/*********************************************************************************/ /* */ /* Animation of wave equation in a planar domain */ /* */ /* N. Berglund, december 2012, may 2021 */ /* */ /* UPDATE 24/04: distinction between damping and "elasticity" parameters */ /* UPDATE 27/04: new billiard shapes, bug in color scheme fixed */ /* UPDATE 28/04: code made more efficient, with help of Marco Mancini */ /* */ /* Feel free to reuse, but if doing so it would be nice to drop a */ /* line to nils.berglund@univ-orleans.fr - Thanks! */ /* */ /* compile with */ /* gcc -o wave_billiard wave_billiard.c */ /* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */ /* */ /* OMP acceleration may be more effective after executing */ /* export OMP_NUM_THREADS=2 in the shell before running the program */ /* */ /* To make a video, set MOVIE to 1 and create subfolder tif_wave */ /* It may be possible to increase parameter PAUSE */ /* */ /* create movie using */ /* ffmpeg -i wave.%05d.tif -vcodec libx264 wave.mp4 */ /* */ /*********************************************************************************/ /*********************************************************************************/ /* */ /* NB: The algorithm used to simulate the wave equation is highly paralellizable */ /* One could make it much faster by using a GPU */ /* */ /*********************************************************************************/ #include #include #include #include #include #include #include /* Sam Leffler's libtiff library. */ #include #define MOVIE 0 /* set to 1 to generate movie */ #define DOUBLE_MOVIE 0 /* set to 1 to produce movies for wave height and energy simultaneously */ /* General geometrical parameters */ /* uncomment for higher resolution version */ // #define WINWIDTH 1920 /* window width */ // #define WINHEIGHT 1000 /* window height */ // #define NX 1920 /* number of grid points on x axis */ // #define NY 1000 /* number of grid points on y axis */ // // #define XMIN -2.0 // #define XMAX 2.0 /* x interval */ // #define YMIN -1.041666667 // #define YMAX 1.041666667 /* y interval for 9/16 aspect ratio */ /* comment out for higher resolution version */ #define WINWIDTH 1280 /* window width */ #define WINHEIGHT 720 /* window height */ #define NX 1280 /* number of grid points on x axis */ #define NY 720 /* number of grid points on y axis */ #define XMIN -2.0 #define XMAX 2.0 /* x interval */ #define YMIN -1.125 #define YMAX 1.125 /* y interval for 9/16 aspect ratio */ #define JULIA_SCALE 1.0 /* scaling for Julia sets */ /* Choice of the billiard table */ #define B_DOMAIN 41 /* choice of domain shape, see list in global_pdes.c */ #define CIRCLE_PATTERN 201 /* pattern of circles or polygons, see list in global_pdes.c */ #define P_PERCOL 0.25 /* probability of having a circle in C_RAND_PERCOL arrangement */ #define NPOISSON 300 /* number of points for Poisson C_RAND_POISSON arrangement */ #define RANDOM_POLY_ANGLE 1 /* set to 1 to randomize angle of polygons */ #define LAMBDA 1.1 /* parameter controlling the dimensions of domain */ #define MU 1.0 /* parameter controlling the dimensions of domain */ #define NPOLY 3 /* number of sides of polygon */ #define APOLY 0.3333333333333333 /* angle by which to turn polygon, in units of Pi/2 */ #define MDEPTH 6 /* depth of computation of Menger gasket */ #define MRATIO 3 /* ratio defining Menger gasket */ #define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */ #define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */ #define FOCI 1 /* set to 1 to draw focal points of ellipse */ #define NGRIDX 36 /* number of grid point for grid of disks */ #define NGRIDY 6 /* number of grid point for grid of disks */ #define X_SHOOTER -0.2 #define Y_SHOOTER -0.6 #define X_TARGET 0.4 #define Y_TARGET 0.7 /* shooter and target positions in laser fight */ #define ISO_XSHIFT_LEFT -2.9 #define ISO_XSHIFT_RIGHT 1.4 #define ISO_YSHIFT_LEFT -0.15 #define ISO_YSHIFT_RIGHT -0.15 #define ISO_SCALE 0.5 /* coordinates for isospectral billiards */ /* You can add more billiard tables by adapting the functions */ /* xy_in_billiard and draw_billiard below */ /* Physical parameters of wave equation */ #define TWOSPEEDS 0 /* set to 1 to replace hardcore boundary by medium with different speed */ #define OSCILLATE_LEFT 0 /* set to 1 to add oscilating boundary condition on the left */ #define OSCILLATE_TOPBOT 0 /* set to 1 to enforce a planar wave on top and bottom boundary */ #define OMEGA 0.002 /* frequency of periodic excitation */ #define AMPLITUDE 1.0 /* amplitude of periodic excitation */ #define COURANT 0.03 /* Courant number */ #define COURANTB 0.01 /* Courant number in medium B */ #define GAMMA 0.0 /* damping factor in wave equation */ #define GAMMAB 5.0e-4 /* damping factor in wave equation */ #define GAMMA_SIDES 1.0e-4 /* damping factor on boundary */ #define GAMMA_TOPBOT 1.0e-7 /* damping factor on boundary */ #define KAPPA 0.0 /* "elasticity" term enforcing oscillations */ #define KAPPA_SIDES 5.0e-4 /* "elasticity" term on absorbing boundary */ #define KAPPA_TOPBOT 0.0 /* "elasticity" term on absorbing boundary */ /* The Courant number is given by c*DT/DX, where DT is the time step and DX the lattice spacing */ /* The physical damping coefficient is given by GAMMA/(DT)^2 */ /* Increasing COURANT speeds up the simulation, but decreases accuracy */ /* For similar wave forms, COURANT^2*GAMMA should be kept constant */ #define ADD_OSCILLATING_SOURCE 1 /* set to 1 to add an oscillating wave source */ #define OSCILLATING_SOURCE_PERIOD 100 /* period of oscillating source */ /* Boundary conditions, see list in global_pdes.c */ #define B_COND 2 /* Parameters for length and speed of simulation */ #define NSTEPS 2200 /* number of frames of movie */ // #define NSTEPS 100 /* number of frames of movie */ #define NVID 25 /* number of iterations between images displayed on screen */ #define NSEG 1000 /* number of segments of boundary */ #define INITIAL_TIME 0 /* time after which to start saving frames */ #define BOUNDARY_WIDTH 1 /* width of billiard boundary */ #define PAUSE 200 /* number of frames after which to pause */ #define PSLEEP 2 /* sleep time during pause */ #define SLEEP1 1 /* initial sleeping time */ #define SLEEP2 1 /* final sleeping time */ #define MID_FRAMES 20 /* number of still frames between parts of two-part movie */ #define END_FRAMES 50 /* number of still frames at end of movie */ /* Parameters of initial condition */ #define INITIAL_AMP 0.75 /* amplitude of initial condition */ #define INITIAL_VARIANCE 0.00025 /* variance of initial condition */ #define INITIAL_WAVELENGTH 0.015 /* wavelength of initial condition */ /* Plot type, see list in global_pdes.c */ #define PLOT 0 #define PLOT_B 5 /* plot type for second movie */ /* Color schemes */ #define COLOR_PALETTE 18 /* Color palette, see list in global_pdes.c */ #define BLACK 1 /* background */ #define COLOR_SCHEME 3 /* choice of color scheme, see list in global_pdes.c */ #define SCALE 0 /* set to 1 to adjust color scheme to variance of field */ #define SLOPE 0.2 /* sensitivity of color on wave amplitude */ #define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */ #define E_SCALE 150.0 /* scaling factor for energy representation */ #define LOG_SCALE 1.5 /* scaling factor for energy log representation */ #define LOG_SHIFT 0.0 /* shift of colors on log scale */ #define RESCALE_COLOR_IN_CENTER 0 /* set to 1 to decrease color intentiy in the center (for wave escaping ring) */ #define COLORHUE 260 /* initial hue of water color for scheme C_LUM */ #define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */ #define LUMMEAN 0.5 /* amplitude of luminosity variation for scheme C_LUM */ #define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */ #define HUEMEAN 180.0 /* mean value of hue for color scheme C_HUE */ #define HUEAMP -180.0 /* amplitude of variation of hue for color scheme C_HUE */ #define DRAW_COLOR_SCHEME 1 /* set to 1 to plot the color scheme */ #define COLORBAR_RANGE 6.0 /* scale of color scheme bar */ #define COLORBAR_RANGE_B 12.0 /* scale of color scheme bar for 2nd part */ #define ROTATE_COLOR_SCHEME 0 /* set to 1 to draw color scheme horizontally */ #define SAVE_TIME_SERIES 0 /* set to 1 to save wave time series at a point */ /* For debugging purposes only */ #define FLOOR 0 /* set to 1 to limit wave amplitude to VMAX */ #define VMAX 10.0 /* max value of wave amplitude */ #include "global_pdes.c" /* constants and global variables */ #include "sub_wave.c" /* common functions for wave_billiard, heat and schrodinger */ #include "wave_common.c" /* common functions for wave_billiard, wave_comparison, etc */ FILE *time_series_left, *time_series_right; double courant2, courantb2; /* Courant parameters squared */ /*********************/ /* animation part */ /*********************/ void evolve_wave_half_old(double *phi_in[NX], double *psi_in[NX], double *phi_out[NX], double *psi_out[NX], short int *xy_in[NX]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ { int i, j, iplus, iminus, jplus, jminus; double delta, x, y, c, cc, gamma; static long time = 0; time++; // c = COURANT; // cc = courant2; #pragma omp parallel for private(i,j,iplus,iminus,jplus,jminus,delta,x,y,c,cc,gamma) for (i=0; i0)&&(i0)&&(j0)&&(i VMAX) phi_out[i][j] = VMAX; if (phi_out[i][j] < -VMAX) phi_out[i][j] = -VMAX; if (psi_out[i][j] > VMAX) psi_out[i][j] = VMAX; if (psi_out[i][j] < -VMAX) psi_out[i][j] = -VMAX; } } } } // printf("phi(0,0) = %.3lg, psi(0,0) = %.3lg\n", phi[NX/2][NY/2], psi[NX/2][NY/2]); } void evolve_wave_half(double *phi_in[NX], double *psi_in[NX], double *phi_out[NX], double *psi_out[NX], short int *xy_in[NX]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ /* this version of the function has been rewritten in order to minimize the number of if-branches */ { int i, j, iplus, iminus, jplus, jminus; double delta, x, y, c, cc, gamma; static long time = 0; static double tc[NX][NY], tcc[NX][NY], tgamma[NX][NY]; static short int first = 1; time++; /* initialize tables with wave speeds and dissipation */ if (first) { for (i=0; i VMAX) phi_out[i][j] = VMAX; if (phi_out[i][j] < -VMAX) phi_out[i][j] = -VMAX; if (psi_out[i][j] > VMAX) psi_out[i][j] = VMAX; if (psi_out[i][j] < -VMAX) psi_out[i][j] = -VMAX; } } } } void evolve_wave(double *phi[NX], double *psi[NX], double *phi_tmp[NX], double *psi_tmp[NX], short int *xy_in[NX]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ { evolve_wave_half(phi, psi, phi_tmp, psi_tmp, xy_in); evolve_wave_half(phi_tmp, psi_tmp, phi, psi, xy_in); } void draw_color_bar(int plot, double range) { if (ROTATE_COLOR_SCHEME) draw_color_scheme(-1.0, -0.8, XMAX - 0.1, -1.0, plot, -range, range); else draw_color_scheme(1.7, YMIN + 0.1, 1.9, YMAX - 0.1, plot, -range, range); // else draw_color_scheme(1.7, YMIN + 0.25, 1.9, YMAX - 0.25, plot, -range, range); } void animation() { double time, scale, ratio, startleft[2], startright[2], sign, r2, xy[2]; double *phi[NX], *psi[NX], *phi_tmp[NX], *psi_tmp[NX], *total_energy[NX], *color_scale[NX]; short int *xy_in[NX]; int i, j, s, sample_left[2], sample_right[2], period = 0; static int counter = 0; long int wave_value; if (SAVE_TIME_SERIES) { time_series_left = fopen("wave_left.dat", "w"); time_series_right = fopen("wave_right.dat", "w"); } /* Since NX and NY are big, it seemed wiser to use some memory allocation here */ for (i=0; i= INITIAL_TIME) save_frame(); else printf("Initial phase time %i of %i\n", i, INITIAL_TIME); if ((i >= INITIAL_TIME)&&(DOUBLE_MOVIE)) { // draw_wave(phi, psi, xy_in, scale, i, PLOT_B); draw_wave_e(phi, psi, total_energy, color_scale, xy_in, scale, i, PLOT_B); // draw_wave_highres(2, phi, psi, total_energy, xy_in, scale, i, PLOT_B); draw_billiard(); if (DRAW_COLOR_SCHEME) draw_color_bar(PLOT_B, COLORBAR_RANGE_B); glutSwapBuffers(); save_frame_counter(NSTEPS + 21 + counter); counter++; } /* it seems that saving too many files too fast can cause trouble with the file system */ /* so this is to make a pause from time to time - parameter PAUSE may need adjusting */ if (i % PAUSE == PAUSE - 1) { printf("Making a short pause\n"); sleep(PSLEEP); s = system("mv wave*.tif tif_wave/"); } } } if (MOVIE) { if (DOUBLE_MOVIE) { // draw_wave(phi, psi, xy_in, scale, i, PLOT); draw_wave_e(phi, psi, total_energy, color_scale, xy_in, scale, NSTEPS, PLOT); // draw_wave_highres(2, phi, psi, total_energy, xy_in, scale, NSTEPS, PLOT); draw_billiard(); if (DRAW_COLOR_SCHEME) draw_color_bar(PLOT, COLORBAR_RANGE); glutSwapBuffers(); } for (i=0; i