/*********************************************************************************/ /* */ /* Animation of wave equation in a planar domain */ /* */ /* N. Berglund, december 2012, may 2021 */ /* */ /* UPDATE 24/04: distinction between damping and "elasticity" parameters */ /* UPDATE 27/04: new billiard shapes, bug in color scheme fixed */ /* UPDATE 28/04: code made more efficient, with help of Marco Mancini */ /* */ /* Feel free to reuse, but if doing so it would be nice to drop a */ /* line to nils.berglund@univ-orleans.fr - Thanks! */ /* */ /* compile with */ /* gcc -o wave_billiard wave_billiard.c */ /* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */ /* */ /* OMP acceleration may be more effective after executing */ /* export OMP_NUM_THREADS=2 in the shell before running the program */ /* */ /* To make a video, set MOVIE to 1 and create subfolder tif_wave */ /* It may be possible to increase parameter PAUSE */ /* */ /* create movie using */ /* ffmpeg -i wave.%05d.tif -vcodec libx264 wave.mp4 */ /* */ /*********************************************************************************/ /*********************************************************************************/ /* */ /* NB: The algorithm used to simulate the wave equation is highly paralellizable */ /* One could make it much faster by using a GPU */ /* */ /*********************************************************************************/ #include #include #include #include #include #include #include /* Sam Leffler's libtiff library. */ #include #include #define MOVIE 0 /* set to 1 to generate movie */ #define DOUBLE_MOVIE 1 /* set to 1 to produce movies for wave height and energy simultaneously */ #define SAVE_MEMORY 1 /* set to 1 to save memory when writing tiff images */ #define NO_EXTRA_BUFFER_SWAP 1 /* some OS require one less buffer swap when recording images */ /* General geometrical parameters */ // #define WINWIDTH 1920 /* window width */ // #define WINHEIGHT 1150 /* window height */ // // // // #define NX 2500 /* number of grid points on x axis */ // // // // #define NY 1250 /* number of grid points on y axis */ // #define NX 2840 /* number of grid points on x axis */ // #define NY 2300 /* number of grid points on y axis */ // // #define XMIN -2.0 // #define XMAX 2.0 /* x interval */ // #define YMIN -1.041666667 // #define YMAX 1.041666667 /* y interval for 9/16 aspect ratio */ #define HIGHRES 0 /* set to 1 if resolution of grid is double that of displayed image */ #define WINWIDTH 1280 /* window width */ #define WINHEIGHT 720 /* window height */ // #define NX 1280 /* number of grid points on x axis */ // #define NX 720 /* number of grid points on x axis */ // #define NY 720 /* number of grid points on y axis */ #define NX 2560 /* number of grid points on x axis */ // #define NX 1440 /* number of grid points on x axis */ #define NY 1440 /* number of grid points on y axis */ // #define NX 360 /* number of grid points on x axis */ // #define NY 360 /* number of grid points on y axis */ #define XMIN -2.0 #define XMAX 2.0 /* x interval */ #define YMIN -1.125 #define YMAX 1.125 /* y interval for 9/16 aspect ratio */ #define JULIA_SCALE 0.8 /* scaling for Julia sets */ /* Choice of the billiard table */ #define B_DOMAIN 999 /* choice of domain shape, see list in global_pdes.c */ #define CIRCLE_PATTERN 2 /* pattern of circles or polygons, see list in global_pdes.c */ #define COMPARISON 0 /* set to 1 to compare two different patterns */ #define B_DOMAIN_B 20 /* second domain shape, for comparisons */ #define CIRCLE_PATTERN_B 0 /* second pattern of circles or polygons */ #define VARIABLE_IOR 1 /* set to 1 for a variable index of refraction */ #define IOR 5 /* choice of index of refraction, see list in global_pdes.c */ #define IOR_TOTAL_TURNS 1.0 /* total angle of rotation for IOR_PERIODIC_WELLS_ROTATING */ #define MANDEL_IOR_SCALE -0.05 /* parameter controlling dependence of IoR on Mandelbrot escape speed */ #define P_PERCOL 0.25 /* probability of having a circle in C_RAND_PERCOL arrangement */ #define NPOISSON 300 /* number of points for Poisson C_RAND_POISSON arrangement */ #define RANDOM_POLY_ANGLE 1 /* set to 1 to randomize angle of polygons */ #define LAMBDA 0.5 /* parameter controlling the dimensions of domain */ #define MU 0.5 /* parameter controlling the dimensions of domain */ #define NPOLY 6 /* number of sides of polygon */ #define APOLY 0.0 /* angle by which to turn polygon, in units of Pi/2 */ #define MDEPTH 7 /* depth of computation of Menger gasket */ #define MRATIO 3 /* ratio defining Menger gasket */ #define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */ #define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */ #define FOCI 1 /* set to 1 to draw focal points of ellipse */ #define NGRIDX 14 /* number of grid point for grid of disks */ #define NGRIDY 8 /* number of grid point for grid of disks */ #define X_SHOOTER -0.2 #define Y_SHOOTER -0.6 #define X_TARGET 0.4 #define Y_TARGET 0.7 /* shooter and target positions in laser fight */ #define ISO_XSHIFT_LEFT -2.9 #define ISO_XSHIFT_RIGHT 1.4 #define ISO_YSHIFT_LEFT -0.15 #define ISO_YSHIFT_RIGHT -0.15 #define ISO_SCALE 0.5 /* coordinates for isospectral billiards */ /* You can add more billiard tables by adapting the functions */ /* xy_in_billiard and draw_billiard below */ /* Physical parameters of wave equation */ #define TWOSPEEDS 0 /* set to 1 to replace hardcore boundary by medium with different speed */ #define OSCILLATE_LEFT 0 /* set to 1 to add oscilating boundary condition on the left */ #define OSCILLATE_TOPBOT 0 /* set to 1 to enforce a planar wave on top and bottom boundary */ #define OSCILLATION_SCHEDULE 3 /* oscillation schedule, see list in global_pdes.c */ #define OMEGA 0.001 /* frequency of periodic excitation */ // #define OMEGA 0.0005 /* frequency of periodic excitation */ #define AMPLITUDE 0.8 /* amplitude of periodic excitation */ #define ACHIRP 0.2 /* acceleration coefficient in chirp */ #define DAMPING 0.0 /* damping of periodic excitation */ #define COURANT 0.05 /* Courant number */ #define COURANTB 0.0 /* Courant number in medium B */ #define GAMMA 0.0 /* damping factor in wave equation */ #define GAMMAB 0.0 /* damping factor in wave equation */ #define GAMMA_SIDES 1.0e-4 /* damping factor on boundary */ #define GAMMA_TOPBOT 1.0e-7 /* damping factor on boundary */ #define KAPPA 0.0 /* "elasticity" term enforcing oscillations */ #define KAPPA_SIDES 5.0e-4 /* "elasticity" term on absorbing boundary */ #define KAPPA_TOPBOT 0.0 /* "elasticity" term on absorbing boundary */ /* The Courant number is given by c*DT/DX, where DT is the time step and DX the lattice spacing */ /* The physical damping coefficient is given by GAMMA/(DT)^2 */ /* Increasing COURANT speeds up the simulation, but decreases accuracy */ /* For similar wave forms, COURANT^2*GAMMA should be kept constant */ #define ADD_OSCILLATING_SOURCE 1 /* set to 1 to add an oscillating wave source */ #define OSCILLATING_SOURCE_PERIOD 75 /* period of oscillating source */ #define ALTERNATE_OSCILLATING_SOURCE 1 /* set to 1 to alternate sign of oscillating source */ #define ADD_WAVE_PACKET_SOURCES 0 /* set to 1 to add several sources emitting wave packets */ #define WAVE_PACKET_SOURCE_TYPE 1 /* type of wave packet sources */ #define N_WAVE_PACKETS 15 /* number of wave packets */ #define WAVE_PACKET_RADIUS 20 /* radius of wave packets */ /* Boundary conditions, see list in global_pdes.c */ // #define B_COND 1 #define B_COND 2 #define PRECOMPUTE_BC 0 /* set to 1 to compute neighbours for Laplacian in advance */ /* Parameters for length and speed of simulation */ #define NSTEPS 2200 /* number of frames of movie */ // #define NSTEPS 500 /* number of frames of movie */ #define NVID 4 /* number of iterations between images displayed on screen */ #define NSEG 1000 /* number of segments of boundary */ #define INITIAL_TIME 0 /* time after which to start saving frames */ #define BOUNDARY_WIDTH 2 /* width of billiard boundary */ #define PRINT_SPEED 0 /* set to 1 to print speed of moving source */ #define PAUSE 100 /* number of frames after which to pause */ #define PSLEEP 3 /* sleep time during pause */ #define SLEEP1 1 /* initial sleeping time */ #define SLEEP2 1 /* final sleeping time */ #define MID_FRAMES 100 /* number of still frames between parts of two-part movie */ #define END_FRAMES 100 /* number of still frames at end of movie */ #define FADE 1 /* set to 1 to fade at end of movie */ #define ROTATE_VIEW_WHILE_FADE 1 /* set to 1 to keep rotating viewpoint during fade */ /* Parameters of initial condition */ #define INITIAL_AMP 0.25 /* amplitude of initial condition */ #define INITIAL_VARIANCE 0.00015 /* variance of initial condition */ #define INITIAL_WAVELENGTH 0.0075 /* wavelength of initial condition */ /* Plot type, see list in global_pdes.c */ #define ZPLOT 103 /* wave height */ #define CPLOT 103 /* color scheme */ // #define ZPLOT 104 /* wave height */ // #define CPLOT 104 /* color scheme */ #define ZPLOT_B 108 #define CPLOT_B 108 /* plot type for second movie */ #define CHANGE_LUMINOSITY 1 /* set to 1 to let luminosity depend on energy flux intensity */ #define FLUX_WINDOW 30 /* size of averaging window of flux intensity */ #define AMPLITUDE_HIGH_RES 1 /* set to 1 to increase resolution of plot */ #define SHADE_3D 1 /* set to 1 to change luminosity according to normal vector */ #define NON_DIRICHLET_BC 0 /* set to 1 to draw only facets in domain, if field is not zero on boundary */ #define FLOOR_ZCOORD 1 /* set to 1 to draw only facets with z not too negative */ #define DRAW_BILLIARD 0 /* set to 1 to draw boundary */ #define DRAW_BILLIARD_FRONT 0 /* set to 1 to draw front of boundary after drawing wave */ #define DRAW_CONSTRUCTION_LINES 0 /* set to 1 to draw construction lines of certain domains */ #define FADE_IN_OBSTACLE 1 /* set to 1 to fade color inside obstacles */ #define DRAW_OUTSIDE_GRAY 0 /* experimental, draw outside of billiard in gray */ #define PLOT_SCALE_ENERGY 0.1 /* vertical scaling in energy plot */ #define PLOT_SCALE_LOG_ENERGY 0.2 /* vertical scaling in log energy plot */ /* 3D representation */ #define REPRESENTATION_3D 1 /* choice of 3D representation */ #define REP_AXO_3D 0 /* linear projection (axonometry) */ #define REP_PROJ_3D 1 /* projection on plane orthogonal to observer line of sight */ #define ROTATE_VIEW 1 /* set to 1 to rotate position of observer */ #define ROTATE_ANGLE 360.0 /* total angle of rotation during simulation */ // #define ROTATE_ANGLE 45.0 /* total angle of rotation during simulation */ /* Color schemes */ #define COLOR_PALETTE 11 /* Color palette, see list in global_pdes.c */ #define COLOR_PALETTE_B 14 /* Color palette, see list in global_pdes.c */ #define BLACK 1 /* background */ #define COLOR_SCHEME 3 /* choice of color scheme, see list in global_pdes.c */ #define SCALE 0 /* set to 1 to adjust color scheme to variance of field */ #define SLOPE 1.0 /* sensitivity of color on wave amplitude */ #define VSCALE_AMPLITUDE 3.0 /* additional scaling factor for color scheme P_3D_AMPLITUDE */ #define VSCALE_ENERGY 25.0 /* additional scaling factor for color scheme P_3D_ENERGY */ #define PHASE_FACTOR 20.0 /* factor in computation of phase in color scheme P_3D_PHASE */ #define PHASE_SHIFT 0.0 /* shift of phase in color scheme P_3D_PHASE */ #define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */ #define E_SCALE 240.0 /* scaling factor for energy representation */ #define LOG_SCALE 0.75 /* scaling factor for energy log representation */ #define LOG_SHIFT 0.5 /* shift of colors on log scale */ #define LOG_ENERGY_FLOOR -10.0 /* floor value for log of (total) energy */ #define LOG_MEAN_ENERGY_SHIFT 1.0 /* additional shift for log of mean energy */ #define FLUX_SCALE 20.0 /* scaling factor for energy flux representation */ #define FLUX_CSCALE 500.0 /* scaling factor for color in energy flux representation */ #define RESCALE_COLOR_IN_CENTER 0 /* set to 1 to decrease color intentiy in the center (for wave escaping ring) */ #define COLORHUE 260 /* initial hue of water color for scheme C_LUM */ #define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */ #define LUMMEAN 0.5 /* amplitude of luminosity variation for scheme C_LUM */ #define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */ #define HUEMEAN 240.0 /* mean value of hue for color scheme C_HUE */ #define HUEAMP -200.0 /* amplitude of variation of hue for color scheme C_HUE */ #define NXMAZE 8 /* width of maze */ #define NYMAZE 32 /* height of maze */ #define MAZE_MAX_NGBH 5 /* max number of neighbours of maze cell */ #define RAND_SHIFT 5 /* seed of random number generator */ #define MAZE_XSHIFT 0.0 /* horizontal shift of maze */ #define MAZE_WIDTH 0.02 /* half width of maze walls */ #define DRAW_COLOR_SCHEME 1 /* set to 1 to plot the color scheme */ #define COLORBAR_RANGE 2.5 /* scale of color scheme bar */ #define COLORBAR_RANGE_B 5.0 /* scale of color scheme bar for 2nd part */ #define ROTATE_COLOR_SCHEME 0 /* set to 1 to draw color scheme horizontally */ #define SAVE_TIME_SERIES 0 /* set to 1 to save wave time series at a point */ #define ADD_POTENTIAL 0 /* set to 1 to add potential to z coordinate */ // #define POT_MAZE 7 #define POTENTIAL 10 #define POT_FACT 30.0 /* end of constants only used by sub_wave and sub_maze */ /* For debugging purposes only */ #define FLOOR 1 /* set to 1 to limit wave amplitude to VMAX */ #define VMAX 10.0 /* max value of wave amplitude */ /* Parameters controlling 3D projection */ double u_3d[2] = {0.75, -0.45}; /* projections of basis vectors for REP_AXO_3D representation */ double v_3d[2] = {-0.75, -0.45}; double w_3d[2] = {0.0, 0.015}; double light[3] = {0.816496581, -0.40824829, 0.40824829}; /* vector of "light" direction for P_3D_ANGLE color scheme */ double observer[3] = {8.0, 8.0, 7.0}; /* location of observer for REP_PROJ_3D representation */ int reset_view = 0; /* switch to reset 3D view parameters (for option ROTATE_VIEW) */ #define Z_SCALING_FACTOR 0.15 /* overall scaling factor of z axis for REP_PROJ_3D representation */ #define XY_SCALING_FACTOR 1.8 /* overall scaling factor for on-screen (x,y) coordinates after projection */ #define ZMAX_FACTOR 1.0 /* max value of z coordinate for REP_PROJ_3D representation */ #define XSHIFT_3D -0.1 /* overall x shift for REP_PROJ_3D representation */ #define YSHIFT_3D 0.1 /* overall y shift for REP_PROJ_3D representation */ #include "global_pdes.c" /* constants and global variables */ #include "global_3d.c" /* constants and global variables */ #include "sub_maze.c" /* support for generating mazes */ #include "sub_wave.c" /* common functions for wave_billiard, heat and schrodinger */ #include "wave_common.c" /* common functions for wave_billiard, wave_comparison, etc */ #include "sub_wave_3d.c" /* graphical functions specific to wave_3d */ FILE *time_series_left, *time_series_right; double courant2, courantb2; /* Courant parameters squared */ void evolve_wave_half_new(double phi_in[NX*NY], double psi_in[NX*NY], double phi_out[NX*NY], short int xy_in[NX*NY], double tc[NX*NY], double tcc[NX*NY], double tgamma[NX*NY], t_laplacian laplace[NX*NY]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ /* this version of the function has been rewritten in order to minimize the number of if-branches */ { int i, j, iplus, iminus, jplus, jminus; double x, y, c, cc, gamma, tb_shift; static long time = 0; double *delta; delta = (double *)malloc(NX*NY*sizeof(double)); /* compute the Laplacian */ compute_laplacian(phi_in, laplace, delta, xy_in); time++; if (OSCILLATE_TOPBOT) tb_shift = (int)((XMAX - XMIN)*(double)NX/(XMAX - XMIN)); /* evolution in the bulk */ #pragma omp parallel for private(i,j,iplus,iminus,jplus,jminus,x,y) for (i=1; i0)) { iplus = i+1; iminus = i-1; if (iminus < 0) iminus = 0; /* TO ADAPT */ phi_out[i*NY+NY-1] = -y + 2*x + tcc[i*NY+NY-1]*delta[i*NY+NY-1] - KAPPA*x - tgamma[i*NY+NY-1]*(x-y); } else switch (B_COND) { case (BC_DIRICHLET): { phi_out[i*NY+NY-1] = -y + 2*x + tcc[i*NY+NY-1]*delta[i*NY+NY-1] - KAPPA*x - tgamma[i*NY+NY-1]*(x-y); break; } case (BC_PERIODIC): { phi_out[i*NY+NY-1] = -y + 2*x + tcc[i*NY+NY-1]*delta[i*NY+NY-1] - KAPPA*x - tgamma[i*NY+NY-1]*(x-y); break; } case (BC_ABSORBING): { phi_out[i*NY+NY-1] = x - tc[i*NY+NY-1]*(x - phi_in[i*NY+NY-2]) - KAPPA_TOPBOT*x - GAMMA_TOPBOT*(x-y); break; } case (BC_VPER_HABS): { if (i==0) phi_out[NY-1] = x - tc[NY-1]*(x - phi_in[1*NY+NY-1]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y); else phi_out[i*NY+NY-1] = -y + 2*x + tcc[i*NY+NY-1]*delta[i*NY+NY-1] - KAPPA*x - tgamma[i*NY+NY-1]*(x-y); break; } } } } /* bottom boundary */ for (i=0; i0)) { /* TO ADAPT */ phi_out[i*NY] = -y + 2*x + tcc[i*NY]*delta[i*NY] - KAPPA*x - tgamma[i*NY]*(x-y); } else switch (B_COND) { case (BC_DIRICHLET): { phi_out[i*NY] = -y + 2*x + tcc[i*NY]*delta[i*NY] - KAPPA*x - tgamma[i*NY]*(x-y); break; } case (BC_PERIODIC): { phi_out[i*NY] = -y + 2*x + tcc[i*NY]*delta[i*NY] - KAPPA*x - tgamma[i*NY]*(x-y); break; } case (BC_ABSORBING): { phi_out[i*NY] = x - tc[i*NY]*(x - phi_in[i*NY+1]) - KAPPA_TOPBOT*x - GAMMA_TOPBOT*(x-y); break; } case (BC_VPER_HABS): { if (i==0) phi_out[0] = x - tc[0]*(x - phi_in[NY]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y); else phi_out[i*NY] = -y + 2*x + tcc[i*NY]*delta[i*NY] - KAPPA*x - tgamma[i*NY]*(x-y); break; } } } } /* add oscillating boundary condition on the left corners */ if (OSCILLATE_LEFT) { phi_out[0] = AMPLITUDE*cos((double)time*OMEGA); phi_out[NY-1] = AMPLITUDE*cos((double)time*OMEGA); } /* for debugging purposes/if there is a risk of blow-up */ if (FLOOR) { #pragma omp parallel for private(i,j) for (i=0; i VMAX) phi_out[i*NY+j] = VMAX; if (phi_out[i*NY+j] < -VMAX) phi_out[i*NY+j] = -VMAX; } } } } free(delta); } void evolve_wave_half(double phi_in[NX*NY], double psi_in[NX*NY], double phi_out[NX*NY], short int xy_in[NX*NY], double tc[NX*NY], double tcc[NX*NY], double tgamma[NX*NY]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ /* this version of the function has been rewritten in order to minimize the number of if-branches */ { int i, j, iplus, iminus, jplus, jminus, jtop, jbot; double delta, x, y, c, cc, gamma; static long time = 0; static short int first = 1; static double tb_shift; time++; if ((OSCILLATE_TOPBOT)&&(first)) { tb_shift = (int)((XMAX - XMIN)*(double)NX/(XMAX - XMIN)); if (tb_shift >= NX-1) tb_shift = NY - 2; first = 0; } #pragma omp parallel for private(i,j,iplus,iminus,jplus,jminus,delta,x,y) /* evolution in the bulk */ for (i=1; i0)) { iplus = i+1; iminus = i-1; if (iminus < 0) iminus = 0; delta = phi_in[iplus*NY+NY-1] + phi_in[iminus*NY+NY-1] + - 2.0*x; phi_out[i*NY+NY-1] = -y + 2*x + tcc[i*NY+NY-1]*delta - KAPPA*x - tgamma[i*NY+NY-1]*(x-y); } else switch (B_COND) { case (BC_DIRICHLET): { iplus = i+1; if (iplus == NX) iplus = NX-1; iminus = i-1; if (iminus == -1) iminus = 0; delta = phi_in[iplus*NY+NY-1] + phi_in[iminus*NY+NY-1] + phi_in[i*NY+NY-2] - 3.0*x; phi_out[i*NY+NY-1] = -y + 2*x + tcc[i*NY+NY-1]*delta - KAPPA*x - tgamma[i*NY+NY-1]*(x-y); break; } case (BC_PERIODIC): { iplus = (i+1) % NX; iminus = (i-1) % NX; if (iminus < 0) iminus += NX; delta = phi_in[iplus*NY+NY-1] + phi_in[iminus*NY+NY-1] + phi_in[i*NY+NY-2] + phi_in[i*NY+jbot] - 4.0*x; phi_out[i*NY+NY-1] = -y + 2*x + tcc[i*NY+NY-1]*delta - KAPPA*x - tgamma[i*NY+NY-1]*(x-y); break; } case (BC_ABSORBING): { iplus = (i+1); if (iplus == NX) iplus = NX-1; iminus = (i-1); if (iminus == -1) iminus = 0; delta = phi_in[iplus*NY+NY-1] + phi_in[iminus*NY+NY-1] + phi_in[i*NY+NY-2] - 3.0*x; phi_out[i*NY+NY-1] = x - tc[i*NY+NY-1]*(x - phi_in[i*NY+NY-2]) - KAPPA_TOPBOT*x - GAMMA_TOPBOT*(x-y); break; } case (BC_VPER_HABS): { iplus = (i+1); if (iplus == NX) iplus = NX-1; iminus = (i-1); if (iminus == -1) iminus = 0; delta = phi_in[iplus*NY+NY-1] + phi_in[iminus*NY+NY-1] + phi_in[i*NY+NY-2] + phi_in[i*NY+jbot] - 4.0*x; if (i==0) phi_out[NY-1] = x - tc[NY-1]*(x - phi_in[1*NY+NY-1]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y); else phi_out[i*NY+NY-1] = -y + 2*x + tcc[i*NY+NY-1]*delta - KAPPA*x - tgamma[i*NY+NY-1]*(x-y); break; } } } } /* bottom boundary */ if (COMPARISON) jtop = NY/2-1; else jtop = NY-1; for (i=0; i0)) { iplus = i+1; iminus = i-1; if (iminus < 0) iminus = 0; delta = phi_in[iplus*NY] + phi_in[iminus*NY] + - 2.0*x; phi_out[i*NY] = -y + 2*x + tcc[i*NY]*delta - KAPPA*x - tgamma[i*NY]*(x-y); } else switch (B_COND) { case (BC_DIRICHLET): { iplus = i+1; if (iplus == NX) iplus = NX-1; iminus = i-1; if (iminus == -1) iminus = 0; delta = phi_in[iplus*NY] + phi_in[iminus*NY] + phi_in[i*NY+1] - 3.0*x; phi_out[i*NY] = -y + 2*x + tcc[i*NY]*delta - KAPPA*x - tgamma[i*NY]*(x-y); break; } case (BC_PERIODIC): { iplus = (i+1) % NX; iminus = (i-1) % NX; if (iminus < 0) iminus += NX; delta = phi_in[iplus*NY] + phi_in[iminus*NY] + phi_in[i*NY+1] + phi_in[i*NY+jtop] - 4.0*x; phi_out[i*NY] = -y + 2*x + tcc[i*NY]*delta - KAPPA*x - tgamma[i*NY]*(x-y); break; } case (BC_ABSORBING): { iplus = (i+1); if (iplus == NX) iplus = NX-1; iminus = (i-1); if (iminus == -1) iminus = 0; delta = phi_in[iplus*NY] + phi_in[iminus*NY] + phi_in[i*NY+1] - 3.0*x; phi_out[i*NY] = x - tc[i*NY]*(x - phi_in[i*NY+1]) - KAPPA_TOPBOT*x - GAMMA_TOPBOT*(x-y); break; } case (BC_VPER_HABS): { iplus = (i+1); if (iplus == NX) iplus = NX-1; iminus = (i-1); if (iminus == -1) iminus = 0; delta = phi_in[iplus*NY] + phi_in[iminus*NY] + phi_in[i*NY+1] + phi_in[i*NY+jtop] - 4.0*x; if (i==0) phi_out[0] = x - tc[0]*(x - phi_in[NY]) - KAPPA_SIDES*x - GAMMA_SIDES*(x-y); else phi_out[i*NY] = -y + 2*x + tcc[i*NY]*delta - KAPPA*x - tgamma[i*NY]*(x-y); break; } } } } /* case of comparisons - top of bottom half */ if (COMPARISON) for (i=0; i VMAX) phi_out[i*NY+j] = VMAX; if (phi_out[i*NY+j] < -VMAX) phi_out[i*NY+j] = -VMAX; } } } } void evolve_wave(double phi[NX*NY], double psi[NX*NY], double tmp[NX*NY], short int xy_in[NX*NY], double tc[NX*NY], double tcc[NX*NY], double tgamma[NX*NY], t_laplacian laplace[NX*NY], t_laplacian laplace1[NX*NY], t_laplacian laplace2[NX*NY]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ { if (PRECOMPUTE_BC) { // evolve_wave_half_new(phi, psi, phi_tmp, psi_tmp, xy_in, tc, tcc, tgamma, laplace); // evolve_wave_half_new(phi_tmp, psi_tmp, phi, psi, xy_in, tc, tcc, tgamma, laplace_tmp); evolve_wave_half_new(phi, psi, tmp, xy_in, tc, tcc, tgamma, laplace); evolve_wave_half_new(tmp, phi, psi, xy_in, tc, tcc, tgamma, laplace1); evolve_wave_half_new(psi, tmp, phi, xy_in, tc, tcc, tgamma, laplace2); } else { // evolve_wave_half(phi, psi, phi_tmp, psi_tmp, xy_in, tc, tcc, tgamma); // evolve_wave_half(phi_tmp, psi_tmp, phi, psi, xy_in, tc, tcc, tgamma); evolve_wave_half(phi, psi, tmp, xy_in, tc, tcc, tgamma); evolve_wave_half(tmp, phi, psi, xy_in, tc, tcc, tgamma); evolve_wave_half(psi, tmp, phi, xy_in, tc, tcc, tgamma); } } void draw_color_bar_palette(int plot, double range, int palette, int fade, double fade_value) { double width = 0.1; // double width = 0.14; // double width = 0.2; width *= (double)NX/(double)WINWIDTH; if (ROTATE_COLOR_SCHEME) draw_color_scheme_palette_3d(-1.0, -0.8, XMAX - 0.1, -1.0, plot, -range, range, palette, fade, fade_value); else draw_color_scheme_palette_3d(XMAX - 1.5*width, YMIN + 0.1, XMAX - 0.5*width, YMAX - 0.1, plot, -range, range, palette, fade, fade_value); } void viewpoint_schedule(int i) /* change position of observer */ { int j; double angle, ca, sa; static double observer_initial[3]; static int first = 1; if (first) { for (j=0; j<3; j++) observer_initial[j] = observer[j]; first = 0; } angle = (ROTATE_ANGLE*DPI/360.0)*(double)i/(double)NSTEPS; ca = cos(angle); sa = sin(angle); observer[0] = ca*observer_initial[0] - sa*observer_initial[1]; observer[1] = sa*observer_initial[0] + ca*observer_initial[1]; printf("Angle %.3lg, Observer position (%.3lg, %.3lg, %.3lg)\n", angle, observer[0], observer[1], observer[2]); } void animation() { double time, scale, ratio, startleft[2], startright[2], sign = 1.0, r2, xy[2], fade_value, yshift, speed = 0.0, a, b, c, angle, lambda1, y, x1, sign1; double *phi, *psi, *tmp, *color_scale, *tc, *tcc, *tgamma; // double *total_energy; short int *xy_in; int i, j, s, sample_left[2], sample_right[2], period = 0, fade, source_counter = 0, k, p, q; static int counter = 0; long int wave_value; t_wave *wave; t_laplacian *laplace, *laplace1, *laplace2; if (SAVE_TIME_SERIES) { time_series_left = fopen("wave_left.dat", "w"); time_series_right = fopen("wave_right.dat", "w"); } /* Since NX and NY are big, it seemed wiser to use some memory allocation here */ xy_in = (short int *)malloc(NX*NY*sizeof(short int)); phi = (double *)malloc(NX*NY*sizeof(double)); psi = (double *)malloc(NX*NY*sizeof(double)); tmp = (double *)malloc(NX*NY*sizeof(double)); // total_energy = (double *)malloc(NX*NY*sizeof(double)); color_scale = (double *)malloc(NX*NY*sizeof(double)); tc = (double *)malloc(NX*NY*sizeof(double)); tcc = (double *)malloc(NX*NY*sizeof(double)); tgamma = (double *)malloc(NX*NY*sizeof(double)); wave = (t_wave *)malloc(NX*NY*sizeof(t_wave)); laplace = (t_laplacian *)malloc(NX*NY*sizeof(t_laplacian)); laplace1 = (t_laplacian *)malloc(NX*NY*sizeof(t_laplacian)); laplace2 = (t_laplacian *)malloc(NX*NY*sizeof(t_laplacian)); /* initialise positions and radii of circles */ if (COMPARISON) { if ((B_DOMAIN == D_CIRCLES)||(B_DOMAIN == D_CIRCLES_IN_RECT)) ncircles = init_circle_config_pattern(circles, CIRCLE_PATTERN); else if (B_DOMAIN == D_POLYGONS) ncircles = init_polygon_config_pattern(polygons, CIRCLE_PATTERN); if ((B_DOMAIN_B == D_CIRCLES)||(B_DOMAIN_B == D_CIRCLES_IN_RECT)) ncircles_b = init_circle_config_pattern(circles_b, CIRCLE_PATTERN_B); else if (B_DOMAIN_B == D_POLYGONS) ncircles_b = init_polygon_config_pattern(polygons_b, CIRCLE_PATTERN_B); /* TO DO: adapt to different polygon patterns */ } else { if ((B_DOMAIN == D_CIRCLES)||(B_DOMAIN == D_CIRCLES_IN_RECT)) ncircles = init_circle_config(circles); else if (B_DOMAIN == D_POLYGONS) ncircles = init_polygon_config(polygons); } printf("Polygons initialized\n"); /* initialise polyline for von Koch and similar domains */ npolyline = init_polyline(MDEPTH, polyline); for (i=0; i 0.083333333*XMIN)&&(x1 < 0.083333333*XMAX)) // { // add_circular_wave_mod(sign1, x1, y, phi, psi, xy_in); // printf("Adding wave at (%.2lg, %.2lg)\n", x1, y); // } // sign1 = -sign1; // } // source_counter++; // if (p > 0) q = p; // else q = -p; // if (source_counter >= q) // { // source_counter = 0; // sign = -sign; // } } if (PRINT_SPEED) print_speed_3d(speed, 0, 1.0); if (!((NO_EXTRA_BUFFER_SWAP)&&(MOVIE))) glutSwapBuffers(); if (MOVIE) { if (i >= INITIAL_TIME) save_frame(); // if (i >= INITIAL_TIME) save_frame_counter(i); // if (i >= INITIAL_TIME) save_frame_counter(NSTEPS + MID_FRAMES + 1 + counter); else printf("Initial phase time %i of %i\n", i, INITIAL_TIME); if ((i >= INITIAL_TIME)&&(DOUBLE_MOVIE)) { draw_wave_3d(1, phi, psi, xy_in, wave, ZPLOT_B, CPLOT_B, COLOR_PALETTE_B, 0, 1.0, 1); if (DRAW_COLOR_SCHEME) draw_color_bar_palette(CPLOT_B, COLORBAR_RANGE_B, COLOR_PALETTE_B, 0, 1.0); if (PRINT_SPEED) print_speed_3d(speed, 0, 1.0); glutSwapBuffers(); save_frame_counter(NSTEPS + MID_FRAMES + 1 + counter); // save_frame_counter(i); counter++; } else if (NO_EXTRA_BUFFER_SWAP) glutSwapBuffers(); /* it seems that saving too many files too fast can cause trouble with the file system */ /* so this is to make a pause from time to time - parameter PAUSE may need adjusting */ if (i % PAUSE == PAUSE - 1) { printf("Making a short pause\n"); sleep(PSLEEP); s = system("mv wave*.tif tif_wave/"); } } else printf("Computing frame %i\n", i); } if (MOVIE) { if (DOUBLE_MOVIE) { draw_wave_3d(0, phi, psi, xy_in, wave, ZPLOT, CPLOT, COLOR_PALETTE, 0, 1.0, 1); if (DRAW_COLOR_SCHEME) draw_color_bar_palette(CPLOT, COLORBAR_RANGE, COLOR_PALETTE, 0, 1.0); if (PRINT_SPEED) print_speed_3d(speed, 0, 1.0); glutSwapBuffers(); if (!FADE) for (i=0; i