*(double)NGRIDX + 0.5)*dx;
draw_line(x, YMIN, x, YMIN + ybin);
}
break;
}
}
/* draw fixed obstacles */
if (ADD_FIXED_OBSTACLES)
{
glLineWidth(CONTAINER_WIDTH);
glColor3f(1.0, 1.0, 1.0);
for (i = 0; i < nobstacles; i++)
draw_circle(obstacle[i].xc, obstacle[i].yc, obstacle[i].radius, NSEG);
}
}
void print_parameters(double beta, double temperature, double krepel, double lengthcontainer, double boundary_force,
short int left, double pressure[N_PRESSURES])
{
char message[100];
int i, j, k;
double density, hue, rgb[3], logratio, x, y, meanpress[N_PRESSURES], phi, sphi, dphi, pprint, mean_temp;
static double xbox, xtext, xmid, xmidtext, xxbox, xxtext, pressures[N_P_AVERAGE], meanpressure = 0.0, maxpressure = 0.0;
static double press[N_PRESSURES][N_P_AVERAGE], temp[N_T_AVERAGE];
static int first = 1, i_pressure, i_temp;
if (first)
{
if (left)
{
xbox = XMIN + 0.4;
xtext = XMIN + 0.08;
xxbox = XMAX - 0.39;
xxtext = XMAX - 0.73;
}
else
{
xbox = XMAX - 0.41;
xtext = XMAX - 0.73;
xxbox = XMIN + 0.4;
xxtext = XMIN + 0.08;
}
xmid = 0.5*(XMIN + XMAX) - 0.1;
xmidtext = xmid - 0.24;
for (i=0; i<N_P_AVERAGE; i++) pressures[i] = 0.0;
if (RECORD_PRESSURES) for (j=0; j<N_PRESSURES; j++)
{
meanpress[j] = 0.0;
for (i=0; i<N_P_AVERAGE; i++) press[j][i] = 0.0;
}
i_pressure = 0;
i_temp = 0;
for (i=0; i<N_T_AVERAGE; i++) temp[i] = 0.0;
first = 0;
}
/* table of pressures */
pressures[i_pressure] = boundary_force/(lengthcontainer + INITYMAX - INITYMIN);
if (RECORD_PRESSURES)
{
for (j=0; j<N_PRESSURES; j++) press[j][i_pressure] = pressure[j];
}
i_pressure++;
if (i_pressure == N_P_AVERAGE) i_pressure = 0;
for (i=0; i<N_P_AVERAGE; i++) meanpressure += pressures[i];
meanpressure = meanpressure/(double)N_P_AVERAGE;
if (RECORD_PRESSURES) for (j=0; j<N_PRESSURES; j++)
{
meanpress[j] = 0.0;
for (i=0; i<N_P_AVERAGE; i++) meanpress[j] += press[j][i];
meanpress[j] = meanpress[j]/(double)N_P_AVERAGE;
}
// if (RECORD_PRESSURES)
// for (j=0; j<N_PRESSURES; j++) meanpress[j] =
//
// for (j=0; j<N_PRESSURES; j++) printf("Mean pressure[%i] = %.5lg\n", j, meanpress[j]);
if (RECORD_PRESSURES)
{
for (j=0; j<N_PRESSURES; j++) if (meanpress[j] > maxpressure) maxpressure = meanpress[j];
printf("Max pressure = %.5lg\n\n", maxpressure);
}
y = YMAX - 0.1;
if (INCREASE_BETA) /* print temperature */
{
logratio = log(beta/BETA)/log(0.5*BETA_FACTOR);
if (logratio > 1.0) logratio = 1.0;
if (BETA_FACTOR > 1.0) hue = PARTICLE_HUE_MAX - (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*logratio;
else hue = PARTICLE_HUE_MIN - (PARTICLE_HUE_MIN - PARTICLE_HUE_MAX)*logratio;
erase_area_hsl_turbo(xbox, y + 0.025, 0.37, 0.05, hue, 0.9, 0.5);
// erase_area_hsl_turbo(xmid + 0.1, y + 0.025, 0.4, 0.05, hue, 0.9, 0.5);
if ((hue < 90)||(hue > 270)) glColor3f(1.0, 1.0, 1.0);
else glColor3f(0.0, 0.0, 0.0);
sprintf(message, "Temperature %.2f", 1.0/beta);
write_text(xtext, y, message);
// write_text(xmidtext, y, message);
// y -= 0.1;
// erase_area_hsl(xxbox, y + 0.025, 0.37, 0.05, 0.0, 0.9, 0.0);
// glColor3f(1.0, 1.0, 1.0);
// sprintf(message, "Pressure %.3f", meanpressure);
// write_text(xxtext, y, message);
}
if (DECREASE_CONTAINER_SIZE) /* print density */
{
density = (double)ncircles/((lengthcontainer)*(INITYMAX - INITYMIN));
erase_area_hsl(xbox, y + 0.025, 0.37, 0.05, 0.0, 0.9, 0.0);
glColor3f(1.0, 1.0, 1.0);
sprintf(message, "Density %.3f", density);
write_text(xtext, y, message);
erase_area_hsl(xmid, y + 0.025, 0.37, 0.05, 0.0, 0.9, 0.0);
glColor3f(1.0, 1.0, 1.0);
sprintf(message, "Temperature %.2f", temperature);
write_text(xmidtext, y, message);
erase_area_hsl(xxbox, y + 0.025, 0.37, 0.05, 0.0, 0.9, 0.0);
glColor3f(1.0, 1.0, 1.0);
sprintf(message, "Pressure %.3f", meanpressure);
write_text(xxtext, y, message);
}
else if (INCREASE_KREPEL) /* print force constant */
{
erase_area_hsl(xbox, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0);
glColor3f(1.0, 1.0, 1.0);
sprintf(message, "Force %.0f", krepel);
write_text(xtext + 0.28, y, message);
}
if (RECORD_PRESSURES)
{
y = FUNNEL_WIDTH + OBSTACLE_RADIUS;
for (i=0; i<N_PRESSURES; i++)
{
phi = DPI*(double)i/(double)N_PRESSURES;
hue = PARTICLE_HUE_MIN + (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*meanpress[i]/MAX_PRESSURE;
if (hue > PARTICLE_HUE_MIN) hue = PARTICLE_HUE_MIN;
if (hue < PARTICLE_HUE_MAX) hue = PARTICLE_HUE_MAX;
hsl_to_rgb_turbo(hue, 0.9, 0.5, rgb);
dphi = DPI/(double)N_PRESSURES;
// x = 0.95*OBSTACLE_RADIUS*cos(phi);
sphi = sin(phi);
if (sphi < 0.0) draw_colored_sector(0.0, y, 0.95*OBSTACLE_RADIUS, OBSTACLE_RADIUS, phi, phi + dphi, rgb, 10);
else draw_colored_sector(0.0, -y, 0.95*OBSTACLE_RADIUS, OBSTACLE_RADIUS, phi, phi + dphi, rgb, 10);
}
glColor3f(1.0, 1.0, 1.0);
for (i=-1; i<2; i++)
{
k = N_PRESSURES/4 + i*N_PRESSURES/9;
phi = DPI*(double)k/(double)N_PRESSURES;
pprint = 0.0;
for (j=-2; j<3; j++) pprint += meanpress[k + j];
sprintf(message, "p = %.0f", pprint*200.0/MAX_PRESSURE);
write_text(0.85*OBSTACLE_RADIUS*cos(phi) - 0.1, -y + 0.85*OBSTACLE_RADIUS*sin(phi), message);
}
}
if (PARTIAL_THERMO_COUPLING)
{
printf("Temperature %i in average: %.3lg\n", i_temp, temperature);
temp[i_temp] = temperature;
i_temp++;
if (i_temp >= N_T_AVERAGE) i_temp = 0;
mean_temp = 0.0;
for (i=0; i<N_T_AVERAGE; i++) mean_temp += temp[i];
mean_temp = mean_temp/N_T_AVERAGE;
hue = PARTICLE_HUE_MIN + 0.5*(PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*mean_temp/PARTICLE_EMAX;
if (hue < PARTICLE_HUE_MAX) hue = PARTICLE_HUE_MAX;
erase_area_hsl_turbo(xbox, y + 0.025, 0.37, 0.05, hue, 0.9, 0.5);
if ((hue < 90)||(hue > 270)) glColor3f(1.0, 1.0, 1.0);
else glColor3f(0.0, 0.0, 0.0);
sprintf(message, "Temperature %.2f", mean_temp);
write_text(xtext, y, message);
}
}
void print_ehrenfest_parameters(t_particle particle[NMAXCIRCLES], double pleft, double pright)
{
char message[100];
int i, j, nleft1 = 0, nleft2 = 0, nright1 = 0, nright2 = 0;
double density, hue, rgb[3], logratio, y, shiftx = 0.3;
static double xleftbox, xlefttext, xmidbox, xmidtext, xrightbox, xrighttext, pressures[500][2], meanpressure[2];
static int first = 1, i_pressure, naverage = 500;
if (first)
{
xleftbox = -1.0;
xlefttext = xleftbox - 0.5;
xrightbox = 1.0;
xrighttext = xrightbox - 0.45;
// xmid = 0.5*(XMIN + XMAX) - 0.1;
// xmidtext = xmid - 0.24;
meanpressure[0] = 0.0;
meanpressure[1] = 0.0;
for (i=0; i<naverage; i++)
{
pressures[i][0] = 0.0;
pressures[i][1] = 0.0;
}
i_pressure = 0;
first = 0;
}
/* table of pressures */
pressures[i_pressure][0] = pleft;
pressures[i_pressure][1] = pright;
i_pressure++;
if (i_pressure == naverage) i_pressure = 0;
for (i=0; i<naverage; i++)
for (j=0; j<2; j++)
meanpressure[j] += pressures[i][j];
for (j=0; j<2; j++) meanpressure[j] = meanpressure[j]/(double)naverage;
for (i = 0; i < ncircles; i++) if (particle[i].active)
{
if (particle[i].xc < -1.0 + EHRENFEST_RADIUS)
{
if (particle[i].type == 0) nleft1++;
else nleft2++;
}
else if (particle[i].xc > 1.0 - EHRENFEST_RADIUS)
{
if (particle[i].type == 0) nright1++;
else nright2++;
}
}
y = YMIN + 0.1;
erase_area_hsl(xleftbox - shiftx, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0);
hsl_to_rgb(310.0, 0.9, 0.5, rgb);
glColor3f(rgb[0], rgb[1], rgb[2]);
sprintf(message, "%i particles", nleft1);
write_text(xlefttext + 0.28 - shiftx, y, message);
erase_area_hsl(xleftbox + shiftx, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0);
hsl_to_rgb(70.0, 0.9, 0.5, rgb);
glColor3f(rgb[0], rgb[1], rgb[2]);
sprintf(message, "%i particles", nleft2);
write_text(xlefttext + 0.28 + shiftx, y, message);
erase_area_hsl(xrightbox - shiftx, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0);
hsl_to_rgb(310.0, 0.9, 0.5, rgb);
glColor3f(rgb[0], rgb[1], rgb[2]);
sprintf(message, "%i particles", nright1);
write_text(xrighttext + 0.28 - shiftx, y, message);
erase_area_hsl(xrightbox + shiftx, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0);
hsl_to_rgb(70.0, 0.9, 0.5, rgb);
glColor3f(rgb[0], rgb[1], rgb[2]);
sprintf(message, "%i particles", nright2);
write_text(xrighttext + 0.28 + shiftx, y, message);
y = YMAX - 0.1;
erase_area_hsl(xleftbox - 0.1, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0);
glColor3f(1.0, 1.0, 1.0);
sprintf(message, "Pressure %.2f", 0.001*meanpressure[0]/(double)ncircles);
write_text(xlefttext + 0.25, y, message);
erase_area_hsl(xrightbox - 0.1, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0);
glColor3f(1.0, 1.0, 1.0);
sprintf(message, "Pressure %.2f", 0.001*meanpressure[1]/(double)ncircles);
write_text(xrighttext + 0.2, y, message);
}
void print_particle_number(int npart)
{
char message[100];
double y = YMAX - 0.1;
static double xleftbox, xlefttext;
static int first = 1;
if (first)
{
xleftbox = XMIN + 0.5;
xlefttext = xleftbox - 0.5;
first = 0;
}
erase_area_hsl(xleftbox, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0);
glColor3f(1.0, 1.0, 1.0);
if (npart > 1) sprintf(message, "%i particles", npart);
else sprintf(message, "%i particle", npart);
write_text(xlefttext + 0.28, y, message);
}
void print_entropy(double entropy[2])
{
char message[100];
double y = YMAX - 0.1, rgb[3];
static double xleftbox, xlefttext, xrightbox, xrighttext;
static int first = 1;
if (first)
{
xleftbox = XMIN + 0.5;
xlefttext = xleftbox - 0.55;
xrightbox = XMAX - 0.39;
xrighttext = xrightbox - 0.55;
first = 0;
}
erase_area_hsl(xleftbox, y + 0.025, 0.35, 0.05, 0.0, 0.9, 0.0);
hsl_to_rgb_turbo(HUE_TYPE1, 0.9, 0.5, rgb);
glColor3f(rgb[0], rgb[1], rgb[2]);
sprintf(message, "Entropy = %.4f", entropy[1]);
write_text(xlefttext + 0.28, y, message);
erase_area_hsl(xrightbox, y + 0.025, 0.35, 0.05, 0.0, 0.9, 0.0);
hsl_to_rgb_turbo(HUE_TYPE0, 0.9, 0.5, rgb);
glColor3f(rgb[0], rgb[1], rgb[2]);
sprintf(message, "Entropy = %.4f", entropy[0]);
write_text(xrighttext + 0.28, y, message);
}
double compute_boundary_force(int j, t_particle particle[NMAXCIRCLES], t_obstacle obstacle[NMAXOBSTACLES],
double xleft, double xright, double *pleft, double *pright, double pressure[N_PRESSURES])
{
int i, k;
double xmin, xmax, ymin, ymax, padding, r, rp, r2, cphi, sphi,
f, fperp = 0.0, x, y, xtube, distance, dx, dy, width, ybin, angle, x1, x2, h, ytop, norm, dleft, dplus, dminus;
/* compute force from fixed obstacles */
if (ADD_FIXED_OBSTACLES) for (i=0; i<nobstacles; i++)
{
x = particle[j].xc - obstacle[i].xc;
y = particle[j].yc - obstacle[i].yc;
distance = module2(x, y);
if (distance < 1.0e-7) distance = 1.0e-7;
cphi = x/distance;
sphi = y/distance;
r2 = obstacle[i].radius + particle[j].radius;
if (distance < r2)
{
f = KSPRING_OBSTACLE*(r2 - distance);
particle[j].fx += f*cphi;
particle[j].fy += f*sphi;
}
}
switch(BOUNDARY_COND){
case (BC_SCREEN):
{
/* add harmonic force outside screen */
if (particle[j].xc > BCXMAX) particle[j].fx -= KSPRING_BOUNDARY*(particle[j].xc - BCXMAX);
else if (particle[j].xc < BCXMIN) particle[j].fx += KSPRING_BOUNDARY*(BCXMIN - particle[j].xc);
if (particle[j].yc > BCYMAX) particle[j].fy -= KSPRING_BOUNDARY*(particle[j].yc - BCYMAX);
else if (particle[j].yc < BCYMIN) particle[j].fy += KSPRING_BOUNDARY*(BCYMIN - particle[j].yc);
return(fperp);
}
case (BC_RECTANGLE):
{
/* add harmonic force outside rectangular box */
padding = MU + 0.01;
xmin = xleft + padding;
xmax = xright - padding;
ymin = BCYMIN + padding;
ymax = BCYMAX - padding;
if (particle[j].xc > xmax)
{
fperp = KSPRING_BOUNDARY*(particle[j].xc - xmax);
particle[j].fx -= fperp;
}
else if (particle[j].xc < xmin)
{
fperp = KSPRING_BOUNDARY*(xmin - particle[j].xc);
particle[j].fx += fperp;
}
if (particle[j].yc > ymax)
{
fperp = KSPRING_BOUNDARY*(particle[j].yc - ymax);
particle[j].fy -= fperp;
}
else if (particle[j].yc < ymin)
{
fperp = KSPRING_BOUNDARY*(ymin - particle[j].yc);
particle[j].fy += fperp;
}
// if (particle[j].xc > xmax) particle[j].fx -= KSPRING_BOUNDARY*(particle[j].xc - xmax);
// else if (particle[j].xc < xmin) particle[j].fx += KSPRING_BOUNDARY*(xmin - particle[j].xc);
// if (particle[j].yc > ymax) particle[j].fy -= KSPRING_BOUNDARY*(particle[j].yc - ymax);
// else if (particle[j].yc < ymin) particle[j].fy += KSPRING_BOUNDARY*(ymin - particle[j].yc);
return(fperp);
}
case (BC_CIRCLE):
{
/* add harmonic force outside screen */
if (particle[j].xc > BCXMAX) particle[j].fx -= KSPRING_BOUNDARY*(particle[j].xc - BCXMAX);
else if (particle[j].xc < BCXMIN) particle[j].fx += KSPRING_BOUNDARY*(BCXMIN - particle[j].xc);
if (particle[j].yc > BCYMAX) particle[j].fy -= KSPRING_BOUNDARY*(particle[j].yc - BCYMAX);
else if (particle[j].yc < BCYMIN) particle[j].fy += KSPRING_BOUNDARY*(BCYMIN - particle[j].yc);
/* add harmonic force from obstacle */
for (i=-2; i<2; i++)
{
x = xleft + (double)i*(OBSXMAX - OBSXMIN);
if (vabs(particle[j].xc - x) < 1.1*OBSTACLE_RADIUS)
{
r = module2(particle[j].xc - x, particle[j].yc);
if (r < 1.0e-5) r = 1.0e-05;
cphi = (particle[j].xc - x)/r;
sphi = particle[j].yc/r;
padding = MU + 0.03;
if (r < OBSTACLE_RADIUS + padding)
{
f = KSPRING_OBSTACLE*(OBSTACLE_RADIUS + padding - r);
particle[j].fx += f*cphi;
particle[j].fy += f*sphi;
}
}
}
return(fperp);
}
case (BC_PERIODIC_CIRCLE):
{
x = xleft;
if (vabs(particle[j].xc - x) < 1.1*OBSTACLE_RADIUS)
{
r = module2(particle[j].xc - x, particle[j].yc);
if (r < 1.0e-5) r = 1.0e-05;
cphi = (particle[j].xc - x)/r;
sphi = particle[j].yc/r;
padding = MU + 0.03;
if (r < OBSTACLE_RADIUS + padding)
{
f = KSPRING_OBSTACLE*(OBSTACLE_RADIUS + padding - r);
particle[j].fx += f*cphi;
particle[j].fy += f*sphi;
}
}
return(f);
}
case (BC_PERIODIC_TRIANGLE):
{
x = xleft;
x1 = x + OBSTACLE_RADIUS;
x2 = x - OBSTACLE_RADIUS;
h = 2.0*OBSTACLE_RADIUS*tanh(APOLY*PID);
padding = MU + 0.03;
// ytop = 0.5*h*(1.0 - (particle[j].xc - x)/OBSTACLE_RADIUS);
if ((vabs(particle[j].xc - x) < OBSTACLE_RADIUS + padding)&&(vabs(particle[j].yc < h + padding)))
{
/* signed distances to side of triangle */
dleft = x2 - particle[j].xc;
norm = module2(h, 2.0*OBSTACLE_RADIUS);
if (particle[j].yc >= 0.0)
{
dplus = (h*particle[j].xc + 2.0*OBSTACLE_RADIUS*particle[j].yc - h*(x+OBSTACLE_RADIUS))/norm;
if ((dleft < padding)&&(dleft > dplus)) /* left side is closer */
{
f = KSPRING_OBSTACLE*(padding - dleft);
particle[j].fx -= f;
}
else if (dplus < padding) /* top side is closer */
{
f = KSPRING_OBSTACLE*(padding - dplus);
particle[j].fx += f*h/norm;
particle[j].fy += 2.0*f*OBSTACLE_RADIUS/norm;
}
}
else
{
dminus = (h*particle[j].xc - 2.0*OBSTACLE_RADIUS*particle[j].yc - h*(x+OBSTACLE_RADIUS))/norm;
if ((dleft < padding)&&(dleft > dminus)) /* left side is closer */
{
f = KSPRING_OBSTACLE*(padding - dleft);
particle[j].fx -= f;
}
else if (dminus < padding) /* bottom side is closer */
{
f = KSPRING_OBSTACLE*(padding - dminus);
particle[j].fx += f*h/norm;
particle[j].fy += -2.0*f*OBSTACLE_RADIUS/norm;
}
}
/* force from tip of triangle */
r = module2(particle[j].xc - x1, particle[j].yc);
if (r < padding)
{
if (r < 1.0e-5) r = 1.0e-05;
cphi = (particle[j].xc - x1)/r;
sphi = particle[j].yc/r;
f = KSPRING_OBSTACLE*(padding - r);
particle[j].fx += f*cphi;
particle[j].fy += f*sphi;
}
}
return(f);
}
case (BC_PERIODIC_FUNNEL):
{
x = xleft;
padding = MU + 0.02;
if (vabs(particle[j].yc) > FUNNEL_WIDTH - padding) for (i=-1; i<2; i+=2)
{
r = module2(particle[j].xc - x, particle[j].yc - (double)i*(FUNNEL_WIDTH + OBSTACLE_RADIUS));
if (r < 1.0e-5) r = 1.0e-05;
cphi = (particle[j].xc - x)/r;
sphi = (particle[j].yc - (double)i*(FUNNEL_WIDTH + OBSTACLE_RADIUS))/r;
if (r < OBSTACLE_RADIUS + padding)
{
f = KSPRING_OBSTACLE*(OBSTACLE_RADIUS + padding - r);
particle[j].fx += f*cphi;
particle[j].fy += f*sphi;
if (RECORD_PRESSURES)
{
angle = argument(cphi, sphi);
if (angle < 0.0) angle += DPI;
k = (int)((double)N_PRESSURES*angle/DPI);
if (k >= N_PRESSURES) k = N_PRESSURES - 1;
pressure[k] += f;
}
}
}
return(f);
}
case (BC_RECTANGLE_LID):
{
r = particle[j].radius;
if (particle[j].yc < BCYMIN + r) particle[j].fy += KSPRING_BOUNDARY*(BCYMIN + r - particle[j].yc);
else if (particle[j].yc > ylid - r)
{
fperp = KSPRING_BOUNDARY*(particle[j].yc - ylid + r);
particle[j].fy -= fperp;
}
if (particle[j].yc < BCYMAX + r)
{
if (particle[j].xc > BCXMAX - r) particle[j].fx -= KSPRING_BOUNDARY*(particle[j].xc - BCXMAX + r);
else if (particle[j].xc < BCXMIN + r) particle[j].fx += KSPRING_BOUNDARY*(BCXMIN + r - particle[j].xc);
}
return(fperp);
}
case (BC_EHRENFEST):
{
rp = particle[j].radius;
xtube = 1.0 - sqrt(EHRENFEST_RADIUS*EHRENFEST_RADIUS - EHRENFEST_WIDTH*EHRENFEST_WIDTH);
distance = 0.0;
/* middle tube */
if (vabs(particle[j].xc) <= xtube)
{
if (particle[j].yc > EHRENFEST_WIDTH - rp)
{
distance = particle[j].yc - EHRENFEST_WIDTH;
particle[j].fy -= KSPRING_BOUNDARY*(distance + rp);
}
else if (particle[j].yc < -EHRENFEST_WIDTH + rp)
{
distance = - EHRENFEST_WIDTH - particle[j].yc;
particle[j].fy += KSPRING_BOUNDARY*(distance + rp);
}
}
/* right container */
else if (particle[j].xc > 0.0)
{
r = module2(particle[j].xc - 1.0, particle[j].yc);
if ((r > EHRENFEST_RADIUS - rp)&&((particle[j].xc > 1.0)||(vabs(particle[j].yc) > EHRENFEST_WIDTH)))
{
cphi = (particle[j].xc - 1.0)/r;
sphi = particle[j].yc/r;
f = KSPRING_BOUNDARY*(EHRENFEST_RADIUS - r - rp);
particle[j].fx += f*cphi;
particle[j].fy += f*sphi;
*pright -= f;
}
}
/* left container */
else
{
r = module2(particle[j].xc + 1.0, particle[j].yc);
if ((r > EHRENFEST_RADIUS - rp)&&((particle[j].xc < -1.0)||(vabs(particle[j].yc) > EHRENFEST_WIDTH)))
{
cphi = (particle[j].xc + 1.0)/r;
sphi = particle[j].yc/r;
f = KSPRING_BOUNDARY*(EHRENFEST_RADIUS - r - rp);
particle[j].fx += f*cphi;
particle[j].fy += f*sphi;
*pleft -= f;
}
}
/* add force from "corners" */
if ((vabs(particle[j].xc) - xtube < rp)&&(vabs(particle[j].yc) - EHRENFEST_WIDTH < rp))
{
for (i=-1; i<=1; i+=2)
for (k=-1; k<=1; k+=2)
{
distance = module2(particle[j].xc - (double)i*xtube, particle[j].yc - (double)k*EHRENFEST_WIDTH);
if (distance < rp)
{
cphi = (particle[j].xc - (double)i*xtube)/distance;
sphi = (particle[j].yc - (double)k*EHRENFEST_WIDTH)/distance;
f = KSPRING_BOUNDARY*(rp - distance);
particle[j].fx += f*cphi;
particle[j].fy += f*sphi;
}
}
}
return(fperp);
}
case (BC_SCREEN_BINS):
{
/* add harmonic force outside screen */
if (particle[j].xc > XMAX) particle[j].fx -= KSPRING_BOUNDARY*(particle[j].xc - XMAX);
else if (particle[j].xc < XMIN) particle[j].fx += KSPRING_BOUNDARY*(XMIN - particle[j].xc);
if (particle[j].yc > YMAX + 10.0*MU) particle[j].fy -= KSPRING_BOUNDARY*(particle[j].yc - YMAX - 10.0*MU);
else if (particle[j].yc < YMIN) particle[j].fy += KSPRING_BOUNDARY*(YMIN - particle[j].yc);
/* force from the bins */
dy = (YMAX - YMIN)/((double)NGRIDX + 3);
dx = dy/cos(PI/6.0);
rp = particle[j].radius;
width = rp + 0.05*dx;
ybin = 2.75*dy;
if (particle[j].yc < YMIN + ybin) for (i=-1; i<=NGRIDX; i++)
{
x = ((double)i - 0.5*(double)NGRIDX + 0.5)*dx;
distance = vabs(particle[j].xc - x);
if (distance < width)
{
if (particle[j].xc > x) particle[j].fx += KSPRING_BOUNDARY*(width - distance);
else particle[j].fx -= KSPRING_BOUNDARY*(width - distance);
}
}
else if (particle[j].yc < YMIN + ybin + particle[j].radius) for (i=-1; i<=NGRIDX; i++)
{
x = ((double)i - 0.5*(double)NGRIDX + 0.5)*dx;
distance = module2(particle[j].xc - x, particle[j].yc - YMIN - ybin);
if (distance < rp)
{
if (distance < 1.0e-8) distance = 1.0e-8;
cphi = (particle[j].xc - x)/distance;
sphi = (particle[j].yc - YMIN - ybin)/distance;
f = KSPRING_BOUNDARY*(rp - distance);
particle[j].fx += f*cphi;
particle[j].fy += f*sphi;
}
}
return(fperp);
}
}
}
void compute_particle_force(int j, double krepel, t_particle particle[NMAXCIRCLES], t_hashgrid hashgrid[HASHX*HASHY])
/* compute force from other particles on particle j */
{
int i0, j0, m0, k, m, q, close;
double fx = 0.0, fy = 0.0, force[2], torque = 0.0, torque_ij, x, y;
particle[j].neighb = 0;
for (k=0; k<particle[j].hash_nneighb; k++)
{
close = compute_repelling_force(j, k, force, &torque_ij, particle, krepel);
fx += force[0];
fy += force[1];
torque += torque_ij;
if (close) particle[j].neighb++;
}
particle[j].fx += fx;
particle[j].fy += fy;
particle[j].torque += torque;
}
int initialize_configuration(t_particle particle[NMAXCIRCLES], t_hashgrid hashgrid[HASHX*HASHY],
t_obstacle obstacle[NMAXOBSTACLES], double px[NMAXCIRCLES], double py[NMAXCIRCLES], double pangle[NMAXCIRCLES])
/* initialize all particles, obstacles, and the hashgrid */
{
int i, j, k, n, tracer_n, nactive = 0;
double x, y, h;
for (i=0; i < ncircles; i++)
{
/* set particle type */
particle[i].type = 0;
if ((TWO_TYPES)&&((double)rand()/RAND_MAX > TPYE_PROPORTION))
{
particle[i].type = 1;
particle[i].radius = MU_B;
}
particle[i].neighb = 0;
particle[i].thermostat = 1;
// particle[i].energy = 0.0;
// y = particle[i].yc;
// if (y >= YMAX) y -= particle[i].radius;
// if (y <= YMIN) y += particle[i].radius;
if (RANDOM_RADIUS) particle[i].radius = particle[i].radius*(0.75 + 0.5*((double)rand()/RAND_MAX));
if (particle[i].type == 0)
{
particle[i].interaction = INTERACTION;
particle[i].eq_dist = EQUILIBRIUM_DIST;
particle[i].spin_range = SPIN_RANGE;
particle[i].spin_freq = SPIN_INTER_FREQUENCY;
particle[i].mass_inv = 1.0/PARTICLE_MASS;
particle[i].inertia_moment_inv = 1.0/PARTICLE_INERTIA_MOMENT;
}
else
{
particle[i].interaction = INTERACTION_B;
particle[i].eq_dist = EQUILIBRIUM_DIST_B;
particle[i].spin_range = SPIN_RANGE_B;
particle[i].spin_freq = SPIN_INTER_FREQUENCY_B;
particle[i].mass_inv = 1.0/PARTICLE_MASS_B;
particle[i].inertia_moment_inv = 1.0/PARTICLE_INERTIA_MOMENT_B;
}
particle[i].vx = V_INITIAL*gaussian();
particle[i].vy = V_INITIAL*gaussian();
particle[i].energy = (particle[i].vx*particle[i].vx + particle[i].vy*particle[i].vy)*particle[i].mass_inv;
px[i] = particle[i].vx;
py[i] = particle[i].vy;
if (ROTATION)
{
particle[i].angle = DPI*(double)rand()/RAND_MAX;
particle[i].omega = OMEGA_INITIAL*gaussian();
if (COUPLE_ANGLE_TO_THERMOSTAT)
particle[i].energy += particle[i].omega*particle[i].omega*particle[i].inertia_moment_inv;
}
else
{
particle[i].angle = 0.0;
particle[i].omega = 0.0;
}
pangle[i] = particle[i].omega;
}
/* initialize dummy values in case particles are added */
for (i=ncircles; i < NMAXCIRCLES; i++)
{
particle[i].type = 0;
particle[i].active = 0;
particle[i].neighb = 0;
particle[i].thermostat = 0;
particle[i].energy = 0.0;
particle[i].mass_inv = 1.0/PARTICLE_MASS;
particle[i].inertia_moment_inv = 1.0/PARTICLE_INERTIA_MOMENT;
particle[i].vx = 0.0;
particle[i].vy = 0.0;
px[i] = 0.0;
py[i] = 0.0;
particle[i].angle = DPI*(double)rand()/RAND_MAX;
particle[i].omega = 0.0;
pangle[i] = 0.0;
particle[i].interaction = INTERACTION;
particle[i].eq_dist = EQUILIBRIUM_DIST;
particle[i].spin_range = SPIN_RANGE;
particle[i].spin_freq = SPIN_INTER_FREQUENCY;
}
/* add particles at the bottom as seed */
if (PART_AT_BOTTOM) for (i=0; i<=NPART_BOTTOM; i++)
{
x = XMIN + (double)i*(XMAX - XMIN)/(double)NPART_BOTTOM;
y = YMIN + 2.0*MU;
add_particle(x, y, 0.0, 0.0, MASS_PART_BOTTOM, 0, particle);
}
if (PART_AT_BOTTOM) for (i=0; i<=NPART_BOTTOM; i++)
{
x = XMIN + (double)i*(XMAX - XMIN)/(double)NPART_BOTTOM;
y = YMIN + 4.0*MU;
add_particle(x, y, 0.0, 0.0, MASS_PART_BOTTOM, 0, particle);
}
/* add larger copies of particles (for Ehrenfest model)*/
if (EHRENFEST_COPY)
{
for (i=0; i < ncircles; i++)
{
n = ncircles + i;
particle[n].xc = -particle[i].xc;
particle[n].yc = particle[i].yc;
particle[n].vx = -0.5*particle[i].vx;
particle[n].vy = 0.5*particle[i].vy;
px[n] = -0.5*px[i];
py[n] = 0.5*py[i];
particle[n].energy = particle[i].energy;
particle[n].radius = 2.0*particle[i].radius;
particle[n].type = 2;
particle[n].mass_inv = 1.25*particle[i].mass_inv;
particle[n].thermostat = 1;
particle[n].interaction = particle[i].interaction;
particle[n].eq_dist = 0.45*particle[i].eq_dist;
if ((double)rand()/RAND_MAX > 0.6) particle[n].active = 1;
}
ncircles *= 2;
}
/* change type of tracer particle */
if (TRACER_PARTICLE)
{
i = 0;
while ((!particle[i].active)||(module2(particle[i].xc, particle[i].yc) > 0.5)) i++;
tracer_n = i;
particle[tracer_n].type = 2;
particle[tracer_n].radius *= 1.5;
particle[tracer_n].mass_inv *= 1.0/TRACER_PARTICLE_MASS;
particle[tracer_n].vx *= 0.1;
particle[tracer_n].vy *= 0.1;
particle[tracer_n].thermostat = 0;
px[tracer_n] *= 0.1;
py[tracer_n] *= 0.1;
}
/* position-dependent particle type */
if (POSITION_DEPENDENT_TYPE) for (i=0; i<ncircles; i++)
if (particle[i].xc < 0)
{
particle[i].type = 2;
particle[i].mass_inv = 1.0/PARTICLE_MASS_B;
particle[i].radius = MU_B;
}
/* inactivate particles in obstacle */
printf("Inactivating particles inside obstacles\n");
if ((BOUNDARY_COND == BC_CIRCLE)||(BOUNDARY_COND == BC_PERIODIC_CIRCLE))
{
for (i=0; i< ncircles; i++)
if ((module2(particle[i].xc - OBSTACLE_XMIN, particle[i].yc) < 1.2*OBSTACLE_RADIUS))
particle[i].active = 0;
}
else if (BOUNDARY_COND == BC_PERIODIC_FUNNEL)
{
for (i=0; i< ncircles; i++)
for (k=-1; k<2; k+=2)
if ((module2(particle[i].xc, particle[i].yc - (double)k*(FUNNEL_WIDTH + OBSTACLE_RADIUS)) < OBSTACLE_RADIUS + 2.0*MU))
{
printf("Inactivating particle at (%.3lg, %.3lg)\n", particle[i].xc, particle[i].yc);
particle[i].active = 0;
}
}
else if (BOUNDARY_COND == BC_PERIODIC_TRIANGLE)
{
h = 2.0*OBSTACLE_RADIUS*tan(APOLY*PID);
for (i=0; i< ncircles; i++)
if ((vabs(particle[i].xc) < OBSTACLE_RADIUS + 2.0*MU)
&&(2.0*OBSTACLE_RADIUS*vabs(particle[i].yc) < h*(OBSTACLE_RADIUS + 2.0*MU - particle[i].xc)))
{
printf("Inactivating particle at (%.3lg, %.3lg)\n", particle[i].xc, particle[i].yc);
particle[i].active = 0;
}
}
else if (BOUNDARY_COND == BC_EHRENFEST)
{
for (i=0; i< ncircles; i++)
if (module2(vabs(particle[i].xc) -1.0, particle[i].yc) > EHRENFEST_RADIUS)
particle[i].active = 0;
}
if (ADD_FIXED_OBSTACLES)
{
for (i=0; i< ncircles; i++) for (j=0; j < nobstacles; j++)
if (module2(particle[i].xc - obstacle[j].xc, particle[i].yc - obstacle[j].yc) < OBSTACLE_RADIUS + particle[i].radius)
particle[i].active = 0;
}
/* count number of active particles */
for (i=0; i< ncircles; i++) nactive += particle[i].active;
printf("%i active particles\n", nactive);
return(nactive);
}
int add_particles(t_particle particle[NMAXCIRCLES], double px[NMAXCIRCLES], double py[NMAXCIRCLES], int nadd_particle)
/* add several particles to the system */
{
// add_particle(XMIN + 0.1, 0.0, 50.0, 0.0, 3.0, 0, particle);
// px[ncircles - 1] = particle[ncircles - 1].vx;
// py[ncircles - 1] = particle[ncircles - 1].vy;
// particle[ncircles - 1].radius = 1.5*MU;
// j = 0;
// while (module2(particle[j].xc,particle[j].yc) > 0.7) j = rand()%ncircles;
// x = particle[j].xc + 2.5*MU;
// y = particle[j].yc;
// x = XMIN + (XMAX - XMIN)*rand()/RAND_MAX;
// y = YMAX + 0.01*rand()/RAND_MAX;
// add_particle(x, y, 0.0, 0.0, 1.0, 0, particle);
// x = XMIN + 0.25*(XMAX - XMIN);
// y = YMAX + 0.01;
// prop = 1.0 - (double)nadd_particle/5.0;
// vx = 100.0*prop;
// add_particle(x, y, vx, -10.0, 5.0*prop, 0, particle);
// particle[ncircles - 1].radius = 10.0*MU*prop;
// particle[ncircles - 1].eq_dist = 2.0;
// particle[ncircles - 1].thermostat = 0;
// px[ncircles - 1] = particle[ncircles - 1].vx;
// py[ncircles - 1] = particle[ncircles - 1].vy;
printf("Adding a particle\n\n");
add_particle(MU*(2.0*rand()/RAND_MAX - 1.0), YMAX + 2.0*MU, 0.0, 0.0, PARTICLE_MASS, 0, particle);
particle[ncircles - 1].radius = MU;
particle[ncircles - 1].eq_dist = EQUILIBRIUM_DIST;
particle[ncircles - 1].thermostat = 0;
px[ncircles - 1] = particle[ncircles - 1].vx;
py[ncircles - 1] = particle[ncircles - 1].vy;
return (nadd_particle + 1);
}
void center_momentum(double p[NMAXCIRCLES])
{
int i;
double ptot = 0.0, pmean;
for (i=0; i<ncircles; i++) ptot += p[i];
pmean = ptot/(double)ncircles;
for (i=0; i<ncircles; i++) p[i] -= pmean;
}
int floor_momentum(double p[NMAXCIRCLES])
{
int i, floor = 0;
double ptot = 0.0, pmean;
for (i=0; i<ncircles; i++)
{
if (p[i] > PMAX)
{
p[i] = PMAX;
floor = 1;
}
else if (p[i] < -PMAX)
{
p[i] = -PMAX;
floor = 1;
}
}
if (floor) printf("Flooring momentum\n");
return (floor);
}
int partial_thermostat_coupling(t_particle particle[NMAXCIRCLES], double xmin)
/* only couple particles with x > xmin to thermostat */
{
int i, nthermo = 0;
for (i=0; i<ncircles; i++)
{
if (particle[i].xc > xmin)
{
particle[i].thermostat = 1;
nthermo++;
}
else particle[i].thermostat = 0;
}
return(nthermo);
}
double compute_mean_energy(t_particle particle[NMAXCIRCLES])
{
int i, nactive = 0;
double total_energy = 0.0;
for (i=0; i<ncircles; i++) if (particle[i].active)
{
total_energy += particle[i].energy;
nactive++;
}
return(total_energy/(double)nactive);
}