/*********************************************************************************/ /* */ /* Animation of reaction-diffusion equation in a planar domain */ /* */ /* N. Berglund, January 2022 */ /* */ /* Feel free to reuse, but if doing so it would be nice to drop a */ /* line to nils.berglund@univ-orleans.fr - Thanks! */ /* */ /* compile with */ /* gcc -o rde rde.c */ /* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */ /* */ /* OMP acceleration may be more effective after executing */ /* export OMP_NUM_THREADS=2 in the shell before running the program */ /* */ /* To make a video, set MOVIE to 1 and create subfolder tif_bz */ /* It may be possible to increase parameter PAUSE */ /* */ /* create movie using */ /* ffmpeg -i wave.%05d.tif -vcodec libx264 wave.mp4 */ /* */ /*********************************************************************************/ /*********************************************************************************/ /* */ /* NB: The algorithm used to simulate the wave equation is highly paralellizable */ /* One could make it much faster by using a GPU */ /* */ /*********************************************************************************/ #include #include #include #include #include #include #include /* Sam Leffler's libtiff library. */ #include #include #define MOVIE 0 /* set to 1 to generate movie */ #define DOUBLE_MOVIE 0 /* set to 1 to produce movies for wave height and energy simultaneously */ /* General geometrical parameters */ #define WINWIDTH 1920 /* window width */ #define WINHEIGHT 1000 /* window height */ #define NX 480 /* number of grid points on x axis */ #define NY 240 /* number of grid points on y axis */ #define XMIN -2.0 #define XMAX 2.0 /* x interval */ #define YMIN -1.041666667 #define YMAX 1.041666667 /* y interval for 9/16 aspect ratio */ // #define WINWIDTH 1280 /* window width */ // #define WINHEIGHT 720 /* window height */ // // // #define NX 160 /* number of grid points on x axis */ // // #define NY 90 /* number of grid points on y axis */ // #define NX 320 /* number of grid points on x axis */ // #define NY 180 /* number of grid points on y axis */ // // // #define NX 640 /* number of grid points on x axis */ // // #define NY 360 /* number of grid points on y axis */ // // // #define NX 1280 /* number of grid points on x axis */ // // #define NY 720 /* number of grid points on y axis */ // // #define XMIN -2.0 // #define XMAX 2.0 /* x interval */ // #define YMIN -1.125 // #define YMAX 1.125 /* y interval for 9/16 aspect ratio */ /* Choice of simulated equation */ #define RDE_EQUATION 5 /* choice of reaction term, see list in global_3d.c */ #define NFIELDS 2 /* number of fields in reaction-diffusion equation */ #define NLAPLACIANS 2 /* number of fields for which to compute Laplacian */ #define ADD_POTENTIAL 1 /* set to 1 to add a potential (for Schrodiner equation) */ #define POTENTIAL 2 /* type of potential, see list in global_3d.c */ #define JULIA_SCALE 0.5 /* scaling for Julia sets */ /* Choice of the billiard table */ #define B_DOMAIN 999 /* choice of domain shape, see list in global_pdes.c */ #define CIRCLE_PATTERN 99 /* pattern of circles, see list in global_pdes.c */ #define P_PERCOL 0.25 /* probability of having a circle in C_RAND_PERCOL arrangement */ #define NPOISSON 300 /* number of points for Poisson C_RAND_POISSON arrangement */ #define RANDOM_POLY_ANGLE 0 /* set to 1 to randomize angle of polygons */ #define LAMBDA 1.0 /* parameter controlling the dimensions of domain */ #define MU 1.0 /* parameter controlling the dimensions of domain */ #define NPOLY 6 /* number of sides of polygon */ #define APOLY 0.333333333 /* angle by which to turn polygon, in units of Pi/2 */ #define MDEPTH 7 /* depth of computation of Menger gasket */ #define MRATIO 5 /* ratio defining Menger gasket */ #define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */ #define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */ #define FOCI 1 /* set to 1 to draw focal points of ellipse */ #define NGRIDX 15 /* number of grid point for grid of disks */ #define NGRIDY 20 /* number of grid point for grid of disks */ #define X_SHOOTER -0.2 #define Y_SHOOTER -0.6 #define X_TARGET 0.4 #define Y_TARGET 0.7 /* shooter and target positions in laser fight */ #define ISO_XSHIFT_LEFT -1.65 #define ISO_XSHIFT_RIGHT 0.4 #define ISO_YSHIFT_LEFT -0.05 #define ISO_YSHIFT_RIGHT -0.05 #define ISO_SCALE 0.85 /* coordinates for isospectral billiards */ /* You can add more billiard tables by adapting the functions */ /* xy_in_billiard and draw_billiard in sub_wave.c */ /* Physical patameters of wave equation */ #define DT 0.00000002 #define VISCOSITY 2.0 #define RPSA 0.75 /* parameter in Rock-Paper-Scissors-type interaction */ #define RPSLZB 0.75 /* second parameter in Rock-Paper-Scissors-Lizard-Spock type interaction */ #define EPSILON 0.8 /* time scale separation */ #define DELTA 0.1 /* time scale separation */ #define FHNA 1.0 /* parameter in FHN equation */ #define FHNC -0.01 /* parameter in FHN equation */ #define K_HARMONIC 0.2 /* spring constant of harmonic potential */ #define K_COULOMB 0.5 /* constant in Coulomb potential */ #define BZQ 0.0008 /* parameter in BZ equation */ #define BZF 1.2 /* parameter in BZ equation */ #define T_OUT 2.0 /* outside temperature */ #define T_IN 0.0 /* inside temperature */ #define SPEED 0.0 /* speed of drift to the right */ #define ADD_NOISE 0 /* set to 1 to add noise, set to 2 to add noise in right half */ #define NOISE_INTENSITY 0.005 /* noise intensity */ #define CHANGE_NOISE 1 /* set to 1 to increase noise intensity */ #define NOISE_FACTOR 40.0 /* factor by which to increase noise intensity */ #define NOISE_INITIAL_TIME 100 /* initial time during which noise remains constant */ #define CHANGE_VISCOSITY 0 /* set to 1 to change the viscosity in the course of the simulation */ #define ADJUST_INTSTEP 0 /* set to 1 to decrease integration step when viscosity increases */ #define VISCOSITY_INITIAL_TIME 10 /* initial time during which viscosity remains constant */ #define VISCOSITY_FACTOR 100.0 /* factor by which to change viscosity */ #define VISCOSITY_MAX 2.0 /* max value of viscosity beyond which NVID is increased and integration step is decrase, for numerical stability */ #define CHANGE_RPSLZB 0 /* set to 1 to change second parameter in Rock-Paper-Scissors-Lizard-Spock equation */ #define RPSLZB_CHANGE 0.75 /* factor by which to rpslzb parameter */ #define RPSLZB_INITIAL_TIME 0 /* initial time during which rpslzb remains constant */ #define RPSLZB_FINAL_TIME 500 /* final time during which rpslzb remains constant */ /* Boundary conditions, see list in global_pdes.c */ #define B_COND 1 /* Parameters for length and speed of simulation */ #define NSTEPS 1150 /* number of frames of movie */ #define NVID 850 /* number of iterations between images displayed on screen */ #define ACCELERATION_FACTOR 1.0 /* factor by which to increase NVID in course of simulation */ #define DT_ACCELERATION_FACTOR 1.0 /* factor by which to increase time step in course of simulation */ #define MAX_DT 0.024 /* maximal value of integration step */ #define NSEG 100 /* number of segments of boundary */ #define BOUNDARY_WIDTH 4 /* width of billiard boundary */ #define PAUSE 100 /* number of frames after which to pause */ #define PSLEEP 2 /* sleep time during pause */ #define SLEEP1 2 /* initial sleeping time */ #define SLEEP2 1 /* final sleeping time */ #define INITIAL_TIME 0 /* initial still time */ #define MID_FRAMES 50 /* number of still frames between parts of two-part movie */ #define END_FRAMES 50 /* number of still frames at end of movie */ #define FADE 1 /* set to 1 to fade at end of movie */ /* Visualisation */ #define PLOT_3D 1 /* controls whether plot is 2D or 3D */ #define ROTATE_VIEW 1 /* set to 1 to rotate position of observer */ #define ROTATE_ANGLE 360.0 /* total angle of rotation during simulation */ /* Plot type - color scheme */ #define CPLOT 30 #define CPLOT_B 31 /* Plot type - height of 3D plot */ // #define ZPLOT 30 /* z coordinate in 3D plot */ // #define ZPLOT_B 32 /* z coordinate in second 3D plot */ #define ZPLOT 30 /* z coordinate in 3D plot */ #define ZPLOT_B 30 /* z coordinate in second 3D plot */ #define AMPLITUDE_HIGH_RES 1 /* set to 1 to increase resolution of P_3D_AMPLITUDE plot */ #define SHADE_3D 1 /* set to 1 to change luminosity according to normal vector */ #define NON_DIRICHLET_BC 0 /* set to 1 to draw only facets in domain, if field is not zero on boundary */ #define WRAP_ANGLE 1 /* experimental: wrap angle to [0, 2Pi) for interpolation in angle schemes */ #define FADE_IN_OBSTACLE 0 /* set to 1 to fade color inside obstacles */ #define DRAW_OUTSIDE_GRAY 0 /* experimental - draw outside of billiard in gray */ #define ADD_POTENTIAL_TO_Z 1 /* set to 1 to add the external potential to z-coordinate of plot */ #define ADD_POT_CONSTANT 0.5 /* constant in front of added potential */ #define PLOT_SCALE_ENERGY 0.05 /* vertical scaling in energy plot */ #define PRINT_TIME 0 /* set to 1 to print running time */ #define PRINT_VISCOSITY 0 /* set to 1 to print viscosity */ #define PRINT_RPSLZB 0 /* set to 1 to print rpslzb parameter */ #define PRINT_PROBABILITIES 0 /* set to 1 to print probabilities (for Ehrenfest urn configuration) */ #define PRINT_NOISE 0 /* set to 1 to print noise intensity */ #define DRAW_FIELD_LINES 0 /* set to 1 to draw field lines */ #define FIELD_LINE_WIDTH 1 /* width of field lines */ #define N_FIELD_LINES 120 /* number of field lines */ #define FIELD_LINE_FACTOR 120 /* factor controlling precision when computing origin of field lines */ #define DRAW_BILLIARD 1 /* set to 1 to draw boundary */ #define DRAW_BILLIARD_FRONT 1 /* set to 1 to draw boundary */ #define FILL_BILLIARD_COMPLEMENT 1 /* set to 1 to fill complement of billiard (for certain shapes only) */ /* 3D representation */ #define REPRESENTATION_3D 1 /* choice of 3D representation */ #define REP_AXO_3D 0 /* linear projection (axonometry) */ #define REP_PROJ_3D 1 /* projection on plane orthogonal to observer line of sight */ /* Color schemes, see list in global_pdes.c */ #define COLOR_PALETTE 14 /* Color palette, see list in global_pdes.c */ #define COLOR_PALETTE_B 10 /* Color palette, see list in global_pdes.c */ #define BLACK 1 /* black background */ #define COLOR_SCHEME 3 /* choice of color scheme */ #define COLOR_PHASE_SHIFT 0.0 /* phase shift of color scheme, in units of Pi */ #define SCALE 0 /* set to 1 to adjust color scheme to variance of field */ #define SLOPE 1.0 /* sensitivity of color on wave amplitude */ #define VSCALE_AMPLITUDE 7.5 /* additional scaling factor for color scheme P_3D_AMPLITUDE */ #define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */ #define CURL_SCALE 0.000015 /* scaling factor for curl representation */ #define RESCALE_COLOR_IN_CENTER 0 /* set to 1 to decrease color intentiy in the center (for wave escaping ring) */ #define SLOPE_SCHROD_LUM 15.0 /* sensitivity of luminosity on module, for color scheme Z_ARGUMENT */ #define MIN_SCHROD_LUM 0.075 /* minimal luminosity in color scheme Z_ARGUMENT*/ #define COLORHUE 260 /* initial hue of water color for scheme C_LUM */ #define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */ #define LUMMEAN 0.5 /* amplitude of luminosity variation for scheme C_LUM */ #define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */ #define HUEMEAN 359.0 /* mean value of hue for color scheme C_HUE */ #define HUEAMP -359.0 /* amplitude of variation of hue for color scheme C_HUE */ #define E_SCALE 100.0 /* scaling factor for energy representation */ #define LOG_SCALE 1.0 /* scaling factor for energy log representation */ #define LOG_SHIFT 0.0 #define DRAW_COLOR_SCHEME 1 /* set to 1 to plot the color scheme */ #define COLORBAR_RANGE 3.0 /* scale of color scheme bar */ #define COLORBAR_RANGE_B 3.0 /* scale of color scheme bar for 2nd part */ #define ROTATE_COLOR_SCHEME 0 /* set to 1 to draw color scheme horizontally */ /* only for compatibility with wave_common.c */ #define TWOSPEEDS 0 /* set to 1 to replace hardcore boundary by medium with different speed */ #define OMEGA 0.005 /* frequency of periodic excitation */ #define COURANT 0.08 /* Courant number */ #define COURANTB 0.03 /* Courant number in medium B */ #define INITIAL_AMP 0.5 /* amplitude of initial condition */ #define INITIAL_VARIANCE 0.0002 /* variance of initial condition */ #define INITIAL_WAVELENGTH 0.1 /* wavelength of initial condition */ #define VSCALE_ENERGY 200.0 /* additional scaling factor for color scheme P_3D_ENERGY */ #define PHASE_FACTOR 20.0 /* factor in computation of phase in color scheme P_3D_PHASE */ #define PHASE_SHIFT 0.0 /* shift of phase in color scheme P_3D_PHASE */ /* end of constants added only for compatibility with wave_common.c */ double u_3d[2] = {0.75, -0.45}; /* projections of basis vectors for REP_AXO_3D representation */ double v_3d[2] = {-0.75, -0.45}; double w_3d[2] = {0.0, 0.015}; double light[3] = {0.816496581, -0.40824829, 0.40824829}; /* vector of "light" direction for P_3D_ANGLE color scheme */ double observer[3] = {8.0, 8.0, 6.0}; /* location of observer for REP_PROJ_3D representation */ int reset_view = 0; /* switch to reset 3D view parameters (for option ROTATE_VIEW) */ #define Z_SCALING_FACTOR 0.75 /* overall scaling factor of z axis for REP_PROJ_3D representation */ #define XY_SCALING_FACTOR 2.2 /* overall scaling factor for on-screen (x,y) coordinates after projection */ #define ZMAX_FACTOR 1.0 /* max value of z coordinate for REP_PROJ_3D representation */ #define XSHIFT_3D -0.1 /* overall x shift for REP_PROJ_3D representation */ #define YSHIFT_3D 0.2 /* overall y shift for REP_PROJ_3D representation */ /* For debugging purposes only */ #define FLOOR 1 /* set to 1 to limit wave amplitude to VMAX */ #define VMAX 2.0 /* max value of wave amplitude */ #define REFRESH_B (ZPLOT_B != ZPLOT)||(CPLOT_B != CPLOT) /* to save computing time, to be improved */ #define COMPUTE_WRAP_ANGLE ((WRAP_ANGLE)&&((cplot == Z_ANGLE_GRADIENT)||(cplot == Z_ANGLE_GRADIENTX)||(cplot == Z_ARGUMENT)||(cplot == Z_ANGLE_GRADIENTX))) #define PRINT_PARAMETERS ((PRINT_TIME)||(PRINT_VISCOSITY)||(PRINT_RPSLZB)||(PRINT_PROBABILITIES)||(PRINT_NOISE)) #include "global_pdes.c" #include "sub_wave.c" #include "wave_common.c" /* common functions for wave_billiard, wave_comparison, etc */ #include "global_3d.c" /* constants and global variables */ #include "sub_wave_3d_rde.c" /* should be later replaced by sub_wave_rde.c */ #include "sub_rde.c" double potential(int i, int j) /* compute potential (e.g. for Schrödinger equation) */ { double x, y, xy[2], r, small = 2.0e-1, kx, ky; ij_to_xy(i, j, xy); x = xy[0]; y = xy[1]; switch (POTENTIAL) { case (POT_HARMONIC): { return (K_HARMONIC*(x*x + y*y)); } case (POT_COULOMB): { // r = module2(x, y); r = sqrt(x*x + y*y + small*small); // if (r < small) r = small; return (-K_COULOMB/r); } case (POT_PERIODIC): { kx = 4.0*DPI/(XMAX - XMIN); ky = 2.0*DPI/(YMAX - YMIN); return(-K_HARMONIC*cos(kx*x)*cos(ky*y)); } default: { return(0.0); } } } void initialize_potential(double potential_field[NX*NY]) /* initialize the potential field, e.g. for the Schrödinger equation */ { int i, j; #pragma omp parallel for private(i,j) for (i=0; i VMAX) phi_out[k][i*NY+j] = VMAX; if (phi_out[k][i*NY+j] < -VMAX) phi_out[k][i*NY+j] = -VMAX; } } } for (i=0; i 1280) { boxheight = 0.035; boxwidth = 0.21; if (left) { xbox = XMIN + 0.4; xtext = XMIN + 0.2; } else { xbox = XMAX - 0.39; xtext = XMAX - 0.55; } } else { boxwidth = 0.3; boxheight = 0.05; if (left) { xbox = XMIN + 0.4; xtext = XMIN + 0.1; } else { xbox = XMAX - 0.39; xtext = XMAX - 0.61; } } first = 0; } if (PRINT_PROBABILITIES) { compute_probabilities(rde, xy_in, probas); printf("pleft = %.3lg, pright = %.3lg\n", probas[0], probas[1]); x = XMIN + 0.15*(XMAX - XMIN); y = YMIN + 0.3*(YMAX - YMIN); erase_area_hsl(x, y, boxwidth, boxheight, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); sprintf(message, "Proba %.3f", probas[0]); write_text(x, y, message); x = XMIN + 0.72*(XMAX - XMIN); y = YMIN + 0.68*(YMAX - YMIN); erase_area_hsl(x, y, boxwidth, boxheight, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); sprintf(message, "Proba %.3f", probas[1]); write_text(x, y, message); } else { y = YMAX - 0.1; erase_area_hsl(xbox, y + 0.02, boxwidth, boxheight, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); if (PRINT_TIME) sprintf(message, "Time %.3f", time); else if (PRINT_VISCOSITY) sprintf(message, "Viscosity %.3f", viscosity); else if (PRINT_RPSLZB) sprintf(message, "b = %.3f", rpslzb); else if (PRINT_NOISE) sprintf(message, "noise %.3f", noise); if (PLOT_3D) write_text(xtext, y, message); else { xy_to_pos(xtext, y, pos); write_text(pos[0], pos[1], message); } } } void draw_color_bar_palette(int plot, double range, int palette, int fade, double fade_value) { double width = 0.14; // double width = 0.2; if (ROTATE_COLOR_SCHEME) draw_color_scheme_palette_3d(-1.0, -0.8, XMAX - 0.1, -1.0, plot, -range, range, palette, fade, fade_value); else draw_color_scheme_palette_3d(XMAX - 1.5*width, YMIN + 0.1, XMAX - 0.5*width, YMAX - 0.1, plot, -range, range, palette, fade, fade_value); } double noise_schedule(int i) { double ratio; if (i < NOISE_INITIAL_TIME) return (NOISE_INTENSITY); else { ratio = (double)(i - NOISE_INITIAL_TIME)/(double)(NSTEPS - NOISE_INITIAL_TIME); return (NOISE_INTENSITY*(1.0 + ratio*(NOISE_FACTOR - 1.0))); } } double viscosity_schedule(int i) { double ratio; if (i < VISCOSITY_INITIAL_TIME) return (VISCOSITY); else { ratio = (double)(i - VISCOSITY_INITIAL_TIME)/(double)(NSTEPS - VISCOSITY_INITIAL_TIME); return (VISCOSITY*(1.0 + ratio*(VISCOSITY_FACTOR - 1.0))); } } double rpslzb_schedule(int i) { double ratio; if (i < RPSLZB_INITIAL_TIME) return (RPSLZB); else if (i > NSTEPS - RPSLZB_FINAL_TIME) return(RPSLZB - RPSLZB_CHANGE); else { ratio = (double)(i - RPSLZB_INITIAL_TIME)/(double)(NSTEPS - RPSLZB_INITIAL_TIME - RPSLZB_FINAL_TIME); return (RPSLZB - ratio*RPSLZB_CHANGE); } } void viewpoint_schedule(int i) /* change position of observer */ { int j; double angle, ca, sa; static double observer_initial[3]; static int first = 1; if (first) { for (j=0; j<3; j++) observer_initial[j] = observer[j]; first = 0; } angle = (ROTATE_ANGLE*DPI/360.0)*(double)i/(double)NSTEPS; ca = cos(angle); sa = sin(angle); observer[0] = ca*observer_initial[0] - sa*observer_initial[1]; observer[1] = sa*observer_initial[0] + ca*observer_initial[1]; printf("Angle %.3lg, Observer position (%.3lg, %.3lg, %.3lg)\n", angle, observer[0], observer[1], observer[2]); } void animation() { double time = 0.0, scale, dx, var, jangle, cosj, sinj, sqrintstep, intstep0, viscosity_printed, fade_value, noise = NOISE_INTENSITY; double *phi[NFIELDS], *phi_tmp[NFIELDS], *potential_field; short int *xy_in; int i, j, k, s, nvid, field; static int counter = 0; t_rde *rde; /* Since NX and NY are big, it seemed wiser to use some memory allocation here */ for (i=0; i VISCOSITY_MAX)) { nvid = (int)((double)NVID*viscosity/VISCOSITY_MAX); // viscosity = VISCOSITY_MAX; intstep = intstep0*VISCOSITY_MAX/viscosity; printf("Nvid = %i, intstep = %.3lg\n", nvid, intstep); } } if (CHANGE_RPSLZB) rpslzb = rpslzb_schedule(i); if (ROTATE_VIEW) { viewpoint_schedule(i - INITIAL_TIME); reset_view = 1; } printf("Drawing wave %i\n", i); draw_wave_rde(0, phi, xy_in, rde, potential_field, ZPLOT, CPLOT, COLOR_PALETTE, 0, 1.0, 1); // nvid = (int)((double)NVID*(1.0 + (ACCELERATION_FACTOR - 1.0)*(double)i/(double)NSTEPS)); /* increase integration step */ // intstep = intstep0*exp(log(DT_ACCELERATION_FACTOR)*(double)i/(double)NSTEPS); // if (intstep > MAX_DT) // { // nvid *= intstep/MAX_DT; // intstep = MAX_DT; // } // printf("Steps per frame: %i\n", nvid); // printf("Integration step %.5lg\n", intstep); printf("Evolving wave\n"); for (j=0; j= INITIAL_TIME)&&(DOUBLE_MOVIE)) { draw_wave_rde(1, phi, xy_in, rde, potential_field, ZPLOT_B, CPLOT_B, COLOR_PALETTE_B, 0, 1.0, REFRESH_B); // draw_billiard(); if (PRINT_PARAMETERS) print_parameters(rde, xy_in, time, 0, viscosity_printed, noise); if (DRAW_COLOR_SCHEME) draw_color_bar_palette(CPLOT_B, COLORBAR_RANGE_B, COLOR_PALETTE_B, 0, 1.0); glutSwapBuffers(); save_frame_counter(NSTEPS + MID_FRAMES + 1 + counter); counter++; } /* it seems that saving too many files too fast can cause trouble with the file system */ /* so this is to make a pause from time to time - parameter PAUSE may need adjusting */ if (i % PAUSE == PAUSE - 1) { printf("Making a short pause\n"); sleep(PSLEEP); s = system("mv wave*.tif tif_bz/"); } } else printf("Computing frame %i\n", i); } if (MOVIE) { if (DOUBLE_MOVIE) { draw_wave_rde(0, phi, xy_in, rde, potential_field, ZPLOT, CPLOT, COLOR_PALETTE, 0, 1.0, 1); // draw_billiard(); if (PRINT_PARAMETERS) print_parameters(rde, xy_in, time, 0, viscosity_printed, noise); if (DRAW_COLOR_SCHEME) draw_color_bar_palette(CPLOT, COLORBAR_RANGE, COLOR_PALETTE, 0, 1.0); glutSwapBuffers(); if (!FADE) for (i=0; i