/*********************************************************************************/ /* */ /* Animation of wave equation in a planar domain */ /* */ /* N. Berglund, december 2012, may 2021 */ /* */ /* UPDATE 24/04: distinction between damping and "elasticity" parameters */ /* UPDATE 27/04: new billiard shapes, bug in color scheme fixed */ /* UPDATE 28/04: code made more efficient, with help of Marco Mancini */ /* */ /* Feel free to reuse, but if doing so it would be nice to drop a */ /* line to nils.berglund@univ-orleans.fr - Thanks! */ /* */ /* compile with */ /* gcc -o wave_billiard wave_billiard.c */ /* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */ /* */ /* OMP acceleration may be more effective after executing */ /* export OMP_NUM_THREADS=2 in the shell before running the program */ /* */ /* To make a video, set MOVIE to 1 and create subfolder tif_wave */ /* It may be possible to increase parameter PAUSE */ /* */ /* create movie using */ /* ffmpeg -i wave.%05d.tif -vcodec libx264 wave.mp4 */ /* */ /*********************************************************************************/ /*********************************************************************************/ /* */ /* NB: The algorithm used to simulate the wave equation is highly paralellizable */ /* One could make it much faster by using a GPU */ /* */ /*********************************************************************************/ #include #include #include #include #include #include #include /* Sam Leffler's libtiff library. */ #include #define MOVIE 0 /* set to 1 to generate movie */ /* General geometrical parameters */ #define WINWIDTH 1280 /* window width */ #define WINHEIGHT 720 /* window height */ #define NX 640 /* number of grid points on x axis */ #define NY 360 /* number of grid points on y axis */ // #define NX 1280 /* number of grid points on x axis */ // #define NY 720 /* number of grid points on y axis */ #define XMIN -2.0 #define XMAX 2.0 /* x interval */ #define YMIN -1.125 #define YMAX 1.125 /* y interval for 9/16 aspect ratio */ #define JULIA_SCALE 1.0 /* scaling for Julia sets */ /* Choice of the billiard table */ #define B_DOMAIN 20 /* choice of domain shape, see list in global_pdes.c */ // #define CIRCLE_PATTERN 1 /* pattern of circles, see list in global_pdes.c */ #define CIRCLE_PATTERN 8 /* pattern of circles, see list in global_pdes.c */ #define P_PERCOL 0.25 /* probability of having a circle in C_RAND_PERCOL arrangement */ #define NPOISSON 340 /* number of points for Poisson C_RAND_POISSON arrangement */ #define RANDOM_POLY_ANGLE 0 /* set to 1 to randomize angle of polygons */ #define LAMBDA 0.85 /* parameter controlling the dimensions of domain */ #define MU 0.03 /* parameter controlling the dimensions of domain */ #define NPOLY 3 /* number of sides of polygon */ #define APOLY 1.0 /* angle by which to turn polygon, in units of Pi/2 */ #define MDEPTH 4 /* depth of computation of Menger gasket */ #define MRATIO 3 /* ratio defining Menger gasket */ #define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */ #define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */ #define FOCI 1 /* set to 1 to draw focal points of ellipse */ #define NGRIDX 15 /* number of grid point for grid of disks */ #define NGRIDY 20 /* number of grid point for grid of disks */ #define X_SHOOTER -0.2 #define Y_SHOOTER -0.6 #define X_TARGET 0.4 #define Y_TARGET 0.7 /* shooter and target positions in laser fight */ #define ISO_XSHIFT_LEFT -1.65 #define ISO_XSHIFT_RIGHT 0.4 #define ISO_YSHIFT_LEFT -0.05 #define ISO_YSHIFT_RIGHT -0.05 #define ISO_SCALE 0.85 /* coordinates for isospectral billiards */ /* You can add more billiard tables by adapting the functions */ /* xy_in_billiard and draw_billiard below */ /* Physical parameters of wave equation */ #define TWOSPEEDS 1 /* set to 1 to replace hardcore boundary by medium with different speed */ #define OSCILLATE_LEFT 1 /* set to 1 to add oscilating boundary condition on the left */ #define OSCILLATE_TOPBOT 0 /* set to 1 to enforce a planar wave on top and bottom boundary */ #define X_SHIFT -0.9 /* x range on which to apply OSCILLATE_TOPBOT */ #define OMEGA 0.00133333333 /* frequency of periodic excitation */ #define K_BC 3.0 /* spatial period of periodic excitation in y direction */ #define KX_BC 10.0 /* spatial period of periodic excitation in x direction */ #define KY_BC 3.3333 /* spatial period of periodic excitation in y direction */ // #define KX_BC 20.0 /* spatial period of periodic excitation in x direction */ // #define KY_BC 6.66666 /* spatial period of periodic excitation in y direction */ // #define OMEGA 0.002 /* frequency of periodic excitation */ // #define K_BC 3.0 /* spatial period of periodic excitation in y direction */ // #define KX_BC 30.0 /* spatial period of periodic excitation in x direction */ // #define KY_BC 10.0 /* spatial period of periodic excitation in y direction */ #define AMPLITUDE 1.0 /* amplitude of periodic excitation */ #define COURANT 0.02 /* Courant number */ #define COURANTB 0.015 /* Courant number in medium B */ // #define COURANTB 0.00666 /* Courant number in medium B */ #define GAMMA 3.0e-6 /* damping factor in wave equation */ #define GAMMAB 5.0e-4 /* damping factor in wave equation */ // #define GAMMA 2.0e-6 /* damping factor in wave equation */ // #define GAMMAB 2.5e-4 /* damping factor in wave equation */ #define GAMMA_SIDES 1.0e-4 /* damping factor on boundary */ #define GAMMA_TOPBOT 1.0e-6 /* damping factor on boundary */ #define KAPPA 0.0 /* "elasticity" term enforcing oscillations */ #define KAPPAB 1.0e-6 /* "elasticity" term enforcing oscillations */ #define KAPPA_SIDES 5.0e-4 /* "elasticity" term on absorbing boundary */ #define KAPPA_TOPBOT 0.0 /* "elasticity" term on absorbing boundary */ /* The Courant number is given by c*DT/DX, where DT is the time step and DX the lattice spacing */ /* The physical damping coefficient is given by GAMMA/(DT)^2 */ /* Increasing COURANT speeds up the simulation, but decreases accuracy */ /* For similar wave forms, COURANT^2*GAMMA should be kept constant */ /* Boundary conditions, see list in global_pdes.c */ #define B_COND 3 /* Parameters for length and speed of simulation */ #define NSTEPS 2000 /* number of frames of movie */ // #define NSTEPS 5500 /* number of frames of movie */ #define NVID 60 /* number of iterations between images displayed on screen */ #define NSEG 100 /* number of segments of boundary */ #define INITIAL_TIME 100 /* time after which to start saving frames */ #define BOUNDARY_WIDTH 2 /* width of billiard boundary */ #define PAUSE 1000 /* number of frames after which to pause */ #define PSLEEP 1 /* sleep time during pause */ #define SLEEP1 1 /* initial sleeping time */ #define SLEEP2 1 /* final sleeping time */ #define END_FRAMES 100 /* number of still frames at end of movie */ /* Parameters of initial condition */ #define INITIAL_AMP 0.2 /* amplitude of initial condition */ #define INITIAL_VARIANCE 0.002 /* variance of initial condition */ #define INITIAL_WAVELENGTH 0.1 /* wavelength of initial condition */ /* Plot type, see list in global_pdes.c */ #define PLOT 0 /* Color schemes */ #define COLOR_PALETTE 0 /* Color palette, see list in global_pdes.c */ #define BLACK 1 /* background */ #define COLOR_SCHEME 1 /* choice of color scheme, see list in global_pdes.c */ #define SCALE 0 /* set to 1 to adjust color scheme to variance of field */ #define SLOPE 1.0 /* sensitivity of color on wave amplitude */ #define PHASE_FACTOR 1.0 /* factor in computation of phase in color scheme P_3D_PHASE */ #define PHASE_SHIFT 0.0 /* shift of phase in color scheme P_3D_PHASE */ #define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */ #define E_SCALE 2500.0 /* scaling factor for energy representation */ #define LOG_SCALE 1.0 /* scaling factor for energy log representation */ #define LOG_SHIFT 0.0 /* shift of colors on log scale */ #define RESCALE_COLOR_IN_CENTER 0 /* set to 1 to decrease color intentiy in the center (for wave escaping ring) */ #define COLORHUE 260 /* initial hue of water color for scheme C_LUM */ #define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */ #define LUMMEAN 0.5 /* amplitude of luminosity variation for scheme C_LUM */ #define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */ #define HUEMEAN 220.0 /* mean value of hue for color scheme C_HUE */ #define HUEAMP -50.0 /* amplitude of variation of hue for color scheme C_HUE */ /* mangrove properties */ #define MANGROVE_HUE_MIN 180.0 /* color of original mangrove */ #define MANGROVE_HUE_MAX -50.0 /* color of saturated mangrove */ // #define MANGROVE_EMAX 5.0e-3 /* max energy for mangrove to survive */ #define MANGROVE_EMAX 1.5e-3 /* max energy for mangrove to survive */ #define RANDOM_RADIUS 1 /* set to 1 for random circle radius */ #define ERODE_MANGROVES 1 /* set to 1 for mangroves to be eroded */ #define RECOVER_MANGROVES 1 /* set to 1 to allow mangroves to recover */ #define MOVE_MANGROVES 1 /* set to 1 for mobile mangroves */ #define DETACH_MANGROVES 1 /* set to 1 for mangroves to be able to detach */ #define INERTIA 1 /* set to 1 for taking inertia into account */ #define REPELL_MANGROVES 1 /* set to 1 for mangroves to repell each other */ #define DT_MANGROVE 0.1 /* time step for mangrove displacement */ #define KSPRING 0.05 /* spring constant of mangroves */ #define KWAVE 4.0 /* constant in force due to wave gradient */ #define KREPEL 5.0 /* constant in repelling force between mangroves */ #define REPEL_RADIUS 1.1 /* radius in which repelling force acts (in units of mangrove radius) */ #define DXMAX 0.02 /* max displacement of mangrove in one time step */ #define L_DETACH 0.25 /* spring length beyond which mangroves detach */ #define DAMP_MANGROVE 0.1 /* damping coefficient of mangroves */ #define MANGROVE_MASS 1.5 /* mass of mangrove of radius MU */ #define HASHX 25 /* size of hashgrid in x direction */ #define HASHY 15 /* size of hashgrid in y direction */ #define HASHMAX 10 /* maximal number of mangroves per hashgrid cell */ #define HASHGRID_PADDING 0.1 /* padding of hashgrid outside simulation window */ #define DRAW_COLOR_SCHEME 0 /* set to 1 to plot the color scheme */ #define COLORBAR_RANGE 8.0 /* scale of color scheme bar */ #define COLORBAR_RANGE_B 12.0 /* scale of color scheme bar for 2nd part */ #define ROTATE_COLOR_SCHEME 0 /* set to 1 to draw color scheme horizontally */ /* For debugging purposes only */ #define FLOOR 1 /* set to 1 to limit wave amplitude to VMAX */ #define VMAX 10.0 /* max value of wave amplitude */ #include "global_pdes.c" #include "sub_wave.c" #include "wave_common.c" double courant2, courantb2; /* Courant parameters squared */ typedef struct { double xc, yc, radius; /* center and radius of circle */ short int active; /* circle is active */ double energy; /* dissipated energy */ double yc_wrapped; /* position of circle centers wrapped vertically */ double anchorx; /* points moving circles are attached to */ double anchory; /* points moving circles are attached to */ double vx; /* x velocity of circles */ double vy; /* y velocity of circles */ double radius_initial; /* initial circle radii */ double mass_inv; /* inverse of mangrove mass */ short int attached; /* has value 1 if the circle is attached to its anchor */ int hashx; /* hash grid positions of mangroves */ int hashy; /* hash grid positions of mangroves */ } t_mangrove; typedef struct { int number; /* total number of mangroves in cell */ int mangroves[HASHMAX]; /* numbers of mangroves in cell */ } t_hashgrid; /*********************/ /* animation part */ /*********************/ void init_bc_phase(double left_bc[NY], double top_bc[NX], double bot_bc[NX]) /* initialize boundary condition phase KX*x + KY*y */ { int i, j; double xy[2]; for (j=0; j0)&&(i0)&&(j0)&&(i VMAX) phi_out[i][j] = VMAX; // if (phi_out[i][j] < -VMAX) phi_out[i][j] = -VMAX; // if (psi_out[i][j] > VMAX) psi_out[i][j] = VMAX; // if (psi_out[i][j] < -VMAX) psi_out[i][j] = -VMAX; // } // } // } // } // // printf("phi(0,0) = %.3lg, psi(0,0) = %.3lg\n", phi[NX/2][NY/2], psi[NX/2][NY/2]); // } void evolve_wave_half(double *phi_in[NX], double *psi_in[NX], double *phi_out[NX], double *psi_out[NX], short int *xy_in[NX]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ /* this version of the function has been rewritten in order to minimize the number of if-branches */ { int i, j, iplus, iminus, jplus, jminus, tb_shift; double delta, x, y, c, cc, gamma, kappa, phase, phasemin; static long time = 0; static double tc[NX][NY], tcc[NX][NY], tgamma[NX][NY], left_bc[NY], top_bc[NX], bot_bc[NX]; static short int first = 1, init_bc = 1; time++; /* initialize boundary condition phase KX*x + KY*y */ if ((OSCILLATE_LEFT)&&(init_bc)) { init_bc_phase(left_bc, top_bc, bot_bc); tb_shift = (int)((X_SHIFT - XMIN)*(double)NX/(XMAX - XMIN)); printf("tb_shift %i\n", tb_shift); init_bc = 0; } /* initialize tables with wave speeds and dissipation */ // if (first) { for (i=0; i VMAX) phi_out[i][j] = VMAX; if (phi_out[i][j] < -VMAX) phi_out[i][j] = -VMAX; if (psi_out[i][j] > VMAX) psi_out[i][j] = VMAX; if (psi_out[i][j] < -VMAX) psi_out[i][j] = -VMAX; } } } } void evolve_wave(double *phi[NX], double *psi[NX], double *phi_tmp[NX], double *psi_tmp[NX], short int *xy_in[NX]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ { evolve_wave_half(phi, psi, phi_tmp, psi_tmp, xy_in); evolve_wave_half(phi_tmp, psi_tmp, phi, psi, xy_in); } void hash_xy_to_ij(double x, double y, int ij[2]) { static int first = 1; static double lx, ly; int i, j; if (first) { lx = XMAX - XMIN + 2.0*HASHGRID_PADDING; ly = YMAX - YMIN + 2.0*HASHGRID_PADDING; first = 0; } i = (int)((double)HASHX*(x - XMIN + HASHGRID_PADDING)/lx); j = (int)((double)HASHY*(y - YMIN + HASHGRID_PADDING)/ly); if (i<0) i = 0; if (i>=HASHX) i = HASHX-1; if (j<0) j = 0; if (j>=HASHY) j = HASHY-1; ij[0] = i; ij[1] = j; // printf("Mapped (%.3f,%.3f) to (%i, %i)\n", x, y, ij[0], ij[1]); } void compute_repelling_force(int i, int j, double force[2], t_mangrove* mangrove) /* compute repelling force of mangrove j on mangrove i */ { double x1, y1, x2, y2, distance, r, f; x1 = mangrove[i].xc; y1 = mangrove[i].yc; x2 = mangrove[j].xc; y2 = mangrove[j].yc; distance = module2(x2 - x1, y2 - y1); r = mangrove[i].radius + mangrove[j].radius; if (r <= 0.0) r = 0.001*MU; f = KREPEL/(0.001 + distance*distance); if ((distance > 0.0)&&(distance < REPEL_RADIUS*r)) { force[0] = f*(x1 - x2)/distance; force[1] = f*(y1 - y2)/distance; } else { force[0] = 0.0; force[1] = 0.0; } } void update_hashgrid(t_mangrove* mangrove, int* hashgrid_number, int* hashgrid_mangroves) { int i, j, k, n, m, ij[2], max = 0; printf("Updating hashgrid_number\n"); for (i=0; i max) max = n; // printf("Placed mangrove %i at (%i,%i) in hashgrid\n", k, ij[0], ij[1]); // printf("%i mangroves at (%i,%i)\n", hashgrid_number[ij[0]][ij[1]], ij[0], ij[1]); } printf("Maximal number of mangroves per hash cell: %i\n", max); } void animation() { double time, scale, diss, rgb[3], hue, y, dissip, ej, gradient[2], dx, dy, dt, xleft, xright, length, fx, fy, force[2]; double *phi[NX], *psi[NX], *phi_tmp[NX], *psi_tmp[NX]; short int *xy_in[NX], redraw = 0; int i, j, k, n, s, ij[2], i0, iplus, iminus, j0, jplus, jminus, p, q; static int imin, imax; static short int first = 1; t_mangrove *mangrove; int *hashgrid_number, *hashgrid_mangroves; t_hashgrid *hashgrid; /* Since NX and NY are big, it seemed wiser to use some memory allocation here */ for (i=0; i= YMAX) y -= mangrove[i].radius; if (y <= YMIN) y += mangrove[i].radius; // if (y >= YMAX) y -= (YMAX - YMIN); // if (y <= YMIN) y += (YMAX - YMIN); mangrove[i].yc_wrapped = y; // mangrove[i].active = 1; if (RANDOM_RADIUS) mangrove[i].radius = mangrove[i].radius*(0.75 + 0.5*((double)rand()/RAND_MAX)); mangrove[i].radius_initial = mangrove[i].radius; mangrove[i].attached = 1; mangrove[i].mass_inv = MU*MU/(MANGROVE_MASS*mangrove[i].radius*mangrove[i].radius); if (MOVE_MANGROVES) { mangrove[i].anchorx = mangrove[i].xc; mangrove[i].anchory = mangrove[i].yc_wrapped; // mangrove[i].anchory = mangrove[i].yc; } if (INERTIA) { mangrove[i].vx = 0.0; mangrove[i].vy = 0.0; } } /* initialise hash table for interacting mangroves */ if (REPELL_MANGROVES) update_hashgrid(mangrove, hashgrid_number, hashgrid_mangroves); if (first) /* compute box limits where circles are reset */ { /* find leftmost and rightmost circle */ for (i=0; i xright)) xright = mangrove[i].xc + mangrove[i].radius; xy_to_ij(xleft, 0.0, ij); imin = ij[0] - 10; if (imin < 0) imin = 0; xy_to_ij(xright, 0.0, ij); imax = ij[0]; if (imax >= NX) imax = NX-1; first = 0; printf("xleft = %.3lg, xright = %.3lg, imin = %i, imax = %i\n", xleft, xright, imin, imax); } blank(); glColor3f(0.0, 0.0, 0.0); draw_wave(phi, psi, xy_in, 1.0, 0, PLOT); draw_billiard(0, 1.0); glutSwapBuffers(); sleep(SLEEP1); for (i=0; i<=INITIAL_TIME + NSTEPS; i++) { printf("Computing frame %d\n",i); /* compute the variance of the field to adjust color scheme */ /* the color depends on the field divided by sqrt(1 + variance) */ if (SCALE) { scale = sqrt(1.0 + compute_variance(phi,psi, xy_in)); // printf("Scaling factor: %5lg\n", scale); } else scale = 1.0; printf("Drawing wave\n"); draw_wave(phi, psi, xy_in, scale, i, PLOT); printf("Evolving wave\n"); for (j=0; j ", j, mangrove[j].xc, mangrove[j].yc); /* compute force of wave */ dx = DT_MANGROVE*KWAVE*gradient[0]; dy = DT_MANGROVE*KWAVE*gradient[1]; /* compute force of spring */ if (mangrove[j].attached) { dx += DT_MANGROVE*(-KSPRING*(mangrove[j].xc - mangrove[j].anchorx)); dy += DT_MANGROVE*(-KSPRING*(mangrove[j].yc_wrapped - mangrove[j].anchory)); } /* compute repelling force from other mangroves */ if (REPELL_MANGROVES) { /* determine neighboring grid points */ i0 = mangrove[j].hashx; iminus = i0 - 1; if (iminus < 0) iminus = 0; iplus = i0 + 1; if (iplus >= HASHX) iplus = HASHX-1; j0 = mangrove[j].hashy; jminus = j0 - 1; if (jminus < 0) jminus = 0; jplus = j0 + 1; if (jplus >= HASHY) jplus = HASHY-1; fx = 0.0; fy = 0.0; for (p=iminus; p<= iplus; p++) for (q=jminus; q<= jplus; q++) for (k=0; k 0.001) printf("Force on mangrove %i: (%.3f, %.3f)\n", j, fx, fy); dx += DT_MANGROVE*fx; dy += DT_MANGROVE*fy; } /* detach mangrove if spring is too long */ if (DETACH_MANGROVES) { length = module2(mangrove[j].xc - mangrove[j].anchorx, mangrove[j].yc_wrapped - mangrove[j].anchory); // if (j%NGRIDY == 0) printf("spring length %.i: %.3lg\n", j, length); // if (length > L_DETACH) mangrove[j].attached = 0; if (length*mangrove[j].mass_inv > L_DETACH) mangrove[j].attached = 0; } if (dx > DXMAX) dx = DXMAX; if (dx < -DXMAX) dx = -DXMAX; if (dy > DXMAX) dy = DXMAX; if (dy < -DXMAX) dy = -DXMAX; if (INERTIA) { mangrove[j].vx += (dx - DAMP_MANGROVE*mangrove[j].vx)*mangrove[j].mass_inv; mangrove[j].vy += (dy - DAMP_MANGROVE*mangrove[j].vy)*mangrove[j].mass_inv; mangrove[j].xc += mangrove[j].vx*DT_MANGROVE; mangrove[j].yc += mangrove[j].vy*DT_MANGROVE; mangrove[j].yc_wrapped += mangrove[j].vy*DT_MANGROVE; // if (j%NGRIDY == 0) // printf("circle %.i: (dx,dy) = (%.3lg,%.3lg), (vx,vy) = (%.3lg,%.3lg)\n", // j, mangrove[j].xc-mangrove[j].anchorx, mangrove[j].yc-mangrove[j].anchory, mangrove[j].vx, mangrove[j].vy); } else { mangrove[j].xc += dx*mangrove[j].mass_inv*DT_MANGROVE; mangrove[j].yc += dy*mangrove[j].mass_inv*DT_MANGROVE; mangrove[j].yc_wrapped += dy*mangrove[j].mass_inv*DT_MANGROVE; } if (mangrove[j].xc <= XMIN) mangrove[j].xc = XMIN; if (mangrove[j].xc >= XMAX) mangrove[j].xc = XMAX; if (mangrove[j].yc_wrapped <= YMIN) mangrove[j].yc_wrapped = YMIN; if (mangrove[j].yc_wrapped >= YMAX) mangrove[j].yc_wrapped = YMAX; // if (j%NGRIDY == 0) printf("(%.3lg, %.3lg)\n", mangrove[j].xc, mangrove[j].yc); redraw = 1; } /* test for debugging */ if (1) for (j=0; j 0.1*MANGROVE_EMAX) { dissip = 0.1*MANGROVE_EMAX; printf("Flooring dissipation!\n"); } if (mangrove[j].active) { mangrove[j].energy += dissip; ej = mangrove[j].energy; // printf("ej = %.3f\n", ej); if (ej <= MANGROVE_EMAX) { if (ej > 0.0) { hue = MANGROVE_HUE_MIN + (MANGROVE_HUE_MAX - MANGROVE_HUE_MIN)*ej/MANGROVE_EMAX; if (hue < 0.0) hue += 360.0; } else hue = MANGROVE_HUE_MIN; hsl_to_rgb(hue, 0.9, 0.5, rgb); // if (j%NGRIDY == 0) printf("Circle %i, energy %.5lg, hue %.5lg\n", j, ej, hue); draw_colored_circle(mangrove[j].xc, mangrove[j].yc, mangrove[j].radius, NSEG, rgb); /* shrink mangrove */ if ((ERODE_MANGROVES)&&(ej > 0.0)) { mangrove[j].radius = mangrove[j].radius_initial*(1.0 - ej*ej/(MANGROVE_EMAX*MANGROVE_EMAX)); redraw = 1; } else mangrove[j].radius = mangrove[j].radius_initial; } else /* remove mangrove */ { mangrove[j].active = 0; /* reinitialize table xy_in */ redraw = 1; } } else if (RECOVER_MANGROVES) /* allow disabled mangroves to recover */ { mangrove[j].energy -= 0.15*dissip; printf("Circle %i energy %.3lg\n", j, mangrove[j].energy); if (mangrove[j].energy < 0.0) { printf("Reactivating circle %i?\n", j); /* THE PROBLEM occurs when circleactive[0] is set to 1 again */ if (j>0) mangrove[j].active = 1; mangrove[j].radius = mangrove[j].radius_initial; mangrove[j].energy = -MANGROVE_EMAX; /* reinitialize table xy_in */ redraw = 1; } } } /* for compatibility with draw_billiard, may be improvable */ for (j=0; j 0.1*MANGROVE_EMAX) // { // dissip = 0.1*MANGROVE_EMAX; // printf("Flooring dissipation!\n"); // } // // if (mangrove[j].active) // { // mangrove[j].energy += dissip; // ej = mangrove[j].energy; // printf("ej = %.3f\n", ej); // if (ej <= MANGROVE_EMAX) // { // if (ej > 0.0) // { // hue = MANGROVE_HUE_MIN + (MANGROVE_HUE_MAX - MANGROVE_HUE_MIN)*ej/MANGROVE_EMAX; // if (hue < 0.0) hue += 360.0; // } // else hue = MANGROVE_HUE_MIN; // hsl_to_rgb(hue, 0.9, 0.5, rgb); // if (j%NGRIDY == 0) printf("Circle %i, energy %.5lg, hue %.5lg\n", j, ej, hue); // draw_colored_circle(mangrove[j].xc, mangrove[j].yc, mangrove[j].radius, NSEG, rgb); // // /* shrink mangrove */ // if (ej > 0.0) // { // mangrove[j].radius -= MU*ej*ej/(MANGROVE_EMAX*MANGROVE_EMAX); // if (mangrove[j].radius < 0.0) mangrove[j].radius = 0.0; // mangrove[j].radius = mangrove[j].radius_initial*(1.0 - ej*ej/(MANGROVE_EMAX*MANGROVE_EMAX)); // redraw = 1; // } // else mangrove[j].radius = mangrove[j].radius_initial; // } // else /* remove mangrove */ // { // mangrove[j].active = 0; /* reinitialize table xy_in */ // redraw = 1; // } // } // else /* allow disabled mangroves to recover */ // { // mangrove[j].energy -= 0.15*dissip; // printf("ej = %.3f\n", mangrove[j].energy); // mangrove[j].radius += 0.005*MU; // if (mangrove[j].radius > MU) mangrove[j].radius = MU; // if ((mangrove[j].energy < 0.0)&&(mangrove[j].radius > 0.0)) // if (mangrove[j].energy < 0.0) // { // mangrove[j].active = 1; // mangrove[j].radius = mangrove[j].radius*(0.75 + 0.5*((double)rand()/RAND_MAX)); // mangrove[j].radius = mangrove[j].radius_initial; // mangrove[j].energy = -MANGROVE_EMAX; /* reinitialize table xy_in */ // redraw = 1; // } // } // printf("Circle %i, energy %.5lg\n", j, mangrove[j].energy); // } printf("Updating hashgrid\n"); if (REPELL_MANGROVES) update_hashgrid(mangrove, hashgrid_number, hashgrid_mangroves); printf("Drawing billiard\n"); draw_billiard(0, 1.0); glutSwapBuffers(); if (redraw) { printf("Reinitializing xy_in\n"); init_xyin_xrange(xy_in, imin, NX); // init_xyin_xrange(xy_in, imin, imax); } redraw = 0; if (MOVIE) { if (i >= INITIAL_TIME) save_frame(); else printf("Initial phase time %i of %i\n", i, INITIAL_TIME); /* it seems that saving too many files too fast can cause trouble with the file system */ /* so this is to make a pause from time to time - parameter PAUSE may need adjusting */ if (i % PAUSE == PAUSE - 1) { printf("Making a short pause\n"); sleep(PSLEEP); s = system("mv wave*.tif tif_wave/"); } } } if (MOVIE) { for (i=0; i