/*********************************************************************************/ /* */ /* Animation of wave equation in a planar domain */ /* */ /* N. Berglund, december 2012, may 2021 */ /* */ /* UPDATE 24/04: distinction between damping and "elasticity" parameters */ /* UPDATE 27/04: new billiard shapes, bug in color scheme fixed */ /* UPDATE 28/04: code made more efficient, with help of Marco Mancini */ /* */ /* Feel free to reuse, but if doing so it would be nice to drop a */ /* line to nils.berglund@univ-orleans.fr - Thanks! */ /* */ /* compile with */ /* gcc -o wave_billiard wave_billiard.c */ /* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */ /* */ /* OMP acceleration may be more effective after executing */ /* export OMP_NUM_THREADS=2 in the shell before running the program */ /* */ /* To make a video, set MOVIE to 1 and create subfolder tif_wave */ /* It may be possible to increase parameter PAUSE */ /* */ /* create movie using */ /* ffmpeg -i wave.%05d.tif -vcodec libx264 wave.mp4 */ /* */ /*********************************************************************************/ /*********************************************************************************/ /* */ /* NB: The algorithm used to simulate the wave equation is highly paralellizable */ /* One could make it much faster by using a GPU */ /* */ /*********************************************************************************/ #include #include #include #include #include #include #include /* Sam Leffler's libtiff library. */ #include #define MOVIE 0 /* set to 1 to generate movie */ #define DOUBLE_MOVIE 0 /* set to 1 to produce movies for wave height and energy simultaneously */ /* General geometrical parameters */ /* uncomment for higher resolution */ // #define WINWIDTH 1920 /* window width */ // #define WINHEIGHT 1000 /* window height */ // #define NX 1920 /* number of grid points on x axis */ // #define NY 1000 /* number of grid points on y axis */ // // #define NX 3840 /* number of grid points on x axis */ // // #define NY 2000 /* number of grid points on y axis */ // // #define XMIN -2.0 // #define XMAX 2.0 /* x interval */ // #define YMIN -1.041666667 // #define YMAX 1.041666667 /* y interval for 9/16 aspect ratio */ #define HIGHRES 0 /* set to 1 if resolution of grid is double that of displayed image */ /* comment out for higher resolution */ #define WINWIDTH 1280 /* window width */ #define WINHEIGHT 720 /* window height */ #define NX 1280 /* number of grid points on x axis */ #define NY 720 /* number of grid points on y axis */ #define XMIN -2.0 #define XMAX 2.0 /* x interval */ #define YMIN -1.125 #define YMAX 1.125 /* y interval for 9/16 aspect ratio */ #define JULIA_SCALE 0.8 /* scaling for Julia sets */ /* Choice of the billiard table */ #define B_DOMAIN 16 /* choice of domain shape, see list in global_pdes.c */ #define CIRCLE_PATTERN 201 /* pattern of circles or polygons, see list in global_pdes.c */ #define P_PERCOL 0.25 /* probability of having a circle in C_RAND_PERCOL arrangement */ #define NPOISSON 300 /* number of points for Poisson C_RAND_POISSON arrangement */ #define RANDOM_POLY_ANGLE 1 /* set to 1 to randomize angle of polygons */ #define LAMBDA 0.6 /* parameter controlling the dimensions of domain */ #define MU 0.6 /* parameter controlling the dimensions of domain */ #define NPOLY 6 /* number of sides of polygon */ #define APOLY 0.0 /* angle by which to turn polygon, in units of Pi/2 */ #define MDEPTH 3 /* depth of computation of Menger gasket */ #define MRATIO 3 /* ratio defining Menger gasket */ #define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */ #define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */ #define FOCI 1 /* set to 1 to draw focal points of ellipse */ #define NGRIDX 36 /* number of grid point for grid of disks */ #define NGRIDY 6 /* number of grid point for grid of disks */ #define X_SHOOTER -0.2 #define Y_SHOOTER -0.6 #define X_TARGET 0.4 #define Y_TARGET 0.7 /* shooter and target positions in laser fight */ #define ISO_XSHIFT_LEFT -2.9 #define ISO_XSHIFT_RIGHT 1.4 #define ISO_YSHIFT_LEFT -0.15 #define ISO_YSHIFT_RIGHT -0.15 #define ISO_SCALE 0.5 /* coordinates for isospectral billiards */ /* You can add more billiard tables by adapting the functions */ /* xy_in_billiard and draw_billiard below */ /* Physical parameters of wave equation */ // #define TWOSPEEDS 0 /* set to 1 to replace hardcore boundary by medium with different speed */ #define TWOSPEEDS 0 /* set to 1 to replace hardcore boundary by medium with different speed */ #define OSCILLATE_LEFT 0 /* set to 1 to add oscilating boundary condition on the left */ #define OSCILLATE_TOPBOT 0 /* set to 1 to enforce a planar wave on top and bottom boundary */ #define OMEGA 0.005 /* frequency of periodic excitation */ #define AMPLITUDE 0.8 /* amplitude of periodic excitation */ #define COURANT 0.06 /* Courant number */ #define COURANTB 0.03 /* Courant number in medium B */ // #define COURANTB 0.016363636 /* Courant number in medium B */ #define GAMMA 0.0 /* damping factor in wave equation */ #define GAMMAB 1.0e-7 /* damping factor in wave equation */ #define GAMMA_SIDES 1.0e-4 /* damping factor on boundary */ #define GAMMA_TOPBOT 1.0e-7 /* damping factor on boundary */ #define KAPPA 0.0 /* "elasticity" term enforcing oscillations */ #define KAPPA_SIDES 5.0e-4 /* "elasticity" term on absorbing boundary */ #define KAPPA_TOPBOT 0.0 /* "elasticity" term on absorbing boundary */ /* The Courant number is given by c*DT/DX, where DT is the time step and DX the lattice spacing */ /* The physical damping coefficient is given by GAMMA/(DT)^2 */ /* Increasing COURANT speeds up the simulation, but decreases accuracy */ /* For similar wave forms, COURANT^2*GAMMA should be kept constant */ #define ADD_OSCILLATING_SOURCE 0 /* set to 1 to add an oscillating wave source */ #define OSCILLATING_SOURCE_PERIOD 30 /* period of oscillating source */ // #define OSCILLATING_SOURCE_PERIOD 14 /* period of oscillating source */ /* Boundary conditions, see list in global_pdes.c */ #define B_COND 2 // #define B_COND 2 /* Parameters for length and speed of simulation */ #define NSTEPS 2500 /* number of frames of movie */ #define NVID 10 /* number of iterations between images displayed on screen */ #define NSEG 1000 /* number of segments of boundary */ #define INITIAL_TIME 0 /* time after which to start saving frames */ #define BOUNDARY_WIDTH 3 /* width of billiard boundary */ #define PAUSE 200 /* number of frames after which to pause */ #define PSLEEP 2 /* sleep time during pause */ #define SLEEP1 1 /* initial sleeping time */ #define SLEEP2 1 /* final sleeping time */ #define MID_FRAMES 200 /* number of still frames between parts of two-part movie */ #define END_FRAMES 100 /* number of still frames at end of movie */ #define FADE 1 /* set to 1 to fade at end of movie */ /* Parameters of initial condition */ #define INITIAL_AMP 0.5 /* amplitude of initial condition */ #define INITIAL_VARIANCE 0.0005 /* variance of initial condition */ #define INITIAL_WAVELENGTH 0.1 /* wavelength of initial condition */ /* Plot type, see list in global_pdes.c */ #define ZPLOT 103 /* wave height */ #define CPLOT 103 /* color scheme */ #define ZPLOT_B 104 #define CPLOT_B 104 /* plot type for second movie */ #define AMPLITUDE_HIGH_RES 1 /* set to 1 to increase resolution of plot */ #define SHADE_3D 1 /* set to 1 to change luminosity according to normal vector */ #define NON_DIRICHLET_BC 0 /* set to 1 to draw only facets in domain, if field is not zero on boundary */ #define DRAW_BILLIARD 1 /* set to 1 to draw boundary */ #define DRAW_BILLIARD_FRONT 1 /* set to 1 to draw front of boundary after drawing wave */ #define FADE_IN_OBSTACLE 1 /* set to 1 to fade color inside obstacles */ #define PLOT_SCALE_ENERGY 0.05 /* vertical scaling in energy plot */ #define PLOT_SCALE_LOG_ENERGY 0.6 /* vertical scaling in log energy plot */ /* 3D representation */ #define REPRESENTATION_3D 1 /* choice of 3D representation */ #define REP_AXO_3D 0 /* linear projection (axonometry) */ #define REP_PROJ_3D 1 /* projection on plane orthogonal to observer line of sight */ /* Color schemes */ #define COLOR_PALETTE 14 /* Color palette, see list in global_pdes.c */ #define COLOR_PALETTE_B 11 /* Color palette, see list in global_pdes.c */ #define BLACK 1 /* background */ #define COLOR_SCHEME 3 /* choice of color scheme, see list in global_pdes.c */ #define SCALE 0 /* set to 1 to adjust color scheme to variance of field */ #define SLOPE 1.0 /* sensitivity of color on wave amplitude */ #define VSCALE_AMPLITUDE 0.2 /* additional scaling factor for color scheme P_3D_AMPLITUDE */ #define VSCALE_ENERGY 0.35 /* additional scaling factor for color scheme P_3D_ENERGY */ #define PHASE_FACTOR 20.0 /* factor in computation of phase in color scheme P_3D_PHASE */ #define PHASE_SHIFT 0.0 /* shift of phase in color scheme P_3D_PHASE */ #define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */ #define E_SCALE 200.0 /* scaling factor for energy representation */ #define LOG_SCALE 1.0 /* scaling factor for energy log representation */ #define LOG_SHIFT 1.0 /* shift of colors on log scale */ #define RESCALE_COLOR_IN_CENTER 0 /* set to 1 to decrease color intentiy in the center (for wave escaping ring) */ #define COLORHUE 260 /* initial hue of water color for scheme C_LUM */ #define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */ #define LUMMEAN 0.5 /* amplitude of luminosity variation for scheme C_LUM */ #define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */ #define HUEMEAN 240.0 /* mean value of hue for color scheme C_HUE */ #define HUEAMP -200.0 /* amplitude of variation of hue for color scheme C_HUE */ #define DRAW_COLOR_SCHEME 0 /* set to 1 to plot the color scheme */ #define COLORBAR_RANGE 3.0 /* scale of color scheme bar */ #define COLORBAR_RANGE_B 5.0 /* scale of color scheme bar for 2nd part */ #define ROTATE_COLOR_SCHEME 0 /* set to 1 to draw color scheme horizontally */ #define SAVE_TIME_SERIES 0 /* set to 1 to save wave time series at a point */ /* For debugging purposes only */ #define FLOOR 0 /* set to 1 to limit wave amplitude to VMAX */ #define VMAX 10.0 /* max value of wave amplitude */ /* Parameters controlling 3D projection */ double u_3d[2] = {0.75, -0.45}; /* projections of basis vectors for REP_AXO_3D representation */ double v_3d[2] = {-0.75, -0.45}; double w_3d[2] = {0.0, 0.015}; double light[3] = {0.816496581, -0.40824829, 0.40824829}; /* vector of "light" direction for P_3D_ANGLE color scheme */ double observer[3] = {10.0, 6.0, 8.5}; /* location of observer for REP_PROJ_3D representation */ #define Z_SCALING_FACTOR 0.018 /* overall scaling factor of z axis for REP_PROJ_3D representation */ #define XY_SCALING_FACTOR 3.75 /* overall scaling factor for on-screen (x,y) coordinates after projection */ #define ZMAX_FACTOR 1.0 /* max value of z coordinate for REP_PROJ_3D representation */ #define XSHIFT_3D 0.0 /* overall x shift for REP_PROJ_3D representation */ #define YSHIFT_3D 0.0 /* overall y shift for REP_PROJ_3D representation */ #include "global_pdes.c" /* constants and global variables */ #include "sub_wave.c" /* common functions for wave_billiard, heat and schrodinger */ #include "wave_common.c" /* common functions for wave_billiard, wave_comparison, etc */ #include "global_3d.c" /* constants and global variables */ #include "sub_wave_3d.c" /* graphical functions specific to wave_3d */ FILE *time_series_left, *time_series_right; double courant2, courantb2; /* Courant parameters squared */ void evolve_wave_half(double phi_in[NX*NY], double psi_in[NX*NY], double phi_out[NX*NY], double psi_out[NX*NY], short int xy_in[NX*NY], double tc[NX*NY], double tcc[NX*NY], double tgamma[NX*NY]) // void evolve_wave_half(double *phi_in, double *psi_in, double *phi_out, double *psi_out, // short int *xy_in[NX]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ /* this version of the function has been rewritten in order to minimize the number of if-branches */ { int i, j, iplus, iminus, jplus, jminus; double delta, x, y, c, cc, gamma; static long time = 0; // static double tc[NX*NY], tcc[NX*NY], tgamma[NX*NY]; // static short int first = 1; time++; #pragma omp parallel for private(i,j,iplus,iminus,jplus,jminus,delta,x,y) /* evolution in the bulk */ for (i=1; i VMAX) phi_out[i*NY+j] = VMAX; if (phi_out[i*NY+j] < -VMAX) phi_out[i*NY+j] = -VMAX; if (psi_out[i*NY+j] > VMAX) psi_out[i*NY+j] = VMAX; if (psi_out[i*NY+j] < -VMAX) psi_out[i*NY+j] = -VMAX; } } } } void evolve_wave(double phi[NX*NY], double psi[NX*NY], double phi_tmp[NX*NY], double psi_tmp[NX*NY], short int xy_in[NX*NY], double tc[NX*NY], double tcc[NX*NY], double tgamma[NX*NY]) /* time step of field evolution */ /* phi is value of field at time t, psi at time t-1 */ { evolve_wave_half(phi, psi, phi_tmp, psi_tmp, xy_in, tc, tcc, tgamma); evolve_wave_half(phi_tmp, psi_tmp, phi, psi, xy_in, tc, tcc, tgamma); } void draw_color_bar_palette(int plot, double range, int palette) { if (ROTATE_COLOR_SCHEME) draw_color_scheme_palette_3d(-1.0, -0.8, XMAX - 0.1, -1.0, plot, -range, range, palette); else draw_color_scheme_palette_3d(XMAX - 0.3, YMIN + 0.1, XMAX - 0.1, YMAX - 0.1, plot, -range, range, palette); } void animation() { double time, scale, ratio, startleft[2], startright[2], sign, r2, xy[2], fade_value; double *phi, *psi, *phi_tmp, *psi_tmp, *total_energy, *color_scale, *tc, *tcc, *tgamma; short int *xy_in; int i, j, s, sample_left[2], sample_right[2], period = 0, fade; static int counter = 0; long int wave_value; t_wave *wave; if (SAVE_TIME_SERIES) { time_series_left = fopen("wave_left.dat", "w"); time_series_right = fopen("wave_right.dat", "w"); } /* Since NX and NY are big, it seemed wiser to use some memory allocation here */ xy_in = (short int *)malloc(NX*NY*sizeof(short int)); phi = (double *)malloc(NX*NY*sizeof(double)); psi = (double *)malloc(NX*NY*sizeof(double)); phi_tmp = (double *)malloc(NX*NY*sizeof(double)); psi_tmp = (double *)malloc(NX*NY*sizeof(double)); total_energy = (double *)malloc(NX*NY*sizeof(double)); color_scale = (double *)malloc(NX*NY*sizeof(double)); tc = (double *)malloc(NX*NY*sizeof(double)); tcc = (double *)malloc(NX*NY*sizeof(double)); tgamma = (double *)malloc(NX*NY*sizeof(double)); wave = (t_wave *)malloc(NX*NY*sizeof(t_wave)); /* initialise positions and radii of circles */ if ((B_DOMAIN == D_CIRCLES)||(B_DOMAIN == D_CIRCLES_IN_RECT)) init_circle_config(circles); else if (B_DOMAIN == D_POLYGONS) init_polygon_config(polygons); printf("Polygons initialized\n"); /* initialise polyline for von Koch and similar domains */ npolyline = init_polyline(MDEPTH, polyline); for (i=0; i= INITIAL_TIME) save_frame(); else printf("Initial phase time %i of %i\n", i, INITIAL_TIME); if ((i >= INITIAL_TIME)&&(DOUBLE_MOVIE)) { draw_wave_3d(phi, psi, xy_in, wave, ZPLOT_B, CPLOT_B, COLOR_PALETTE_B, 0, 1.0); if (DRAW_COLOR_SCHEME) draw_color_bar_palette(CPLOT_B, COLORBAR_RANGE_B, COLOR_PALETTE_B); glutSwapBuffers(); save_frame_counter(NSTEPS + MID_FRAMES + 1 + counter); // save_frame_counter(NSTEPS + 21 + counter); counter++; } /* it seems that saving too many files too fast can cause trouble with the file system */ /* so this is to make a pause from time to time - parameter PAUSE may need adjusting */ if (i % PAUSE == PAUSE - 1) { printf("Making a short pause\n"); sleep(PSLEEP); s = system("mv wave*.tif tif_wave/"); } } } if (MOVIE) { if (DOUBLE_MOVIE) { draw_wave_3d(phi, psi, xy_in, wave, ZPLOT, CPLOT, COLOR_PALETTE, 0, 1.0); if (DRAW_COLOR_SCHEME) draw_color_bar_palette(CPLOT, COLORBAR_RANGE, COLOR_PALETTE); glutSwapBuffers(); if (!FADE) for (i=0; i