/*********************************************************************************/ /* */ /* Animation of wave equation in a planar domain */ /* */ /* N. Berglund, december 2012, may 2021 */ /* */ /* UPDATE 24/04: distinction between damping and "elasticity" parameters */ /* UPDATE 27/04: new billiard shapes, bug in color scheme fixed */ /* UPDATE 28/04: code made more efficient, with help of Marco Mancini */ /* */ /* Feel free to reuse, but if doing so it would be nice to drop a */ /* line to nils.berglund@univ-orleans.fr - Thanks! */ /* */ /* compile with */ /* gcc -o wave_billiard wave_billiard.c */ /* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */ /* */ /* OMP acceleration may be more effective after executing */ /* export OMP_NUM_THREADS=2 in the shell before running the program */ /* */ /* To make a video, set MOVIE to 1 and create subfolder tif_wave */ /* It may be possible to increase parameter PAUSE */ /* */ /* create movie using */ /* ffmpeg -i wave.%05d.tif -vcodec libx264 wave.mp4 */ /* */ /**********************************************************************************/ /*********************************************************************************/ /* */ /* NB: The algorithm used to simulate the wave equation is highly paralellizable */ /* One could make it much faster by using a GPU */ /* */ /*********************************************************************************/ #include #include #include #include #include #include #include /* Sam Leffler's libtiff library. */ #include #include #define MOVIE 0 /* set to 1 to generate movie */ #define DOUBLE_MOVIE 1 /* set to 1 to produce movies for wave height and energy simultaneously */ #define SAVE_MEMORY 1 /* set to 1 to save memory when writing tiff images */ #define NO_EXTRA_BUFFER_SWAP 1 /* some OS require one less buffer swap when recording images */ #define VARIABLE_IOR 0 /* set to 1 for a variable index of refraction */ #define IOR 17 /* choice of index of refraction, see list in global_pdes.c */ #define IOR_TOTAL_TURNS 1.5 /* total angle of rotation for IOR_PERIODIC_WELLS_ROTATING */ #define MANDEL_IOR_SCALE -0.05 /* parameter controlling dependence of IoR on Mandelbrot escape speed */ /* General geometrical parameters */ #define WINWIDTH 1920 /* window width */ #define WINHEIGHT 1150 /* window height */ #define NX 3840 /* number of grid points on x axis */ #define NY 2300 /* number of grid points on y axis */ #define XMIN -1.6 #define XMAX 2.4 /* x interval */ #define YMIN -1.197916667 #define YMAX 1.197916667 /* y interval for 9/16 aspect ratio */ #define HIGHRES 1 /* set to 1 if resolution of grid is double that of displayed image */ #define JULIA_SCALE 1.0 /* scaling for Julia sets */ /* Choice of the billiard table */ #define B_DOMAIN 75 /* choice of domain shape, see list in global_pdes.c */ #define CIRCLE_PATTERN 103 /* pattern of circles or polygons, see list in global_pdes.c */ #define COMPARISON 0 /* set to 1 to compare two different patterns (beta) */ #define B_DOMAIN_B 20 /* second domain shape, for comparisons */ #define CIRCLE_PATTERN_B 0 /* second pattern of circles or polygons */ #define P_PERCOL 0.25 /* probability of having a circle in C_RAND_PERCOL arrangement */ #define NPOISSON 1000 /* number of points for Poisson C_RAND_POISSON arrangement */ #define RANDOM_POLY_ANGLE 1 /* set to 1 to randomize angle of polygons */ #define LAMBDA 3.0 /* parameter controlling the dimensions of domain */ #define MU 0.14 /* parameter controlling the dimensions of domain */ #define MU_B 0.42 /* parameter controlling the dimensions of domain */ #define NPOLY 6 /* number of sides of polygon */ #define APOLY -0.666666666666 /* angle by which to turn polygon, in units of Pi/2 */ #define MDEPTH 6 /* depth of computation of Menger gasket */ #define MRATIO 3 /* ratio defining Menger gasket */ #define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */ #define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */ #define FOCI 1 /* set to 1 to draw focal points of ellipse */ #define NGRIDX 60 /* number of grid point for grid of disks */ #define NGRIDY 10 /* number of grid point for grid of disks */ #define WALL_WIDTH 0.1 /* width of wall separating lenses */ #define X_SHOOTER -0.2 #define Y_SHOOTER -0.6 #define X_TARGET 0.4 #define Y_TARGET 0.7 /* shooter and target positions in laser fight */ #define ISO_XSHIFT_LEFT -2.9 #define ISO_XSHIFT_RIGHT 1.4 #define ISO_YSHIFT_LEFT -0.15 #define ISO_YSHIFT_RIGHT -0.15 #define ISO_SCALE 0.5 /* coordinates for isospectral billiards */ /* You can add more billiard tables by adapting the functions */ /* xy_in_billiard and draw_billiard below */ /* Physical parameters of wave equation */ #define TWOSPEEDS 0 /* set to 1 to replace hardcore boundary by medium with different speed */ #define OSCILLATE_LEFT 1 /* set to 1 to add oscilating boundary condition on the left */ #define OSCILLATE_TOPBOT 0 /* set to 1 to enforce a planar wave on top and bottom boundary */ #define OSCILLATION_SCHEDULE 0 /* oscillation schedule, see list in global_pdes.c */ #define OSCIL_YMAX 0.35 /* defines oscillation range */ #define OMEGA 0.015 /* frequency of periodic excitation */ #define AMPLITUDE 1.0 /* amplitude of periodic excitation */ #define ACHIRP 0.25 /* acceleration coefficient in chirp */ #define DAMPING 0.0 /* damping of periodic excitation */ #define COURANT 0.1 /* Courant number */ #define COURANTB 0.03 /* Courant number in medium B */ #define GAMMA 0.0 /* damping factor in wave equation */ #define GAMMAB 0.0 /* damping factor in wave equation */ #define GAMMA_SIDES 1.0e-4 /* damping factor on boundary */ #define GAMMA_TOPBOT 1.0e-7 /* damping factor on boundary */ #define KAPPA 0.0 /* "elasticity" term enforcing oscillations */ #define KAPPA_SIDES 5.0e-4 /* "elasticity" term on absorbing boundary */ #define KAPPA_TOPBOT 0.0 /* "elasticity" term on absorbing boundary */ #define OSCIL_LEFT_YSHIFT 0.0 /* y-dependence of left oscillation (for non-horizontal waves) */ /* The Courant number is given by c*DT/DX, where DT is the time step and DX the lattice spacing */ /* The physical damping coefficient is given by GAMMA/(DT)^2 */ /* Increasing COURANT speeds up the simulation, but decreases accuracy */ /* For similar wave forms, COURANT^2*GAMMA should be kept constant */ #define ADD_OSCILLATING_SOURCE 0 /* set to 1 to add an oscillating wave source */ #define OSCILLATING_SOURCE_PERIOD 4 /* period of oscillating source */ #define ALTERNATE_OSCILLATING_SOURCE 1 /* set to 1 to alternate sign of oscillating source */ #define ADD_WAVE_PACKET_SOURCES 0 /* set to 1 to add several sources emitting wave packets */ #define WAVE_PACKET_SOURCE_TYPE 3 /* type of wave packet sources */ #define N_WAVE_PACKETS 5 /* number of wave packets */ #define WAVE_PACKET_RADIUS 50 /* radius of wave packets */ #define USE_INPUT_TIMESERIES 1 /* set to 1 to use a time series (Morse code) as input * / /* Boundary conditions, see list in global_pdes.c */ #define B_COND 3 /* Parameters for length and speed of simulation */ #define NSTEPS 2200 /* number of frames of movie */ #define NVID 15 /* number of iterations between images displayed on screen */ #define NSEG 1000 /* number of segments of boundary */ #define INITIAL_TIME 50 /* time after which to start saving frames */ #define BOUNDARY_WIDTH 2 /* width of billiard boundary */ #define PRINT_SPEED 0 /* print speed of moving source */ #define PRINT_FREQUENCY 0 /* print frequency (for phased array) */ #define PAUSE 200 /* number of frames after which to pause */ #define PSLEEP 1 /* sleep time during pause */ #define SLEEP1 1 /* initial sleeping time */ #define SLEEP2 1 /* final sleeping time */ #define MID_FRAMES 100 /* number of still frames between parts of two-part movie */ #define END_FRAMES 300 /* number of still frames at end of movie */ #define FADE 1 /* set to 1 to fade at end of movie */ /* Parameters of initial condition */ #define INITIAL_AMP 0.75 /* amplitude of initial condition */ #define INITIAL_VARIANCE 0.01 /* variance of initial condition */ #define INITIAL_WAVELENGTH 0.025 /* wavelength of initial condition */ /* Plot type, see list in global_pdes.c */ #define PLOT 0 #define PLOT_B 8 /* plot type for second movie */ /* Color schemes */ #define COLOR_PALETTE 17 /* Color palette, see list in global_pdes.c */ #define COLOR_PALETTE_B 13 /* Color palette, see list in global_pdes.c */ #define BLACK 1 /* background */ #define COLOR_SCHEME 3 /* choice of color scheme, see list in global_pdes.c */ #define SCALE 0 /* set to 1 to adjust color scheme to variance of field */ #define SLOPE 1.0 /* sensitivity of color on wave amplitude */ #define PHASE_FACTOR 1.0 /* factor in computation of phase in color scheme P_3D_PHASE */ #define PHASE_SHIFT 0.0 /* shift of phase in color scheme P_3D_PHASE */ #define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */ #define E_SCALE 75.0 /* scaling factor for energy representation */ #define LOG_SCALE 0.75 /* scaling factor for energy log representation */ #define LOG_SHIFT 1.5 /* shift of colors on log scale */ #define FLUX_SCALE 5.0e3 /* scaling factor for energy flux represtnation */ #define AVRG_E_FACTOR 0.95 /* controls time window size in P_AVERAGE_ENERGY scheme */ #define RESCALE_COLOR_IN_CENTER 0 /* set to 1 to decrease color intentiy in the center (for wave escaping ring) */ #define COLORHUE 260 /* initial hue of water color for scheme C_LUM */ #define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */ #define LUMMEAN 0.5 /* amplitude of luminosity variation for scheme C_LUM */ #define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */ #define HUEMEAN 180.0 /* mean value of hue for color scheme C_HUE */ #define HUEAMP -180.0 /* amplitude of variation of hue for color scheme C_HUE */ #define DRAW_COLOR_SCHEME 0 /* set to 1 to plot the color scheme */ #define COLORBAR_RANGE 3.0 /* scale of color scheme bar */ #define COLORBAR_RANGE_B 1.5 /* scale of color scheme bar for 2nd part */ #define ROTATE_COLOR_SCHEME 1 /* set to 1 to draw color scheme horizontally */ #define CIRC_COLORBAR 0 /* set to 1 to draw circular color scheme */ #define CIRC_COLORBAR_B 0 /* set to 1 to draw circular color scheme */ #define DRAW_WAVE_PROFILE 1 /* set to 1 to draw a profile of the wave */ #define HORIZONTAL_WAVE_PROFILE 0 /* set to 1 to draw wave profile vertically */ #define VERTICAL_WAVE_PROFILE 1 /* set to 1 to draw wave profile vertically */ #define WAVE_PROFILE_X 2.1 /* value of x to sample wave profile */ #define WAVE_PROFILE_Y -1.0 /* value of y to sample wave profile */ #define PROFILE_AT_BOTTOM 1 /* draw wave profile at bottom instead of top */ #define AVERAGE_WAVE_PROFILE 1 /* set to 1 to draw time-average of wave profile squared*/ #define DRAW_WAVE_TIMESERIES 0 /* set to 1 to draw a time series of the wave, 2 to also draw it at the top */ #define TIMESERIES_NVALUES 400 /* number of values plotted in time series */ #define SAVE_TIME_SERIES 0 /* set to 1 to save wave time series at a point */ #define DRAW_WAVE_SOURCE 0 /* set to 1 to draw source of wave at (wave_source_x, wave_source_y) */ #define MESSAGE_LDASH 14 /* length of dash for Morse code message */ #define MESSAGE_LDOT 8 /* length of dot for Morse code message */ #define MESSAGE_LINTERVAL 54 /* length of interval between dashes/dots for Morse code message */ #define MESSAGE_LINTERLETTER 60 /* length of interval between letters for Morse code message */ #define MESSAGE_LSPACE 48 /* length of space for Morse code message */ #define MESSAGE_INITIAL_TIME 100 /* initial time before starting message for Morse code message */ #define NXMAZE 8 /* width of maze */ #define NYMAZE 32 /* height of maze */ #define MAZE_MAX_NGBH 5 /* max number of neighbours of maze cell */ #define RAND_SHIFT 0 /* seed of random number generator */ #define MAZE_XSHIFT 0.0 /* horizontal shift of maze */ #define MAZE_WIDTH 0.02 /* half width of maze walls */ /* for compatibility with sub_wave and sub_maze */ #define ADD_POTENTIAL 0 #define POT_MAZE 7 #define POTENTIAL 0 /* end of constants only used by sub_wave and sub_maze */ /* For debugging purposes only */ #define FLOOR 0 /* set to 1 to limit wave amplitude to VMAX */ #define VMAX 10.0 /* max value of wave amplitude */ #define MEAN_FLUX (PLOT == P_TOTAL_ENERGY_FLUX)||(PLOT_B == P_TOTAL_ENERGY_FLUX) #define REFRESH_IOR ((IOR == IOR_PERIODIC_WELLS_ROTATING)||(IOR == IOR_PERIODIC_WELLS_ROTATING_LARGE)) #include "global_pdes.c" /* constants and global variables */ #include "sub_maze.c" /* support for generating mazes */ #include "sub_wave.c" /* common functions for wave_billiard, heat and schrodinger */ #include "wave_common.c" /* common functions for wave_billiard, wave_comparison, etc */ FILE *time_series_left, *time_series_right; double courant2, courantb2; /* Courant parameters squared */ /*********************/ /* animation part */ /*********************/ // void evolve_wave_half(double *phi_in[NX], double *psi_in[NX], double *phi_out[NX], double *psi_out[NX], // short int *xy_in[NX]) void evolve_wave_half(double *phi_in[NX], double *psi_in[NX], double *phi_out[NX], short int *xy_in[NX], double *tcc[NX], double *tgamma[NX]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ /* this version of the function has been rewritten in order to minimize the number of if-branches */ { int i, j, iplus, iminus, jplus, jminus, ij[2]; double delta, x, y, c, cc, gamma, tb_shift; static long time = 0; static double tc[NX][NY]; static short int first = 1; time++; // if (OSCILLATE_TOPBOT) tb_shift = (int)((X_SHIFT - XMIN)*(double)NX/(XMAX - XMIN)); if (OSCILLATE_TOPBOT) tb_shift = (int)((XMAX - XMIN)*(double)NX/(XMAX - XMIN)); /* initialize tables with wave speeds and dissipation */ if (first) { for (i=0; i0)) { iplus = i+1; iminus = i-1; if (iminus < 0) iminus = 0; delta = phi_in[iplus][NY-1] + phi_in[iminus][NY-1] + - 2.0*x; phi_out[i][NY-1] = -y + 2*x + tcc[i][NY-1]*delta - KAPPA*x - tgamma[i][NY-1]*(x-y); } else switch (B_COND) { case (BC_DIRICHLET): { iplus = i+1; if (iplus == NX) iplus = NX-1; iminus = i-1; if (iminus == -1) iminus = 0; delta = phi_in[iplus][NY-1] + phi_in[iminus][NY-1] + phi_in[i][NY-2] - 3.0*x; phi_out[i][NY-1] = -y + 2*x + tcc[i][NY-1]*delta - KAPPA*x - tgamma[i][NY-1]*(x-y); break; } case (BC_PERIODIC): { iplus = (i+1) % NX; iminus = (i-1) % NX; if (iminus < 0) iminus += NX; delta = phi_in[iplus][NY-1] + phi_in[iminus][NY-1] + phi_in[i][NY-2] + phi_in[i][0] - 4.0*x; phi_out[i][NY-1] = -y + 2*x + tcc[i][NY-1]*delta - KAPPA*x - tgamma[i][NY-1]*(x-y); break; } case (BC_ABSORBING): { // iplus = (i+1); if (iplus == NX) iplus = NX-1; // iminus = (i-1); if (iminus == -1) iminus = 0; // delta = phi_in[iplus][NY-1] + phi_in[iminus][NY-1] + phi_in[i][NY-2] - 3.0*x; phi_out[i][NY-1] = x - tc[i][NY-1]*(x - phi_in[i][NY-2]) - KAPPA_TOPBOT*x - GAMMA_TOPBOT*(x-y); break; } case (BC_VPER_HABS): { iplus = (i+1); if (iplus == NX) iplus = NX-1; iminus = (i-1); if (iminus == -1) iminus = 0; delta = phi_in[iplus][NY-1] + phi_in[iminus][NY-1] + phi_in[i][NY-2] + phi_in[i][0] - 4.0*x; if (i==0) phi_out[0][NY-1] = x - tc[0][NY-1]*(x - phi_in[1][NY-1]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y); else phi_out[i][NY-1] = -y + 2*x + tcc[i][NY-1]*delta - KAPPA*x - tgamma[i][NY-1]*(x-y); break; } } // psi_out[i][NY-1] = x; } } /* bottom boundary */ for (i=0; i0)) { iplus = i+1; iminus = i-1; if (iminus < 0) iminus = 0; delta = phi_in[iplus][0] + phi_in[iminus][0] + - 2.0*x; phi_out[i][0] = -y + 2*x + tcc[i][0]*delta - KAPPA*x - tgamma[i][0]*(x-y); } else switch (B_COND) { case (BC_DIRICHLET): { iplus = i+1; if (iplus == NX) iplus = NX-1; iminus = i-1; if (iminus == -1) iminus = 0; delta = phi_in[iplus][0] + phi_in[iminus][0] + phi_in[i][1] - 3.0*x; phi_out[i][0] = -y + 2*x + tcc[i][0]*delta - KAPPA*x - tgamma[i][0]*(x-y); break; } case (BC_PERIODIC): { iplus = (i+1) % NX; iminus = (i-1) % NX; if (iminus < 0) iminus += NX; delta = phi_in[iplus][0] + phi_in[iminus][0] + phi_in[i][1] + phi_in[i][NY-1] - 4.0*x; phi_out[i][0] = -y + 2*x + tcc[i][0]*delta - KAPPA*x - tgamma[i][0]*(x-y); break; } case (BC_ABSORBING): { // iplus = (i+1); if (iplus == NX) iplus = NX-1; // iminus = (i-1); if (iminus == -1) iminus = 0; // // delta = phi_in[iplus][0] + phi_in[iminus][0] + phi_in[i][1] - 3.0*x; phi_out[i][0] = x - tc[i][0]*(x - phi_in[i][1]) - KAPPA_TOPBOT*x - GAMMA_TOPBOT*(x-y); break; } case (BC_VPER_HABS): { iplus = (i+1); if (iplus == NX) iplus = NX-1; iminus = (i-1); if (iminus == -1) iminus = 0; delta = phi_in[iplus][0] + phi_in[iminus][0] + phi_in[i][1] + phi_in[i][NY-1] - 4.0*x; if (i==0) phi_out[0][0] = x - tc[0][0]*(x - phi_in[1][0]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y); else phi_out[i][0] = -y + 2*x + tcc[i][0]*delta - KAPPA*x - tgamma[i][0]*(x-y); break; } } // psi_out[i][0] = x; } } /* add oscillating boundary condition on the left corners */ if (OSCILLATE_LEFT) { phi_out[0][0] = oscillating_bc(time, 0); phi_out[0][NY-1] = oscillating_bc(time, NY-1); } /* for debugging purposes/if there is a risk of blow-up */ if (FLOOR) for (i=0; i VMAX) phi_out[i][j] = VMAX; if (phi_out[i][j] < -VMAX) phi_out[i][j] = -VMAX; // if (psi_out[i][j] > VMAX) psi_out[i][j] = VMAX; // if (psi_out[i][j] < -VMAX) psi_out[i][j] = -VMAX; } } } } void evolve_wave(double *phi[NX], double *psi[NX], double *tmp[NX], short int *xy_in[NX], double *tcc_table[NX], double *tgamma_table[NX]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ { // For the purpose of these comments w[t], w[t-1], w[t+1] are used to refer // to phi, psi and the result respectively to avoid confusion with the // passed parameter names. // At the beginning w[t] is saved in phi, w[t-1] in psi and tmp is space // for the next wave state w[t+1]. Take w[t] and w[t-1] to calculate the // next wave state. Write this new state in temp evolve_wave_half(phi, psi, tmp, xy_in, tcc_table, tgamma_table); // now w[t] is saved in tmp, w[t-1] in phi and the result is written to psi evolve_wave_half(tmp, phi, psi, xy_in, tcc_table, tgamma_table); // now w[t] is saved in psi, w[t-1] in tmp and the result is written to phi evolve_wave_half(psi, tmp, phi, xy_in, tcc_table, tgamma_table); // now w[t] is saved in phi, w[t-1] in psi and tmp is free again to take // the new wave state w[t+1] in the next call to this function, thus // matching the given parameter names again } void draw_color_bar(int plot, double range) { if (ROTATE_COLOR_SCHEME) draw_color_scheme(-1.0, -0.8, XMAX - 0.1, -1.0, plot, -range, range); else draw_color_scheme(XMAX - 0.3, YMIN + 0.1, XMAX - 0.1, YMAX - 0.1, plot, -range, range); // else draw_color_scheme(1.7, YMIN + 0.25, 1.9, YMAX - 0.25, plot, -range, range); } void draw_color_bar_palette(int plot, double range, int palette, int circular, int fade, double fade_value) { double width = 0.14; // double width = 0.2; if (ROTATE_COLOR_SCHEME) draw_color_scheme_palette_fade(-1.0, -0.8, XMAX - 0.1, -1.0, plot, -range, range, palette, fade, fade_value); else if (circular) draw_circular_color_scheme_palette_fade(XMAX - 2.0*width, YMIN + 2.0*width, 1.5*width, plot, -range, range, palette, fade, fade_value); else draw_color_scheme_palette_fade(XMAX - 1.5*width, YMIN + 0.1, XMAX - 0.5*width, YMAX - 0.1, plot, -range, range, palette, fade, fade_value); } void animation() { double time, scale, ratio, startleft[2], startright[2], sign = 1.0, r2, xy[2], fade_value, yshift, speed = 0.0, a, b, c, x, y, angle = 0.0, x1, sign1, ior_angle = 0.0, omega, phase_shift, vshift; double *phi[NX], *psi[NX], *tmp[NX], *total_energy[NX], *average_energy[NX], *color_scale[NX], *total_flux, *tcc_table[NX], *tgamma_table[NX]; short int *xy_in[NX]; int i, j, k, s, sample_left[2], sample_right[2], period = 0, fade, source_counter = 0, p, q, first_source = 1, imin, imax, ij[2]; // static int image_counter = 0; int image_counter = 0; long int wave_value; t_wave_packet *packet; t_wave_source wave_source[25]; if (SAVE_TIME_SERIES) { time_series_left = fopen("wave_left.dat", "w"); time_series_right = fopen("wave_right.dat", "w"); } /* Since NX and NY are big, it seemed wiser to use some memory allocation here */ for (i=0; i= INITIAL_TIME) save_frame(); else printf("Initial phase time %i of %i\n", i, INITIAL_TIME); if ((i >= INITIAL_TIME)&&(DOUBLE_MOVIE)) { // draw_wave(phi, psi, xy_in, scale, i, PLOT_B); if (HIGHRES) draw_wave_highres_palette(2, phi, psi, total_energy, average_energy, total_flux, xy_in, scale, i, PLOT_B, COLOR_PALETTE_B, 1, 0, 1.0); else draw_wave_epalette(phi, psi, total_energy, average_energy, total_flux, color_scale, xy_in, scale, i, PLOT_B, COLOR_PALETTE_B, 0, 1.0); // draw_billiard(0, 1.0); if (DRAW_COLOR_SCHEME) draw_color_bar_palette(PLOT_B, COLORBAR_RANGE_B, COLOR_PALETTE_B, CIRC_COLORBAR_B, 0, 1.0); if (PRINT_SPEED) print_speed(speed, 0, 1.0); if (PRINT_FREQUENCY) print_frequency(phase_shift, 0, 1.0); glutSwapBuffers(); // printf("image_counter = %i\n", image_counter); // printf("image number = %i\n", NSTEPS + MID_FRAMES + 1 + image_counter); save_frame_counter(NSTEPS + MID_FRAMES + 1 + image_counter); image_counter++; } else if (NO_EXTRA_BUFFER_SWAP) glutSwapBuffers(); /* it seems that saving too many files too fast can cause trouble with the file system */ /* so this is to make a pause from time to time - parameter PAUSE may need adjusting */ if (i % PAUSE == PAUSE - 1) { printf("Making a short pause\n"); sleep(PSLEEP); s = system("mv wave*.tif tif_wave/"); } } } if (MOVIE) { if (DOUBLE_MOVIE) { // draw_wave(phi, psi, xy_in, scale, i, PLOT); if (HIGHRES) draw_wave_highres_palette(2, phi, psi, total_energy, average_energy, total_flux, xy_in, scale, NSTEPS, PLOT, COLOR_PALETTE, 0, 0, 1.0); else draw_wave_epalette(phi, psi, total_energy, average_energy, total_flux, color_scale, xy_in, scale, NSTEPS, PLOT, COLOR_PALETTE, 0, 1.0); // draw_billiard(0, 1.0); if (DRAW_COLOR_SCHEME) draw_color_bar_palette(PLOT, COLORBAR_RANGE, COLOR_PALETTE, CIRC_COLORBAR, 0, 1.0); if (PRINT_SPEED) print_speed(speed, 0, 1.0); if (PRINT_FREQUENCY) print_frequency(phase_shift, 0, 1.0); glutSwapBuffers(); } if (!FADE) for (i=0; i