YouTube-simulations/global_3d.c

122 lines
8.3 KiB
C

/* global variables and definitions used by sub_wave_3d.c */
/* plot types used by wave_3d */
#define P_3D_AMPLITUDE 101 /* height/color depends on amplitude - DEPRECATED, instead use set SHADE_3D to 0 */
#define P_3D_ANGLE 102 /* height/color depends on angle with fixed direction - TODO */
#define P_3D_AMP_ANGLE 103 /* height/color depends on amplitude, luminosity depends on angle */
#define P_3D_ENERGY 104 /* height/color depends on energy, luminosity depends on angle */
#define P_3D_LOG_ENERGY 105 /* height/color depends on logarithm of energy, luminosity depends on angle */
#define P_3D_TOTAL_ENERGY 106 /* height/color depends on total energy over time, luminosity depends on angle */
#define P_3D_LOG_TOTAL_ENERGY 107 /* height/color depends on log on total energy over time, luminosity depends on angle */
#define P_3D_MEAN_ENERGY 108 /* height/color depends on energy averaged over time, luminosity depends on angle */
#define P_3D_LOG_MEAN_ENERGY 109 /* height/color depends on log on energy averaged over time, luminosity depends on angle */
#define P_3D_PHASE 111 /* phase of wave */
#define P_3D_FLUX_INTENSITY 112 /* energy flux intensity */
#define P_3D_FLUX_DIRECTION 113 /* energy flux direction */
/* Choice of simulated reaction-diffusion equation in rde.c */
#define E_HEAT 0 /* heat equation */
#define E_ALLEN_CAHN 1 /* Allen-Cahn equation */
#define E_CAHN_HILLIARD 2 /* Cahn-Hilliard equation */
#define E_FHN 3 /* FitzHugh-Nagumo equation */
#define E_RPS 4 /* rock-paper-scissors equation */
#define E_RPSLZ 41 /* rock-paper-scissors-lizard-Spock equation */
#define E_SCHRODINGER 5 /* Schrodinger equation */
#define E_EULER_INCOMP 6 /* incompressible Euler equation */
#define E_EULER_COMP 7 /* compressible Euler equation */
/* Choice of potential */
#define POT_HARMONIC 1 /* harmonic oscillator */
#define POT_COULOMB 2 /* Coulomb (1/r) potential */
#define POT_PERIODIC 3 /* periodic potential */
#define POT_DOUBLE_COULOMB 4 /* sum of Coulomb potentials located at focal points of ellipse */
#define POT_FERMIONS 5 /* two interacting 1D fermions */
#define POT_FERMIONS_PERIODIC 6 /* two interacting 1D fermions on the circle */
#define POT_MAZE 7 /* higher potential on walls of a maze */
#define POT_IOR 10 /* index of refraction, for z coordinate of wave equation */
/* Choice of vector potential */
#define VPOT_CONSTANT_FIELD 100 /* constant magnetic field */
#define VPOT_AHARONOV_BOHM 101 /* single flux line for Aharonov-Bohm effect */
/* Choice of force field in compressible Euler equation */
#define GF_VERTICAL 0 /* gravity acting vertically */
#define GF_CIRCLE 1 /* repelling circle */
#define GF_ELLIPSE 2 /* repelling ellipse */
#define GF_AIRFOIL 3 /* curved repelling ellipse */
#define GF_WING 4 /* wing shape */
#define GF_COMPUTE_FROM_BC 5 /* compute force field as gradient of bc_field */
/* macros to avoid unnecessary computations in 3D plots */
#define COMPUTE_THETA ((cplot == Z_POLAR)||(cplot == Z_NORM_GRADIENT)||(cplot == Z_ANGLE_GRADIENT)||(cplot == Z_NORM_GRADIENT_INTENSITY)||(cplot == Z_VORTICITY)||(cplot == Z_VORTICITY_ABS))
#define COMPUTE_THETAZ ((zplot == Z_POLAR)||(zplot == Z_NORM_GRADIENT)||(zplot == Z_ANGLE_GRADIENT)||(zplot == Z_NORM_GRADIENT_INTENSITY)||(zplot == Z_VORTICITY)||(zplot == Z_VORTICITY_ABS))
#define COMPUTE_ENERGY ((zplot == P_3D_ENERGY)||(cplot == P_3D_ENERGY)||(zplot == P_3D_LOG_ENERGY)||(cplot == P_3D_LOG_ENERGY)||(zplot == P_3D_TOTAL_ENERGY)||(cplot == P_3D_TOTAL_ENERGY)||(zplot == P_3D_LOG_TOTAL_ENERGY)||(cplot == P_3D_LOG_TOTAL_ENERGY)||(zplot == P_3D_MEAN_ENERGY)||(cplot == P_3D_MEAN_ENERGY)||(zplot == P_3D_LOG_MEAN_ENERGY)||(cplot == P_3D_LOG_MEAN_ENERGY)||(ZPLOT == P_3D_FLUX_INTENSITY)||(CPLOT == P_3D_FLUX_INTENSITY)||(ZPLOT_B == P_3D_FLUX_INTENSITY)||(CPLOT_B == P_3D_FLUX_INTENSITY)||(ZPLOT == P_3D_FLUX_DIRECTION)||(CPLOT == P_3D_FLUX_DIRECTION)||(ZPLOT_B == P_3D_FLUX_DIRECTION)||(CPLOT_B == P_3D_FLUX_DIRECTION))
#define COMPUTE_LOG_TOTAL_ENERGY ((ZPLOT == P_3D_LOG_TOTAL_ENERGY)||(CPLOT == P_3D_LOG_TOTAL_ENERGY)||(ZPLOT_B == P_3D_LOG_TOTAL_ENERGY)||(CPLOT_B == P_3D_LOG_TOTAL_ENERGY))
#define COMPUTE_LOG_MEAN_ENERGY ((ZPLOT == P_3D_LOG_MEAN_ENERGY)||(CPLOT == P_3D_LOG_MEAN_ENERGY)||(ZPLOT_B == P_3D_LOG_MEAN_ENERGY)||(CPLOT_B == P_3D_LOG_MEAN_ENERGY))
#define COMPUTE_LOG_ENERGY ((ZPLOT == P_3D_LOG_TOTAL_ENERGY)||(CPLOT == P_3D_LOG_TOTAL_ENERGY)||(ZPLOT_B == P_3D_LOG_TOTAL_ENERGY)||(CPLOT_B == P_3D_LOG_TOTAL_ENERGY)||(ZPLOT == P_3D_LOG_MEAN_ENERGY)||(CPLOT == P_3D_LOG_MEAN_ENERGY)||(ZPLOT_B == P_3D_LOG_MEAN_ENERGY)||(CPLOT_B == P_3D_LOG_MEAN_ENERGY))
#define COMPUTE_MEAN_ENERGY ((ZPLOT == P_3D_MEAN_ENERGY)||(CPLOT == P_3D_MEAN_ENERGY)||(ZPLOT_B == P_3D_MEAN_ENERGY)||(CPLOT_B == P_3D_MEAN_ENERGY)||(ZPLOT == P_3D_LOG_MEAN_ENERGY)||(CPLOT == P_3D_LOG_MEAN_ENERGY)||(ZPLOT_B == P_3D_LOG_MEAN_ENERGY)||(CPLOT_B == P_3D_LOG_MEAN_ENERGY))
#define COMPUTE_ENERGY_FLUX ((ZPLOT == P_3D_FLUX_INTENSITY)||(CPLOT == P_3D_FLUX_INTENSITY)||(ZPLOT_B == P_3D_FLUX_INTENSITY)||(CPLOT_B == P_3D_FLUX_INTENSITY)||(ZPLOT == P_3D_FLUX_DIRECTION)||(CPLOT == P_3D_FLUX_DIRECTION)||(ZPLOT_B == P_3D_FLUX_DIRECTION)||(CPLOT_B == P_3D_FLUX_DIRECTION))
#define COMPUTE_TOTAL_ENERGY ((ZPLOT == P_3D_TOTAL_ENERGY)||(CPLOT == P_3D_TOTAL_ENERGY)||(ZPLOT == P_3D_LOG_TOTAL_ENERGY)||(CPLOT == P_3D_LOG_TOTAL_ENERGY)||(ZPLOT == P_3D_MEAN_ENERGY)||(CPLOT == P_3D_MEAN_ENERGY)||(ZPLOT == P_3D_LOG_MEAN_ENERGY)||(CPLOT == P_3D_LOG_MEAN_ENERGY)||(ZPLOT_B == P_3D_TOTAL_ENERGY)||(CPLOT_B == P_3D_TOTAL_ENERGY)||(ZPLOT_B == P_3D_LOG_TOTAL_ENERGY)||(CPLOT_B == P_3D_LOG_TOTAL_ENERGY)||(ZPLOT_B == P_3D_MEAN_ENERGY)||(CPLOT_B == P_3D_MEAN_ENERGY)||(ZPLOT_B == P_3D_LOG_MEAN_ENERGY)||(CPLOT_B == P_3D_LOG_MEAN_ENERGY))
int global_time = 0;
/* structure used for color and height representations */
/* possible extra fields: zfield, cfield, interpolated coordinates */
typedef struct
{
double energy; /* wave energy */
double phase; /* wave phase */
double log_energy; /* log of wave energy */
double total_energy; /* total energy since beginning of simulation */
double log_total_energy; /* log of total energy since beginning of simulation */
double mean_energy; /* energy averaged since beginning of simulation */
double log_mean_energy; /* log of energy averaged since beginning of simulation */
double cos_angle; /* cos of angle between normal vector and direction of light */
double flux_intensity; /* intensity of energy flux */
double flux_direction; /* direction of energy flux */
double flux_int_table[FLUX_WINDOW]; /* table of energy flux intensities (for averaging) */
short int flux_counter; /* counter for averaging of energy flux */
double rgb[3]; /* RGB color code */
double *potential; /* pointer to "potential" to add to z-coordinate */
double *p_zfield[2]; /* pointers to z field (second pointer for option DOUBLE_MOVIE) */
double *p_cfield[4]; /* pointers to color field (second pointer for option DOUBLE_MOVIE) */
/* third and fourth pointer for color luminosity (for energy flux) */
} t_wave;
typedef struct
{
double theta; /* angle for Rock-Paper-Scissors equation */
double nablax; /* gradient of first field */
double nablay; /* gradient of first field */
double field_norm; /* norm of field or gradient */
double field_arg; /* argument of field or gradient */
double curl; /* curl of field */
double cos_angle; /* cos of angle between normal vector and direction of light */
double log_vorticity; /* logarithm of vorticity (for Euler equation) */
double Lpressure; /* Laplacian of pressure (for Euler equation) */
double dxu, dyu, dxv, dyv; /* gradient of velocity field (for compressible Euler equation) */
double rgb[3]; /* RGB color code */
double *p_zfield[2]; /* pointers to z field (second pointer for option DOUBLE_MOVIE) */
double *p_cfield[2]; /* pointers to color field (second pointer for option DOUBLE_MOVIE) */
} t_rde;