778 lines
33 KiB
C
778 lines
33 KiB
C
/*********************************************************************************/
|
|
/* */
|
|
/* Animation of wave equation in a planar domain */
|
|
/* */
|
|
/* N. Berglund, december 2012, may 2021 */
|
|
/* */
|
|
/* UPDATE 24/04: distinction between damping and "elasticity" parameters */
|
|
/* UPDATE 27/04: new billiard shapes, bug in color scheme fixed */
|
|
/* UPDATE 28/04: code made more efficient, with help of Marco Mancini */
|
|
/* */
|
|
/* Feel free to reuse, but if doing so it would be nice to drop a */
|
|
/* line to nils.berglund@univ-orleans.fr - Thanks! */
|
|
/* */
|
|
/* compile with */
|
|
/* gcc -o wave_billiard wave_billiard.c */
|
|
/* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */
|
|
/* */
|
|
/* OMP acceleration may be more effective after executing */
|
|
/* export OMP_NUM_THREADS=2 in the shell before running the program */
|
|
/* */
|
|
/* To make a video, set MOVIE to 1 and create subfolder tif_wave */
|
|
/* It may be possible to increase parameter PAUSE */
|
|
/* */
|
|
/* create movie using */
|
|
/* ffmpeg -i wave.%05d.tif -vcodec libx264 wave.mp4 */
|
|
/* */
|
|
/*********************************************************************************/
|
|
|
|
/*********************************************************************************/
|
|
/* */
|
|
/* NB: The algorithm used to simulate the wave equation is highly paralellizable */
|
|
/* One could make it much faster by using a GPU */
|
|
/* */
|
|
/*********************************************************************************/
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <GL/glut.h>
|
|
#include <GL/glu.h>
|
|
#include <unistd.h>
|
|
#include <sys/types.h>
|
|
#include <tiffio.h> /* Sam Leffler's libtiff library. */
|
|
#include <omp.h>
|
|
|
|
#define MOVIE 0 /* set to 1 to generate movie */
|
|
#define DOUBLE_MOVIE 0 /* set to 1 to produce movies for wave height and energy simultaneously */
|
|
|
|
/* General geometrical parameters */
|
|
|
|
#define WINWIDTH 1920 /* window width */
|
|
#define WINHEIGHT 1000 /* window height */
|
|
// #define NX 1920 /* number of grid points on x axis */
|
|
// #define NY 1000 /* number of grid points on y axis */
|
|
#define NX 3840 /* number of grid points on x axis */
|
|
#define NY 2000 /* number of grid points on y axis */
|
|
|
|
#define XMIN -1.25
|
|
#define XMAX 2.75 /* x interval */
|
|
#define YMIN -1.041666667
|
|
#define YMAX 1.041666667 /* y interval for 9/16 aspect ratio */
|
|
|
|
#define HIGHRES 1 /* set to 1 if resolution of grid is double that of displayed image */
|
|
|
|
// #define WINWIDTH 1280 /* window width */
|
|
// #define WINHEIGHT 720 /* window height */
|
|
//
|
|
// // #define NX 1280 /* number of grid points on x axis */
|
|
// // #define NY 720 /* number of grid points on y axis */
|
|
// #define NX 2560 /* number of grid points on x axis */
|
|
// #define NY 1440 /* number of grid points on y axis */
|
|
//
|
|
// #define XMIN -1.25
|
|
// #define XMAX 2.75 /* x interval */
|
|
// #define YMIN -1.125
|
|
// #define YMAX 1.125 /* y interval for 9/16 aspect ratio */
|
|
|
|
#define JULIA_SCALE 1.0 /* scaling for Julia sets */
|
|
|
|
/* Choice of the billiard table */
|
|
|
|
#define B_DOMAIN 3 /* choice of domain shape, see list in global_pdes.c */
|
|
|
|
#define CIRCLE_PATTERN 201 /* pattern of circles or polygons, see list in global_pdes.c */
|
|
|
|
#define P_PERCOL 0.25 /* probability of having a circle in C_RAND_PERCOL arrangement */
|
|
#define NPOISSON 300 /* number of points for Poisson C_RAND_POISSON arrangement */
|
|
#define RANDOM_POLY_ANGLE 1 /* set to 1 to randomize angle of polygons */
|
|
|
|
#define LAMBDA 0.75 /* parameter controlling the dimensions of domain */
|
|
#define MU 0.2 /* parameter controlling the dimensions of domain */
|
|
#define NPOLY 3 /* number of sides of polygon */
|
|
#define APOLY 0.3333333333333333 /* angle by which to turn polygon, in units of Pi/2 */
|
|
#define MDEPTH 6 /* depth of computation of Menger gasket */
|
|
#define MRATIO 3 /* ratio defining Menger gasket */
|
|
#define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */
|
|
#define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */
|
|
#define FOCI 1 /* set to 1 to draw focal points of ellipse */
|
|
#define NGRIDX 36 /* number of grid point for grid of disks */
|
|
#define NGRIDY 6 /* number of grid point for grid of disks */
|
|
|
|
#define X_SHOOTER -0.2
|
|
#define Y_SHOOTER -0.6
|
|
#define X_TARGET 0.4
|
|
#define Y_TARGET 0.7 /* shooter and target positions in laser fight */
|
|
|
|
#define ISO_XSHIFT_LEFT -2.9
|
|
#define ISO_XSHIFT_RIGHT 1.4
|
|
#define ISO_YSHIFT_LEFT -0.15
|
|
#define ISO_YSHIFT_RIGHT -0.15
|
|
#define ISO_SCALE 0.5 /* coordinates for isospectral billiards */
|
|
|
|
/* You can add more billiard tables by adapting the functions */
|
|
/* xy_in_billiard and draw_billiard below */
|
|
|
|
/* Physical parameters of wave equation */
|
|
|
|
#define TWOSPEEDS 1 /* set to 1 to replace hardcore boundary by medium with different speed */
|
|
#define OSCILLATE_LEFT 1 /* set to 1 to add oscilating boundary condition on the left */
|
|
#define OSCILLATE_TOPBOT 0 /* set to 1 to enforce a planar wave on top and bottom boundary */
|
|
|
|
#define OMEGA 0.005 /* frequency of periodic excitation */
|
|
#define AMPLITUDE 0.8 /* amplitude of periodic excitation */
|
|
#define DAMPING 2.5e-5 /* damping of periodic excitation */
|
|
#define COURANT 0.05 /* Courant number */
|
|
#define COURANTB 0.0375 /* Courant number in medium B */
|
|
// #define COURANTB 0.016363636 /* Courant number in medium B */
|
|
#define GAMMA 0.0 /* damping factor in wave equation */
|
|
#define GAMMAB 0.0 /* damping factor in wave equation */
|
|
#define GAMMA_SIDES 1.0e-4 /* damping factor on boundary */
|
|
#define GAMMA_TOPBOT 1.0e-7 /* damping factor on boundary */
|
|
#define KAPPA 0.0 /* "elasticity" term enforcing oscillations */
|
|
#define KAPPA_SIDES 5.0e-4 /* "elasticity" term on absorbing boundary */
|
|
#define KAPPA_TOPBOT 0.0 /* "elasticity" term on absorbing boundary */
|
|
/* The Courant number is given by c*DT/DX, where DT is the time step and DX the lattice spacing */
|
|
/* The physical damping coefficient is given by GAMMA/(DT)^2 */
|
|
/* Increasing COURANT speeds up the simulation, but decreases accuracy */
|
|
/* For similar wave forms, COURANT^2*GAMMA should be kept constant */
|
|
|
|
#define ADD_OSCILLATING_SOURCE 0 /* set to 1 to add an oscillating wave source */
|
|
#define OSCILLATING_SOURCE_PERIOD 100 /* period of oscillating source */
|
|
|
|
/* Boundary conditions, see list in global_pdes.c */
|
|
|
|
#define B_COND 3
|
|
// #define B_COND 2
|
|
|
|
/* Parameters for length and speed of simulation */
|
|
|
|
#define NSTEPS 2700 /* number of frames of movie */
|
|
// #define NSTEPS 100 /* number of frames of movie */
|
|
#define NVID 30 /* number of iterations between images displayed on screen */
|
|
#define NSEG 1000 /* number of segments of boundary */
|
|
#define INITIAL_TIME 0 /* time after which to start saving frames */
|
|
#define BOUNDARY_WIDTH 1 /* width of billiard boundary */
|
|
|
|
#define PAUSE 200 /* number of frames after which to pause */
|
|
#define PSLEEP 2 /* sleep time during pause */
|
|
#define SLEEP1 1 /* initial sleeping time */
|
|
#define SLEEP2 1 /* final sleeping time */
|
|
#define MID_FRAMES 20 /* number of still frames between parts of two-part movie */
|
|
#define END_FRAMES 100 /* number of still frames at end of movie */
|
|
|
|
/* Parameters of initial condition */
|
|
|
|
#define INITIAL_AMP 0.75 /* amplitude of initial condition */
|
|
#define INITIAL_VARIANCE 0.00025 /* variance of initial condition */
|
|
#define INITIAL_WAVELENGTH 0.015 /* wavelength of initial condition */
|
|
|
|
/* Plot type, see list in global_pdes.c */
|
|
|
|
#define PLOT 0
|
|
// #define PLOT 3
|
|
// #define PLOT 1
|
|
|
|
#define PLOT_B 3 /* plot type for second movie */
|
|
|
|
/* Color schemes */
|
|
|
|
#define COLOR_PALETTE 18 /* Color palette, see list in global_pdes.c */
|
|
#define COLOR_PALETTE_B 13 /* Color palette, see list in global_pdes.c */
|
|
|
|
#define BLACK 1 /* background */
|
|
|
|
#define COLOR_SCHEME 3 /* choice of color scheme, see list in global_pdes.c */
|
|
|
|
#define SCALE 0 /* set to 1 to adjust color scheme to variance of field */
|
|
#define SLOPE 1.0 /* sensitivity of color on wave amplitude */
|
|
#define PHASE_FACTOR 1.0 /* factor in computation of phase in color scheme P_3D_PHASE */
|
|
#define PHASE_SHIFT 0.0 /* shift of phase in color scheme P_3D_PHASE */
|
|
#define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */
|
|
#define E_SCALE 300.0 /* scaling factor for energy representation */
|
|
#define LOG_SCALE 1.0 /* scaling factor for energy log representation */
|
|
#define LOG_SHIFT 1.0 /* shift of colors on log scale */
|
|
#define RESCALE_COLOR_IN_CENTER 0 /* set to 1 to decrease color intentiy in the center (for wave escaping ring) */
|
|
|
|
#define COLORHUE 260 /* initial hue of water color for scheme C_LUM */
|
|
#define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */
|
|
#define LUMMEAN 0.5 /* amplitude of luminosity variation for scheme C_LUM */
|
|
#define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */
|
|
#define HUEMEAN 180.0 /* mean value of hue for color scheme C_HUE */
|
|
#define HUEAMP -180.0 /* amplitude of variation of hue for color scheme C_HUE */
|
|
|
|
#define DRAW_COLOR_SCHEME 1 /* set to 1 to plot the color scheme */
|
|
#define COLORBAR_RANGE 1.0 /* scale of color scheme bar */
|
|
#define COLORBAR_RANGE_B 5.0 /* scale of color scheme bar for 2nd part */
|
|
#define ROTATE_COLOR_SCHEME 0 /* set to 1 to draw color scheme horizontally */
|
|
|
|
#define SAVE_TIME_SERIES 0 /* set to 1 to save wave time series at a point */
|
|
|
|
/* For debugging purposes only */
|
|
#define FLOOR 0 /* set to 1 to limit wave amplitude to VMAX */
|
|
#define VMAX 10.0 /* max value of wave amplitude */
|
|
|
|
#include "global_pdes.c" /* constants and global variables */
|
|
#include "sub_wave.c" /* common functions for wave_billiard, heat and schrodinger */
|
|
#include "wave_common.c" /* common functions for wave_billiard, wave_comparison, etc */
|
|
|
|
FILE *time_series_left, *time_series_right;
|
|
|
|
double courant2, courantb2; /* Courant parameters squared */
|
|
|
|
/*********************/
|
|
/* animation part */
|
|
/*********************/
|
|
|
|
|
|
|
|
void evolve_wave_half(double *phi_in[NX], double *psi_in[NX], double *phi_out[NX], double *psi_out[NX],
|
|
short int *xy_in[NX])
|
|
/* time step of field evolution */
|
|
/* phi is value of field at time t, psi at time t-1 */
|
|
/* this version of the function has been rewritten in order to minimize the number of if-branches */
|
|
{
|
|
int i, j, iplus, iminus, jplus, jminus;
|
|
double delta, x, y, c, cc, gamma;
|
|
static long time = 0;
|
|
static double tc[NX][NY], tcc[NX][NY], tgamma[NX][NY];
|
|
static short int first = 1;
|
|
|
|
time++;
|
|
|
|
/* initialize tables with wave speeds and dissipation */
|
|
if (first)
|
|
{
|
|
for (i=0; i<NX; i++){
|
|
for (j=0; j<NY; j++){
|
|
if (xy_in[i][j] != 0)
|
|
{
|
|
tc[i][j] = COURANT;
|
|
tcc[i][j] = courant2;
|
|
if (xy_in[i][j] == 1) tgamma[i][j] = GAMMA;
|
|
else tgamma[i][j] = GAMMAB;
|
|
}
|
|
else if (TWOSPEEDS)
|
|
{
|
|
tc[i][j] = COURANTB;
|
|
tcc[i][j] = courantb2;
|
|
tgamma[i][j] = GAMMAB;
|
|
}
|
|
}
|
|
}
|
|
first = 0;
|
|
}
|
|
|
|
#pragma omp parallel for private(i,j,iplus,iminus,jplus,jminus,delta,x,y)
|
|
/* evolution in the bulk */
|
|
for (i=1; i<NX-1; i++){
|
|
for (j=1; j<NY-1; j++){
|
|
if ((TWOSPEEDS)||(xy_in[i][j] != 0)){
|
|
x = phi_in[i][j];
|
|
y = psi_in[i][j];
|
|
|
|
/* discretized Laplacian */
|
|
delta = phi_in[i+1][j] + phi_in[i-1][j] + phi_in[i][j+1] + phi_in[i][j-1] - 4.0*x;
|
|
|
|
/* evolve phi */
|
|
phi_out[i][j] = -y + 2*x + tcc[i][j]*delta - KAPPA*x - tgamma[i][j]*(x-y);
|
|
psi_out[i][j] = x;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* left boundary */
|
|
if (OSCILLATE_LEFT) for (j=1; j<NY-1; j++) phi_out[0][j] = AMPLITUDE*cos((double)time*OMEGA)*exp(-(double)time*DAMPING);
|
|
else for (j=1; j<NY-1; j++){
|
|
if ((TWOSPEEDS)||(xy_in[0][j] != 0)){
|
|
x = phi_in[0][j];
|
|
y = psi_in[0][j];
|
|
|
|
switch (B_COND) {
|
|
case (BC_DIRICHLET):
|
|
{
|
|
delta = phi_in[1][j] + phi_in[0][j+1] + phi_in[0][j-1] - 3.0*x;
|
|
phi_out[0][j] = -y + 2*x + tcc[0][j]*delta - KAPPA*x - tgamma[0][j]*(x-y);
|
|
break;
|
|
}
|
|
case (BC_PERIODIC):
|
|
{
|
|
delta = phi_in[1][j] + phi_in[NX-1][j] + phi_in[0][j+1] + phi_in[0][j-1] - 4.0*x;
|
|
phi_out[0][j] = -y + 2*x + tcc[0][j]*delta - KAPPA*x - tgamma[0][j]*(x-y);
|
|
break;
|
|
}
|
|
case (BC_ABSORBING):
|
|
{
|
|
delta = phi_in[1][j] + phi_in[0][j+1] + phi_in[0][j-1] - 3.0*x;
|
|
phi_out[0][j] = x - tc[0][j]*(x - phi_in[1][j]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
|
|
break;
|
|
}
|
|
case (BC_VPER_HABS):
|
|
{
|
|
delta = phi_in[1][j] + phi_in[0][j+1] + phi_in[0][j-1] - 3.0*x;
|
|
phi_out[0][j] = x - tc[0][j]*(x - phi_in[1][j]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
|
|
break;
|
|
}
|
|
}
|
|
psi_out[0][j] = x;
|
|
}
|
|
}
|
|
|
|
/* right boundary */
|
|
for (j=1; j<NY-1; j++){
|
|
if ((TWOSPEEDS)||(xy_in[NX-1][j] != 0)){
|
|
x = phi_in[NX-1][j];
|
|
y = psi_in[NX-1][j];
|
|
|
|
switch (B_COND) {
|
|
case (BC_DIRICHLET):
|
|
{
|
|
delta = phi_in[NX-2][j] + phi_in[NX-1][j+1] + phi_in[NX-1][j-1] - 3.0*x;
|
|
phi_out[NX-1][j] = -y + 2*x + tcc[NX-1][j]*delta - KAPPA*x - tgamma[NX-1][j]*(x-y);
|
|
break;
|
|
}
|
|
case (BC_PERIODIC):
|
|
{
|
|
delta = phi_in[NX-2][j] + phi_in[0][j] + phi_in[NX-1][j+1] + phi_in[NX-1][j-1] - 4.0*x;
|
|
phi_out[NX-1][j] = -y + 2*x + tcc[NX-1][j]*delta - KAPPA*x - tgamma[NX-1][j]*(x-y);
|
|
break;
|
|
}
|
|
case (BC_ABSORBING):
|
|
{
|
|
delta = phi_in[NX-2][j] + phi_in[NX-1][j+1] + phi_in[NX-1][j-1] - 3.0*x;
|
|
phi_out[NX-1][j] = x - tc[NX-1][j]*(x - phi_in[NX-2][j]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
|
|
break;
|
|
}
|
|
case (BC_VPER_HABS):
|
|
{
|
|
delta = phi_in[NX-2][j] + phi_in[NX-1][j+1] + phi_in[NX-1][j-1] - 3.0*x;
|
|
phi_out[NX-1][j] = x - tc[NX-1][j]*(x - phi_in[NX-2][j]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
|
|
break;
|
|
}
|
|
}
|
|
psi_out[NX-1][j] = x;
|
|
}
|
|
}
|
|
|
|
/* top boundary */
|
|
for (i=0; i<NX; i++){
|
|
if ((TWOSPEEDS)||(xy_in[i][NY-1] != 0)){
|
|
x = phi_in[i][NY-1];
|
|
y = psi_in[i][NY-1];
|
|
|
|
switch (B_COND) {
|
|
case (BC_DIRICHLET):
|
|
{
|
|
iplus = i+1; if (iplus == NX) iplus = NX-1;
|
|
iminus = i-1; if (iminus == -1) iminus = 0;
|
|
|
|
delta = phi_in[iplus][NY-1] + phi_in[iminus][NY-1] + phi_in[i][NY-2] - 3.0*x;
|
|
phi_out[i][NY-1] = -y + 2*x + tcc[i][NY-1]*delta - KAPPA*x - tgamma[i][NY-1]*(x-y);
|
|
break;
|
|
}
|
|
case (BC_PERIODIC):
|
|
{
|
|
iplus = (i+1) % NX;
|
|
iminus = (i-1) % NX;
|
|
if (iminus < 0) iminus += NX;
|
|
|
|
delta = phi_in[iplus][NY-1] + phi_in[iminus][NY-1] + phi_in[i][NY-2] + phi_in[i][0] - 4.0*x;
|
|
phi_out[i][NY-1] = -y + 2*x + tcc[i][NY-1]*delta - KAPPA*x - tgamma[i][NY-1]*(x-y);
|
|
break;
|
|
}
|
|
case (BC_ABSORBING):
|
|
{
|
|
iplus = (i+1); if (iplus == NX) iplus = NX-1;
|
|
iminus = (i-1); if (iminus == -1) iminus = 0;
|
|
|
|
delta = phi_in[iplus][NY-1] + phi_in[iminus][NY-1] + phi_in[i][NY-2] - 3.0*x;
|
|
phi_out[i][NY-1] = x - tc[i][NY-1]*(x - phi_in[i][NY-2]) - KAPPA_TOPBOT*x - GAMMA_TOPBOT*(x-y);
|
|
break;
|
|
}
|
|
case (BC_VPER_HABS):
|
|
{
|
|
iplus = (i+1); if (iplus == NX) iplus = NX-1;
|
|
iminus = (i-1); if (iminus == -1) iminus = 0;
|
|
|
|
delta = phi_in[iplus][NY-1] + phi_in[iminus][NY-1] + phi_in[i][NY-2] + phi_in[i][0] - 4.0*x;
|
|
if (i==0) phi_out[0][NY-1] = x - tc[0][NY-1]*(x - phi_in[1][NY-1]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
|
|
else phi_out[i][NY-1] = -y + 2*x + tcc[i][NY-1]*delta - KAPPA*x - tgamma[i][NY-1]*(x-y);
|
|
break;
|
|
}
|
|
}
|
|
psi_out[i][NY-1] = x;
|
|
}
|
|
}
|
|
|
|
/* bottom boundary */
|
|
for (i=0; i<NX; i++){
|
|
if ((TWOSPEEDS)||(xy_in[i][0] != 0)){
|
|
x = phi_in[i][0];
|
|
y = psi_in[i][0];
|
|
|
|
switch (B_COND) {
|
|
case (BC_DIRICHLET):
|
|
{
|
|
iplus = i+1; if (iplus == NX) iplus = NX-1;
|
|
iminus = i-1; if (iminus == -1) iminus = 0;
|
|
|
|
delta = phi_in[iplus][0] + phi_in[iminus][0] + phi_in[i][1] - 3.0*x;
|
|
phi_out[i][0] = -y + 2*x + tcc[i][0]*delta - KAPPA*x - tgamma[i][0]*(x-y);
|
|
break;
|
|
}
|
|
case (BC_PERIODIC):
|
|
{
|
|
iplus = (i+1) % NX;
|
|
iminus = (i-1) % NX;
|
|
if (iminus < 0) iminus += NX;
|
|
|
|
delta = phi_in[iplus][0] + phi_in[iminus][0] + phi_in[i][1] + phi_in[i][NY-1] - 4.0*x;
|
|
phi_out[i][0] = -y + 2*x + tcc[i][0]*delta - KAPPA*x - tgamma[i][0]*(x-y);
|
|
break;
|
|
}
|
|
case (BC_ABSORBING):
|
|
{
|
|
iplus = (i+1); if (iplus == NX) iplus = NX-1;
|
|
iminus = (i-1); if (iminus == -1) iminus = 0;
|
|
|
|
delta = phi_in[iplus][0] + phi_in[iminus][0] + phi_in[i][1] - 3.0*x;
|
|
phi_out[i][0] = x - tc[i][0]*(x - phi_in[i][1]) - KAPPA_TOPBOT*x - GAMMA_TOPBOT*(x-y);
|
|
break;
|
|
}
|
|
case (BC_VPER_HABS):
|
|
{
|
|
iplus = (i+1); if (iplus == NX) iplus = NX-1;
|
|
iminus = (i-1); if (iminus == -1) iminus = 0;
|
|
|
|
delta = phi_in[iplus][0] + phi_in[iminus][0] + phi_in[i][1] + phi_in[i][NY-1] - 4.0*x;
|
|
if (i==0) phi_out[0][0] = x - tc[0][0]*(x - phi_in[1][0]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y);
|
|
else phi_out[i][0] = -y + 2*x + tcc[i][0]*delta - KAPPA*x - tgamma[i][0]*(x-y);
|
|
break;
|
|
}
|
|
}
|
|
psi_out[i][0] = x;
|
|
}
|
|
}
|
|
|
|
/* add oscillating boundary condition on the left corners */
|
|
if (OSCILLATE_LEFT)
|
|
{
|
|
phi_out[0][0] = AMPLITUDE*cos((double)time*OMEGA)*exp(-(double)time*DAMPING);
|
|
phi_out[0][NY-1] = AMPLITUDE*cos((double)time*OMEGA)*exp(-(double)time*DAMPING);
|
|
}
|
|
|
|
/* for debugging purposes/if there is a risk of blow-up */
|
|
if (FLOOR) for (i=0; i<NX; i++){
|
|
for (j=0; j<NY; j++){
|
|
if (xy_in[i][j] != 0)
|
|
{
|
|
if (phi_out[i][j] > VMAX) phi_out[i][j] = VMAX;
|
|
if (phi_out[i][j] < -VMAX) phi_out[i][j] = -VMAX;
|
|
if (psi_out[i][j] > VMAX) psi_out[i][j] = VMAX;
|
|
if (psi_out[i][j] < -VMAX) psi_out[i][j] = -VMAX;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void evolve_wave(double *phi[NX], double *psi[NX], double *phi_tmp[NX], double *psi_tmp[NX], short int *xy_in[NX])
|
|
/* time step of field evolution */
|
|
/* phi is value of field at time t, psi at time t-1 */
|
|
{
|
|
evolve_wave_half(phi, psi, phi_tmp, psi_tmp, xy_in);
|
|
evolve_wave_half(phi_tmp, psi_tmp, phi, psi, xy_in);
|
|
}
|
|
|
|
|
|
void draw_color_bar(int plot, double range)
|
|
{
|
|
if (ROTATE_COLOR_SCHEME) draw_color_scheme(-1.0, -0.8, XMAX - 0.1, -1.0, plot, -range, range);
|
|
else draw_color_scheme(XMAX - 0.3, YMIN + 0.1, XMAX - 0.1, YMAX - 0.1, plot, -range, range);
|
|
// else draw_color_scheme(1.7, YMIN + 0.25, 1.9, YMAX - 0.25, plot, -range, range);
|
|
}
|
|
|
|
void draw_color_bar_palette(int plot, double range, int palette)
|
|
{
|
|
if (ROTATE_COLOR_SCHEME) draw_color_scheme_palette(-1.0, -0.8, XMAX - 0.1, -1.0, plot, -range, range, palette);
|
|
else draw_color_scheme_palette(XMAX - 0.3, YMIN + 0.1, XMAX - 0.1, YMAX - 0.1, plot, -range, range, palette);
|
|
}
|
|
|
|
void animation()
|
|
{
|
|
double time, scale, ratio, startleft[2], startright[2], sign, r2, xy[2];
|
|
double *phi[NX], *psi[NX], *phi_tmp[NX], *psi_tmp[NX], *total_energy[NX], *color_scale[NX];
|
|
short int *xy_in[NX];
|
|
int i, j, s, sample_left[2], sample_right[2], period = 0;
|
|
static int counter = 0;
|
|
long int wave_value;
|
|
|
|
if (SAVE_TIME_SERIES)
|
|
{
|
|
time_series_left = fopen("wave_left.dat", "w");
|
|
time_series_right = fopen("wave_right.dat", "w");
|
|
}
|
|
|
|
/* Since NX and NY are big, it seemed wiser to use some memory allocation here */
|
|
for (i=0; i<NX; i++)
|
|
{
|
|
phi[i] = (double *)malloc(NY*sizeof(double));
|
|
psi[i] = (double *)malloc(NY*sizeof(double));
|
|
phi_tmp[i] = (double *)malloc(NY*sizeof(double));
|
|
psi_tmp[i] = (double *)malloc(NY*sizeof(double));
|
|
total_energy[i] = (double *)malloc(NY*sizeof(double));
|
|
xy_in[i] = (short int *)malloc(NY*sizeof(short int));
|
|
color_scale[i] = (double *)malloc(NY*sizeof(double));
|
|
}
|
|
|
|
/* initialise positions and radii of circles */
|
|
if ((B_DOMAIN == D_CIRCLES)||(B_DOMAIN == D_CIRCLES_IN_RECT)) init_circle_config(circles);
|
|
else if (B_DOMAIN == D_POLYGONS) init_polygon_config(polygons);
|
|
printf("Polygons initialized\n");
|
|
|
|
/* initialise polyline for von Koch and similar domains */
|
|
npolyline = init_polyline(MDEPTH, polyline);
|
|
for (i=0; i<npolyline; i++) printf("vertex %i: (%.3f, %.3f)\n", i, polyline[i].x, polyline[i].y);
|
|
|
|
courant2 = COURANT*COURANT;
|
|
courantb2 = COURANTB*COURANTB;
|
|
|
|
/* initialize color scale, for option RESCALE_COLOR_IN_CENTER */
|
|
if (RESCALE_COLOR_IN_CENTER)
|
|
{
|
|
for (i=0; i<NX; i++)
|
|
for (j=0; j<NY; j++)
|
|
{
|
|
ij_to_xy(i, j, xy);
|
|
r2 = xy[0]*xy[0] + xy[1]*xy[1];
|
|
color_scale[i][j] = 1.0 - exp(-4.0*r2/LAMBDA*LAMBDA);
|
|
}
|
|
}
|
|
|
|
/* initialize wave with a drop at one point, zero elsewhere */
|
|
// init_circular_wave(0.0, -LAMBDA, phi, psi, xy_in);
|
|
|
|
/* initialize total energy table */
|
|
if ((PLOT == P_MEAN_ENERGY)||(PLOT_B == P_MEAN_ENERGY)||(PLOT == P_LOG_MEAN_ENERGY)||(PLOT_B == P_LOG_MEAN_ENERGY))
|
|
for (i=0; i<NX; i++)
|
|
for (j=0; j<NY; j++)
|
|
total_energy[i][j] = 0.0;
|
|
|
|
ratio = (XMAX - XMIN)/8.4; /* for Tokarsky billiard */
|
|
|
|
// isospectral_initial_point(0.2, 0.0, startleft, startright); /* for isospectral billiards */
|
|
// homophonic_initial_point(0.5, -0.25, 1.5, -0.25, startleft, startright);
|
|
// homophonic_initial_point(0.5, -0.25, 1.5, -0.25, startleft, startright);
|
|
// printf("xleft = (%.3f, %.3f) xright = (%.3f, %.3f)\n", startleft[0], startleft[1], startright[0], startright[1]);
|
|
|
|
// xy_to_ij(startleft[0], startleft[1], sample_left);
|
|
// xy_to_ij(startright[0], startright[1], sample_right);
|
|
// printf("xleft = (%.3f, %.3f) xright = (%.3f, %.3f)\n", xin_left, yin_left, xin_right, yin_right);
|
|
|
|
init_wave_flat(phi, psi, xy_in);
|
|
|
|
// init_wave_plus(LAMBDA - 0.3*MU, 0.5*MU, phi, psi, xy_in);
|
|
// init_wave(LAMBDA - 0.3*MU, 0.5*MU, phi, psi, xy_in);
|
|
// init_circular_wave(X_SHOOTER, Y_SHOOTER, phi, psi, xy_in);
|
|
// printf("Initializing wave\n");
|
|
// init_circular_wave(-0.5, 0.0, phi, psi, xy_in);
|
|
// printf("Wave initialized\n");
|
|
|
|
|
|
// init_circular_wave(0.6*cos((double)(period)*DPI/3.0), 0.6*sin((double)(period)*DPI/3.0), phi, psi, xy_in);
|
|
// period++;
|
|
// for (i=0; i<3; i++)
|
|
// {
|
|
// add_circular_wave(-1.0, 0.6*cos(PID + (double)(i)*DPI/3.0), 0.6*sin(PID + (double)(i)*DPI/3.0), phi, psi, xy_in);
|
|
// }
|
|
// add_circular_wave(-1.0, 0.0, LAMBDA, phi, psi, xy_in);
|
|
// add_circular_wave(1.0, -LAMBDA, 0.0, phi, psi, xy_in);
|
|
// add_circular_wave(-1.0, 0.0, -LAMBDA, phi, psi, xy_in);
|
|
|
|
// init_circular_wave_xplusminus(startleft[0], startleft[1], startright[0], startright[1], phi, psi, xy_in);
|
|
|
|
// init_circular_wave_xplusminus(-0.9, 0.0, 0.81, 0.0, phi, psi, xy_in);
|
|
// init_circular_wave(-2.0*ratio, 0.0, phi, psi, xy_in);
|
|
// init_planar_wave(XMIN + 0.015, 0.0, phi, psi, xy_in);
|
|
// init_planar_wave(XMIN + 0.02, 0.0, phi, psi, xy_in);
|
|
// init_planar_wave(XMIN + 0.5, 0.0, phi, psi, xy_in);
|
|
// init_wave(-1.5, 0.0, phi, psi, xy_in);
|
|
// init_wave(0.0, 0.0, phi, psi, xy_in);
|
|
|
|
/* add a drop at another point */
|
|
// add_drop_to_wave(1.0, 0.7, 0.0, phi, psi);
|
|
// add_drop_to_wave(1.0, -0.7, 0.0, phi, psi);
|
|
// add_drop_to_wave(1.0, 0.0, -0.7, phi, psi);
|
|
|
|
blank();
|
|
glColor3f(0.0, 0.0, 0.0);
|
|
// draw_wave(phi, psi, xy_in, 1.0, 0, PLOT);
|
|
if (HIGHRES) draw_wave_highres_palette(2, phi, psi, total_energy, xy_in, 1.0, 0, PLOT, COLOR_PALETTE);
|
|
else draw_wave_epalette(phi, psi, total_energy, color_scale, xy_in, 1.0, 0, PLOT, COLOR_PALETTE);
|
|
|
|
draw_billiard();
|
|
|
|
|
|
if (DRAW_COLOR_SCHEME) draw_color_bar_palette(PLOT, COLORBAR_RANGE, COLOR_PALETTE);
|
|
|
|
glutSwapBuffers();
|
|
|
|
|
|
|
|
sleep(SLEEP1);
|
|
|
|
for (i=0; i<=INITIAL_TIME + NSTEPS; i++)
|
|
{
|
|
//printf("%d\n",i);
|
|
/* compute the variance of the field to adjust color scheme */
|
|
/* the color depends on the field divided by sqrt(1 + variance) */
|
|
if (SCALE)
|
|
{
|
|
scale = sqrt(1.0 + compute_variance(phi,psi, xy_in));
|
|
// printf("Scaling factor: %5lg\n", scale);
|
|
}
|
|
else scale = 1.0;
|
|
|
|
// draw_wave(phi, psi, xy_in, scale, i, PLOT);
|
|
if (HIGHRES) draw_wave_highres_palette(2, phi, psi, total_energy, xy_in, scale, i, PLOT, COLOR_PALETTE);
|
|
else draw_wave_epalette(phi, psi, total_energy, color_scale, xy_in, scale, i, PLOT, COLOR_PALETTE);
|
|
for (j=0; j<NVID; j++)
|
|
{
|
|
evolve_wave(phi, psi, phi_tmp, psi_tmp, xy_in);
|
|
if (SAVE_TIME_SERIES)
|
|
{
|
|
wave_value = (long int)(phi[sample_left[0]][sample_left[1]]*1.0e16);
|
|
fprintf(time_series_left, "%019ld\n", wave_value);
|
|
wave_value = (long int)(phi[sample_right[0]][sample_right[1]]*1.0e16);
|
|
fprintf(time_series_right, "%019ld\n", wave_value);
|
|
if ((j == 0)&&(i%10 == 0)) printf("Frame %i of %i\n", i, NSTEPS);
|
|
// fprintf(time_series_right, "%.15f\n", phi[sample_right[0]][sample_right[1]]);
|
|
}
|
|
// if (i % 10 == 9) oscillate_linear_wave(0.2*scale, 0.15*(double)(i*NVID + j), -1.5, YMIN, -1.5, YMAX, phi, psi);
|
|
}
|
|
|
|
draw_billiard();
|
|
|
|
if (DRAW_COLOR_SCHEME) draw_color_bar_palette(PLOT, COLORBAR_RANGE, COLOR_PALETTE);
|
|
|
|
/* add oscillating waves */
|
|
if ((ADD_OSCILLATING_SOURCE)&&(i%OSCILLATING_SOURCE_PERIOD == OSCILLATING_SOURCE_PERIOD - 1))
|
|
{
|
|
// add_circular_wave(1.0, -1.5*LAMBDA, 0.0, phi, psi, xy_in);
|
|
add_circular_wave(-1.0, 0.6*cos((double)(period)*DPI/3.0), 0.6*sin((double)(period)*DPI/3.0), phi, psi, xy_in);
|
|
period++;
|
|
}
|
|
|
|
glutSwapBuffers();
|
|
|
|
if (MOVIE)
|
|
{
|
|
if (i >= INITIAL_TIME) save_frame();
|
|
else printf("Initial phase time %i of %i\n", i, INITIAL_TIME);
|
|
|
|
if ((i >= INITIAL_TIME)&&(DOUBLE_MOVIE))
|
|
{
|
|
// draw_wave(phi, psi, xy_in, scale, i, PLOT_B);
|
|
if (HIGHRES) draw_wave_highres_palette(2, phi, psi, total_energy, xy_in, scale, i, PLOT_B, COLOR_PALETTE_B);
|
|
else draw_wave_epalette(phi, psi, total_energy, color_scale, xy_in, scale, i, PLOT_B, COLOR_PALETTE_B);
|
|
draw_billiard();
|
|
if (DRAW_COLOR_SCHEME) draw_color_bar_palette(PLOT_B, COLORBAR_RANGE_B, COLOR_PALETTE_B);
|
|
glutSwapBuffers();
|
|
save_frame_counter(NSTEPS + MID_FRAMES + 1 + counter);
|
|
// save_frame_counter(NSTEPS + 21 + counter);
|
|
counter++;
|
|
}
|
|
|
|
/* it seems that saving too many files too fast can cause trouble with the file system */
|
|
/* so this is to make a pause from time to time - parameter PAUSE may need adjusting */
|
|
if (i % PAUSE == PAUSE - 1)
|
|
{
|
|
printf("Making a short pause\n");
|
|
sleep(PSLEEP);
|
|
s = system("mv wave*.tif tif_wave/");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (MOVIE)
|
|
{
|
|
if (DOUBLE_MOVIE)
|
|
{
|
|
// draw_wave(phi, psi, xy_in, scale, i, PLOT);
|
|
if (HIGHRES) draw_wave_highres_palette(2, phi, psi, total_energy, xy_in, scale, NSTEPS, PLOT, COLOR_PALETTE);
|
|
else draw_wave_epalette(phi, psi, total_energy, color_scale, xy_in, scale, NSTEPS, PLOT, COLOR_PALETTE);
|
|
draw_billiard();
|
|
if (DRAW_COLOR_SCHEME) draw_color_bar_palette(PLOT, COLORBAR_RANGE, COLOR_PALETTE);
|
|
glutSwapBuffers();
|
|
}
|
|
for (i=0; i<MID_FRAMES; i++) save_frame();
|
|
if (DOUBLE_MOVIE)
|
|
{
|
|
// draw_wave(phi, psi, xy_in, scale, i, PLOT_B);
|
|
if (HIGHRES) draw_wave_highres_palette(2, phi, psi, total_energy, xy_in, scale, NSTEPS, PLOT_B, COLOR_PALETTE_B);
|
|
else draw_wave_epalette(phi, psi, total_energy, color_scale, xy_in, scale, NSTEPS, PLOT_B, COLOR_PALETTE_B);
|
|
draw_billiard();
|
|
if (DRAW_COLOR_SCHEME) draw_color_bar_palette(PLOT_B, COLORBAR_RANGE_B, COLOR_PALETTE_B);
|
|
glutSwapBuffers();
|
|
}
|
|
for (i=0; i<END_FRAMES; i++) save_frame_counter(NSTEPS + MID_FRAMES + 1 + counter + i);
|
|
|
|
s = system("mv wave*.tif tif_wave/");
|
|
}
|
|
for (i=0; i<NX; i++)
|
|
{
|
|
free(phi[i]);
|
|
free(psi[i]);
|
|
free(phi_tmp[i]);
|
|
free(psi_tmp[i]);
|
|
free(total_energy[i]);
|
|
free(xy_in[i]);
|
|
free(color_scale[i]);
|
|
}
|
|
|
|
if (SAVE_TIME_SERIES)
|
|
{
|
|
fclose(time_series_left);
|
|
fclose(time_series_right);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
void display(void)
|
|
{
|
|
glPushMatrix();
|
|
|
|
blank();
|
|
glutSwapBuffers();
|
|
blank();
|
|
glutSwapBuffers();
|
|
|
|
animation();
|
|
sleep(SLEEP2);
|
|
|
|
glPopMatrix();
|
|
|
|
glutDestroyWindow(glutGetWindow());
|
|
|
|
}
|
|
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
glutInit(&argc, argv);
|
|
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
|
|
glutInitWindowSize(WINWIDTH,WINHEIGHT);
|
|
glutCreateWindow("Wave equation in a planar domain");
|
|
|
|
init();
|
|
|
|
glutDisplayFunc(display);
|
|
|
|
glutMainLoop();
|
|
|
|
return 0;
|
|
}
|
|
|