/*********************************************************************************/ /* */ /* Animation of wave equation in a planar domain */ /* */ /* N. Berglund, december 2012, may 2021 */ /* */ /* UPDATE 24/04: distinction between damping and "elasticity" parameters */ /* UPDATE 27/04: new billiard shapes, bug in color scheme fixed */ /* UPDATE 28/04: code made more efficient, with help of Marco Mancini */ /* */ /* Feel free to reuse, but if doing so it would be nice to drop a */ /* line to nils.berglund@univ-orleans.fr - Thanks! */ /* */ /* compile with */ /* gcc -o wave_billiard wave_billiard.c */ /* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */ /* */ /* To make a video, set MOVIE to 1 and create subfolder tif_wave */ /* It may be possible to increase parameter PAUSE */ /* */ /* create movie using */ /* ffmpeg -i wave.%05d.tif -vcodec libx264 wave.mp4 */ /* */ /*********************************************************************************/ /*********************************************************************************/ /* */ /* NB: The algorithm used to simulate the wave equation is highly paralellizable */ /* One could make it much faster by using a GPU */ /* */ /*********************************************************************************/ #include #include #include #include #include #include #include /* Sam Leffler's libtiff library. */ #include #define MOVIE 0 /* set to 1 to generate movie */ /* General geometrical parameters */ #define WINWIDTH 1280 /* window width */ #define WINHEIGHT 720 /* window height */ #define NX 1280 /* number of grid points on x axis */ #define NY 720 /* number of grid points on y axis */ // #define NX 640 /* number of grid points on x axis */ // #define NY 360 /* number of grid points on y axis */ /* setting NX to WINWIDTH and NY to WINHEIGHT increases resolution */ /* but will multiply run time by 4 */ #define XMIN -2.0 #define XMAX 2.0 /* x interval */ #define YMIN -1.125 #define YMAX 1.125 /* y interval for 9/16 aspect ratio */ // #define XMIN -1.8 // #define XMAX 1.8 /* x interval */ // #define YMIN -1.0125 // #define YMAX 1.0125 /* y interval for 9/16 aspect ratio */ #define JULIA_SCALE 1.0 /* scaling for Julia sets */ /* Choice of the billiard table */ #define B_DOMAIN 3 /* choice of domain shape, see list in global_pdes.c */ #define CIRCLE_PATTERN 4 /* pattern of circles, see list in global_pdes.c */ #define P_PERCOL 0.25 /* probability of having a circle in C_RAND_PERCOL arrangement */ #define NPOISSON 300 /* number of points for Poisson C_RAND_POISSON arrangement */ #define LAMBDA 0.75 /* parameter controlling the dimensions of domain */ #define MU 0.025 /* parameter controlling the dimensions of domain */ #define NPOLY 3 /* number of sides of polygon */ #define APOLY 1.0 /* angle by which to turn polygon, in units of Pi/2 */ #define MDEPTH 4 /* depth of computation of Menger gasket */ #define MRATIO 3 /* ratio defining Menger gasket */ #define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */ #define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */ #define FOCI 1 /* set to 1 to draw focal points of ellipse */ #define NGRIDX 15 /* number of grid point for grid of disks */ #define NGRIDY 20 /* number of grid point for grid of disks */ /* You can add more billiard tables by adapting the functions */ /* xy_in_billiard and draw_billiard below */ /* Physical parameters of wave equation */ #define TWOSPEEDS 1 /* set to 1 to replace hardcore boundary by medium with different speed */ #define OMEGA 0.9 /* frequency of periodic excitation */ #define COURANT 0.01 /* Courant number */ #define COURANTB 0.003 /* Courant number in medium B */ #define GAMMA 0.0 /* damping factor in wave equation */ #define GAMMA_BC 1.0e-4 /* damping factor on boundary */ // #define GAMMA 5.0e-10 /* damping factor in wave equation */ #define KAPPA 0.0 /* "elasticity" term enforcing oscillations */ #define KAPPA_BC 5.0e-4 /* "elasticity" term on absorbing boundary */ /* The Courant number is given by c*DT/DX, where DT is the time step and DX the lattice spacing */ /* The physical damping coefficient is given by GAMMA/(DT)^2 */ /* Increasing COURANT speeds up the simulation, but decreases accuracy */ /* For similar wave forms, COURANT^2*GAMMA should be kept constant */ /* Boundary conditions, see list in global_pdes.c */ #define B_COND 3 /* Parameters for length and speed of simulation */ #define NSTEPS 7000 /* number of frames of movie */ #define NVID 50 /* number of iterations between images displayed on screen */ #define NSEG 100 /* number of segments of boundary */ #define INITIAL_TIME 200 /* time after which to start saving frames */ #define PAUSE 1000 /* number of frames after which to pause */ #define PSLEEP 1 /* sleep time during pause */ #define SLEEP1 1 /* initial sleeping time */ #define SLEEP2 1 /* final sleeping time */ /* Plot type, see list in global_pdes.c */ #define PLOT 1 /* Color schemes */ #define BLACK 1 /* background */ #define COLOR_SCHEME 1 /* choice of color scheme, see list in global_pdes.c */ #define SCALE 0 /* set to 1 to adjust color scheme to variance of field */ #define SLOPE 1.0 /* sensitivity of color on wave amplitude */ // #define SLOPE 0.5 /* sensitivity of color on wave amplitude */ #define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */ #define E_SCALE 750.0 /* scaling factor for energy representation */ #define COLORHUE 260 /* initial hue of water color for scheme C_LUM */ #define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */ #define LUMMEAN 0.5 /* amplitude of luminosity variation for scheme C_LUM */ #define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */ #define HUEMEAN 220.0 /* mean value of hue for color scheme C_HUE */ #define HUEAMP -220.0 /* amplitude of variation of hue for color scheme C_HUE */ // #define HUEMEAN 320.0 /* mean value of hue for color scheme C_HUE */ // #define HUEAMP 100.0 /* amplitude of variation of hue for color scheme C_HUE */ #include "global_pdes.c" #include "sub_wave.c" double courant2, courantb2; /* Courant parameters squared */ void init_wave(x, y, phi, psi, xy_in) /* initialise field with drop at (x,y) - phi is wave height, psi is phi at time t-1 */ double x, y, *phi[NX], *psi[NX]; short int * xy_in[NX]; { int i, j; double xy[2], dist2; for (i=0; i= NX) imax = NX-1; jmin = ij1[1] - d; if (jmin < 0) jmin = 0; jmax = ij2[1] + d; if (jmax >= NY) jmax = NY-1; for (i = imin; i < imax; i++) for (j = jmin; j < jmax; j++) { ij_to_xy(i, j, xy); dist2 = (xy[0]-x1)*(xy[0]-x1); /* to be improved */ // dist2 = (xy[0]-x)*(xy[0]-x) + (xy[1]-y)*(xy[1]-y); // if (dist2 < 0.01) if (dist2 < 0.001) phi[i][j] = amplitude*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01)*cos(t*OMEGA); // phi[i][j] += 0.2*exp(-dist2/0.001)*cos(-sqrt(dist2)/0.01)*cos(t*OMEGA); } } /*********************/ /* animation part */ /*********************/ double compute_energy(phi, psi, xy_in, i, j) double *phi[NX], *psi[NX]; short int *xy_in[NX]; int i, j; { double velocity, energy, gradientx2, gradienty2; int iplus, iminus, jplus, jminus; velocity = (phi[i][j] - psi[i][j]); iplus = (i+1); if (iplus == NX) iplus = NX-1; iminus = (i-1); if (iminus == -1) iminus = 0; jplus = (j+1); if (jplus == NY) jplus = NY-1; jminus = (j-1); if (jminus == -1) jminus = 0; gradientx2 = (phi[iplus][j]-phi[i][j])*(phi[iplus][j]-phi[i][j]) + (phi[i][j] - phi[iminus][j])*(phi[i][j] - phi[iminus][j]); gradienty2 = (phi[i][jplus]-phi[i][j])*(phi[i][jplus]-phi[i][j]) + (phi[i][j] - phi[i][jminus])*(phi[i][j] - phi[i][jminus]); if (xy_in[i][j]) return(E_SCALE*E_SCALE*(velocity*velocity + 0.5*COURANT*COURANT*(gradientx2+gradienty2))); else if (TWOSPEEDS) return(E_SCALE*E_SCALE*(velocity*velocity + 0.5*COURANTB*COURANTB*(gradientx2+gradienty2))); else return(0); } void draw_wave(phi, psi, xy_in, scale, time) /* draw the field */ double *phi[NX], *psi[NX], scale; short int *xy_in[NX]; int time; { int i, j, iplus, iminus, jplus, jminus; double rgb[3], xy[2], x1, y1, x2, y2, velocity, energy, gradientx2, gradienty2; static double dtinverse = ((double)NX)/(COURANT*(XMAX-XMIN)), dx = (XMAX-XMIN)/((double)NX); glBegin(GL_QUADS); // printf("dtinverse = %.5lg\n", dtinverse); for (i=0; i NY/2) color_scheme(COLOR_SCHEME, phi[i][j], scale, time, rgb); else color_scheme(COLOR_SCHEME, compute_energy(phi, psi, xy_in, i, j), scale, time, rgb); } glColor3f(rgb[0], rgb[1], rgb[2]); glVertex2i(i, j); glVertex2i(i+1, j); glVertex2i(i+1, j+1); glVertex2i(i, j+1); } } glEnd (); } void evolve_wave_half(phi_in, psi_in, phi_out, psi_out, xy_in) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ double *phi_in[NX], *psi_in[NX], *phi_out[NX], *psi_out[NX]; short int *xy_in[NX]; { int i, j, iplus, iminus, jplus, jminus; double delta, x, y, c, cc; // c = COURANT; // cc = courant2; #pragma omp parallel for private(i,j,iplus,iminus,jplus,jminus,delta,x,y) for (i=0; i0)&&(i0)&&(j0)&&(i VMAX) phi_out[i][j] = VMAX; if (phi_out[i][j] < -VMAX) phi_out[i][j] = -VMAX; if (psi_out[i][j] > VMAX) psi_out[i][j] = VMAX; if (psi_out[i][j] < -VMAX) psi_out[i][j] = -VMAX; } } } } // printf("phi(0,0) = %.3lg, psi(0,0) = %.3lg\n", phi[NX/2][NY/2], psi[NX/2][NY/2]); } void evolve_wave(phi, psi, phi_tmp, psi_tmp, xy_in) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ double *phi[NX], *psi[NX], *phi_tmp[NX], *psi_tmp[NX]; short int *xy_in[NX]; { evolve_wave_half(phi, psi, phi_tmp, psi_tmp, xy_in); evolve_wave_half(phi_tmp, psi_tmp, phi, psi, xy_in); } double compute_variance(phi, psi, xy_in) /* compute the variance of the field, to adjust color scheme */ double *phi[NX], *psi[NX]; short int * xy_in[NX]; { int i, j, n = 0; double variance = 0.0; for (i=1; i= INITIAL_TIME) save_frame(); else printf("Initial phase time %i of %i\n", i, INITIAL_TIME); /* it seems that saving too many files too fast can cause trouble with the file system */ /* so this is to make a pause from time to time - parameter PAUSE may need adjusting */ if (i % PAUSE == PAUSE - 1) { printf("Making a short pause\n"); sleep(PSLEEP); s = system("mv wave*.tif tif_wave/"); } } } if (MOVIE) { for (i=0; i<20; i++) save_frame(); s = system("mv wave*.tif tif_wave/"); } for (i=0; i