/*********************/ /* Graphics routines */ /*********************/ #include "colors_waves.c" // #define HUE_TYPE0 260.0 /* hue of particles of type 0 */ // #define HUE_TYPE0 300.0 /* hue of particles of type 0 */ // #define HUE_TYPE1 90.0 /* hue of particles of type 1 */ int writetiff(char *filename, char *description, int x, int y, int width, int height, int compression) { TIFF *file; GLubyte *image, *p; int i; file = TIFFOpen(filename, "w"); if (file == NULL) { return 1; } image = (GLubyte *) malloc(width * height * sizeof(GLubyte) * 3); /* OpenGL's default 4 byte pack alignment would leave extra bytes at the end of each image row so that each full row contained a number of bytes divisible by 4. Ie, an RGB row with 3 pixels and 8-bit componets would be laid out like "RGBRGBRGBxxx" where the last three "xxx" bytes exist just to pad the row out to 12 bytes (12 is divisible by 4). To make sure the rows are packed as tight as possible (no row padding), set the pack alignment to 1. */ glPixelStorei(GL_PACK_ALIGNMENT, 1); glReadPixels(x, y, width, height, GL_RGB, GL_UNSIGNED_BYTE, image); TIFFSetField(file, TIFFTAG_IMAGEWIDTH, (uint32) width); TIFFSetField(file, TIFFTAG_IMAGELENGTH, (uint32) height); TIFFSetField(file, TIFFTAG_BITSPERSAMPLE, 8); TIFFSetField(file, TIFFTAG_COMPRESSION, compression); TIFFSetField(file, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB); TIFFSetField(file, TIFFTAG_ORIENTATION, ORIENTATION_BOTLEFT); TIFFSetField(file, TIFFTAG_SAMPLESPERPIXEL, 3); TIFFSetField(file, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); TIFFSetField(file, TIFFTAG_ROWSPERSTRIP, 1); TIFFSetField(file, TIFFTAG_IMAGEDESCRIPTION, description); p = image; for (i = height - 1; i >= 0; i--) { // if (TIFFWriteScanline(file, p, height - i - 1, 0) < 0) if (TIFFWriteScanline(file, p, i, 0) < 0) { free(image); TIFFClose(file); return 1; } p += width * sizeof(GLubyte) * 3; } TIFFClose(file); return 0; } void init() /* initialisation of window */ { glLineWidth(3); glClearColor(0.0, 0.0, 0.0, 1.0); glClear(GL_COLOR_BUFFER_BIT); glOrtho(XMIN, XMAX, YMIN, YMAX , -1.0, 1.0); // glOrtho(0.0, NX, 0.0, NY, -1.0, 1.0); } void blank() { if (BLACK) glClearColor(0.0, 0.0, 0.0, 1.0); else glClearColor(1.0, 1.0, 1.0, 1.0); glClear(GL_COLOR_BUFFER_BIT); } void save_frame_lj() { static int counter = 0; char *name="lj.", n2[100]; char format[6]=".%05i"; counter++; // printf (" p2 counter = %d \n",counter); strcpy(n2, name); sprintf(strstr(n2,"."), format, counter); strcat(n2, ".tif"); printf(" saving frame %s \n",n2); writetiff(n2, "Particles with Lennard-Jones interaction in a planar domain", 0, 0, WINWIDTH, WINHEIGHT, COMPRESSION_LZW); } void save_frame_lj_counter(int counter) { char *name="lj.", n2[100]; char format[6]=".%05i"; strcpy(n2, name); sprintf(strstr(n2,"."), format, counter); strcat(n2, ".tif"); printf(" saving frame %s \n",n2); writetiff(n2, "Particles with Lennard-Jones interaction in a planar domain", 0, 0, WINWIDTH, WINHEIGHT, COMPRESSION_LZW); } void write_text_fixedwidth( double x, double y, char *st) { int l, i; l=strlen( st ); // see how many characters are in text string. glRasterPos2d( x, y); // location to start printing text for( i=0; i < l; i++) // loop until i is greater then l { // glutBitmapCharacter(GLUT_BITMAP_TIMES_ROMAN_24, st[i]); // Print a character on the screen // glutBitmapCharacter(GLUT_BITMAP_8_BY_13, st[i]); // Print a character on the screen glutBitmapCharacter(GLUT_BITMAP_9_BY_15, st[i]); // Print a character on the screen } } void write_text( double x, double y, char *st) { int l,i; l=strlen( st ); // see how many characters are in text string. glRasterPos2d( x, y); // location to start printing text for( i=0; i < l; i++) // loop until i is greater then l { glutBitmapCharacter(GLUT_BITMAP_TIMES_ROMAN_24, st[i]); // Print a character on the screen // glutBitmapCharacter(GLUT_BITMAP_8_BY_13, st[i]); // Print a character on the screen } } /*********************/ /* some basic math */ /*********************/ double vabs(double x) /* absolute value */ { double res; if (x<0.0) res = -x; else res = x; return(res); } double module2(double x, double y) /* Euclidean norm */ { double m; m = sqrt(x*x + y*y); return(m); } double argument(double x, double y) { double alph; if (x!=0.0) { alph = atan(y/x); if (x<0.0) alph += PI; } else { alph = PID; if (y<0.0) alph = PI*1.5; } return(alph); } double ipow(double x, int n) { double y; int i; y = x; for (i=1; i= 1 || S == 0); X = V1 * sqrt(-2 * log(S) / S); } else X = V2 * sqrt(-2 * log(S) / S); phase = 1 - phase; return X; } /*********************/ /* drawing routines */ /*********************/ void erase_area(double x, double y, double dx, double dy) { double pos[2], rgb[3]; hsl_to_rgb(220.0, 0.8, 0.7, rgb); glColor3f(rgb[0], rgb[1], rgb[2]); glBegin(GL_QUADS); glVertex2d(x - dx, y - dy); glVertex2d(x + dx, y - dy); glVertex2d(x + dx, y + dy); glVertex2d(x - dx, y + dy); glEnd(); } void erase_area_rgb(double x, double y, double dx, double dy, double rgb[3]) { double pos[2]; glColor3f(rgb[0], rgb[1], rgb[2]); glBegin(GL_QUADS); glVertex2d(x - dx, y - dy); glVertex2d(x + dx, y - dy); glVertex2d(x + dx, y + dy); glVertex2d(x - dx, y + dy); glEnd(); } void erase_area_hsl(double x, double y, double dx, double dy, double h, double s, double l) { double pos[2], rgb[3]; hsl_to_rgb(h, s, l, rgb); erase_area_rgb(x, y, dx, dy, rgb); } void erase_area_hsl_turbo(double x, double y, double dx, double dy, double h, double s, double l) { double pos[2], rgb[3]; hsl_to_rgb_turbo(h, s, l, rgb); erase_area_rgb(x, y, dx, dy, rgb); } void draw_line(double x1, double y1, double x2, double y2) { glBegin(GL_LINE_STRIP); glVertex2d(x1, y1); glVertex2d(x2, y2); glEnd(); } void draw_rectangle(double x1, double y1, double x2, double y2) { glBegin(GL_LINE_LOOP); glVertex2d(x1, y1); glVertex2d(x2, y1); glVertex2d(x2, y2); glVertex2d(x1, y2); glEnd(); } void draw_colored_rectangle(double x1, double y1, double x2, double y2, double rgb[3]) { glColor3f(rgb[0], rgb[1], rgb[2]); glBegin(GL_TRIANGLE_FAN); glVertex2d(x1, y1); glVertex2d(x2, y1); glVertex2d(x2, y2); glVertex2d(x1, y2); glEnd(); } void draw_triangle(double x1, double y1, double x2, double y2, double x3, double y3) { glBegin(GL_LINE_LOOP); glVertex2d(x1, y1); glVertex2d(x2, y2); glVertex2d(x3, y3); glEnd(); } void draw_colored_triangle(double x1, double y1, double x2, double y2, double x3, double y3, double rgb[3]) { glColor3f(rgb[0], rgb[1], rgb[2]); glBegin(GL_TRIANGLE_FAN); glVertex2d(x1, y1); glVertex2d(x2, y2); glVertex2d(x3, y3); glEnd(); } void draw_circle(double x, double y, double r, int nseg) { int i; double pos[2], alpha, dalpha; dalpha = DPI/(double)nseg; glBegin(GL_LINE_LOOP); for (i=0; i<=nseg; i++) { alpha = (double)i*dalpha; glVertex2d(x + r*cos(alpha), y + r*sin(alpha)); } glEnd(); } void draw_colored_circle(double x, double y, double r, int nseg, double rgb[3]) { int i; double pos[2], alpha, dalpha; dalpha = DPI/(double)nseg; glColor3f(rgb[0], rgb[1], rgb[2]); glBegin(GL_TRIANGLE_FAN); glVertex2d(x, y); for (i=0; i<=nseg; i++) { alpha = (double)i*dalpha; glVertex2d(x + r*cos(alpha), y + r*sin(alpha)); } glEnd(); } void draw_polygon(double x, double y, double r, int nsides, double angle) { int i; double pos[2], alpha, dalpha; dalpha = DPI/(double)nsides; glBegin(GL_LINE_LOOP); for (i=0; i<=nsides; i++) { alpha = angle + (double)i*dalpha; glVertex2d(x + r*cos(alpha), y + r*sin(alpha)); } glEnd(); } void draw_colored_polygon(double x, double y, double r, int nsides, double angle, double rgb[3]) { int i; double pos[2], alpha, dalpha; dalpha = DPI/(double)nsides; glColor3f(rgb[0], rgb[1], rgb[2]); glBegin(GL_TRIANGLE_FAN); glVertex2d(x, y); for (i=0; i<=nsides; i++) { alpha = angle + (double)i*dalpha; glVertex2d(x + r*cos(alpha), y + r*sin(alpha)); } glEnd(); } void draw_rhombus(double x, double y, double r, double angle) { int i; static int first = 1; static double ratio; if (first) { ratio = tan(0.1*PI); first = 0; } glBegin(GL_LINE_LOOP); glVertex2d(x + r*cos(angle), y + r*sin(angle)); glVertex2d(x - ratio*r*sin(angle), y + ratio*r*cos(angle)); glVertex2d(x - r*cos(angle), y - r*sin(angle)); glVertex2d(x + ratio*r*sin(angle), y - ratio*r*cos(angle)); glEnd(); } void draw_colored_rhombus(double x, double y, double r, double angle, double rgb[3]) { int i; static int first = 1; static double ratio; if (first) { ratio = tan(0.1*PI); first = 0; } glColor3f(rgb[0], rgb[1], rgb[2]); glBegin(GL_TRIANGLE_FAN); glVertex2d(x, y); glVertex2d(x + r*cos(angle), y + r*sin(angle)); glVertex2d(x - ratio*r*sin(angle), y + ratio*r*cos(angle)); glVertex2d(x - r*cos(angle), y - r*sin(angle)); glVertex2d(x + ratio*r*sin(angle), y - ratio*r*cos(angle)); glVertex2d(x + r*cos(angle), y + r*sin(angle)); glEnd(); } void draw_colored_sector(double xc, double yc, double r1, double r2, double angle1, double angle2, double rgb[3], int nsides) { int i; double angle, dangle; dangle = (angle2 - angle1)/(double)nsides; glColor3f(rgb[0], rgb[1], rgb[2]); glBegin(GL_TRIANGLE_FAN); glVertex2d(xc + r1*cos(angle1), yc + r1*sin(angle1)); for (i = 0; i < nsides+1; i++) { angle = angle1 + dangle*(double)i; glVertex2d(xc + r2*cos(angle), yc + r2*sin(angle)); } glEnd(); glBegin(GL_TRIANGLE_FAN); glVertex2d(xc + r2*cos(angle2), yc + r2*sin(angle2)); for (i = 0; i < nsides+1; i++) { angle = angle1 + dangle*(double)i; glVertex2d(xc + r1*cos(angle), yc + r1*sin(angle)); } glEnd(); } void init_particle_config(t_particle particles[NMAXCIRCLES]) /* initialise particle configuration */ { int i, j, k, n, ncirc0, n_p_active, ncandidates = PDISC_CANDIDATES, naccepted; double dx, dy, p, phi, r, r0, ra[5], sa[5], height, x, y = 0.0, gamma, dpoisson = PDISC_DISTANCE*MU, xx[4], yy[4]; short int active_poisson[NMAXCIRCLES], far; switch (CIRCLE_PATTERN) { case (C_SQUARE): { ncircles = NGRIDX*NGRIDY; dy = (YMAX - YMIN)/((double)NGRIDY); for (i = 0; i < NGRIDX; i++) for (j = 0; j < NGRIDY; j++) { n = NGRIDY*i + j; particles[n].xc = ((double)(i-NGRIDX/2) + 0.5)*dy; particles[n].yc = YMIN + ((double)j + 0.5)*dy; particles[n].radius = MU; particles[n].active = 1; } break; } case (C_HEX): { ncircles = NGRIDX*(NGRIDY+1); dx = (INITXMAX - INITXMIN)/((double)NGRIDX); dy = (INITYMAX - INITYMIN)/((double)NGRIDY); // dx = dy*0.5*sqrt(3.0); for (i = 0; i < NGRIDX; i++) for (j = 0; j < NGRIDY+1; j++) { n = (NGRIDY+1)*i + j; particles[n].xc = ((double)(i-NGRIDX/2) + 0.5)*dx; /* is +0.5 needed? */ particles[n].yc = INITYMIN + ((double)j - 0.5)*dy; if ((i+NGRIDX)%2 == 1) particles[n].yc += 0.5*dy; particles[n].radius = MU; /* activate only circles that intersect the domain */ if ((particles[n].yc < INITYMAX + MU)&&(particles[n].yc > INITYMIN - MU)) particles[n].active = 1; else particles[n].active = 0; } break; } case (C_RAND_DISPLACED): { ncircles = NGRIDX*NGRIDY; dy = (YMAX - YMIN)/((double)NGRIDY); for (i = 0; i < NGRIDX; i++) for (j = 0; j < NGRIDY; j++) { n = NGRIDY*i + j; particles[n].xc = ((double)(i-NGRIDX/2) + 0.5*((double)rand()/RAND_MAX - 0.5))*dy; particles[n].yc = YMIN + ((double)j + 0.5 + 0.5*((double)rand()/RAND_MAX - 0.5))*dy; particles[n].radius = MU; // particles[n].radius = MU*sqrt(1.0 + 0.8*((double)rand()/RAND_MAX - 0.5)); particles[n].active = 1; } break; } case (C_RAND_PERCOL): { ncircles = NGRIDX*NGRIDY; dy = (YMAX - YMIN)/((double)NGRIDY); for (i = 0; i < NGRIDX; i++) for (j = 0; j < NGRIDY; j++) { n = NGRIDY*i + j; particles[n].xc = ((double)(i-NGRIDX/2) + 0.5)*dy; particles[n].yc = YMIN + ((double)j + 0.5)*dy; particles[n].radius = MU; p = (double)rand()/RAND_MAX; if (p < P_PERCOL) particles[n].active = 1; else particles[n].active = 0; } break; } case (C_RAND_POISSON): { ncircles = NPOISSON; for (n = 0; n < NPOISSON; n++) { // particles[n].xc = LAMBDA*(2.0*(double)rand()/RAND_MAX - 1.0); particles[n].xc = (XMAX - XMIN)*(double)rand()/RAND_MAX + XMIN; particles[n].yc = (YMAX - YMIN)*(double)rand()/RAND_MAX + YMIN; particles[n].radius = MU; particles[n].active = 1; } break; } case (C_CLOAK): { ncircles = 200; for (i = 0; i < 40; i++) for (j = 0; j < 5; j++) { n = 5*i + j; phi = (double)i*DPI/40.0; r = LAMBDA*0.5*(1.0 + (double)j/5.0); particles[n].xc = r*cos(phi); particles[n].yc = r*sin(phi); particles[n].radius = MU; particles[n].active = 1; } break; } case (C_CLOAK_A): /* optimized model A1 by C. Jo et al */ { ncircles = 200; ra[0] = 0.0731; sa[0] = 1.115; ra[1] = 0.0768; sa[1] = 1.292; ra[2] = 0.0652; sa[2] = 1.464; ra[3] = 0.056; sa[3] = 1.633; ra[4] = 0.0375; sa[4] = 1.794; for (i = 0; i < 40; i++) for (j = 0; j < 5; j++) { n = 5*i + j; phi = (double)i*DPI/40.0; r = LAMBDA*sa[j]; particles[n].xc = r*cos(phi); particles[n].yc = r*sin(phi); particles[n].radius = LAMBDA*ra[j]; particles[n].active = 1; } break; } case (C_LASER): { ncircles = 17; xx[0] = 0.5*(X_SHOOTER + X_TARGET); xx[1] = LAMBDA - 0.5*(X_TARGET - X_SHOOTER); xx[2] = -xx[0]; xx[3] = -xx[1]; yy[0] = 0.5*(Y_SHOOTER + Y_TARGET); yy[1] = 1.0 - 0.5*(Y_TARGET - Y_SHOOTER); yy[2] = -yy[0]; yy[3] = -yy[1]; for (i = 0; i < 4; i++) for (j = 0; j < 4; j++) { particles[4*i + j].xc = xx[i]; particles[4*i + j].yc = yy[j]; } particles[ncircles - 1].xc = X_TARGET; particles[ncircles - 1].yc = Y_TARGET; for (i=0; i 0)&&(ncircles < NMAXCIRCLES)) { /* randomly select an active circle */ i = rand()%(ncircles); while (!active_poisson[i]) i = rand()%(ncircles); // printf("Starting from circle %i at (%.3f,%.3f)\n", i, particles[i].xc, particles[i].yc); /* generate new candidates */ naccepted = 0; for (j=0; j= dpoisson*dpoisson); /* new circle is in domain */ far = far*(x < INITXMAX)*(x > INITXMIN)*(y < INITYMAX)*(y > INITYMIN); // far = far*(vabs(x) < LAMBDA)*(y < INITYMAX)*(y > INITYMIN); } if (far) /* accept new circle */ { printf("New circle at (%.3f,%.3f) accepted\n", x, y); particles[ncircles].xc = x; particles[ncircles].yc = y; particles[ncircles].radius = MU; particles[ncircles].active = 1; active_poisson[ncircles] = 1; ncircles++; n_p_active++; naccepted++; } // else printf("Rejected\n"); } if (naccepted == 0) /* inactivate circle i */ { // printf("No candidates work, inactivate circle %i\n", i); active_poisson[i] = 0; n_p_active--; } printf("%i active circles\n", n_p_active); } printf("Generated %i circles\n", ncircles); break; } case (C_GOLDEN_MEAN): { ncircles = 300; gamma = (sqrt(5.0) - 1.0)*0.5; /* golden mean */ height = YMAX - YMIN; dx = 2.0*LAMBDA/((double)ncircles); for (n = 0; n < ncircles; n++) { particles[n].xc = -LAMBDA + n*dx; particles[n].yc = y; y += height*gamma; if (y > YMAX) y -= height; particles[n].radius = MU; particles[n].active = 1; } /* test for circles that overlap top or bottom boundary */ ncirc0 = ncircles; for (n=0; n < ncirc0; n++) { if (particles[n].yc + particles[n].radius > YMAX) { particles[ncircles].xc = particles[n].xc; particles[ncircles].yc = particles[n].yc - height; particles[ncircles].radius = MU; particles[ncircles].active = 1; ncircles ++; } else if (particles[n].yc - particles[n].radius < YMIN) { particles[ncircles].xc = particles[n].xc; particles[ncircles].yc = particles[n].yc + height; particles[ncircles].radius = MU; particles[ncircles].active = 1; ncircles ++; } } break; } case (C_GOLDEN_SPIRAL): { ncircles = 1; particles[0].xc = 0.0; particles[0].yc = 0.0; gamma = (sqrt(5.0) - 1.0)*PI; /* golden mean times 2Pi */ phi = 0.0; r0 = 2.0*MU; r = r0 + MU; for (i=0; i<1000; i++) { x = r*cos(phi); y = r*sin(phi); phi += gamma; r += MU*r0/r; if ((vabs(x) < LAMBDA)&&(vabs(y) < YMAX + MU)) { particles[ncircles].xc = x; particles[ncircles].yc = y; ncircles++; } } for (i=0; i YMIN - MU)) particles[i].active = 1; // printf("i = %i, circlex = %.3lg, circley = %.3lg\n", i, particles[i].xc, particles[i].yc); } break; } case (C_SQUARE_HEX): { ncircles = NGRIDX*(NGRIDY+1); dy = (YMAX - YMIN)/((double)NGRIDY); dx = dy*0.5*sqrt(3.0); for (i = 0; i < NGRIDX; i++) for (j = 0; j < NGRIDY+1; j++) { n = (NGRIDY+1)*i + j; particles[n].xc = ((double)(i-NGRIDX/2) + 0.5)*dy; /* is +0.5 needed? */ particles[n].yc = YMIN + ((double)j - 0.5)*dy; if (((i+NGRIDX)%4 == 2)||((i+NGRIDX)%4 == 3)) particles[n].yc += 0.5*dy; particles[n].radius = MU; /* activate only circles that intersect the domain */ if ((particles[n].yc < YMAX + MU)&&(particles[n].yc > YMIN - MU)) particles[n].active = 1; else particles[n].active = 0; } break; } case (C_ONE): { particles[ncircles].xc = 0.0; particles[ncircles].yc = 0.0; particles[ncircles].radius = MU; particles[ncircles].active = 1; ncircles += 1; break; } case (C_TWO): /* used for comparison with cloak */ { particles[ncircles].xc = 0.0; particles[ncircles].yc = 0.0; particles[ncircles].radius = MU; particles[ncircles].active = 2; ncircles += 1; particles[ncircles].xc = 0.0; particles[ncircles].yc = 0.0; particles[ncircles].radius = 2.0*MU; particles[ncircles].active = 1; ncircles += 1; break; } case (C_NOTHING): { ncircles += 0; break; } default: { printf("Function init_circle_config not defined for this pattern \n"); } } } void init_people_config(t_person people[NMAXCIRCLES]) /* initialise particle configuration */ { t_particle particles[NMAXCIRCLES]; int n; init_particle_config(particles); for (n=0; n= BCXMAX) return(0); if (x <= BCXMIN) return(0); if (y >= BCYMAX) return(0); if (y <= BCYMIN) return(0); switch (SEGMENT_PATTERN) { case (S_CUP): { angle = APOLY*PID; dx = (BCYMAX - BCYMIN)/tan(angle); if (y < BCYMAX - (BCYMAX - BCYMIN)*(x - BCXMIN)/dx) return(0); if (y < BCYMAX - (BCYMAX - BCYMIN)*(BCXMAX - x)/dx) return(0); } case (S_HOURGLASS): { angle = APOLY*PID; width = 2.5*MU; height = 2.5*MU; x = vabs(x); y = vabs(y); if ((x >= width)&&(x - width >= (y - height)*(BCXMAX - width)/(BCYMAX - height))) return(0); return(1); } case (S_PENTA): { height = 0.5*(BCYMAX - BCYMIN); width = height/sqrt(3.0); if (y < BCYMIN + height*(1.0 - (x - BCXMIN)/width)) return(0); if (y > BCYMAX - height*(1.0 - (x - BCXMIN)/width)) return(0); return(1); } case (S_CENTRIFUGE): { angle = argument(x,y); theta = DPI/(double)NPOLY; while (angle > theta) angle -= theta; while (angle < 0.0) angle += theta; if (angle < 0.1) return(0); if (angle > 0.9) return(0); return(1); } case (S_POLY_ELLIPSE): { if (x*x + y*y/(LAMBDA*LAMBDA) < 0.95) return(1); else return(0); } default: return(1); } } void rotate_segments(t_segment segment[NMAXSEGMENTS], double angle) /* rotates the repelling segments by given angle */ { int i; double ca, sa; ca = cos(angle); sa = sin(angle); for (i=0; i DPI) { segment[i].angle1 -= DPI; segment[i].angle2 -= DPI; } } } } void translate_segments(t_segment segment[NMAXSEGMENTS], double deltax, double deltay) /* rotates the repelling segments by given angle */ { int i; for (i=0; i REPEL_RADIUS*particle.radius) return(0.0); else { if (r > rmin) rplus = r; else rplus = rmin; // ratio = ipow(particle.eq_dist*particle.radius/rplus, 6); ratio = ipow(particle.eq_dist*particle.radius/rplus, 3); ratio = ratio*ratio; return((ratio - 2.0*ratio*ratio)/rplus); } } void aniso_lj_force(double r, double ca, double sa, double ca_rel, double sa_rel, double force[2], t_particle particle) { int i; double rmin = 0.01, rplus, ratio = 1.0, c2, s2, c4, s4, a, aprime, f1, f2; if (r > REPEL_RADIUS*particle.radius) { force[0] = 0.0; force[1] = 0.0; } else { if (r > rmin) rplus = r; else rplus = rmin; // ratio = ipow(particle.eq_dist*particle.radius/rplus, 6); ratio = ipow(particle.eq_dist*particle.radius/rplus, 3); ratio = ratio*ratio; /* cos(2phi) and sin(2phi) */ c2 = ca_rel*ca_rel - sa_rel*sa_rel; s2 = 2.0*ca_rel*sa_rel; /* cos(4phi) and sin(4phi) */ c4 = c2*c2 - s2*s2; s4 = 2.0*c2*s2; a = 0.5*(9.0 - 7.0*c4); aprime = 14.0*s4; f1 = ratio*(a - ratio)/rplus; f2 = ratio*aprime/rplus; force[0] = f1*ca - f2*sa; force[1] = f1*sa + f2*ca; } } void penta_lj_force(double r, double ca, double sa, double ca_rel, double sa_rel, double force[2], t_particle particle) { int i; double rmin = 0.01, rplus, ratio = 1.0, c2, s2, c4, s4, c5, s5, a, aprime, f1, f2; static double a0, b0; static int first = 1; if (first) { a0 = cos(0.1*PI) + 0.5; b0 = a0 - 1.0; first = 0; } if (r > REPEL_RADIUS*particle.radius) { force[0] = 0.0; force[1] = 0.0; } else { if (r > rmin) rplus = r; else rplus = rmin; // ratio = ipow(particle.eq_dist*particle.radius/rplus, 6); ratio = ipow(particle.eq_dist*particle.radius/rplus, 3); ratio = ratio*ratio; /* cos(2phi) and sin(2phi) */ c2 = ca_rel*ca_rel - sa_rel*sa_rel; s2 = 2.0*ca_rel*sa_rel; /* cos(4phi) and sin(4phi) */ c4 = c2*c2 - s2*s2; s4 = 2.0*c2*s2; /* cos(5phi) and sin(5phi) */ c5 = ca_rel*c4 - sa_rel*s4; s5 = sa_rel*c4 + ca_rel*s4; a = a0 - b0*c5; aprime = 5.0*b0*s5; f1 = ratio*(a - ratio)/rplus; f2 = ratio*aprime/rplus; force[0] = f1*ca - f2*sa; force[1] = f1*sa + f2*ca; } } double old_golden_ratio_force(double r, t_particle particle) /* potential with two minima at distances whose ratio is the golden ratio Phi */ /* old version that does not work very well */ { int i; double x, y, z, rplus, ratio = 1.0, phi, a, phi3; static int first = 1; static double rmin, b, c, d; if (first) { rmin = 0.5*particle.radius; phi = 0.5*(1.0 + sqrt(5.0)); phi3 = 1.0/(phi*phi*phi); a = 0.66; b = 1.0 + phi3 + a; d = phi3*a; c = phi3 + a + d; // b = 7.04; // c = 13.66; // d = 6.7; first = 0; printf("a = %.4lg, b = %.4lg, c = %.4lg, d = %.4lg\n", a, b, c, d); } if (r > REPEL_RADIUS*particle.radius) return(0.0); else { if (r > rmin) rplus = r; else rplus = rmin; x = particle.eq_dist*particle.radius/rplus; y = x*x*x; z = d - c*y + b*y*y - y*y*y; return(x*z/rplus); } } double golden_ratio_force(double r, t_particle particle) /* potential with two minima at distances whose ratio is the golden ratio Phi */ /* piecewise polynomial/LJ version */ { int i; double x, rplus, xm6, y1; static int first = 1; static double rmin, phi, a, h1, h2, phi6; if (first) { rmin = 0.5*particle.radius; phi = 0.5*(1.0 + sqrt(5.0)); a = 1.2; h1 = 1.0; /* inner potential well depth */ h2 = 10.0; /* outer potential well depth */ phi6 = ipow(phi, 6); first = 0; } if (r > REPEL_RADIUS*particle.radius) return(0.0); else { if (r > rmin) rplus = r; else rplus = rmin; x = rplus/(particle.eq_dist*particle.radius); // xm6 = 1.0/ipow(x, 6); xm6 = 1.0/ipow(x, 3); xm6 = xm6*xm6; if (x <= 1.0) return(12.0*h1*xm6*(1.0 - xm6)/x); else if (x <= a) { y1 = ipow(a - 1.0, 3); return(6.0*h1*(x - 1.0)*(a - x)/y1); } else if (x <= phi) { y1 = ipow(phi - a, 3); return(6.0*h2*(x - a)*(x - phi)/y1); } else return(12.0*h2*phi6*(1.0 - phi6*xm6)*xm6/x); } } void dipole_lj_force(double r, double ca, double sa, double ca_rel, double sa_rel, double force[2], t_particle particle) { int i; double rmin = 0.01, rplus, ratio = 1.0, a, aprime, f1, f2; if (r > REPEL_RADIUS*MU) { force[0] = 0.0; force[1] = 0.0; } else { if (r > rmin) rplus = r; else rplus = rmin; // ratio = ipow(particle.eq_dist*particle.radius/rplus, 6); ratio = ipow(particle.eq_dist*particle.radius/rplus, 3); ratio = ratio*ratio; a = 1.0 + 0.25*ca_rel; aprime = -0.25*sa_rel; f1 = ratio*(a - ratio)/rplus; f2 = ratio*aprime/rplus; force[0] = f1*ca - f2*sa; force[1] = f1*sa + f2*ca; } } void quadrupole_lj_force(double r, double ca, double sa, double ca_rel, double sa_rel, double force[2], t_particle particle) { int i; double rmin = 0.01, rplus, ratio = 1.0, a, aprime, f1, f2, ca2, sa2, x, y, dplus, dminus; static int first = 1; static double a0, b0, aplus, aminus; if (first) { dplus = cos(0.2*PI)*cos(0.1*PI); // dminus = 0.8*dplus; dminus = QUADRUPOLE_RATIO*dplus; aplus = ipow(1.0/dplus, 6); aminus = ipow(1.0/dminus, 6); // aminus = ipow(cos(0.2*PI)*(0.25 + 0.5*sin(0.1*PI)), 6); a0 = 0.5*(aplus + aminus); b0 = 0.5*(aplus - aminus); first = 0; } if (r > REPEL_RADIUS*particle.radius) { force[0] = 0.0; force[1] = 0.0; } else { if (r > rmin) rplus = r; else rplus = rmin; // ratio = ipow(particle.eq_dist*particle.radius/rplus, 6); ratio = ipow(particle.eq_dist*particle.radius/rplus, 3); ratio = ratio*ratio; /* cos(2*phi) and sin(2*phi) */ ca2 = ca_rel*ca_rel - sa_rel*sa_rel; sa2 = 2.0*ca_rel*sa_rel; a = a0 + b0*ca2; // if (a == 0.0) a = 1.0e-10; aprime = -2.0*b0*sa2; f1 = ratio*(a - ratio)/rplus; f2 = ratio*aprime/rplus; force[0] = f1*ca - f2*sa; force[1] = f1*sa + f2*ca; } } void quadrupole_lj_force2(double r, double ca, double sa, double ca_rel, double sa_rel, double force[2], t_particle particle) { int i; double rmin = 0.01, rplus, ratio = 1.0, a, aprime, f1, f2, ca2, sa2, x, y, eqdist; static int first = 1; static double aplus, aminus, a0, b0; if (first) { aplus = ipow(cos(0.2*PI)*cos(0.1*PI), 6); aminus = 0.1*aplus; // aminus = 0.0; // aminus = -2.0*ipow(cos(0.2*PI)*(0.5*sin(0.1*PI)), 6); // aminus = ipow(cos(0.2*PI)*(0.25 + 0.5*sin(0.1*PI)), 6); a0 = 0.5*(aplus + aminus); b0 = 0.5*(aplus - aminus); first = 0; } if (r > REPEL_RADIUS*particle.radius) { force[0] = 0.0; force[1] = 0.0; } else { if (r > rmin) rplus = r; else rplus = rmin; /* correct distance */ // ratio = ipow(particle.eq_dist*particle.radius/rplus, 6); ratio = ipow(particle.eq_dist*particle.radius/rplus, 3); ratio = ratio*ratio; /* cos(2*phi) and sin(2*phi) */ ca2 = ca_rel*ca_rel - sa_rel*sa_rel; sa2 = 2.0*ca_rel*sa_rel; a = a0 + b0*ca2; if (a == 0.0) a = 1.0e-10; aprime = -2.0*b0*sa2; // f1 = ratio*(a - ratio)/rplus; // f2 = ratio*aprime/rplus; f1 = ratio*(aplus - ratio)/(rplus); f2 = ratio*(aminus - ratio)/(rplus); // force[0] = f1*ca_rel - f2*sa_rel; // force[1] = f1*sa_rel + f2*ca_rel; force[0] = f1*ca - f2*sa; force[1] = f1*sa + f2*ca; } } double water_torque(double r, double ca, double sa, double ca_rel, double sa_rel, double ck_rel, double sk_rel) /* compute torque of water molecule #k on water molecule #j (for interaction I_LJ_WATER) - OLD VERSION */ { double c1p, c1m, c2p, c2m, s2p, s2m, s21, s21p, s21m, c21, c21p, c21m, torque; double r2, rd, rd2, rr[3][3]; static double cw = -0.5, sw = 0.866025404, delta = 1.5*MU, d2 = 2.25*MU*MU; int i, j; c1p = ck_rel*cw - sk_rel*sw; c1m = ck_rel*cw + sk_rel*sw; c2p = ca_rel*cw - sa_rel*sw; c2m = ca_rel*cw + sa_rel*sw; s2p = sa_rel*cw + ca_rel*sw; s2m = sa_rel*cw - ca_rel*sw; s21 = sa_rel*ck_rel - ca_rel*sk_rel; c21 = ca_rel*ck_rel + sa_rel*sk_rel; s21p = s21*cw - c21*sw; s21m = s21*cw + c21*sw; c21p = c21*cw + s21*sw; c21m = c21*cw - s21*sw; r2 = r*r; rd = 2.0*r*delta; rd2 = r2 + d2; rr[0][0] = r; rr[0][1] = sqrt(rd2 + rd*c2p); rr[0][2] = sqrt(rd2 + rd*c2m); rr[1][0] = sqrt(rd2 - rd*c1p); rr[2][0] = sqrt(rd2 - rd*c1m); rr[1][1] = sqrt(r2 + rd*(c2p - c1p) + 2.0*d2*(1.0 - c21)); rr[1][2] = sqrt(r2 + rd*(c2m - c1p) + 2.0*d2*(1.0 - c21m)); rr[2][1] = sqrt(r2 + rd*(c2p - c1m) + 2.0*d2*(1.0 - c21p)); rr[2][2] = sqrt(r2 + rd*(c2m - c1m) + 2.0*d2*(1.0 - c21)); for (i=0; i<3; i++) for (j=0; j<3; j++) { if (rr[i][j] < 1.0e-4) rr[i][j] = 1.0e-4; rr[i][j] = rr[i][j]*rr[i][j]*rr[i][j]; } torque = rd*(s2p/rr[0][1] + s2m/rr[0][2]); torque += -0.5*rd*(s2p/rr[1][1] + s2p/rr[2][1] + s2m/rr[1][2] + s2m/rr[2][2]); torque += d2*(s21/rr[1][1] + s21/rr[2][2] + s21m/rr[1][2] + s21p/rr[2][1]); return(torque); } double water_force(double r, double ca, double sa, double ca_rel, double sa_rel, double ck_rel, double sk_rel, double f[2]) /* compute force and torque of water molecule #k on water molecule #j (for interaction I_LJ_WATER) */ { double x1[3], y1[3], x2[3], y2[3], rr[3][3], dx[3][3], dy[3][3], fx[3][3], fy[3][3], m[3][3], torque = 0.0; static double cw[3], sw[3], q[3], d[3], delta = 1.25*MU, dmin = 0.5*MU, fscale = 1.0; int i, j; static int first = 1; if (first) { cw[0] = 1.0; cw[1] = -0.5; cw[2] = -0.5; sw[0] = 0.0; sw[1] = 866025404; sw[2] = -866025404; /* sines and cosines of angles */ q[0] = -2.0; q[1] = 1.0; q[2] = 1.0; /* charges */ d[0] = 0.5*delta; d[1] = delta; d[2] = delta; /* distances to center */ first = 0; } /* positions of O and H atoms */ for (i=0; i<3; i++) { x1[i] = d[i]*(ca_rel*cw[i] - sa_rel*sw[i]); y1[i] = d[i]*(ca_rel*sw[i] + sa_rel*cw[i]); x2[i] = r + d[i]*(ck_rel*cw[i] - sk_rel*sw[i]); y2[i] = d[i]*(ck_rel*sw[i] + sk_rel*cw[i]); } /* relative positions */ for (i=0; i<3; i++) for (j=0; j<3; j++) { dx[i][j] = x2[j] - x1[i]; dy[i][j] = y2[j] - y1[i]; rr[i][j] = module2(dx[i][j], dy[i][j]); if (rr[i][j] < dmin) rr[i][j] = dmin; rr[i][j] = ipow(rr[i][j],3); // rr[i][j] = rr[i][j]*rr[i][j]*rr[i][j]; } /* forces between particles */ for (i=0; i<3; i++) for (j=0; j<3; j++) { fx[i][j] = -q[i]*q[j]*dx[i][j]/rr[i][j]; fy[i][j] = -q[i]*q[j]*dy[i][j]/rr[i][j]; } /* torques between particles */ for (i=0; i<3; i++) for (j=0; j<3; j++) { m[i][j] = x1[i]*fy[i][j] - y1[i]*fx[i][j]; } /* total force */ f[0] = 0.0; f[1] = 0.0; for (i=0; i<3; i++) for (j=0; j<3; j++) { f[0] += fscale*fx[i][j]; f[1] += fscale*fy[i][j]; torque += fscale*m[i][j]; } return(torque); } int compute_particle_interaction(int i, int k, double force[2], double *torque, t_particle* particle, double distance, double krepel, double ca, double sa, double ca_rel, double sa_rel) /* compute repelling force and torque of particle #k on particle #i */ /* returns 1 if distance between particles is smaller than NBH_DIST_FACTOR*MU */ { double x1, y1, x2, y2, r, f, angle, aniso, fx, fy, ff[2], dist_scaled, spin_f, ck, sk, ck_rel, sk_rel; static double dxhalf = 0.5*(BCXMAX - BCXMIN), dyhalf = 0.5*(BCYMAX - BCYMIN); int wwrapx, wwrapy; if (BOUNDARY_COND == BC_GENUS_TWO) { dxhalf *= 0.75; dyhalf *= 0.75; } x1 = particle[i].xc; y1 = particle[i].yc; x2 = particle[k].xc; y2 = particle[k].yc; wwrapx = ((BOUNDARY_COND == BC_KLEIN)||(BOUNDARY_COND == BC_BOY)||(BOUNDARY_COND == BC_GENUS_TWO))&&(vabs(x2 - x1) > dxhalf); wwrapy = ((BOUNDARY_COND == BC_BOY)||(BOUNDARY_COND == BC_GENUS_TWO))&&(vabs(y2 - y1) > dyhalf); switch (particle[k].interaction) { case (I_COULOMB): { f = -krepel/(1.0e-8 + distance*distance); force[0] = f*ca; force[1] = f*sa; break; } case (I_LENNARD_JONES): { f = krepel*lennard_jones_force(distance, particle[k]); force[0] = f*ca; force[1] = f*sa; break; } case (I_LJ_DIRECTIONAL): { aniso_lj_force(distance, ca, sa, ca_rel, sa_rel, ff, particle[k]); force[0] = krepel*ff[0]; force[1] = krepel*ff[1]; break; } case (I_LJ_PENTA): { penta_lj_force(distance, ca, sa, ca_rel, sa_rel, ff, particle[k]); force[0] = krepel*ff[0]; force[1] = krepel*ff[1]; break; } case (I_GOLDENRATIO): { f = krepel*golden_ratio_force(distance, particle[k]); force[0] = f*ca; force[1] = f*sa; break; } case (I_LJ_DIPOLE): { dipole_lj_force(distance, ca, sa, ca_rel, sa_rel, ff, particle[k]); force[0] = krepel*ff[0]; force[1] = krepel*ff[1]; break; } case (I_LJ_QUADRUPOLE): { quadrupole_lj_force(distance, ca, sa, ca_rel, sa_rel, ff, particle[k]); force[0] = krepel*ff[0]; force[1] = krepel*ff[1]; break; } case (I_LJ_WATER): { f = krepel*lennard_jones_force(distance, particle[k]); force[0] = f*ca; force[1] = f*sa; break; } } if (ROTATION) { dist_scaled = distance/(particle[i].spin_range*particle[i].radius); switch (particle[k].interaction) { case (I_LJ_WATER): { ck = cos(particle[k].angle); sk = sin(particle[k].angle); ck_rel = ca*ck + sa*sk; sk_rel = sa*ck - ca*sk; // *torque = (-3.0*ca_rel*sk_rel + 2.0*sa_rel*ck_rel)/(1.0e-12 + dist_scaled*dist_scaled*dist_scaled); // *torque = water_torque(distance, ca, sa, ca_rel, sa_rel, ck_rel, sk_rel); // *torque = (0.5*sin(angle) + 0.5*sin(2.0*angle) - 0.45*sin(3.0*angle))/(1.0e-12 + dist_scaled*dist_scaled*dist_scaled); *torque = water_force(distance, ca, sa, ca_rel, sa_rel, ck_rel, sk_rel, ff); force[0] += ff[0]; force[1] += ff[1]; // printf("force = (%.3lg, %.3lg)\n", ff[0], ff[1]); break; } default: { spin_f = particle[i].spin_freq; if (wwrapx||wwrapy) *torque = sin(spin_f*(-particle[k].angle - particle[i].angle))/(1.0e-8 + dist_scaled*dist_scaled); else *torque = sin(spin_f*(particle[k].angle - particle[i].angle))/(1.0e-8 + dist_scaled*dist_scaled); } } if (particle[i].type == particle[k].type) { if (particle[i].type == 0) *torque *= KTORQUE; else *torque *= KTORQUE_B; } else *torque *= KTORQUE_DIFF; } else *torque = 0.0; if ((distance < NBH_DIST_FACTOR*particle[i].radius)&&(k != i)) return(1); // if ((distance < NBH_DIST_FACTOR*particle[i].radius)) return(1); else return(0); } int compute_repelling_force(int i, int j, double force[2], double *torque, t_particle* particle, double krepel) /* compute repelling force of neighbour #j on particle #i */ /* returns 1 if distance between particles is smaller than NBH_DIST_FACTOR*MU */ { double distance, ca, sa, cj, sj, ca_rel, sa_rel, f[2], ff[2], torque1, ck, sk, ck_rel, sk_rel; static double distmin = 10.0*((XMAX - XMIN)/HASHX + (YMAX - YMIN)/HASHY); int interact, k; if (BOUNDARY_COND == BC_GENUS_TWO) distmin *= 2.0; k = particle[i].hashneighbour[j]; distance = module2(particle[i].deltax[j], particle[i].deltay[j]); /* for monitoring purposes */ if (distance > distmin) { printf("i = %i, hashcell %i, j = %i, hashcell %i\n", i, particle[i].hashcell, k, particle[k].hashcell); printf("X = (%.3lg, %.3lg)\n", particle[i].xc, particle[i].yc); printf("Y = (%.3lg, %.3lg) d = %.3lg\n", particle[k].xc, particle[k].yc, distance); } if ((distance == 0.0)||(i == k)) { force[0] = 0.0; force[1] = 0.0; *torque = 0.0; return(1); } else if (distance > REPEL_RADIUS*particle[i].radius) { force[0] = 0.0; force[1] = 0.0; *torque = 0.0; return(0); } else { /* to avoid numerical problems, assign minimal value to distance */ if (distance < 0.1*particle[i].radius) distance = 0.1*particle[i].radius; ca = (particle[i].deltax[j])/distance; sa = (particle[i].deltay[j])/distance; /* compute relative angle in case particles can rotate */ if (ROTATION) { cj = cos(particle[j].angle); sj = sin(particle[j].angle); ca_rel = ca*cj + sa*sj; sa_rel = sa*cj - ca*sj; } else { ca_rel = ca; sa_rel = sa; } interact = compute_particle_interaction(i, k, f, torque, particle, distance, krepel, ca, sa, ca_rel, sa_rel); if (SYMMETRIZE_FORCE) { torque1 = *torque; // compute_particle_interaction(k, i, ff, torque, particle, distance, krepel, ca, sa, ca_rel, sa_rel); ck = cos(particle[j].angle); sk = sin(particle[j].angle); ck_rel = ca*ck + sa*sk; sk_rel = sa*ck - ca*sk; compute_particle_interaction(k, i, ff, torque, particle, distance, krepel, -ca, -sa, -ck_rel, -sk_rel); force[0] = 0.5*(f[0] - ff[0]); force[1] = 0.5*(f[1] - ff[1]); *torque = 0.5*(torque1 - *torque); // *torque = 0.5*(*torque + torque1); } else { force[0] = f[0]; force[1] = f[1]; } // printf("force = (%.3lg, %.3lg), torque = %.3lg\n", f[0], f[1], *torque); return(interact); } } int resample_particle(int n, int maxtrials, t_particle particle[NMAXCIRCLES]) /* resample y coordinate of particle n, returns 1 if no collision is created */ { double x, y, dist, dmin = 10.0; int i, j, closeby = 0, success = 0, trials = 0; while ((!success)&&(trials < maxtrials)) { success = 1; x = particle[n].xc - MU*(double)rand()/RAND_MAX; y = 0.95*(BCYMIN + (BCYMAX - BCYMIN)*(double)rand()/RAND_MAX); i = 0; while ((success)&&(i= NMAXCIRCLES)) { printf("Cannot add particle at (%.3lg, %.3lg)\n", x, y); return(0); } else { i = ncircles; particle[i].type = type; particle[i].xc = x; particle[i].yc = y; particle[i].radius = MU*sqrt(mass); particle[i].active = 1; particle[i].neighb = 0; particle[i].diff_neighb = 0; particle[i].thermostat = 1; particle[i].energy = 0.0; if (RANDOM_RADIUS) particle[i].radius = particle[i].radius*(0.75 + 0.5*((double)rand()/RAND_MAX)); particle[i].mass_inv = 1.0/mass; if (particle[i].type == 0) particle[i].inertia_moment_inv = 1.0/PARTICLE_INERTIA_MOMENT; else particle[i].inertia_moment_inv = 1.0/PARTICLE_INERTIA_MOMENT; particle[i].vx = vx; particle[i].vy = vy; particle[i].energy = (particle[i].vx*particle[i].vx + particle[i].vy*particle[i].vy)*particle[i].mass_inv; particle[i].angle = DPI*(double)rand()/RAND_MAX; particle[i].omega = 0.0; if (particle[i].type == 1) { particle[i].interaction = INTERACTION_B; particle[i].eq_dist = EQUILIBRIUM_DIST_B; particle[i].spin_range = SPIN_RANGE_B; particle[i].spin_freq = SPIN_INTER_FREQUENCY_B; } ncircles++; printf("Added particle at (%.3lg, %.3lg)\n", x, y); printf("Number of particles: %i\n", ncircles); return(1); } } double neighbour_color(int nnbg) { if (nnbg > 7) nnbg = 7; switch(nnbg){ case (7): return(340.0); case (6): return(310.0); case (5): return(260.0); case (4): return(200.0); case (3): return(140.0); case (2): return(100.0); case (1): return(70.0); default: return(30.0); } } void compute_entropy(t_particle particle[NMAXCIRCLES], double entropy[2]) { int i, nleft1 = 0, nleft2 = 0; double p1, p2, x; static int first = 1, ntot1 = 0, ntot2 = 0; static double log2; if (first) { log2 = log(2.0); for (i=0; i 0.0) { hue = ENERGY_HUE_MIN + (ENERGY_HUE_MAX - ENERGY_HUE_MIN)*ej/PARTICLE_EMAX; if (hue > ENERGY_HUE_MIN) hue = ENERGY_HUE_MIN; if (hue < ENERGY_HUE_MAX) hue = ENERGY_HUE_MAX; } radius = particle[j].radius; width = BOUNDARY_WIDTH; break; } case (P_NEIGHBOURS): { hue = neighbour_color(particle[j].neighb); radius = particle[j].radius; width = BOUNDARY_WIDTH; break; } case (P_BONDS): { // if (particle[j].type == 1) hue = 70.0; /* to make second particle type more visible */ // if (particle[j].type == 1) hue = neighbour_color(7 - particle[j].neighb); // else hue = neighbour_color(particle[j].neighb); radius = particle[j].radius; width = 1; break; } case (P_ANGLE): { angle = particle[j].angle; hue = angle*particle[j].spin_freq/DPI; hue -= (double)((int)hue); huex = (DPI - angle)*particle[j].spin_freq/DPI; huex -= (double)((int)huex); angle = PI - angle; if (angle < 0.0) angle += DPI; huey = angle*particle[j].spin_freq/DPI; huey -= (double)((int)huey); hue = PARTICLE_HUE_MIN + (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*hue; huex = PARTICLE_HUE_MIN + (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*huex; huey = PARTICLE_HUE_MIN + (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*huey; radius = particle[j].radius; width = BOUNDARY_WIDTH; break; } case (P_TYPE): { // if (particle[j].type == 0) hue = 310.0; // else hue = 70.0; if (particle[j].type <= 1) hue = HUE_TYPE0; else if (particle[j].type == 2) hue = HUE_TYPE1; else if (particle[j].type == 3) hue = HUE_TYPE2; else hue = HUE_TYPE3; radius = particle[j].radius; width = BOUNDARY_WIDTH; break; } case (P_DIRECTION): { hue = argument(particle[j].vx, particle[j].vy); if (hue > DPI) hue -= DPI; if (hue < 0.0) hue += DPI; hue = PARTICLE_HUE_MIN + (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*hue/DPI; radius = particle[j].radius; width = BOUNDARY_WIDTH; break; } case (P_DIRECT_ENERGY): { hue = argument(particle[j].vx, particle[j].vy); if (hue > DPI) hue -= DPI; if (hue < 0.0) hue += DPI; hue = PARTICLE_HUE_MIN + (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*hue/DPI; if (particle[j].energy < 0.1*PARTICLE_EMAX) lum = 10.0*particle[j].energy/PARTICLE_EMAX; else lum = 1.0; radius = particle[j].radius; width = BOUNDARY_WIDTH; break; } case (P_ANGULAR_SPEED): { hue = 160.0*(1.0 + tanh(SLOPE*particle[j].omega)); // printf("omega = %.3lg, hue = %.3lg\n", particle[j].omega, hue); radius = particle[j].radius; width = BOUNDARY_WIDTH; break; } case (P_DIFF_NEIGHB): { hue = (double)(particle[j].diff_neighb+1)/(double)(particle[j].neighb+1); // hue = PARTICLE_HUE_MIN + (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*hue; hue = 180.0*(1.0 + hue); radius = particle[j].radius; width = BOUNDARY_WIDTH; break; } } switch (particle[j].interaction) { case (I_LJ_DIRECTIONAL): { nsides = 4; break; } case (I_LJ_PENTA): { nsides = 5; break; } case (I_LJ_QUADRUPOLE): { nsides = 4; break; } case (I_LJ_WATER): { nsides = NSEG; radius *= 0.75; break; } default: nsides = NSEG; } switch (plot) { case (P_KINETIC): { hsl_to_rgb_turbo(hue, 0.9, 0.5, rgb); hsl_to_rgb_turbo(hue, 0.9, 0.5, rgbx); hsl_to_rgb_turbo(hue, 0.9, 0.5, rgby); break; } case (P_BONDS): { hsl_to_rgb_turbo(hue, 0.9, 0.5, rgb); hsl_to_rgb_turbo(hue, 0.9, 0.5, rgbx); hsl_to_rgb_turbo(hue, 0.9, 0.5, rgby); break; } case (P_DIRECTION): { hsl_to_rgb_twilight(hue, 0.9, 0.5, rgb); hsl_to_rgb_twilight(hue, 0.9, 0.5, rgbx); hsl_to_rgb_twilight(hue, 0.9, 0.5, rgby); break; } case (P_DIRECT_ENERGY): { hsl_to_rgb_twilight(hue, 0.9, 0.5, rgb); hsl_to_rgb_twilight(hue, 0.9, 0.5, rgbx); hsl_to_rgb_twilight(hue, 0.9, 0.5, rgby); for (i=0; i<3; i++) { rgb[i] *= lum; rgbx[i] *= lum; rgby[i] *= lum; } break; } case (P_DIFF_NEIGHB): { hsl_to_rgb_twilight(hue, 0.9, 0.5, rgb); hsl_to_rgb_twilight(hue, 0.9, 0.5, rgbx); hsl_to_rgb_twilight(hue, 0.9, 0.5, rgby); break; } default: { hsl_to_rgb(hue, 0.9, 0.5, rgb); hsl_to_rgb(hue, 0.9, 0.5, rgbx); hsl_to_rgb(hue, 0.9, 0.5, rgby); } } angle = particle[j].angle + APOLY*DPI; draw_one_particle(particle[j], particle[j].xc, particle[j].yc, radius, angle, nsides, width, rgb); /* in case of periodic b.c., draw translates of particles */ if (PERIODIC_BC) { x1 = particle[j].xc; y1 = particle[j].yc; for (i=-2; i<3; i++) for (k=-1; k<2; k++) draw_one_particle(particle[j], x1 + (double)i*(BCXMAX - BCXMIN), y1 + (double)k*(BCYMAX - BCYMIN), radius, angle, nsides, width, rgb); } else if (BOUNDARY_COND == BC_KLEIN) { x1 = particle[j].xc; y1 = particle[j].yc; for (i=-2; i<3; i++) { if (vabs(i) == 1) sign = -1.0; else sign = 1.0; angle1 = angle*sign; for (k=-1; k<2; k++) draw_one_particle(particle[j], x1 + (double)i*(BCXMAX - BCXMIN), sign*(y1 + (double)k*(BCYMAX - BCYMIN)), radius, angle1, nsides, width, rgb); } } else if (BOUNDARY_COND == BC_BOY) { x1 = particle[j].xc; y1 = particle[j].yc; for (i=-1; i<2; i++) for (k=-1; k<2; k++) { if (vabs(i) == 1) sign = -1.0; else sign = 1.0; if (vabs(k) == 1) signy = -1.0; else signy = 1.0; if (signy == 1.0) angle1 = angle*sign; else angle1 = PI - angle; if (sign == -1.0) draw_one_particle(particle[j], signy*(x1 + (double)i*(BCXMAX - BCXMIN)), sign*(y1 + (double)k*(BCYMAX - BCYMIN)), radius, angle1, nsides, width, rgbx); else if (signy == -1.0) draw_one_particle(particle[j], signy*(x1 + (double)i*(BCXMAX - BCXMIN)), sign*(y1 + (double)k*(BCYMAX - BCYMIN)), radius, angle1, nsides, width, rgby); else draw_one_particle(particle[j], signy*(x1 + (double)i*(BCXMAX - BCXMIN)), sign*(y1 + (double)k*(BCYMAX - BCYMIN)), radius, angle1, nsides, width, rgb); } } else if (BOUNDARY_COND == BC_GENUS_TWO) { x1 = particle[j].xc; y1 = particle[j].yc; if (x1 < 0.0) periody = BCYMAX - BCYMIN; else periody = 0.5*(BCYMAX - BCYMIN); if (y1 < 0.0) periodx = BCXMAX - BCXMIN; else periodx = 0.5*(BCXMAX - BCXMIN); if ((x1 < 0.0)&&(y1 < 0.0)) for (i=-1; i<2; i++) for (k=-1; k<2; k++) { x = x1 + (double)i*periodx; y = y1 + (double)k*periody; draw_one_particle(particle[j], x, y, radius, angle, nsides, width, rgb); } else if ((x1 < 0.0)&&(y1 >= 0.0)) for (i=-1; i<2; i++) for (k=-1; k<2; k++) { x = x1 + (double)i*periodx; y = y1 + (double)k*periody; if (x < 1.2*particle[j].radius) draw_one_particle(particle[j], x, y, radius, angle, nsides, width, rgb); } else if ((x1 >= 0.0)&&(y1 < 0.0)) for (i=-1; i<2; i++) for (k=-1; k<2; k++) { x = x1 + (double)i*periodx; y = y1 + (double)k*periody; if (y < 1.2*particle[j].radius) draw_one_particle(particle[j], x, y, radius, angle, nsides, width, rgb); } } } // /* draw spin vectors */ if ((DRAW_SPIN)||(DRAW_SPIN_B)) { glLineWidth(width); for (j=0; j maxpressure) maxpressure = meanpress[j]; printf("Max pressure = %.5lg\n\n", maxpressure); } y = YMAX - 0.1; if (INCREASE_BETA) /* print temperature */ { logratio = log(beta/BETA)/log(0.5*BETA_FACTOR); if (logratio > 1.0) logratio = 1.0; if (BETA_FACTOR > 1.0) hue = PARTICLE_HUE_MAX - (PARTICLE_HUE_MAX - PARTICLE_HUE_MIN)*logratio; else hue = PARTICLE_HUE_MIN - (PARTICLE_HUE_MIN - PARTICLE_HUE_MAX)*logratio; erase_area_hsl_turbo(xbox, y + 0.025, 0.37, 0.05, hue, 0.9, 0.5); // erase_area_hsl_turbo(xmid + 0.1, y + 0.025, 0.4, 0.05, hue, 0.9, 0.5); if ((hue < 90)||(hue > 270)) glColor3f(1.0, 1.0, 1.0); else glColor3f(0.0, 0.0, 0.0); sprintf(message, "Temperature %.2f", 1.0/beta); write_text(xtext, y, message); // write_text(xmidtext, y, message); // y -= 0.1; // erase_area_hsl(xxbox, y + 0.025, 0.37, 0.05, 0.0, 0.9, 0.0); // glColor3f(1.0, 1.0, 1.0); // sprintf(message, "Pressure %.3f", meanpressure); // write_text(xxtext, y, message); } if (DECREASE_CONTAINER_SIZE) /* print density */ { density = (double)ncircles/((lengthcontainer)*(INITYMAX - INITYMIN)); erase_area_hsl(xbox, y + 0.025, 0.37, 0.05, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); sprintf(message, "Density %.3f", density); write_text(xtext, y, message); erase_area_hsl(xmid, y + 0.025, 0.37, 0.05, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); sprintf(message, "Temperature %.2f", temperature); write_text(xmidtext, y, message); erase_area_hsl(xxbox, y + 0.025, 0.37, 0.05, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); sprintf(message, "Pressure %.3f", meanpressure); write_text(xxtext, y, message); } else if (INCREASE_KREPEL) /* print force constant */ { erase_area_hsl(xbox, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); sprintf(message, "Force %.0f", krepel); write_text(xtext + 0.28, y, message); } if (RECORD_PRESSURES) { y = FUNNEL_WIDTH + OBSTACLE_RADIUS; for (i=0; i PARTICLE_HUE_MIN) hue = PARTICLE_HUE_MIN; if (hue < PARTICLE_HUE_MAX) hue = PARTICLE_HUE_MAX; hsl_to_rgb_turbo(hue, 0.9, 0.5, rgb); dphi = DPI/(double)N_PRESSURES; // x = 0.95*OBSTACLE_RADIUS*cos(phi); sphi = sin(phi); if (sphi < 0.0) draw_colored_sector(0.0, y, 0.95*OBSTACLE_RADIUS, OBSTACLE_RADIUS, phi, phi + dphi, rgb, 10); else draw_colored_sector(0.0, -y, 0.95*OBSTACLE_RADIUS, OBSTACLE_RADIUS, phi, phi + dphi, rgb, 10); } glColor3f(1.0, 1.0, 1.0); for (i=-1; i<2; i++) { k = N_PRESSURES/4 + i*N_PRESSURES/9; phi = DPI*(double)k/(double)N_PRESSURES; pprint = 0.0; for (j=-2; j<3; j++) pprint += meanpress[k + j]; sprintf(message, "p = %.0f", pprint*200.0/MAX_PRESSURE); write_text(0.85*OBSTACLE_RADIUS*cos(phi) - 0.1, -y + 0.85*OBSTACLE_RADIUS*sin(phi), message); } } if ((PARTIAL_THERMO_COUPLING)&&(!INCREASE_BETA)) { printf("Temperature %i in average: %.3lg\n", i_temp, temperature); temp[i_temp] = temperature; i_temp++; if (i_temp >= N_T_AVERAGE) i_temp = 0; mean_temp = 0.0; for (i=0; i 270)) glColor3f(1.0, 1.0, 1.0); else glColor3f(0.0, 0.0, 0.0); sprintf(message, "Temperature %.2f", mean_temp); write_text(xtext, y, message); } if (INCREASE_GRAVITY) { erase_area_hsl(xmid, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); sprintf(message, "Gravity %.2f", gravity/GRAVITY); write_text(xmidtext + 0.1, y, message); } } void print_ehrenfest_parameters(t_particle particle[NMAXCIRCLES], double pleft, double pright) { char message[100]; int i, j, nleft1 = 0, nleft2 = 0, nright1 = 0, nright2 = 0; double density, hue, rgb[3], logratio, y, shiftx = 0.3, xmidplus, xmidminus; static double xleftbox, xlefttext, xmidbox, xmidtext, xrightbox, xrighttext, pressures[500][2], meanpressure[2]; static int first = 1, i_pressure, naverage = 500, n_pressure; if (first) { xleftbox = -0.85; xlefttext = xleftbox - 0.5; xrightbox = 1.0; xrighttext = xrightbox - 0.45; // xmid = 0.5*(XMIN + XMAX) - 0.1; // xmidtext = xmid - 0.24; meanpressure[0] = 0.0; meanpressure[1] = 0.0; for (i=0; i xmidplus) { if (particle[i].type == 0) nright1++; else nright2++; } } y = YMIN + 0.05; erase_area_hsl(xleftbox - shiftx, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0); hsl_to_rgb(HUE_TYPE0, 0.9, 0.5, rgb); glColor3f(rgb[0], rgb[1], rgb[2]); sprintf(message, "%i particles", nleft1); write_text(xlefttext + 0.28 - shiftx, y, message); erase_area_hsl(xleftbox + shiftx, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0); hsl_to_rgb(HUE_TYPE1, 0.9, 0.5, rgb); glColor3f(rgb[0], rgb[1], rgb[2]); sprintf(message, "%i particles", nleft2); write_text(xlefttext + 0.28 + shiftx, y, message); erase_area_hsl(xrightbox - shiftx, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0); hsl_to_rgb(HUE_TYPE0, 0.9, 0.5, rgb); glColor3f(rgb[0], rgb[1], rgb[2]); sprintf(message, "%i particles", nright1); write_text(xrighttext + 0.28 - shiftx, y, message); erase_area_hsl(xrightbox + shiftx, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0); hsl_to_rgb(HUE_TYPE1, 0.9, 0.5, rgb); glColor3f(rgb[0], rgb[1], rgb[2]); sprintf(message, "%i particles", nright2); write_text(xrighttext + 0.28 + shiftx, y, message); y = YMAX - 0.1; erase_area_hsl(xleftbox - 0.1, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0); hsl_to_rgb_turbo(HUE_TYPE1, 0.9, 0.5, rgb); glColor3f(rgb[0], rgb[1], rgb[2]); sprintf(message, "Pressure %.2f", 0.001*meanpressure[0]/(double)ncircles); write_text(xlefttext + 0.25, y, message); erase_area_hsl(xrightbox - 0.1, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0); hsl_to_rgb_turbo(HUE_TYPE0, 0.9, 0.5, rgb); glColor3f(rgb[0], rgb[1], rgb[2]); sprintf(message, "Pressure %.2f", 0.001*meanpressure[1]/(double)ncircles); write_text(xrighttext + 0.2, y, message); } void print_particle_number(int npart) { char message[100]; double y = YMAX - 0.1; static double xleftbox, xlefttext; static int first = 1; if (first) { xleftbox = XMIN + 0.5; xlefttext = xleftbox - 0.5; first = 0; } erase_area_hsl(xleftbox, y + 0.025, 0.22, 0.05, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); if (npart > 1) sprintf(message, "%i particles", npart); else sprintf(message, "%i particle", npart); write_text(xlefttext + 0.28, y, message); } void print_entropy(double entropy[2]) { char message[100]; double rgb[3]; static double xleftbox, xlefttext, xrightbox, xrighttext, y = YMAX - 0.1, ymin = YMIN + 0.05; static int first = 1; if (first) { xleftbox = XMIN + 0.4; xlefttext = xleftbox - 0.55; xrightbox = XMAX - 0.39; xrighttext = xrightbox - 0.55; first = 0; } if (POSITION_Y_DEPENDENCE) { erase_area_hsl(xrightbox, ymin + 0.025, 0.35, 0.05, 0.0, 0.9, 0.0); hsl_to_rgb_turbo(HUE_TYPE1, 0.9, 0.5, rgb); glColor3f(rgb[0], rgb[1], rgb[2]); sprintf(message, "Entropy = %.4f", entropy[1]); write_text(xrighttext + 0.28, ymin, message); } else { erase_area_hsl(xleftbox, y + 0.025, 0.35, 0.05, 0.0, 0.9, 0.0); hsl_to_rgb_turbo(HUE_TYPE1, 0.9, 0.5, rgb); glColor3f(rgb[0], rgb[1], rgb[2]); sprintf(message, "Entropy = %.4f", entropy[1]); write_text(xlefttext + 0.28, y, message); } erase_area_hsl(xrightbox, y + 0.025, 0.35, 0.05, 0.0, 0.9, 0.0); hsl_to_rgb_turbo(HUE_TYPE0, 0.9, 0.5, rgb); glColor3f(rgb[0], rgb[1], rgb[2]); sprintf(message, "Entropy = %.4f", entropy[0]); write_text(xrighttext + 0.28, y, message); } void print_omega(double angular_speed) { char message[100]; double rgb[3]; static double xleftbox, xlefttext, xrightbox, xrighttext, y = YMAX - 0.1, ymin = YMIN + 0.05; static int first = 1; if (first) { // xleftbox = XMIN + 0.4; // xlefttext = xleftbox - 0.55; xrightbox = XMAX - 0.39; xrighttext = xrightbox - 0.55; first = 0; } erase_area_hsl(xrightbox, y + 0.025, 0.35, 0.05, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); sprintf(message, "Angular speed = %.4f", DPI*angular_speed*25.0/(double)(PERIOD_ROTATE_BOUNDARY)); write_text(xrighttext + 0.1, y, message); } void print_particles_speeds(t_particle particle[NMAXCIRCLES]) { char message[100]; double y = YMAX - 0.1, vx = 0.0, vy = 0.0; int i, nactive = 0; static double xleftbox, xlefttext, xrightbox, xrighttext, ymin = YMIN + 0.05; static int first = 1; if (first) { xrightbox = XMAX - 0.39; xrighttext = xrightbox - 0.55; first = 0; } for (i=0; i 0.0)&&(proj < 1.0)) { distance = segment[i].nx*x + segment[i].ny*y - segment[i].c; r = 1.5*particle[j].radius; if (vabs(distance) < r) { f = KSPRING_OBSTACLE*(r - distance); particle[j].fx += f*segment[i].nx; particle[j].fy += f*segment[i].ny; if (MOVE_BOUNDARY) { segment[i].fx -= f*segment[i].nx; segment[i].fy -= f*segment[i].ny; // segment[i].fx += f*segment[i].nx; // segment[i].fy += f*segment[i].ny; } } } /* compute force from concave corners */ if (segment[i].concave) { distance = module2(x - segment[i].x1, y - segment[i].y1); angle = argument(x - segment[i].x1, y - segment[i].y1); if (angle < segment[i].angle1) angle += DPI; r = 1.5*particle[j].radius; if ((distance < r)&&(angle > segment[i].angle1)&&(angle < segment[i].angle2)) { f = KSPRING_OBSTACLE*(r - distance); particle[j].fx += f*cos(angle); particle[j].fy += f*sin(angle); if (MOVE_BOUNDARY) { segment[i].fx -= f*cos(angle); segment[i].fy -= f*sin(angle); // segment[i].fx += f*cos(angle); // segment[i].fy += f*sin(angle); } } } } switch(BOUNDARY_COND){ case (BC_SCREEN): { /* add harmonic force outside screen */ if (particle[j].xc > XMAX) particle[j].fx -= KSPRING_BOUNDARY*(particle[j].xc - XMAX); else if (particle[j].xc < XMIN) particle[j].fx += KSPRING_BOUNDARY*(XMIN - particle[j].xc); if (particle[j].yc > YMAX) particle[j].fy -= KSPRING_BOUNDARY*(particle[j].yc - YMAX); else if (particle[j].yc < YMIN) particle[j].fy += KSPRING_BOUNDARY*(YMIN - particle[j].yc); // if (particle[j].xc > BCXMAX) particle[j].fx -= KSPRING_BOUNDARY*(particle[j].xc - BCXMAX); // else if (particle[j].xc < BCXMIN) particle[j].fx += KSPRING_BOUNDARY*(BCXMIN - particle[j].xc); // if (particle[j].yc > BCYMAX) particle[j].fy -= KSPRING_BOUNDARY*(particle[j].yc - BCYMAX); // else if (particle[j].yc < BCYMIN) particle[j].fy += KSPRING_BOUNDARY*(BCYMIN - particle[j].yc); return(fperp); } case (BC_RECTANGLE): { /* add harmonic force outside rectangular box */ padding = MU + 0.01; xmin = xleft + padding; xmax = xright - padding; ymin = BCYMIN + padding; ymax = BCYMAX - padding; if (particle[j].xc > xmax) { fperp = KSPRING_BOUNDARY*(particle[j].xc - xmax); particle[j].fx -= fperp; } else if (particle[j].xc < xmin) { fperp = KSPRING_BOUNDARY*(xmin - particle[j].xc); particle[j].fx += fperp; } if (particle[j].yc > ymax) { fperp = KSPRING_BOUNDARY*(particle[j].yc - ymax); particle[j].fy -= fperp; } else if (particle[j].yc < ymin) { fperp = KSPRING_BOUNDARY*(ymin - particle[j].yc); particle[j].fy += fperp; } // if (particle[j].xc > xmax) particle[j].fx -= KSPRING_BOUNDARY*(particle[j].xc - xmax); // else if (particle[j].xc < xmin) particle[j].fx += KSPRING_BOUNDARY*(xmin - particle[j].xc); // if (particle[j].yc > ymax) particle[j].fy -= KSPRING_BOUNDARY*(particle[j].yc - ymax); // else if (particle[j].yc < ymin) particle[j].fy += KSPRING_BOUNDARY*(ymin - particle[j].yc); return(fperp); } case (BC_CIRCLE): { /* add harmonic force outside screen */ if (particle[j].xc > BCXMAX) particle[j].fx -= KSPRING_BOUNDARY*(particle[j].xc - BCXMAX); else if (particle[j].xc < BCXMIN) particle[j].fx += KSPRING_BOUNDARY*(BCXMIN - particle[j].xc); if (particle[j].yc > BCYMAX) particle[j].fy -= KSPRING_BOUNDARY*(particle[j].yc - BCYMAX); else if (particle[j].yc < BCYMIN) particle[j].fy += KSPRING_BOUNDARY*(BCYMIN - particle[j].yc); /* add harmonic force from obstacle */ for (i=-2; i<2; i++) { x = xleft + (double)i*(OBSXMAX - OBSXMIN); if (vabs(particle[j].xc - x) < 1.1*OBSTACLE_RADIUS) { r = module2(particle[j].xc - x, particle[j].yc); if (r < 1.0e-5) r = 1.0e-05; cphi = (particle[j].xc - x)/r; sphi = particle[j].yc/r; padding = MU + 0.03; if (r < OBSTACLE_RADIUS + padding) { f = KSPRING_OBSTACLE*(OBSTACLE_RADIUS + padding - r); particle[j].fx += f*cphi; particle[j].fy += f*sphi; } } } return(fperp); } case (BC_PERIODIC_CIRCLE): { x = xleft; if (vabs(particle[j].xc - x) < 1.1*OBSTACLE_RADIUS) { r = module2(particle[j].xc - x, particle[j].yc); if (r < 1.0e-5) r = 1.0e-05; cphi = (particle[j].xc - x)/r; sphi = particle[j].yc/r; padding = MU + 0.03; if (r < OBSTACLE_RADIUS + padding) { f = KSPRING_OBSTACLE*(OBSTACLE_RADIUS + padding - r); particle[j].fx += f*cphi; particle[j].fy += f*sphi; } } return(f); } case (BC_PERIODIC_TRIANGLE): { x = xleft; x1 = x + OBSTACLE_RADIUS; x2 = x - OBSTACLE_RADIUS; h = 2.0*OBSTACLE_RADIUS*tanh(APOLY*PID); padding = MU + 0.03; // ytop = 0.5*h*(1.0 - (particle[j].xc - x)/OBSTACLE_RADIUS); if ((vabs(particle[j].xc - x) < OBSTACLE_RADIUS + padding)&&(vabs(particle[j].yc < h + padding))) { /* signed distances to side of triangle */ dleft = x2 - particle[j].xc; norm = module2(h, 2.0*OBSTACLE_RADIUS); if (particle[j].yc >= 0.0) { dplus = (h*particle[j].xc + 2.0*OBSTACLE_RADIUS*particle[j].yc - h*(x+OBSTACLE_RADIUS))/norm; if ((dleft < padding)&&(dleft > dplus)) /* left side is closer */ { f = KSPRING_OBSTACLE*(padding - dleft); particle[j].fx -= f; } else if (dplus < padding) /* top side is closer */ { f = KSPRING_OBSTACLE*(padding - dplus); particle[j].fx += f*h/norm; particle[j].fy += 2.0*f*OBSTACLE_RADIUS/norm; } } else { dminus = (h*particle[j].xc - 2.0*OBSTACLE_RADIUS*particle[j].yc - h*(x+OBSTACLE_RADIUS))/norm; if ((dleft < padding)&&(dleft > dminus)) /* left side is closer */ { f = KSPRING_OBSTACLE*(padding - dleft); particle[j].fx -= f; } else if (dminus < padding) /* bottom side is closer */ { f = KSPRING_OBSTACLE*(padding - dminus); particle[j].fx += f*h/norm; particle[j].fy += -2.0*f*OBSTACLE_RADIUS/norm; } } /* force from tip of triangle */ r = module2(particle[j].xc - x1, particle[j].yc); if (r < 0.5*padding) { if (r < 1.0e-5) r = 1.0e-05; cphi = (particle[j].xc - x1)/r; sphi = particle[j].yc/r; f = KSPRING_OBSTACLE*(0.5*padding - r); particle[j].fx += f*cphi; particle[j].fy += f*sphi; } } return(f); } case (BC_PERIODIC_FUNNEL): { x = xleft; padding = MU + 0.02; if (vabs(particle[j].yc) > FUNNEL_WIDTH - padding) for (i=-1; i<2; i+=2) { r = module2(particle[j].xc - x, particle[j].yc - (double)i*(FUNNEL_WIDTH + OBSTACLE_RADIUS)); if (r < 1.0e-5) r = 1.0e-05; cphi = (particle[j].xc - x)/r; sphi = (particle[j].yc - (double)i*(FUNNEL_WIDTH + OBSTACLE_RADIUS))/r; if (r < OBSTACLE_RADIUS + padding) { f = KSPRING_OBSTACLE*(OBSTACLE_RADIUS + padding - r); particle[j].fx += f*cphi; particle[j].fy += f*sphi; if (RECORD_PRESSURES) { angle = argument(cphi, sphi); if (angle < 0.0) angle += DPI; k = (int)((double)N_PRESSURES*angle/DPI); if (k >= N_PRESSURES) k = N_PRESSURES - 1; pressure[k] += f; } } } return(f); } case (BC_RECTANGLE_LID): { r = particle[j].radius; if (particle[j].yc < BCYMIN + r) particle[j].fy += KSPRING_BOUNDARY*(BCYMIN + r - particle[j].yc); else if (particle[j].yc > ylid - r) { fperp = KSPRING_BOUNDARY*(particle[j].yc - ylid + r); particle[j].fy -= fperp; } if (particle[j].yc < BCYMAX + r) { if (particle[j].xc > BCXMAX - r) particle[j].fx -= KSPRING_BOUNDARY*(particle[j].xc - BCXMAX + r); else if (particle[j].xc < BCXMIN + r) particle[j].fx += KSPRING_BOUNDARY*(BCXMIN + r - particle[j].xc); } return(fperp); } case (BC_RECTANGLE_WALL): { padding = particle[j].radius + 0.01; xmin = BCXMIN + padding; xmax = BCXMAX - padding; ymin = BCYMIN + padding; ymax = BCYMAX - padding; if (particle[j].xc > xmax) { fperp = KSPRING_BOUNDARY*(particle[j].xc - xmax); particle[j].fx -= fperp; tmp_pright += fperp; } else if (particle[j].xc < xmin) { fperp = KSPRING_BOUNDARY*(xmin - particle[j].xc); particle[j].fx += fperp; tmp_pleft += fperp; } if (particle[j].yc > ymax) { fperp = KSPRING_BOUNDARY*(particle[j].yc - ymax); particle[j].fy -= fperp; if (particle[j].xc > xwall) tmp_pright += fperp; else tmp_pleft += fperp; } else if (particle[j].yc < ymin) { fperp = KSPRING_BOUNDARY*(ymin - particle[j].yc); particle[j].fy += fperp; if (particle[j].xc > xwall) tmp_pright += fperp; else tmp_pleft += fperp; } if (wall) { *pleft += tmp_pleft/(2.0*(BCYMAX - BCYMIN) + 2.0*(xwall - BCXMIN)); *pright += tmp_pright/(2.0*(BCYMAX - BCYMIN) + 2.0*(BCXMAX - xwall)); } else { *pleft += tmp_pleft/(2.0*(BCYMAX - BCYMIN + BCXMAX - BCXMIN)); *pright += tmp_pright/(2.0*(BCYMAX - BCYMIN + BCXMAX - BCXMIN)); } if ((wall)&&(vabs(particle[j].xc - xwall) < 0.5*WALL_WIDTH + padding)) { if (particle[j].xc > xwall) { fperp = -KSPRING_BOUNDARY*(xwall + 0.5*WALL_WIDTH + padding - particle[j].xc); particle[j].fx -= fperp; *pright -= fperp/(BCYMAX - BCYMIN); } else { fperp = KSPRING_BOUNDARY*(particle[j].xc - xwall + 0.5*WALL_WIDTH + padding); particle[j].fx -= fperp; *pleft += fperp/(BCYMAX - BCYMIN); } return(fperp); } return(0.0); } case (BC_EHRENFEST): { rp = particle[j].radius; xtube = 1.0 - sqrt(EHRENFEST_RADIUS*EHRENFEST_RADIUS - EHRENFEST_WIDTH*EHRENFEST_WIDTH); distance = 0.0; /* middle tube */ if (vabs(particle[j].xc) <= xtube) { if (particle[j].yc > EHRENFEST_WIDTH - rp) { distance = particle[j].yc - EHRENFEST_WIDTH; particle[j].fy -= KSPRING_BOUNDARY*(distance + rp); } else if (particle[j].yc < -EHRENFEST_WIDTH + rp) { distance = - EHRENFEST_WIDTH - particle[j].yc; particle[j].fy += KSPRING_BOUNDARY*(distance + rp); } } /* right container */ else if (particle[j].xc > 0.0) { r = module2(particle[j].xc - 1.0, particle[j].yc); if ((r > EHRENFEST_RADIUS - rp)&&((particle[j].xc > 1.0)||(vabs(particle[j].yc) > EHRENFEST_WIDTH))) { cphi = (particle[j].xc - 1.0)/r; sphi = particle[j].yc/r; f = KSPRING_BOUNDARY*(EHRENFEST_RADIUS - r - rp); particle[j].fx += f*cphi; particle[j].fy += f*sphi; *pright -= f; } } /* left container */ else { r = module2(particle[j].xc + 1.0, particle[j].yc); if ((r > EHRENFEST_RADIUS - rp)&&((particle[j].xc < -1.0)||(vabs(particle[j].yc) > EHRENFEST_WIDTH))) { cphi = (particle[j].xc + 1.0)/r; sphi = particle[j].yc/r; f = KSPRING_BOUNDARY*(EHRENFEST_RADIUS - r - rp); particle[j].fx += f*cphi; particle[j].fy += f*sphi; *pleft -= f; } } /* add force from "corners" */ if ((vabs(particle[j].xc) - xtube < rp)&&(vabs(particle[j].yc) - EHRENFEST_WIDTH < rp)) { for (i=-1; i<=1; i+=2) for (k=-1; k<=1; k+=2) { distance = module2(particle[j].xc - (double)i*xtube, particle[j].yc - (double)k*EHRENFEST_WIDTH); if (distance < rp) { cphi = (particle[j].xc - (double)i*xtube)/distance; sphi = (particle[j].yc - (double)k*EHRENFEST_WIDTH)/distance; f = KSPRING_BOUNDARY*(rp - distance); particle[j].fx += f*cphi; particle[j].fy += f*sphi; } } } return(fperp); } case (BC_SCREEN_BINS): { /* add harmonic force outside screen */ if (particle[j].xc > XMAX) particle[j].fx -= KSPRING_BOUNDARY*(particle[j].xc - XMAX); else if (particle[j].xc < XMIN) particle[j].fx += KSPRING_BOUNDARY*(XMIN - particle[j].xc); if (particle[j].yc > YMAX + 10.0*MU) particle[j].fy -= KSPRING_BOUNDARY*(particle[j].yc - YMAX - 10.0*MU); else if (particle[j].yc < YMIN) particle[j].fy += KSPRING_BOUNDARY*(YMIN - particle[j].yc); /* force from the bins */ dy = (YMAX - YMIN)/((double)NGRIDX + 3); dx = dy/cos(PI/6.0); rp = particle[j].radius; width = rp + 0.05*dx; ybin = 2.75*dy; if (particle[j].yc < YMIN + ybin) for (i=-1; i<=NGRIDX; i++) { x = ((double)i - 0.5*(double)NGRIDX + 0.5)*dx; distance = vabs(particle[j].xc - x); if (distance < width) { if (particle[j].xc > x) particle[j].fx += KSPRING_BOUNDARY*(width - distance); else particle[j].fx -= KSPRING_BOUNDARY*(width - distance); } } else if (particle[j].yc < YMIN + ybin + particle[j].radius) for (i=-1; i<=NGRIDX; i++) { x = ((double)i - 0.5*(double)NGRIDX + 0.5)*dx; distance = module2(particle[j].xc - x, particle[j].yc - YMIN - ybin); if (distance < rp) { if (distance < 1.0e-8) distance = 1.0e-8; cphi = (particle[j].xc - x)/distance; sphi = (particle[j].yc - YMIN - ybin)/distance; f = KSPRING_BOUNDARY*(rp - distance); particle[j].fx += f*cphi; particle[j].fy += f*sphi; } } return(fperp); } } } void compute_particle_force(int j, double krepel, t_particle particle[NMAXCIRCLES], t_hashgrid hashgrid[HASHX*HASHY]) /* compute force from other particles on particle j */ { int i0, j0, m0, k, m, q, close; double fx = 0.0, fy = 0.0, force[2], torque = 0.0, torque_ij, x, y; particle[j].neighb = 0; if (REACTION_DIFFUSION) particle[j].diff_neighb = 0; for (k=0; k TPYE_PROPORTION)) { particle[i].type = 2; particle[i].radius = MU_B; } particle[i].neighb = 0; particle[i].diff_neighb = 0; particle[i].thermostat = 1; // particle[i].energy = 0.0; // y = particle[i].yc; // if (y >= YMAX) y -= particle[i].radius; // if (y <= YMIN) y += particle[i].radius; if (RANDOM_RADIUS) particle[i].radius = particle[i].radius*(0.75 + 0.5*((double)rand()/RAND_MAX)); if (particle[i].type == 0) { particle[i].interaction = INTERACTION; particle[i].eq_dist = EQUILIBRIUM_DIST; particle[i].spin_range = SPIN_RANGE; particle[i].spin_freq = SPIN_INTER_FREQUENCY; particle[i].mass_inv = 1.0/PARTICLE_MASS; particle[i].inertia_moment_inv = 1.0/PARTICLE_INERTIA_MOMENT; } else { particle[i].interaction = INTERACTION_B; particle[i].eq_dist = EQUILIBRIUM_DIST_B; particle[i].spin_range = SPIN_RANGE_B; particle[i].spin_freq = SPIN_INTER_FREQUENCY_B; particle[i].mass_inv = 1.0/PARTICLE_MASS_B; particle[i].inertia_moment_inv = 1.0/PARTICLE_INERTIA_MOMENT_B; } particle[i].vx = V_INITIAL*gaussian(); particle[i].vy = V_INITIAL*gaussian(); particle[i].energy = (particle[i].vx*particle[i].vx + particle[i].vy*particle[i].vy)*particle[i].mass_inv; px[i] = particle[i].vx; py[i] = particle[i].vy; if (ROTATION) { particle[i].angle = DPI*(double)rand()/RAND_MAX; particle[i].omega = OMEGA_INITIAL*gaussian(); if (COUPLE_ANGLE_TO_THERMOSTAT) particle[i].energy += particle[i].omega*particle[i].omega*particle[i].inertia_moment_inv; } else { particle[i].angle = 0.0; particle[i].omega = 0.0; } pangle[i] = particle[i].omega; } /* initialize dummy values in case particles are added */ for (i=ncircles; i < NMAXCIRCLES; i++) { particle[i].type = 0; particle[i].active = 0; particle[i].neighb = 0; particle[i].thermostat = 0; particle[i].energy = 0.0; particle[i].mass_inv = 1.0/PARTICLE_MASS; particle[i].inertia_moment_inv = 1.0/PARTICLE_INERTIA_MOMENT; particle[i].vx = 0.0; particle[i].vy = 0.0; px[i] = 0.0; py[i] = 0.0; particle[i].angle = DPI*(double)rand()/RAND_MAX; particle[i].omega = 0.0; pangle[i] = 0.0; particle[i].interaction = INTERACTION; particle[i].eq_dist = EQUILIBRIUM_DIST; particle[i].spin_range = SPIN_RANGE; particle[i].spin_freq = SPIN_INTER_FREQUENCY; } /* add particles at the bottom as seed */ if (PART_AT_BOTTOM) for (i=0; i<=NPART_BOTTOM; i++) { x = XMIN + (double)i*(XMAX - XMIN)/(double)NPART_BOTTOM; y = YMIN + 2.0*MU; add_particle(x, y, 0.0, 0.0, MASS_PART_BOTTOM, 0, particle); } if (PART_AT_BOTTOM) for (i=0; i<=NPART_BOTTOM; i++) { x = XMIN + (double)i*(XMAX - XMIN)/(double)NPART_BOTTOM; y = YMIN + 4.0*MU; add_particle(x, y, 0.0, 0.0, MASS_PART_BOTTOM, 0, particle); } /* add larger copies of particles (for Ehrenfest model)*/ if (EHRENFEST_COPY) { for (i=0; i < ncircles; i++) { n = ncircles + i; particle[n].xc = -particle[i].xc; particle[n].yc = particle[i].yc; particle[n].vx = -0.5*particle[i].vx; particle[n].vy = 0.5*particle[i].vy; px[n] = -0.5*px[i]; py[n] = 0.5*py[i]; particle[n].energy = particle[i].energy; particle[n].radius = 2.0*particle[i].radius; particle[n].type = 2; particle[n].mass_inv = 1.25*particle[i].mass_inv; particle[n].thermostat = 1; particle[n].interaction = particle[i].interaction; particle[n].eq_dist = 0.45*particle[i].eq_dist; if ((double)rand()/RAND_MAX > 0.6) particle[n].active = 1; } ncircles *= 2; } /* change type of tracer particle */ if (TRACER_PARTICLE) for (j=0; j 0.5)) i++; while ((!particle[i].active)||(module2(particle[i].xc + xx, particle[i].yc - yy) > 0.4)) i++; tracer_n[j] = i; particle[i].type = 2 + j; particle[i].radius *= 1.5; particle[i].mass_inv *= 1.0/TRACER_PARTICLE_MASS; particle[i].vx *= 0.1; particle[i].vy *= 0.1; particle[i].thermostat = 0; px[i] *= 0.1; py[i] *= 0.1; } /* position-dependent particle type */ if (POSITION_DEPENDENT_TYPE) for (i=0; i EHRENFEST_RADIUS) particle[i].active = 0; } else if (BOUNDARY_COND == BC_RECTANGLE_WALL) { for (i=0; i< ncircles; i++) if (vabs(particle[i].xc - xwall) < WALL_WIDTH) particle[i].active = 0; } else if (BOUNDARY_COND == BC_GENUS_TWO) { for (i=0; i< ncircles; i++) if ((particle[i].xc > 0.0)&&(particle[i].yc > 0.0)) particle[i].active = 0; } if (ADD_FIXED_OBSTACLES) { for (i=0; i< ncircles; i++) for (j=0; j < nobstacles; j++) if (module2(particle[i].xc - obstacle[j].xc, particle[i].yc - obstacle[j].yc) < OBSTACLE_RADIUS + particle[i].radius) particle[i].active = 0; } /* case of segment obstacles */ if (ADD_FIXED_SEGMENTS) for (i=0; i< ncircles; i++) if (!in_segment_region(particle[i].xc, particle[i].yc)) particle[i].active = 0; /* case of reaction-diffusion equation */ if (REACTION_DIFFUSION) for (i=0; i< ncircles; i++) { particle[i].type = 1 + (int)(RD_TYPES*(double)rand()/(double)RAND_MAX); } /* count number of active particles */ for (i=0; i< ncircles; i++) nactive += particle[i].active; printf("%i active particles\n", nactive); for (i=0; i 0.7) j = rand()%ncircles; // x = particle[j].xc + 2.5*MU; // y = particle[j].yc; // x = XMIN + (XMAX - XMIN)*rand()/RAND_MAX; // y = YMAX + 0.01*rand()/RAND_MAX; // add_particle(x, y, 0.0, 0.0, 1.0, 0, particle); // x = XMIN + 0.25*(XMAX - XMIN); // y = YMAX + 0.01; // prop = 1.0 - (double)nadd_particle/5.0; // vx = 100.0*prop; // add_particle(x, y, vx, -10.0, 5.0*prop, 0, particle); // particle[ncircles - 1].radius = 10.0*MU*prop; // particle[ncircles - 1].eq_dist = 2.0; // particle[ncircles - 1].thermostat = 0; // px[ncircles - 1] = particle[ncircles - 1].vx; // py[ncircles - 1] = particle[ncircles - 1].vy; // add_particle(MU*(2.0*rand()/RAND_MAX - 1.0), YMAX + 2.0*MU, 0.0, 0.0, PARTICLE_MASS, 0, particle); printf("Adding a particle\n\n"); add_particle(XMIN - 0.5*MU, 0.0, 50.0 + 5.0*(double)i, 0.0, 2.0*PARTICLE_MASS, 0, particle); i++; particle[ncircles - 1].radius = 0.5*MU; particle[ncircles - 1].eq_dist = EQUILIBRIUM_DIST; particle[ncircles - 1].thermostat = 0; px[ncircles - 1] = particle[ncircles - 1].vx; py[ncircles - 1] = particle[ncircles - 1].vy; return (nadd_particle + 1); } void center_momentum(double p[NMAXCIRCLES]) { int i; double ptot = 0.0, pmean; for (i=0; i PMAX) { p[i] = PMAX; floor = 1; } else if (p[i] < -PMAX) { p[i] = -PMAX; floor = 1; } } if (floor) printf("Flooring momentum\n"); return (floor); } int partial_thermostat_coupling(t_particle particle[NMAXCIRCLES], double xmin) /* only couple particles with x > xmin to thermostat */ { int condition, i, nthermo = 0; for (i=0; i xmin); break; } case (TH_INSEGMENT): { condition = (in_segment_region(particle[i].xc - xsegments, particle[i].yc - ysegments)); break; } default: condition = 1; } if (condition) { particle[i].thermostat = 1; nthermo++; } else particle[i].thermostat = 0; } return(nthermo); } double compute_mean_energy(t_particle particle[NMAXCIRCLES]) { int i, nactive = 0; double total_energy = 0.0; for (i=0; i