/*********************************************************************************/ /* */ /* Animation of wave equation in a planar domain */ /* */ /* N. Berglund, december 2012, may 2021 */ /* */ /* UPDATE 24/04: distinction between damping and "elasticity" parameters */ /* UPDATE 27/04: new billiard shapes, bug in color scheme fixed */ /* UPDATE 28/04: code made more efficient, with help of Marco Mancini */ /* */ /* Feel free to reuse, but if doing so it would be nice to drop a */ /* line to nils.berglund@univ-orleans.fr - Thanks! */ /* */ /* compile with */ /* gcc -o wave_billiard wave_billiard.c */ /* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */ /* */ /* OMP acceleration may be more effective after executing */ /* export OMP_NUM_THREADS=2 in the shell before running the program */ /* */ /* To make a video, set MOVIE to 1 and create subfolder tif_wave */ /* It may be possible to increase parameter PAUSE */ /* */ /* create movie using */ /* ffmpeg -i wave.%05d.tif -vcodec libx264 wave.mp4 */ /* */ /*********************************************************************************/ /*********************************************************************************/ /* */ /* NB: The algorithm used to simulate the wave equation is highly paralellizable */ /* One could make it much faster by using a GPU */ /* */ /*********************************************************************************/ #include #include #include #include #include #include #include /* Sam Leffler's libtiff library. */ #include #define MOVIE 0 /* set to 1 to generate movie */ /* General geometrical parameters */ #define WINWIDTH 1280 /* window width */ #define WINHEIGHT 720 /* window height */ #define NX 1280 /* number of grid points on x axis */ #define NY 720 /* number of grid points on y axis */ #define XMIN -2.0 #define XMAX 2.0 /* x interval */ #define YMIN -1.125 #define YMAX 1.125 /* y interval for 9/16 aspect ratio */ #define JULIA_SCALE 1.0 /* scaling for Julia sets */ /* Choice of the billiard table */ #define B_DOMAIN 20 /* choice of domain shape, see list in global_pdes.c */ #define CIRCLE_PATTERN 8 /* pattern of circles, see list in global_pdes.c */ #define P_PERCOL 0.25 /* probability of having a circle in C_RAND_PERCOL arrangement */ #define NPOISSON 340 /* number of points for Poisson C_RAND_POISSON arrangement */ #define LAMBDA 0.85 /* parameter controlling the dimensions of domain */ #define MU 0.03 /* parameter controlling the dimensions of domain */ #define NPOLY 3 /* number of sides of polygon */ #define APOLY 1.0 /* angle by which to turn polygon, in units of Pi/2 */ #define MDEPTH 4 /* depth of computation of Menger gasket */ #define MRATIO 3 /* ratio defining Menger gasket */ #define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */ #define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */ #define FOCI 1 /* set to 1 to draw focal points of ellipse */ #define NGRIDX 15 /* number of grid point for grid of disks */ #define NGRIDY 20 /* number of grid point for grid of disks */ /* You can add more billiard tables by adapting the functions */ /* xy_in_billiard and draw_billiard below */ /* Physical parameters of wave equation */ #define TWOSPEEDS 1 /* set to 1 to replace hardcore boundary by medium with different speed */ #define OSCILLATE_LEFT 1 /* set to 1 to add oscilating boundary condition on the left */ #define OSCILLATE_TOPBOT 1 /* set to 1 to enforce a planar wave on top and bottom boundary */ #define X_SHIFT -0.9 /* x range on which to apply OSCILLATE_TOPBOT */ #define OMEGA 0.002 /* frequency of periodic excitation */ #define K_BC 3.0 /* spatial period of periodic excitation in y direction */ #define KX_BC 30.0 /* spatial period of periodic excitation in x direction */ #define KY_BC 10.0 /* spatial period of periodic excitation in y direction */ #define AMPLITUDE 1.0 /* amplitude of periodic excitation */ #define COURANT 0.02 /* Courant number */ #define COURANTB 0.01 /* Courant number in medium B */ // #define COURANTB 0.00666 /* Courant number in medium B */ #define GAMMA 2.0e-6 /* damping factor in wave equation */ #define GAMMAB 2.5e-4 /* damping factor in wave equation */ // #define GAMMAB 5.0e-4 /* damping factor in wave equation */ // #define GAMMAB 1.0e-4 /* damping factor in wave equation */ #define GAMMA_SIDES 1.0e-4 /* damping factor on boundary */ #define GAMMA_TOPBOT 1.0e-6 /* damping factor on boundary */ #define KAPPA 0.0 /* "elasticity" term enforcing oscillations */ #define KAPPAB 1.0e-6 /* "elasticity" term enforcing oscillations */ #define KAPPA_SIDES 5.0e-4 /* "elasticity" term on absorbing boundary */ #define KAPPA_TOPBOT 0.0 /* "elasticity" term on absorbing boundary */ /* The Courant number is given by c*DT/DX, where DT is the time step and DX the lattice spacing */ /* The physical damping coefficient is given by GAMMA/(DT)^2 */ /* Increasing COURANT speeds up the simulation, but decreases accuracy */ /* For similar wave forms, COURANT^2*GAMMA should be kept constant */ /* Boundary conditions, see list in global_pdes.c */ #define B_COND 3 /* Parameters for length and speed of simulation */ // #define NSTEPS 1000 /* number of frames of movie */ #define NSTEPS 4500 /* number of frames of movie */ #define NVID 60 /* number of iterations between images displayed on screen */ #define NSEG 100 /* number of segments of boundary */ #define INITIAL_TIME 100 /* time after which to start saving frames */ #define BOUNDARY_WIDTH 2 /* width of billiard boundary */ #define PAUSE 1000 /* number of frames after which to pause */ #define PSLEEP 1 /* sleep time during pause */ #define SLEEP1 1 /* initial sleeping time */ #define SLEEP2 1 /* final sleeping time */ #define END_FRAMES 100 /* number of still frames at end of movie */ /* Parameters of initial condition */ #define INITIAL_AMP 0.2 /* amplitude of initial condition */ #define INITIAL_VARIANCE 0.002 /* variance of initial condition */ #define INITIAL_WAVELENGTH 0.1 /* wavelength of initial condition */ /* Plot type, see list in global_pdes.c */ #define PLOT 0 /* Color schemes */ #define BLACK 1 /* background */ #define COLOR_SCHEME 1 /* choice of color scheme, see list in global_pdes.c */ #define SCALE 0 /* set to 1 to adjust color scheme to variance of field */ #define SLOPE 1.0 /* sensitivity of color on wave amplitude */ #define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */ #define E_SCALE 2500.0 /* scaling factor for energy representation */ #define COLORHUE 260 /* initial hue of water color for scheme C_LUM */ #define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */ #define LUMMEAN 0.5 /* amplitude of luminosity variation for scheme C_LUM */ #define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */ #define HUEMEAN 220.0 /* mean value of hue for color scheme C_HUE */ #define HUEAMP -50.0 /* amplitude of variation of hue for color scheme C_HUE */ /* mangrove properties */ #define MANGROVE_HUE_MIN 180.0 /* color of original mangrove */ #define MANGROVE_HUE_MAX -50.0 /* color of saturated mangrove */ // #define MANGROVE_EMAX 5.0e-3 /* max energy for mangrove to survive */ #define MANGROVE_EMAX 1.1e-3 /* max energy for mangrove to survive */ #define RANDOM_RADIUS 1 /* set to 1 for random circle radius */ #define ERODE_MANGROVES 0 /* set to 1 for mangroves to be eroded */ #define MOVE_MANGROVES 1 /* set to 1 for mobile mangroves */ #define DETACH_MANGROVES 1 /* set to 1 for mangroves to be able to detach */ #define INERTIA 1 /* set to 1 for taking inertia into account */ #define DT_MANGROVE 0.1 /* time step for mangrove displacement */ #define KSPRING 0.25 /* spring constant of mangroves */ #define KWAVE 2.0 /* constant in force due to wave gradient */ #define DXMAX 0.02 /* max displacement of mangrove in one time step */ #define L_DETACH 0.2 /* spring length beyond which mangroves detach */ #define DAMP_MANGROVE 0.2 /* damping coefficient of mangroves */ #define MANGROVE_MASS 1.5 /* mass of mangrove of radius MU */ /* For debugging purposes only */ #define FLOOR 1 /* set to 1 to limit wave amplitude to VMAX */ #define VMAX 10.0 /* max value of wave amplitude */ #include "global_pdes.c" #include "sub_wave.c" #include "wave_common.c" double courant2, courantb2; /* Courant parameters squared */ double circle_energy[NMAXCIRCLES]; /* energy dissipated by the circles */ double circley_wrapped[NMAXCIRCLES]; /* position of circle centers wrapped vertically */ double anchor_x[NMAXCIRCLES]; /* points moving circles are attached to */ double anchor_y[NMAXCIRCLES]; /* points moving circles are attached to */ double vx[NMAXCIRCLES]; /* x velocity of circles */ double vy[NMAXCIRCLES]; /* y velocity of circles */ double circlerad_initial[NMAXCIRCLES]; /* initial circle radii */ double mass_inverse[NMAXCIRCLES]; /* inverse of mangrove mass */ short int circle_attached[NMAXCIRCLES]; /* has value 1 if the circle is attached to its anchor */ /*********************/ /* animation part */ /*********************/ void init_bc_phase(double left_bc[NY], double top_bc[NX], double bot_bc[NX]) /* initialize boundary condition phase KX*x + KY*y */ { int i, j; double xy[2]; for (j=0; j0)&&(i0)&&(j0)&&(i VMAX) phi_out[i][j] = VMAX; if (phi_out[i][j] < -VMAX) phi_out[i][j] = -VMAX; if (psi_out[i][j] > VMAX) psi_out[i][j] = VMAX; if (psi_out[i][j] < -VMAX) psi_out[i][j] = -VMAX; } } } } // printf("phi(0,0) = %.3lg, psi(0,0) = %.3lg\n", phi[NX/2][NY/2], psi[NX/2][NY/2]); } void evolve_wave(double *phi[NX], double *psi[NX], double *phi_tmp[NX], double *psi_tmp[NX], short int *xy_in[NX]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ { evolve_wave_half(phi, psi, phi_tmp, psi_tmp, xy_in); evolve_wave_half(phi_tmp, psi_tmp, phi, psi, xy_in); } void animation() { double time, scale, diss, rgb[3], hue, y, dissip, ej, gradient[2], dx, dy, dt, xleft, xright, length; double *phi[NX], *psi[NX], *phi_tmp[NX], *psi_tmp[NX]; short int *xy_in[NX], redraw = 0; int i, j, s, ij[2]; static int imin, imax; static short int first = 1; /* Since NX and NY are big, it seemed wiser to use some memory allocation here */ for (i=0; i= YMAX) y -= circlerad[i]; if (y <= YMIN) y += circlerad[i]; // if (y >= YMAX) y -= (YMAX - YMIN); // if (y <= YMIN) y += (YMAX - YMIN); circley_wrapped[i] = y; if (RANDOM_RADIUS) circlerad[i] = circlerad[i]*(0.75 + 0.5*((double)rand()/RAND_MAX)); circlerad_initial[i] = circlerad[i]; circle_attached[i] = 1; mass_inverse[i] = MU*MU/(MANGROVE_MASS*circlerad[i]*circlerad[i]); if (MOVE_MANGROVES) { anchor_x[i] = circlex[i]; anchor_y[i] = circley_wrapped[i]; // anchor_y[i] = circley[i]; } if (INERTIA) { vx[i] = 0.0; vy[i] = 0.0; } } if (first) /* compute box limits where circles are reset */ { /* find leftmost and rightmost circle */ for (i=0; i xright)) xright = circlex[i] + circlerad[i]; xy_to_ij(xleft, 0.0, ij); imin = ij[0] - 10; if (imin < 0) imin = 0; xy_to_ij(xright, 0.0, ij); imax = ij[0]; if (imax >= NX) imax = NX-1; first = 0; printf("xleft = %.3lg, xright = %.3lg, imin = %i, imax = %i\n", xleft, xright, imin, imax); } blank(); glColor3f(0.0, 0.0, 0.0); draw_wave(phi, psi, xy_in, 1.0, 0, PLOT); draw_billiard(); glutSwapBuffers(); sleep(SLEEP1); for (i=0; i<=INITIAL_TIME + NSTEPS; i++) { //printf("%d\n",i); /* compute the variance of the field to adjust color scheme */ /* the color depends on the field divided by sqrt(1 + variance) */ if (SCALE) { scale = sqrt(1.0 + compute_variance(phi,psi, xy_in)); // printf("Scaling factor: %5lg\n", scale); } else scale = 1.0; draw_wave(phi, psi, xy_in, scale, i, PLOT); for (j=0; j 0.1*MANGROVE_EMAX) { dissip = 0.1*MANGROVE_EMAX; printf("Flooring dissipation!\n"); } if (circleactive[j]) { circle_energy[j] += dissip; ej = circle_energy[j]; if (ej <= MANGROVE_EMAX) { if (ej > 0.0) { hue = MANGROVE_HUE_MIN + (MANGROVE_HUE_MAX - MANGROVE_HUE_MIN)*ej/MANGROVE_EMAX; if (hue < 0.0) hue += 360.0; } else hue = MANGROVE_HUE_MIN; hsl_to_rgb(hue, 0.9, 0.5, rgb); if (j%NGRIDY == 0) printf("Circle %i, energy %.5lg, hue %.5lg\n", j, ej, hue); draw_colored_circle(circlex[j], circley[j], circlerad[j], NSEG, rgb); /* shrink mangrove */ if (ej > 0.0) { // circlerad[j] -= MU*ej*ej/(MANGROVE_EMAX*MANGROVE_EMAX); // if (circlerad[j] < 0.0) circlerad[j] = 0.0; circlerad[j] = circlerad_initial[j]*(1.0 - ej*ej/(MANGROVE_EMAX*MANGROVE_EMAX)); redraw = 1; } else circlerad[j] = circlerad_initial[j]; } else /* remove mangrove */ { circleactive[j] = 0; /* reinitialize table xy_in */ redraw = 1; } } else /* allow disabled mangroves to recover */ { circle_energy[j] -= 0.15*dissip; // circlerad[j] += 0.005*MU; // if (circlerad[j] > MU) circlerad[j] = MU; // if ((circle_energy[j] < 0.0)&&(circlerad[j] > 0.0)) if (circle_energy[j] < 0.0) { circleactive[j] = 1; // circlerad[j] = circlerad[j]*(0.75 + 0.5*((double)rand()/RAND_MAX)); circlerad[j] = circlerad_initial[j]; circle_energy[j] = -MANGROVE_EMAX; /* reinitialize table xy_in */ redraw = 1; } } // printf("Circle %i, energy %.5lg\n", j, circle_energy[j]); } /* move mangroves */ if (MOVE_MANGROVES) for (j=0; j ", j, circlex[j], circley[j]); /* compute force of wave */ dx = DT_MANGROVE*KWAVE*gradient[0]; dy = DT_MANGROVE*KWAVE*gradient[1]; /* compute force of spring */ if (circle_attached[j]) { dx += DT_MANGROVE*(-KSPRING*(circlex[j] - anchor_x[j])); dy += DT_MANGROVE*(-KSPRING*(circley_wrapped[j] - anchor_y[j])); } /* detach mangrove if spring is too long */ if (DETACH_MANGROVES) { length = module2(circlex[j] - anchor_x[j], circley_wrapped[j] - anchor_y[j]); if (j%NGRIDY == 0) printf("spring length %.i: %.3lg\n", j, length); // if (length > L_DETACH) circle_attached[j] = 0; if (length*mass_inverse[j] > L_DETACH) circle_attached[j] = 0; } if (dx > DXMAX) dx = DXMAX; if (dx < -DXMAX) dx = -DXMAX; if (dy > DXMAX) dy = DXMAX; if (dy < -DXMAX) dy = -DXMAX; if (INERTIA) { vx[j] += (dx - DAMP_MANGROVE*vx[j])*mass_inverse[j]; vy[j] += (dy - DAMP_MANGROVE*vy[j])*mass_inverse[j]; circlex[j] += vx[j]*DT_MANGROVE; circley[j] += vy[j]*DT_MANGROVE; circley_wrapped[j] += vy[j]*DT_MANGROVE; if (j%NGRIDY == 0) printf("circle %.i: (dx,dy) = (%.3lg,%.3lg), (vx,vy) = (%.3lg,%.3lg)\n", j, circlex[j]-anchor_x[j], circley[j]-anchor_y[j], vx[j], vy[j]); } else { circlex[j] += dx*mass_inverse[j]*DT_MANGROVE; circley[j] += dy*mass_inverse[j]*DT_MANGROVE; circley_wrapped[j] += dy*mass_inverse[j]*DT_MANGROVE; } if (circlex[j] <= XMIN) circlex[j] = XMIN; if (circlex[j] >= XMAX) circlex[j] = XMAX; if (circley_wrapped[j] <= YMIN) circley_wrapped[j] = YMIN; if (circley_wrapped[j] >= YMAX) circley_wrapped[j] = YMAX; // if (j%NGRIDY == 0) printf("(%.3lg, %.3lg)\n", circlex[j], circley[j]); redraw = 1; } draw_billiard(); glutSwapBuffers(); if (redraw) { printf("Reinitializing xy_in\n"); init_xyin_xrange(xy_in, imin, NX-1); // init_xyin_xrange(xy_in, imin, imax); } redraw = 0; if (MOVIE) { if (i >= INITIAL_TIME) save_frame(); else printf("Initial phase time %i of %i\n", i, INITIAL_TIME); /* it seems that saving too many files too fast can cause trouble with the file system */ /* so this is to make a pause from time to time - parameter PAUSE may need adjusting */ if (i % PAUSE == PAUSE - 1) { printf("Making a short pause\n"); sleep(PSLEEP); s = system("mv wave*.tif tif_wave/"); } } } if (MOVIE) { for (i=0; i