/*********************************************************************************/ /* */ /* Animation of reaction-diffusion equation in a planar domain */ /* */ /* N. Berglund, January 2022 */ /* */ /* Feel free to reuse, but if doing so it would be nice to drop a */ /* line to nils.berglund@univ-orleans.fr - Thanks! */ /* */ /* compile with */ /* gcc -o rde rde.c */ /* -L/usr/X11R6/lib -ltiff -lm -lGL -lGLU -lX11 -lXmu -lglut -O3 -fopenmp */ /* */ /* OMP acceleration may be more effective after executing */ /* export OMP_NUM_THREADS=2 in the shell before running the program */ /* */ /* To make a video, set MOVIE to 1 and create subfolder tif_bz */ /* It may be possible to increase parameter PAUSE */ /* */ /* create movie using */ /* ffmpeg -i wave.%05d.tif -vcodec libx264 wave.mp4 */ /* */ /*********************************************************************************/ /*********************************************************************************/ /* */ /* NB: The algorithm used to simulate the wave equation is highly paralellizable */ /* One could make it much faster by using a GPU */ /* */ /*********************************************************************************/ #include #include #include #include #include #include #include /* Sam Leffler's libtiff library. */ #include #include #define MOVIE 0 /* set to 1 to generate movie */ #define DOUBLE_MOVIE 0 /* set to 1 to produce movies for wave height and energy simultaneously */ #define SAVE_MEMORY 1 /* set to 1 to save memory when writing tiff images */ #define NO_EXTRA_BUFFER_SWAP 1 /* some OS require one less buffer swap when recording images */ /* General geometrical parameters */ #define WINWIDTH 1920 /* window width */ #define WINHEIGHT 1150 /* window height */ #define NX 960 /* number of grid points on x axis */ #define NY 575 /* number of grid points on y axis */ #define HRES 4 /* factor for high resolution plots */ #define XMIN -2.0 #define XMAX 2.0 /* x interval */ #define YMIN -1.041666667 #define YMAX 1.041666667 /* y interval for 9/16 aspect ratio */ /* Choice of simulated equation */ #define RDE_EQUATION 8 /* choice of reaction term, see list in global_3d.c */ #define NFIELDS 3 /* number of fields in reaction-diffusion equation */ #define NLAPLACIANS 0 /* number of fields for which to compute Laplacian */ #define SPHERE 1 /* set to 1 to simulate equation on sphere */ #define DPOLE 0 /* safety distance to poles */ #define DSMOOTH 1 /* size of neighbourhood of poles that are smoothed */ #define SMOOTHPOLE 0.05 /* smoothing coefficient at poles */ #define SMOOTHCOTPOLE 0.05 /* smoothing coefficient of cotangent at poles */ #define PHISHIFT 0.0 /* shift of phi in 2D plot (in degrees) */ #define SMOOTHBLOCKS 1 /* set to 1 to use blocks of points near the poles */ #define BLOCKDIST 64 /* distance to poles where points are blocked */ #define ZERO_MERIDIAN 190.0 /* choice of zero meridian (will be at left/right boundary of 2d plot) */ #define POLE_NODRAW 2 /* distance around poles where wave is not drawn */ #define ADD_POTENTIAL 0 /* set to 1 to add a potential (for Schrodinger equation) */ #define ADD_MAGNETIC_FIELD 0 /* set to 1 to add a magnetic field (for Schrodinger equation) - then set POTENTIAL 1 */ #define ADD_FORCE_FIELD 1 /* set to 1 to add a foce field (for compressible Euler equation) */ #define POTENTIAL 7 /* type of potential or vector potential, see list in global_3d.c */ #define FORCE_FIELD 6 /* type of force field, see list in global_3d.c */ #define ADD_CORIOLIS_FORCE 1 /* set to 1 to add Coriolis force (quasigeostrophic Euler equations) */ #define VARIABLE_DEPTH 1 /* set to 1 for variable depth in shallow water equation */ #define SWATER_DEPTH 10 /* variable depth in shallow water equation */ #define ANTISYMMETRIZE_WAVE_FCT 0 /* set tot 1 to make wave function antisymmetric */ #define ADAPT_STATE_TO_BC 1 /* to smoothly adapt initial state to obstacles */ #define OBSTACLE_GEOMETRY 84 /* geometry of obstacles, as in B_DOMAIN */ #define BC_STIFFNESS 0.25 /* controls region of boundary condition control */ #define CHECK_INTEGRAL 1 /* set to 1 to check integral of first field */ #define JULIA_SCALE 0.5 /* scaling for Julia sets */ #define JULIA_ROT -20.0 /* rotation of Julia set, in degrees */ #define JULIA_RE 0.5 #define JULIA_IM 0.462 /* parameters for Julia sets */ /* Choice of the billiard table */ #define B_DOMAIN 999 /* choice of domain shape, see list in global_pdes.c */ #define CIRCLE_PATTERN 8 /* pattern of circles, see list in global_pdes.c */ #define P_PERCOL 0.25 /* probability of having a circle in C_RAND_PERCOL arrangement */ #define NPOISSON 300 /* number of points for Poisson C_RAND_POISSON arrangement */ #define PDISC_FACTOR 3.25 /* controls density of Poisson disc process (default: 3.25) */ #define RANDOM_POLY_ANGLE 0 /* set to 1 to randomize angle of polygons */ #define LAMBDA 1.0 /* parameter controlling the dimensions of domain */ #define MU 1.0 /* parameter controlling the dimensions of domain */ #define NPOLY 5 /* number of sides of polygon */ #define APOLY 2.0 /* angle by which to turn polygon, in units of Pi/2 */ #define MDEPTH 7 /* depth of computation of Menger gasket */ #define MRATIO 5 /* ratio defining Menger gasket */ #define MANDELLEVEL 1000 /* iteration level for Mandelbrot set */ #define MANDELLIMIT 10.0 /* limit value for approximation of Mandelbrot set */ #define FOCI 1 /* set to 1 to draw focal points of ellipse */ #define NGRIDX 6 /* number of grid point for grid of disks */ #define NGRIDY 8 /* number of grid point for grid of disks */ #define REVERSE_TESLA_VALVE 1 /* set to 1 to orient Tesla valve in blocking configuration */ #define WALL_WIDTH 0.05 /* width of wall separating lenses */ #define RADIUS_FACTOR 0.3 /* controls inner radius for C_RING arrangements */ #define X_SHOOTER -0.2 #define Y_SHOOTER -0.6 #define X_TARGET 0.4 #define Y_TARGET 0.7 /* shooter and target positions in laser fight */ #define ISO_XSHIFT_LEFT -1.65 #define ISO_XSHIFT_RIGHT 0.4 #define ISO_YSHIFT_LEFT -0.05 #define ISO_YSHIFT_RIGHT -0.05 #define ISO_SCALE 0.85 /* coordinates for isospectral billiards */ /* You can add more billiard tables by adapting the functions */ /* xy_in_billiard and draw_billiard in sub_wave.c */ /* Physical parameters of wave equation */ #define DT 0.00000025 #define VISCOSITY 0.02 #define POISSON_STIFFNESS 1.0 /* stiffness of Poisson equation solver for incompressible Euler */ #define DISSIPATION 0.0 #define DISSIPATION_EXT 1.0e-3 /* dissipation of shallow water eq. outside domain */ #define RPSA 0.75 /* parameter in Rock-Paper-Scissors-type interaction */ #define RPSLZB 0.0 /* second parameter in Rock-Paper-Scissors-Lizard-Spock type interaction */ #define K_AC 0.1 /* force constant in Allen-Cahn equation */ #define EPSILON 0.8 /* time scale separation */ #define DELTA 0.1 /* time scale separation */ #define FHNA 1.0 /* parameter in FHN equation */ #define FHNC -0.01 /* parameter in FHN equation */ #define K_HARMONIC 1.0 /* spring constant of harmonic potential */ #define K_COULOMB 0.5 /* constant in Coulomb potential */ #define V_MAZE 0.4 /* potential in walls of maze */ #define BZQ 0.0008 /* parameter in BZ equation */ #define BZF 1.2 /* parameter in BZ equation */ #define B_FIELD 10.0 /* magnetic field */ #define G_FIELD 0.025 /* gravity/Coriolis force */ #define BC_FIELD 1.0e-6 /* constant in repulsive field from obstacles */ #define AB_RADIUS 0.2 /* radius of region with magnetic field for Aharonov-Bohm effect */ #define K_EULER 50.0 /* constant in stream function integration of Euler equation */ #define K_EULER_INC 0.5 /* constant in incompressible Euler equation */ #define C_EULER_COMP 0.1 /* constant in compressible Euler equation */ #define SWATER_VARDEPTH_FACTOR 0.1 /* force constant in front of variable depth term */ #define SWATER_CORIOLIS_FORCE 0.002 /* Coriolis force for shallow water equation */ #define SMOOTHEN_VORTICITY 0 /* set to 1 to smoothen vorticity field in Euler equation */ #define SMOOTHEN_VELOCITY 1 /* set to 1 to smoothen velocity field in Euler equation */ #define SMOOTHEN_PERIOD 7 /* period between smoothenings */ #define SMOOTH_FACTOR 0.2 /* factor by which to smoothen */ #define ADD_OSCILLATING_SOURCE 0 /* set to 1 to add an oscillating wave source */ #define OSCILLATING_SOURCE_PERIOD 1 /* period of oscillating source */ #define OSCILLATING_SOURCE_OMEGA 0.2 /* frequency of oscillating source */ #define ADD_TRACERS 1 /* set to 1 tof add tracer particles (for Euler equations) */ #define N_TRACERS 2000 /* number of tracer particles */ #define TRACERS_STEP 0.1 /* step size in tracer evolution */ #define RESPAWN_TRACERS 1 /* set to 1 to randomly move tracer position */ #define RESPAWN_PROBABILTY 0.005 /* probability of moving tracer */ #define T_OUT 2.0 /* outside temperature */ #define T_IN 0.0 /* inside temperature */ #define SPEED 0.0 /* speed of drift to the right */ #define ADD_NOISE 0 /* set to 1 to add noise, set to 2 to add noise in right half */ #define NOISE_INTENSITY 0.01 /* noise intensity */ #define CHANGE_NOISE 0 /* set to 1 to increase noise intensity */ #define NOISE_FACTOR 40.0 /* factor by which to increase noise intensity */ #define NOISE_INITIAL_TIME 100 /* initial time during which noise remains constant */ #define CHANGE_VISCOSITY 0 /* set to 1 to change the viscosity in the course of the simulation */ #define ADJUST_INTSTEP 0 /* set to 1 to decrease integration step when viscosity increases */ #define VISCOSITY_INITIAL_TIME 10 /* initial time during which viscosity remains constant */ #define VISCOSITY_FACTOR 100.0 /* factor by which to change viscosity */ #define VISCOSITY_MAX 2.0 /* max value of viscosity beyond which NVID is increased and integration step is decrase, for numerical stability */ #define CHANGE_RPSLZB 0 /* set to 1 to change second parameter in Rock-Paper-Scissors-Lizard-Spock equation */ #define RPSLZB_CHANGE 0.75 /* factor by which to rpslzb parameter */ #define RPSLZB_INITIAL_TIME 0 /* initial time during which rpslzb remains constant */ #define RPSLZB_FINAL_TIME 500 /* final time during which rpslzb remains constant */ #define CHANGE_FLOW_SPEED 0 /* set to 1 to change speed of laminar flow */ #define IN_OUT_FLOW_BC 0 /* type of in-flow/out-flow boundary conditions for Euler equation, 0 for no b.c. */ #define IN_OUT_BC_FACTOR 0.001 /* factor of convex combination between old and new flow */ #define BC_FLOW_TYPE 1 /* type of initial condition */ /* see list in global_pdes.c */ #define IN_OUT_FLOW_MIN_AMP 0.25 /* amplitude of in-flow/out-flow boundary conditions (for Euler equation) - min value */ #define IN_OUT_FLOW_AMP 0.25 /* amplitude of in-flow/out-flow boundary conditions (for Euler equation) - max value */ #define LAMINAR_FLOW_MODULATION 0.01 /* asymmetry of laminar flow */ #define LAMINAR_FLOW_YPERIOD 1.0 /* period of laminar flow in y direction */ #define PRESSURE_GRADIENT 0.2 /* amplitude of pressure gradient for Euler equation */ #define SWATER_MIN_HEIGHT 0.05 /* min height of initial condition for shallow water equation */ #define DEPTH_FACTOR 0.00002 /* proportion of min height in variable depth */ #define TANH_FACTOR 5.0 /* steepness of variable depth */ #define EULER_GRADIENT_YSHIFT 0.0 /* y-shift in computation of gradient in Euler equation */ #define ADD_MOON_FORCING 1 /* set to 1 to simulate tidal forces from Moon */ #define FORCING_AMP 5.0e-6 /* amplitude of periodic forcing */ #define FORCING_CONST_AMP 0.0 /* amplitude of periodic forcing */ #define FORCING_PERIOD 1600 /* period of forcing */ #define FORCING_SHIFT 1.5 /* phase shift of forcing in units of Pi */ /* Boundary conditions, see list in global_pdes.c */ #define B_COND 1 #define B_COND_LEFT 0 #define B_COND_RIGHT 0 #define B_COND_TOP 0 #define B_COND_BOTTOM 0 /* Parameters for length and speed of simulation */ #define NSTEPS 1400 /* number of frames of movie */ #define NVID 80 /* number of iterations between images displayed on screen */ #define ACCELERATION_FACTOR 1.0 /* factor by which to increase NVID in course of simulation */ #define DT_ACCELERATION_FACTOR 1.0 /* factor by which to increase time step in course of simulation */ #define MAX_DT 0.024 /* maximal value of integration step */ #define NSEG 999 /* number of segments of boundary */ #define BOUNDARY_WIDTH 2 /* width of billiard boundary */ #define PAUSE 100 /* number of frames after which to pause */ #define PSLEEP 2 /* sleep time during pause */ #define SLEEP1 2 /* initial sleeping time */ #define SLEEP2 1 /* final sleeping time */ #define INITIAL_TIME 0 /* initial still time */ #define MID_FRAMES 100 /* number of still frames between parts of two-part movie */ #define END_FRAMES 250 /* number of still frames at end of movie */ #define FADE 1 /* set to 1 to fade at end of movie */ /* Visualisation */ #define PLOT_3D 1 /* controls whether plot is 2D or 3D */ #define PLOT_SPHERE 1 /* draws fields on a sphere */ #define ROTATE_VIEW 1 /* set to 1 to rotate position of observer */ #define ROTATE_ANGLE -45.0 /* total angle of rotation during simulation */ #define SHADE_3D 1 /* set to 1 to change luminosity according to normal vector */ #define SHADE_2D 0 /* set to 1 to change luminosity according to normal vector */ #define VIEWPOINT_TRAJ 1 /* type of viewpoint trajectory */ #define MAX_LATITUDE 45.0 /* maximal latitude for viewpoint trajectory VP_ORBIT2 */ #define DRAW_PERIODICISED 0 /* set to 1 to repeat wave periodically in x and y directions */ #define DRAW_MOON_POSITION 0 /* set to 1 to draw vertical lines for tidal sim */ /* Plot type - color scheme */ #define CPLOT 70 #define CPLOT_B 74 /* Plot type - height of 3D plot */ #define ZPLOT 70 /* z coordinate in 3D plot */ #define ZPLOT_B 71 /* z coordinate in second 3D plot */ #define AMPLITUDE_HIGH_RES 1 /* set to 1 to increase resolution of P_3D_AMPLITUDE plot */ #define NON_DIRICHLET_BC 0 /* set to 1 to draw only facets in domain, if field is not zero on boundary */ #define WRAP_ANGLE 1 /* experimental: wrap angle to [0, 2Pi) for interpolation in angle schemes */ #define FADE_IN_OBSTACLE 0 /* set to 1 to fade color inside obstacles */ #define FADE_WATER_DEPTH 0 /* set to 1 to make wave color depth-dependent */ #define DRAW_OUTSIDE_GRAY 0 /* experimental - draw outside of billiard in gray */ #define ADD_POTENTIAL_TO_Z 0 /* set to 1 to add the external potential to z-coordinate of plot */ #define ADD_POT_CONSTANT 0.35 /* constant added to wave height */ #define DRAW_DEPTH 0 /* set to 1 to draw water depth */ #define DEPTH_SCALE 0.75 /* vertical scaling of depth plot */ #define DEPTH_SHIFT -0.015 /* vertical shift of depth plot */ #define FLOODING 1 /* set to 1 for drawing water when higher than continents */ // #define FLOODING_VSHIFT 0.51 /* controls when wave is considered higher than land */ #define FLOODING_VSHIFT 0.56 /* controls when wave is considered higher than land */ #define FLOODING_VSHIFT_2D 0.61 /* controls when wave is considered higher than land */ #define PLOT_SCALE_ENERGY 0.05 /* vertical scaling in energy plot */ #define PRINT_TIME 0 /* set to 1 to print running time */ #define PRINT_VISCOSITY 0 /* set to 1 to print viscosity */ #define PRINT_RPSLZB 0 /* set to 1 to print rpslzb parameter */ #define PRINT_PROBABILITIES 0 /* set to 1 to print probabilities (for Ehrenfest urn configuration) */ #define PRINT_NOISE 0 /* set to 1 to print noise intensity */ #define PRINT_FLOW_SPEED 0 /* set to 1 to print speed of flow */ #define PRINT_AVERAGE_SPEED 0 /* set to 1 to print average speed of flow */ #define PRINT_LEFT 1 /* set to 1 to print parameters at left side */ #define DRAW_FIELD_LINES 0 /* set to 1 to draw field lines */ #define FIELD_LINE_WIDTH 1 /* width of field lines */ #define N_FIELD_LINES 120 /* number of field lines */ #define FIELD_LINE_FACTOR 120 /* factor controlling precision when computing origin of field lines */ #define DRAW_BILLIARD 1 /* set to 1 to draw boundary */ #define DRAW_BILLIARD_FRONT 1 /* set to 1 to draw boundary */ #define FILL_BILLIARD_COMPLEMENT 1 /* set to 1 to fill complement of billiard (for certain shapes only) */ /* 3D representation */ #define REPRESENTATION_3D 1 /* choice of 3D representation */ #define REP_AXO_3D 0 /* linear projection (axonometry) */ #define REP_PROJ_3D 1 /* projection on plane orthogonal to observer line of sight */ /* Color schemes, see list in global_pdes.c */ #define COLOR_PALETTE 11 /* Color palette, see list in global_pdes.c */ #define COLOR_PALETTE_B 16 /* Color palette, see list in global_pdes.c */ #define BLACK 1 /* black background */ #define COLOR_OUT_R 1.0 /* color outside domain */ #define COLOR_OUT_G 1.0 #define COLOR_OUT_B 1.0 #define COLOR_SCHEME 3 /* choice of color scheme */ #define PHASE_SHIFT -0.25 /* phase shift of color scheme, in units of Pi (formerly COLOR_PHASE_SHIFT) */ #define SCALE 0 /* set to 1 to adjust color scheme to variance of field */ #define SLOPE 1.0 /* sensitivity of color on wave amplitude */ #define VSHIFT_AMPLITUDE 0.0 /* additional shift for wave amplitude */ #define VSCALE_AMPLITUDE 15.0 /* additional scaling factor for color scheme P_3D_AMPLITUDE */ #define ATTENUATION 0.0 /* exponential attenuation coefficient of contrast with time */ #define CURL_SCALE 1.0 /* scaling factor for curl representation */ #define RESCALE_COLOR_IN_CENTER 0 /* set to 1 to decrease color intentiy in the center (for wave escaping ring) */ #define SLOPE_SCHROD_LUM 10.0 /* sensitivity of luminosity on module, for color scheme Z_ARGUMENT */ #define MIN_SCHROD_LUM 0.1 /* minimal luminosity in color scheme Z_ARGUMENT*/ #define VSCALE_PRESSURE 2.0 /* additional scaling factor for color scheme Z_EULER_PRESSURE */ #define PRESSURE_SHIFT 10.0 /* shift for color scheme Z_EULER_PRESSURE */ #define PRESSURE_LOG_SHIFT -2.5 /* shift for color scheme Z_EULER_PRESSURE */ #define VSCALE_WATER_HEIGHT 15.0 /* vertical scaling of water height */ #define ADD_HEIGHT_CONSTANT -0.016 /* constant added to wave height */ #define SHADE_SCALE_2D 0.25 /* controls "depth" of 2D shading */ #define COLORHUE 260 /* initial hue of water color for scheme C_LUM */ #define COLORDRIFT 0.0 /* how much the color hue drifts during the whole simulation */ #define LUMMEAN 0.5 /* amplitude of luminosity variation for scheme C_LUM */ #define LUMAMP 0.3 /* amplitude of luminosity variation for scheme C_LUM */ #define HUEMEAN 359.0 /* mean value of hue for color scheme C_HUE */ #define HUEAMP -359.0 /* amplitude of variation of hue for color scheme C_HUE */ #define E_SCALE 100.0 /* scaling factor for energy representation */ #define FLUX_SCALE 100.0 /* scaling factor for energy representation */ #define LOG_SCALE 0.5 /* scaling factor for energy log representation */ #define LOG_SHIFT 1.0 #define LOG_MIN 1.0e-3 /* floor value for log vorticity plot */ #define VSCALE_SPEED 50.0 /* additional scaling factor for color scheme Z_EULER_SPEED */ #define VMEAN_SPEED 0.0 /* mean value around which to scale for color scheme Z_EULER_SPEED */ #define SHIFT_DENSITY 1.0 /* shift for color scheme Z_EULER_DENSITY */ #define VSCALE_DENSITY 30.0 /* additional scaling factor for color scheme Z_EULER_DENSITY */ #define VSCALE_VORTICITY 15.0 /* additional scaling factor for color scheme Z_EULERC_VORTICITY */ #define VORTICITY_SHIFT 0.0 /* vertical shift of vorticity */ #define ZSCALE_SPEED 300.0 /* additional scaling factor for z-coord Z_EULER_SPEED and Z_SWATER_SPEED */ #define ZSHIFT_SPEED 0.0 /* additional shift of z-coord Z_EULER_SPEED and Z_SWATER_SPEED */ #define ZSCALE_NORMGRADIENT -0.0001 /* vertical scaling for Z_NORM_GRADIENT */ #define VSCALE_SWATER 60.0 /* additional scaling factor for color scheme Z_EULER_DENSITY */ #define NXMAZE 7 /* width of maze */ #define NYMAZE 7 /* height of maze */ #define MAZE_MAX_NGBH 4 /* max number of neighbours of maze cell */ #define RAND_SHIFT 3 /* seed of random number generator */ #define MAZE_XSHIFT 0.0 /* horizontal shift of maze */ #define MAZE_WIDTH 0.04 /* half width of maze walls */ #define DRAW_COLOR_SCHEME 1 /* set to 1 to plot the color scheme */ #define COLORBAR_RANGE 3.0 /* scale of color scheme bar */ #define COLORBAR_RANGE_B 2.5 /* scale of color scheme bar for 2nd part */ #define ROTATE_COLOR_SCHEME 0 /* set to 1 to draw color scheme horizontally */ #define CIRC_COLORBAR 0 /* set to 1 to draw circular color scheme */ #define CIRC_COLORBAR_B 1 /* set to 1 to draw circular color scheme */ /* only for compatibility with wave_common.c */ #define TWOSPEEDS 0 /* set to 1 to replace hardcore boundary by medium with different speed */ #define VARIABLE_IOR 0 /* set to 1 for a variable index of refraction */ #define IOR 4 /* choice of index of refraction, see list in global_pdes.c */ #define IOR_TOTAL_TURNS 1.5 /* total angle of rotation for IOR_PERIODIC_WELLS_ROTATING */ #define MANDEL_IOR_SCALE -0.05 /* parameter controlling dependence of IoR on Mandelbrot escape speed */ #define OMEGA 0.005 /* frequency of periodic excitation */ #define OSCIL_YMAX 0.2 /* defines oscillation range */ #define COURANT 0.08 /* Courant number */ #define COURANTB 0.03 /* Courant number in medium B */ #define INITIAL_AMP 0.5 /* amplitude of initial condition */ #define INITIAL_VARIANCE 0.0002 /* variance of initial condition */ #define INITIAL_WAVELENGTH 0.1 /* wavelength of initial condition */ #define VSCALE_ENERGY 200.0 /* additional scaling factor for color scheme P_3D_ENERGY */ #define PHASE_FACTOR 20.0 /* factor in computation of phase in color scheme P_3D_PHASE */ #define AVRG_E_FACTOR 0.99 /* controls time window size in P_AVERAGE_ENERGY scheme */ #define OSCILLATION_SCHEDULE 0 /* oscillation schedule, see list in global_pdes.c */ #define AMPLITUDE 0.8 /* amplitude of periodic excitation */ #define ACHIRP 0.2 /* acceleration coefficient in chirp */ #define DAMPING 0.0 /* damping of periodic excitation */ #define COMPARISON 0 /* set to 1 to compare two different patterns (beta) */ #define B_DOMAIN_B 20 /* second domain shape, for comparisons */ #define CIRCLE_PATTERN_B 0 /* second pattern of circles or polygons */ #define FLUX_WINDOW 20 /* averaging window for energy flux */ #define ADD_WAVE_PACKET_SOURCES 0 /* set to 1 to add several sources emitting wave packets */ #define WAVE_PACKET_SOURCE_TYPE 1 /* type of wave packet sources */ #define N_SOURCES 1 /* number of wave sources */ #define N_WAVE_PACKETS 15 /* number of wave packets */ #define WAVE_PACKET_RADIUS 20 /* radius of wave packets */ #define OSCIL_LEFT_YSHIFT 25.0 /* y-dependence of left oscillation (for non-horizontal waves) */ #define INITIAL_SHIFT 20.0 /* time shift of initial wave packet (in oscillation periods) */ #define WAVE_PACKET_SHIFT 200.0 /* time shift between wave packets (in oscillation periods) */ #define DRAW_WAVE_PROFILE 0 /* set to 1 to draw a profile of the wave */ #define HORIZONTAL_WAVE_PROFILE 0 /* set to 1 to draw wave profile vertically */ #define VERTICAL_WAVE_PROFILE 0 /* set to 1 to draw wave profile vertically */ #define WAVE_PROFILE_X 1.9 /* value of x to sample wave profile */ #define WAVE_PROFILE_Y -1.0 /* value of y to sample wave profile */ #define PROFILE_AT_BOTTOM 1 /* draw wave profile at bottom instead of top */ #define AVERAGE_WAVE_PROFILE 1 /* set to 1 to draw time-average of wave profile squared*/ #define MU_B 1.0 /* parameter controlling the dimensions of domain */ #define GAMMA 0.0 /* damping factor in wave equation */ #define GAMMAB 0.0 /* damping factor in wave equation */ #define VERTICAL_WAVE_PROFILE 0 /* set to 1 to draw wave profile vertically */ #define DRAW_WAVE_TIMESERIES 0 /* set to 1 to draw a time series of the wave */ #define TIMESERIES_NVALUES 400 /* number of values plotted in time series */ #define DRAW_WAVE_SOURCE 0 /* set to 1 to draw source of wave at (wave_source_x, wave_source_y) */ #define MESSAGE_LDASH 1 /* length of dash for Morse code message */ #define MESSAGE_LDOT 1 /* length of dot for Morse code message */ #define MESSAGE_LINTERVAL 1 /* length of interval between dashes/dots for Morse code message */ #define MESSAGE_LINTERLETTER 1 /* length of interval between letters for Morse code message */ #define MESSAGE_LSPACE 1 /* length of space for Morse code message */ #define MESSAGE_INITIAL_TIME 1 /* initial time before starting message for Morse code message */ /* end of constants added only for compatibility with wave_common.c */ double u_3d[2] = {0.75, -0.45}; /* projections of basis vectors for REP_AXO_3D representation */ double v_3d[2] = {-0.75, -0.45}; double w_3d[2] = {0.0, 0.015}; double light[3] = {-0.816496581, 0.40824829, 0.40824829}; /* vector of "light" direction for P_3D_ANGLE color scheme */ double observer[3] = {-6.0, -6.0, 4.5}; /* location of observer for REP_PROJ_3D representation */ int reset_view = 0; /* switch to reset 3D view parameters (for option ROTATE_VIEW) */ /* constants for simulations on planets */ #define ADD_DEM 1 /* add DEM (digital elevation model) */ #define ADD_NEGATIVE_DEM 1 /* add DEM with bathymetric data */ #define RSCALE_DEM 0.075 /* scaling factor of radial component for DEM */ #define SMOOTH_DEM 1 /* set to 1 to smoothen DEM (to make altitude less constant) */ #define DEM_SMOOTH_STEPS 10 /* number of smoothening steps */ #define DEM_SMOOTH_HEIGHT 2.0 /* relative height below which to smoothen */ #define DEM_MAXHEIGHT 9000.0 /* max height of DEM (estimated from Everest/Olympus Mons) */ #define DEM_MAXDEPTH -10000 /* max depth of DEM */ #define PLANET_SEALEVEL 0.0 /* sea level for flooded planet */ #define VENUS_NODATA_FACTOR 0.5 /* altitude to assign to DEM points without data (fraction of mean altitude) */ #define Z_SCALING_FACTOR 0.8 /* overall scaling factor of z axis for REP_PROJ_3D representation */ #define XY_SCALING_FACTOR 2.1 /* overall scaling factor for on-screen (x,y) coordinates after projection */ #define ZMAX_FACTOR 1.0 /* max value of z coordinate for REP_PROJ_3D representation */ #define XSHIFT_3D 0.0 /* overall x shift for REP_PROJ_3D representation */ #define YSHIFT_3D 0.0 /* overall y shift for REP_PROJ_3D representation */ #define BORDER_PADDING 0 /* distance from boundary at which to plot points, to avoid boundary effects due to gradient */ #define DRAW_ARROW 0 /* set to 1 to draw arrow above sphere */ #define RSCALE 0.15 /* scaling factor of radial component */ #define RSHIFT -0.075 /* shift in radial component */ #define RMAX 2.0 /* max value of radial component */ #define RMIN 0.5 /* min value of radial component */ #define COS_VISIBLE -0.35 /* limit on cosine of normal to shown facets */ /* For debugging purposes only */ #define FLOOR 1 /* set to 1 to limit wave amplitude to VMAX */ #define VMAX 100.0 /* max value of wave amplitude */ #define TEST_GRADIENT 0 /* print norm squared of gradient */ #define REFRESH_B (ZPLOT_B != ZPLOT)||(CPLOT_B != CPLOT) /* to save computing time, to be improved */ #define COMPUTE_WRAP_ANGLE ((WRAP_ANGLE)&&((cplot == Z_ANGLE_GRADIENT)||(cplot == Z_ANGLE_GRADIENTX)||(cplot == Z_ARGUMENT)||(cplot == Z_ANGLE_GRADIENTX)||(cplot == Z_EULER_DIRECTION_SPEED)||(cplot == Z_SWATER_DIRECTION_SPEED))) #define PRINT_PARAMETERS ((PRINT_TIME)||(PRINT_VISCOSITY)||(PRINT_RPSLZB)||(PRINT_PROBABILITIES)||(PRINT_NOISE)||(PRINT_FLOW_SPEED)||(PRINT_AVERAGE_SPEED)) #define COMPUTE_PRESSURE ((ZPLOT == Z_EULER_PRESSURE)||(CPLOT == Z_EULER_PRESSURE)||(ZPLOT_B == Z_EULER_PRESSURE)||(CPLOT_B == Z_EULER_PRESSURE)) #define ASYM_SPEED_COLOR (VMEAN_SPEED == 0.0) #define XYIN_INITIALISED (B_DOMAIN == D_IMAGE) int block_sizes[NY]; /* table of block sizes for blocking around poles */ int block_numbers[NY]; /* table of block numbers for blocking around poles */ #include "global_pdes.c" #include "global_3d.c" /* constants and global variables */ #include "sub_maze.c" #include "sub_wave.c" #include "wave_common.c" /* common functions for wave_billiard, wave_comparison, etc */ #include "sub_wave_3d_rde.c" /* should be later replaced by sub_wave_rde.c */ #include "sub_rde.c" double f_aharonov_bohm(double r2) /* radial part of Aharonov-Bohm vector potential */ { double r02 = AB_RADIUS*AB_RADIUS; if (r2 > r02) return(-0.25*r02/r2); else return(0.25*(r2 - 2.0*r02)/r02); // if (r2 > r02) return(1.0/r2); // else return((2.0*r02 - r2)/(r02*r02)); } double potential(int i, int j) /* compute potential (e.g. for Schrödinger equation), or potential part if there is a magnetic field */ { double x, y, xy[2], r, small = 1.0e-1, kx, ky, lx = XMAX - XMIN, r1, r2, r3, f; int rect; ij_to_xy(i, j, xy); x = xy[0]; y = xy[1]; switch (POTENTIAL) { case (POT_HARMONIC): { return (K_HARMONIC*(x*x + y*y)); } case (POT_COULOMB): { // r = module2(x, y); r = sqrt(x*x + y*y + small*small); // if (r < small) r = small; return (-K_COULOMB/r); } case (POT_PERIODIC): { kx = 4.0*DPI/(XMAX - XMIN); ky = 2.0*DPI/(YMAX - YMIN); return(-K_HARMONIC*cos(kx*x)*cos(ky*y)); } case (POT_FERMIONS): { r = sqrt((x-y)*(x-y) + small*small); return (-K_COULOMB/r); } case (POT_FERMIONS_PERIODIC): { r1 = sqrt((x-y)*(x-y) + small*small); r2 = sqrt((x-lx-y)*(x-lx-y) + small*small); r3 = sqrt((x+lx-y)*(x+lx-y) + small*small); // r = r/3.0; return (-0.5*K_COULOMB*(1.0/r1 + 1.0/r2 + 1.0/r3)); } case (VPOT_CONSTANT_FIELD): { return (K_HARMONIC*(x*x + y*y)); /* magnetic field strength b is chosen such that b^2 = K_HARMONIC */ } case (VPOT_AHARONOV_BOHM): { r2 = x*x + y*y; f = f_aharonov_bohm(r2); return (B_FIELD*B_FIELD*f*f*r2); /* magnetic field strength b is chosen such that b^2 = K_HARMONIC */ // return (K_HARMONIC*f); /* magnetic field strength b is chosen such that b^2 = K_HARMONIC */ } case (POT_MAZE): { for (rect=0; rect= LAMBDA) { *gx = 0.0; *gy = 0.0; } else { x1 = 1.0 - x/LAMBDA; if (x1 < 0.1) x1 = 0.1; y1 = y + a*x*x; r = module2(x/LAMBDA,y1/(MU*x1)) + 1.0e-2; f = 0.5*(1.0 - tanh(BC_STIFFNESS*(r - 1.0))); *gx = BC_FIELD*f*(x/(LAMBDA*LAMBDA) + 2.0*a*x*y1/(MU*MU*x1*x1) - y1*y1/(MU*MU*x1*x1*x1)); *gy = BC_FIELD*f*y1/(MU*MU*x1*x1); // *gx = 0.1*G_FIELD*f*(x/(LAMBDA*LAMBDA) + 2.0*a*x*y1/(MU*MU*x1*x1) - y1*y1/(MU*MU*x1*x1*x1)); // *gy = 0.1*G_FIELD*f*y1/(MU*MU*x1*x1); // hx = x/(LAMBDA*LAMBDA) + 2.0*a*x*y1/(MU*MU*x1*x1) - y1*y1/(MU*MU*x1*x1*x1); // hy = y1/(MU*MU*x1*x1); // h = module2(hx, hy) + 1.0e-2; // *gx = G_FIELD*f*hx/h; // *gy = G_FIELD*f*hy/h; } break; } default: { *gx = 0.0; *gy = 0.0; } } } void initialize_potential(double potential_field[NX*NY]) /* initialize the potential field, e.g. for the Schrödinger equation */ { int i, j; #pragma omp parallel for private(i,j) for (i=0; i 0.0) { gfield[i*NY+j] = -BC_FIELD*(wsphere[(i+1)*NY+j].altitude - wsphere[(i-1)*NY+j].altitude)/dx; gfield[NX*NY+i*NY+j] = -BC_FIELD*(wsphere[i*NY+j+1].altitude - wsphere[i*NY+j-1].altitude)/dy; } else { gfield[i*NY+j] = 0.0; gfield[NX*NY+i*NY+j] = 0.0; } } } /* boundaries TODO */ for (i=0; idepth = SWATER_MIN_HEIGHT*DEPTH_FACTOR*h; rde->gradx = x*z; rde->grady = y*z; break; } case (SH_CIRCLES): { h = 0.0; z = 0.0; r = 10.0; /* compute minimal distance to circles */ for (n = 0; n < ncircles; n++) for (nx = -1; nx < 2; nx++) for (ny = -1; ny < 2; ny++) { x1 = circles[n].xc + (double)nx*(XMAX-XMIN); y1 = circles[n].yc + (double)ny*(YMAX-YMIN); r0 = module2(x - x1,y - y1)/circles[n].radius; if (r0 < r) r = r0; } h = tanh(TANH_FACTOR*(r-1.0)); h = 0.5*(h + 1.0); rde->depth = SWATER_MIN_HEIGHT*DEPTH_FACTOR*h; break; } case (SH_COAST): { x1 = PI*(x + 0.1 - 0.1*cos(PI*y/YMAX))/XMAX; d = 3.0*sin(x1); h = tanh(-TANH_FACTOR*d); h = 0.5*(h + 1.0); rde->depth = SWATER_MIN_HEIGHT*DEPTH_FACTOR*h; break; } case (SH_COAST_MONOTONE): { x1 = PI*(x + 0.1 - 0.2*cos(PI*y/YMAX))/XMAX; h = tanh(-TANH_FACTOR*x1); h = 0.5*(h + 1.0); rde->depth = SWATER_MIN_HEIGHT*DEPTH_FACTOR*h; break; } case (SH_SPHERE_CUBE): { rmax = 0.0; /* compute distance from cube to origin, given by 0.5/rmax */ if (vabs(wsphere[i*NY+j].x) > rmax) rmax = vabs(wsphere[i*NY+j].x); if (vabs(wsphere[i*NY+j].y) > rmax) rmax = vabs(wsphere[i*NY+j].y); if (vabs(wsphere[i*NY+j].z) > rmax) rmax = vabs(wsphere[i*NY+j].z); h = 1.0 - 0.5/rmax; // printf("h = %.3lg\n", h); if (h < 0.0) h = 0.0; rde->depth = SWATER_MIN_HEIGHT*DEPTH_FACTOR*h; break; } case (SH_SPHERE_OCTAHEDRON): { rmax = 0.0; /* compute distance from octahedron to origin, given by 0.5/rmax */ rmax = 1.0/(vabs(wsphere[i*NY+j].x) + vabs(wsphere[i*NY+j].y) + vabs(wsphere[i*NY+j].z)); h = 1.0 - 0.5/rmax; printf("h = %.3lg\n", h); if (h < 0.0) h = 0.0; rde->depth = SWATER_MIN_HEIGHT*DEPTH_FACTOR*h; break; } case (SH_SPHERE_DODECAHEDRON): { rmax = 0.0; x1 = wsphere[i*NY+j].x; y1 = wsphere[i*NY+j].y; z1 = wsphere[i*NY+j].z; /* compute distance from dodecahedron */ d = vabs(phi1*y1 - phi2*z1) - sq3; if (d > rmax) rmax = d; d = vabs(-phi2*x1 + phi1*z1) - sq3; if (d > rmax) rmax = d; d = vabs(phi1*x1 - phi2*y1) - sq3; if (d > rmax) rmax = d; d = vabs(phi1*y1 + phi2*z1) - sq3; if (d > rmax) rmax = d; d = vabs(phi2*x1 + phi1*z1) - sq3; if (d > rmax) rmax = d; d = vabs(phi1*x1 + phi2*y1) - sq3; if (d > rmax) rmax = d; h = rmax; printf("h = %.3lg\n", h); if (h < 0.0) h = 0.0; rde->depth = SWATER_MIN_HEIGHT*DEPTH_FACTOR*h; break; } case (SH_SPHERE_ICOSAHEDRON): { rmax = 0.0; x1 = wsphere[i*NY+j].x; y1 = wsphere[i*NY+j].y; z1 = wsphere[i*NY+j].z; /* compute distance from dodecahedron */ d = vabs(phi2*(x1+y1+z1)) - rico; if (d > rmax) rmax = d; d = vabs(phi2*(-x1+y1+z1)) - rico; if (d > rmax) rmax = d; d = vabs(phi2*(x1-y1+z1)) - rico; if (d > rmax) rmax = d; d = vabs(phi2*(x1+y1-z1)) - rico; if (d > rmax) rmax = d; d = vabs(phi3*x1 + phi1*z1) - rico; if (d > rmax) rmax = d; d = vabs(phi3*z1 + phi1*y1) - rico; if (d > rmax) rmax = d; d = vabs(phi3*y1 + phi1*x1) - rico; if (d > rmax) rmax = d; d = vabs(phi3*x1 - phi1*z1) - rico; if (d > rmax) rmax = d; d = vabs(phi3*z1 - phi1*y1) - rico; if (d > rmax) rmax = d; d = vabs(phi3*y1 - phi1*x1) - rico; if (d > rmax) rmax = d; h = rmax; printf("h = %.3lg\n", h); if (h < 0.0) h = 0.0; rde->depth = SWATER_MIN_HEIGHT*DEPTH_FACTOR*h; break; } case (SH_EARTH): { /* TODO */ vshift = PLANET_SEALEVEL/(DEM_MAXHEIGHT - DEM_MAXDEPTH); h = 0.5 - RSCALE_DEM*(wsphere[i*NY+j].altitude - vshift); rde->depth = SWATER_MIN_HEIGHT*DEPTH_FACTOR*h; break; } } } double initialize_water_depth(t_rde rde[NX*NY], t_wave_sphere *wsphere, t_wave_sphere *wsphere_hr) { int i, j, ncircles; double dx, dy, min, max, pscal, norm, vz = 0.01; if (SWATER_DEPTH == SH_CIRCLES) ncircles = init_circle_config_pattern(circles, CIRCLE_PATTERN); if (SWATER_DEPTH == SH_EARTH) { init_earth_map_rde(wsphere, 1); init_earth_map_rde(wsphere_hr, HRES); } #pragma omp parallel for private(i,j) for (i=0; i max) max = rde[i*NY + j].gradx; if (rde[i*NY + j].gradx < min) min = rde[i*NY + j].gradx; } } printf("gradx min = %.3lg, max = %.3lg\n", min, max); min = 0.0; max = 0.0; #pragma omp parallel for private(i,j) for (i=0; i max) max = rde[i*NY + j].grady; if (rde[i*NY + j].grady < min) min = rde[i*NY + j].grady; } } printf("grady min = %.3lg, max = %.3lg\n", min, max); min = 0.0; max = 0.0; #pragma omp parallel for private(i,j) for (i=0; i max) max = rde[i*NY + j].depth; if (rde[i*NY + j].depth < min) min = rde[i*NY + j].depth; } } printf("Depth min = %.3lg, max = %.3lg\n", min, max); // for (j=0; j= NX) moon_position -= NX; // i = NX/2; i = moon_position; printf("Phase = %.5lg, Forcing at i = %i: %.5lg, Moon position = %i\n", phase, i, wsphere[i*NY+NY/2].force, moon_position); } void evolve_wave_half(double *phi_in[NFIELDS], double *phi_out[NFIELDS], short int xy_in[NX*NY], double potential_field[NX*NY], double vector_potential_field[2*NX*NY], double gfield[2*NX*NY], t_rde rde[NX*NY], t_wave_sphere wsphere[NX*NY]) /* time step of field evolution */ { int i, j, k, iplus, iminus, jplus, jminus, ropening, w; double x, y, z, deltax, deltay, deltaz, rho, rhox, rhoy, pot, u, v, ux, uy, vx, vy, test = 0.0, dx, dy, xy[2], padding, a, eta, etax, etay, sum; double *delta_phi[NLAPLACIANS], *nabla_phi, *nabla_psi, *nabla_omega, *delta_vorticity, *delta_pressure, *delta_p, *delta_u, *delta_v, *nabla_rho, *nabla_u, *nabla_v, *nabla_eta; // double u_bc[NY], v_bc[NY]; static double invsqr3 = 0.577350269; /* 1/sqrt(3) */ static int smooth = 0, y_channels, y_channels1, imin, imax, first = 1; if (first) /* for D_MAZE_CHANNELS boundary conditions in Euler equation */ { ropening = (NYMAZE+1)/2; padding = 0.02; dy = (YMAX - YMIN - 2.0*padding)/(double)(NYMAZE); y = YMIN + 0.02 + dy*((double)ropening); x = YMAX - padding + MAZE_XSHIFT; xy_to_pos(x, y, xy); if ((B_DOMAIN == D_MAZE_CHANNELS)||(OBSTACLE_GEOMETRY == D_MAZE_CHANNELS)||(OBSTACLE_GEOMETRY == D_MAZE_CHANNELS_INT)) { imax = xy[0] + 2; x = YMIN + padding + MAZE_XSHIFT; xy_to_pos(x, y, xy); imin = xy[0] - 2; if (imin < 5) imin = 5; } else { imin = 0; imax = NX; } /* average values at poles on sphere */ if (SPHERE) for (k=0; k 1.0) sum = 1.0; if (sum < -1.0) sum = -1.0; for (i=0; i 1.0) sum = 1.0; if (sum < -1.0) sum = -1.0; for (i=0; i= SMOOTHEN_PERIOD) smooth = 0; } break; } /* compute gradients of fields for compressible Euler equation */ case (E_EULER_COMP): { nabla_rho = (double *)malloc(2*NX*NY*sizeof(double)); compute_gradient_euler_test(phi_in[0], nabla_rho, xy_in, wsphere); compute_velocity_gradients(phi_in, rde, xy_in, wsphere); if (SMOOTHEN_VELOCITY) /* beta: try to reduce formation of ripples */ { if (smooth == 0) { delta_u = (double *)malloc(NX*NY*sizeof(double)); delta_v = (double *)malloc(NX*NY*sizeof(double)); compute_laplacian_rde(phi_in[1], delta_u, xy_in, wsphere); compute_laplacian_rde(phi_in[2], delta_v, xy_in, wsphere); #pragma omp parallel for private(i) for (i=0; i= SMOOTHEN_PERIOD) smooth = 0; } break; } case (E_SHALLOW_WATER): { nabla_eta = (double *)malloc(2*NX*NY*sizeof(double)); compute_gradient_euler_test(phi_in[0], nabla_eta, xy_in, wsphere); compute_velocity_gradients(phi_in, rde, xy_in, wsphere); if (VISCOSITY > 0.0) { delta_u = (double *)malloc(NX*NY*sizeof(double)); delta_v = (double *)malloc(NX*NY*sizeof(double)); compute_laplacian_rde(phi_in[1], delta_u, xy_in, wsphere); compute_laplacian_rde(phi_in[2], delta_v, xy_in, wsphere); } break; } default: { /* do nothing */ } } if (TEST_GRADIENT) { test = 0.0; for (i=0; i<2*NX*NY; i++){ test += nabla_v[i]*nabla_v[i]; // test += nabla_omega[i]*nabla_omega[i]; // test += nabla_psi[i]*nabla_psi[i]; } printf("nabla square = %.5lg\n", test/((double)NX*NY)); } #pragma omp parallel for private(i,j,k,x,y,z,deltax,deltay,deltaz,rho) for (i=imin; i DSMOOTH)&&(j < NY-DSMOOTH)) { phi_out[0][i*NY+j] = eta - intstep*(u*etax + v*etay + eta*(ux + vy)); phi_out[1][i*NY+j] = u - intstep*(u*ux + v*uy + G_FIELD*etax); phi_out[2][i*NY+j] = v - intstep*(u*vx + v*vy + G_FIELD*etay); } else { // phi_out[0][i*NY+j] = SWATER_MIN_HEIGHT; phi_out[0][i*NY+j] = eta; phi_out[1][i*NY+j] = 0.0; phi_out[2][i*NY+j] = 0.0; } } else { phi_out[0][i*NY+j] = eta - intstep*(u*etax + v*etay + eta*(ux + vy)); phi_out[1][i*NY+j] = u - intstep*(u*ux + v*uy + G_FIELD*etax); phi_out[2][i*NY+j] = v - intstep*(u*vx + v*vy + G_FIELD*etay); } if (ADD_CORIOLIS_FORCE) { phi_out[1][i*NY+j] += intstep*SWATER_CORIOLIS_FORCE*v*wsphere[i*NY+j].ctheta; phi_out[2][i*NY+j] -= intstep*SWATER_CORIOLIS_FORCE*u*wsphere[i*NY+j].reg_cottheta; } if (VISCOSITY > 0.0) { phi_out[1][i*NY+j] += intstep*VISCOSITY*delta_u[i*NY+j]; phi_out[2][i*NY+j] += intstep*VISCOSITY*delta_v[i*NY+j]; } if (DISSIPATION > 0.0) { phi_out[1][i*NY+j] -= intstep*DISSIPATION*u; phi_out[2][i*NY+j] -= intstep*DISSIPATION*v; } if ((DISSIPATION_EXT > 0.0)&&(!wsphere[i*NY+j].indomain)) { phi_out[1][i*NY+j] -= intstep*DISSIPATION_EXT*u; phi_out[2][i*NY+j] -= intstep*DISSIPATION_EXT*v; } if (ADD_FORCE_FIELD) { phi_out[1][i*NY+j] += intstep*gfield[i*NY+j]; phi_out[2][i*NY+j] += intstep*gfield[NX*NY+i*NY+j]; } if (ADD_MOON_FORCING) { phi_out[0][i*NY+j] += intstep*wsphere[i*NY+j].force; } if ((VARIABLE_DEPTH)&&(j > DSMOOTH)&&(j < NY-DSMOOTH)) { phi_out[0][i*NY+j] -= intstep*SWATER_VARDEPTH_FACTOR*rde[i*NY+j].depth*(ux + vy); phi_out[0][i*NY+j] -= intstep*SWATER_VARDEPTH_FACTOR*rde[i*NY+j].gradx*u; phi_out[0][i*NY+j] -= intstep*SWATER_VARDEPTH_FACTOR*rde[i*NY+j].grady*v; } if ((j <= DSMOOTH)||(j >= NY-DSMOOTH)) { // printf("Pole reset\n"); phi_out[0][i*NY+j] = SWATER_MIN_HEIGHT; } break; } } } } /* in-flow/out-flow b.c. for incompressible Euler equation */ if (((RDE_EQUATION == E_EULER_INCOMP)||(RDE_EQUATION == E_EULER_COMP))&&(IN_OUT_FLOW_BC > 0)) set_in_out_flow_bc(phi_out, xy_in, flow_speed); // if (TEST_GRADIENT) { // test = 0.0; // for (i=0; i VMAX) phi_out[k][i*NY+j] = VMAX; if (phi_out[k][i*NY+j] < -VMAX) phi_out[k][i*NY+j] = -VMAX; } } } for (i=0; i 0.0) { free(delta_u); free(delta_v); } } if (COMPUTE_PRESSURE) { free(delta_pressure); free(delta_p); } } void evolve_wave(double *phi[NFIELDS], double *phi_tmp[NFIELDS], short int xy_in[NX*NY], double potential_field[NX*NY], double vector_potential_field[2*NX*NY], double gfield[2*NX*NY], t_rde rde[NX*NY], t_wave_sphere wsphere[NX*NY]) /* time step of field evolution */ { evolve_wave_half(phi, phi_tmp, xy_in, potential_field, vector_potential_field, gfield, rde, wsphere); evolve_wave_half(phi_tmp, phi, xy_in, potential_field, vector_potential_field, gfield, rde, wsphere); } void update_tracer_table(double tracers[2*N_TRACERS*NSTEPS], t_rde rde[NX*NY], int time) /* update tracer information in rde */ { int tracer, t, t1, maxtime, i, j, n, ij[2], length = 50, cell, oldcell; double x, y, x1, y1, dist; static double maxlength; static int first = 1; if (first) { maxlength = pow(0.01*(XMAX - XMIN), 2.0); first = 0; } #pragma omp parallel for private(cell) for (cell=0; cell time) maxtime = time; #pragma omp parallel for private(tracer) for (tracer = 0; tracer < N_TRACERS; tracer++) { x1 = XMIN; y1 = YMIN; for (t = 0; t < maxtime; t++) { t1 = time - t; x = tracers[t1*2*N_TRACERS + 2*tracer]; y = tracers[t1*2*N_TRACERS + 2*tracer + 1]; xy_to_ij(x, y, ij); cell = ij[0]*NY + ij[1]; n = rde[cell].n_tracer_pts; if (n < NMAX_TRACER_PTS) { rde[cell].tracerx[n] = x; rde[cell].tracery[n] = y; rde[cell].n_tracer_pts++; rde[cell].tracer = length - t; } // else printf("More than %i tracer points per cell\n", NMAX_TRACER_PTS); dist = (x-x1)*(x-x1) + (y-y1)*(y-y1); if ((cell != oldcell)&&(t > 0)&&(dist < maxlength)) rde[cell].prev_cell = oldcell; oldcell = cell; x1 = x; y1 = y; } } } void evolve_tracers(double *phi[NFIELDS], double tracers[2*N_TRACERS*NSTEPS], t_rde rde[NX*NY], int time, int nsteps, double step) /* time steps of tracer particle evolution (for Euler equation) */ { int tracer, i, j, n, t, ij[2], iplus, jplus, prev_cell, new_cell; double x, y, xy[2], vx, vy; static int n_respawn = 0; step = TRACERS_STEP; for (tracer = 0; tracer < N_TRACERS; tracer++) { x = tracers[time*2*N_TRACERS + 2*tracer]; y = tracers[time*2*N_TRACERS + 2*tracer + 1]; // printf("Tracer %i position (%.2f, %.2f)\n", tracer, x, y); for (t=0; t 0.0)&&(v < 0.1)) // { // vx = vx*0.1/v; // vy = vy*0.1/v; // } // printf("(i, j) = (%i, %i), Tracer %i velocity (%.6f, %.6f)\n", i, j, tracer, vx, vy); x += vx*step; y += vy*step; } // printf("Tracer %i velocity (%.2f, %.2f)\n", tracer, vx, vy); if (x > XMAX) x += (XMIN - XMAX); if (x < XMIN) x += (XMAX - XMIN); if (y > YMAX) y += (YMIN - YMAX); if (y < YMIN) y += (YMAX - YMIN); if (time+1 < NSTEPS) { if ((RESPAWN_TRACERS)&&((double)rand()/RAND_MAX < RESPAWN_PROBABILTY)) { x = XMIN + 0.05 + (XMAX - XMIN - 0.1)*rand()/RAND_MAX; y = YMIN + 0.05 + (YMAX - YMIN - 0.1)*rand()/RAND_MAX; n_respawn++; printf("Respawning tracer %i, %i respawns\n", tracer, n_respawn); } tracers[(time+1)*2*N_TRACERS + 2*tracer] = x; tracers[(time+1)*2*N_TRACERS + 2*tracer + 1] = y; } } if ((PLOT_3D)&&(time+1 < NSTEPS)) update_tracer_table(tracers, rde, time); } void print_level(int level) { double pos[2]; char message[50]; glColor3f(1.0, 1.0, 1.0); sprintf(message, "Level %i", level); xy_to_pos(XMIN + 0.1, YMAX - 0.2, pos); write_text(pos[0], pos[1], message); } void print_parameters(double *phi[NFIELDS], t_rde rde[NX*NY], short int xy_in[NX*NY], double time, short int left, double viscosity, double noise) { char message[100], message2[100]; double density, hue, rgb[3], logratio, x, y, pos[2], probas[2], speed1, speed2; static double xbox, xtext, boxwidth, boxheight; static int first = 1; if (first) { if (WINWIDTH > 1280) { boxheight = 0.035; boxwidth = 0.21; if (left) { xbox = XMIN + 0.4; xtext = XMIN + 0.2; } else { xbox = XMAX - 0.49; xtext = XMAX - 0.65; // xbox = XMAX - 0.39; // xtext = XMAX - 0.55; } } else { boxwidth = 0.3; boxheight = 0.05; if (left) { xbox = XMIN + 0.4; xtext = XMIN + 0.1; } else { xbox = XMAX - 0.49; xtext = XMAX - 0.71; // xbox = XMAX - 0.39; // xtext = XMAX - 0.61; } } first = 0; } if (PRINT_PROBABILITIES) { compute_probabilities(rde, xy_in, probas); printf("pleft = %.3lg, pright = %.3lg\n", probas[0], probas[1]); x = XMIN + 0.15*(XMAX - XMIN); y = YMIN + 0.3*(YMAX - YMIN); erase_area_hsl(x, y, boxwidth, boxheight, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); sprintf(message, "Proba %.3f", probas[0]); write_text(x, y, message); x = XMIN + 0.72*(XMAX - XMIN); y = YMIN + 0.68*(YMAX - YMIN); erase_area_hsl(x, y, boxwidth, boxheight, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); sprintf(message, "Proba %.3f", probas[1]); write_text(x, y, message); } else { y = YMAX - 0.1; erase_area_hsl(xbox, y + 0.02, boxwidth, boxheight, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); if (PRINT_TIME) sprintf(message, "Time %.3f", time); else if (PRINT_VISCOSITY) sprintf(message, "Viscosity %.3f", viscosity); else if (PRINT_RPSLZB) sprintf(message, "b = %.3f", rpslzb); else if (PRINT_NOISE) sprintf(message, "noise %.3f", noise); else if (PRINT_FLOW_SPEED) sprintf(message, "Speed %.3f", flow_speed); else if (PRINT_AVERAGE_SPEED) { compute_average_speeds(phi, rde, &speed1, &speed2); sprintf(message, "Average vx %.3f", speed2); sprintf(message2, "Average vx %.3f", speed1); } if (PLOT_3D) write_text(xtext, y, message); else { xy_to_pos(xtext, y, pos); write_text(pos[0], pos[1], message); if (PRINT_AVERAGE_SPEED) { y = YMIN + 0.1; erase_area_hsl(xbox, y + 0.02, boxwidth, boxheight, 0.0, 0.9, 0.0); glColor3f(1.0, 1.0, 1.0); xy_to_pos(xtext, y, pos); write_text(pos[0], pos[1], message2); } } } } void draw_color_bar_palette(int plot, double range, int palette, int circular, int fade, double fade_value) { double width = 0.14; // double width = 0.2; if (PLOT_3D) { if (ROTATE_COLOR_SCHEME) draw_color_scheme_palette_3d(XMIN + 0.3, YMIN + 0.1, XMAX - 0.3, YMIN + 0.1 + width, plot, -range, range, palette, fade, fade_value); else if (circular) draw_circular_color_scheme_palette_3d(XMAX - 2.0*width, YMAX - 2.0*width, 1.0*width, plot, -range, range, palette, fade, fade_value); else draw_color_scheme_palette_3d(XMAX - 1.5*width, YMIN + 0.1, XMAX - 0.5*width, YMAX - 0.1, plot, -range, range, palette, fade, fade_value); } else { if (circular) draw_circular_color_scheme_palette_fade(XMAX - 2.0*width, YMAX - 2.0*width, 1.0*width, plot, -range, range, palette, fade, fade_value); else if (ROTATE_COLOR_SCHEME) draw_color_scheme_palette_fade(XMIN + 0.8, YMIN + 0.05, XMAX - 0.8, YMIN + 0.05 + width, plot, -range, range, palette, fade, fade_value); else draw_color_scheme_palette_fade(XMAX - 1.5*width, YMIN + 0.1, XMAX - 0.5*width, YMAX - 0.1, plot, -range, range, palette, fade, fade_value); } } double noise_schedule(int i) { double ratio; if (i < NOISE_INITIAL_TIME) return (NOISE_INTENSITY); else { ratio = (double)(i - NOISE_INITIAL_TIME)/(double)(NSTEPS - NOISE_INITIAL_TIME); return (NOISE_INTENSITY*(1.0 + ratio*(NOISE_FACTOR - 1.0))); } } double viscosity_schedule(int i) { double ratio; if (i < VISCOSITY_INITIAL_TIME) return (VISCOSITY); else { ratio = (double)(i - VISCOSITY_INITIAL_TIME)/(double)(NSTEPS - VISCOSITY_INITIAL_TIME); return (VISCOSITY*(1.0 + ratio*(VISCOSITY_FACTOR - 1.0))); } } double rpslzb_schedule(int i) { double ratio; if (i < RPSLZB_INITIAL_TIME) return (RPSLZB); else if (i > NSTEPS - RPSLZB_FINAL_TIME) return(RPSLZB - RPSLZB_CHANGE); else { ratio = (double)(i - RPSLZB_INITIAL_TIME)/(double)(NSTEPS - RPSLZB_INITIAL_TIME - RPSLZB_FINAL_TIME); return (RPSLZB - ratio*RPSLZB_CHANGE); } } double flow_speed_schedule(int i) { double ratio; ratio = (double)i/(double)NSTEPS; return (IN_OUT_FLOW_MIN_AMP + (IN_OUT_FLOW_AMP - IN_OUT_FLOW_MIN_AMP)*ratio); } void viewpoint_schedule(int i) /* change position of observer */ { int j; double angle, ca, sa, r1, interpolate, rho; static double observer_initial[3], r, ratio, rho0, zmax; static int first = 1; if (first) { for (j=0; j<3; j++) observer_initial[j] = observer[j]; r1 = observer[0]*observer[0] + observer[1]*observer[1]; r = sqrt(r1 + observer[2]*observer[2]); ratio = r/sqrt(r1); rho0 = module2(observer[0], observer[1]); if (vabs(rho0) < 0.001) rho0 = 0.001; zmax = r*sin(MAX_LATITUDE*PI/180.0); first = 0; } interpolate = (double)i/(double)NSTEPS; angle = (ROTATE_ANGLE*DPI/360.0)*interpolate; // printf("i = %i, interpolate = %.3lg, angle = %.3lg\n", i, interpolate, angle); ca = cos(angle); sa = sin(angle); switch (VIEWPOINT_TRAJ) { case (VP_HORIZONTAL): { observer[0] = ca*observer_initial[0] - sa*observer_initial[1]; observer[1] = sa*observer_initial[0] + ca*observer_initial[1]; break; } case (VP_ORBIT): { observer[0] = ca*observer_initial[0] - sa*observer_initial[1]*ratio; observer[1] = ca*observer_initial[1] + sa*observer_initial[0]*ratio; observer[2] = ca*observer_initial[2]; break; } case (VP_ORBIT2): { observer[0] = ca*observer_initial[0] - sa*observer_initial[1]*ratio; observer[1] = ca*observer_initial[1] + sa*observer_initial[0]*ratio; observer[2] = sa*zmax; break; } case (VP_POLAR): { rho = -sa*observer_initial[2] + ca*rho0; observer[0] = observer_initial[0]*rho/rho0; observer[1] = observer_initial[1]*rho/rho0; observer[2] = ca*observer_initial[2] + sa*rho0; break; } } printf("Angle %.3lg, Observer position (%.3lg, %.3lg, %.3lg)\n", angle, observer[0], observer[1], observer[2]); } void animation() { double time = 0.0, scale, dx, var, jangle, cosj, sinj, sqrintstep, phishift, thetashift, amp, intstep0, viscosity_printed, fade_value, noise = NOISE_INTENSITY, x, y, sign, phase; double *phi[NFIELDS], *phi_tmp[NFIELDS], *potential_field, *vector_potential_field, *tracers, *gfield, *bc_field, *bc_field2; short int *xy_in; int i, j, k, s, nvid, field; static int counter = 0; t_rde *rde; t_wave_sphere *wsphere, *wsphere_hr; /* Since NX and NY are big, it seemed wiser to use some memory allocation here */ for (i=0; i VISCOSITY_MAX)) { nvid = (int)((double)NVID*viscosity/VISCOSITY_MAX); // viscosity = VISCOSITY_MAX; intstep = intstep0*VISCOSITY_MAX/viscosity; printf("Nvid = %i, intstep = %.3lg\n", nvid, intstep); } } if (CHANGE_RPSLZB) rpslzb = rpslzb_schedule(i); if (CHANGE_FLOW_SPEED) flow_speed = flow_speed_schedule(i); else flow_speed = IN_OUT_FLOW_AMP; if (ADD_MOON_FORCING) compute_forcing_schedule(i, wsphere); if (ROTATE_VIEW) { viewpoint_schedule(i - INITIAL_TIME); reset_view = 1; } printf("Drawing wave %i\n", i); draw_wave_rde(0, phi, xy_in, rde, wsphere, wsphere_hr, potential_field, ZPLOT, CPLOT, COLOR_PALETTE, 0, 1.0, 1); // nvid = (int)((double)NVID*(1.0 + (ACCELERATION_FACTOR - 1.0)*(double)i/(double)NSTEPS)); /* increase integration step */ // intstep = intstep0*exp(log(DT_ACCELERATION_FACTOR)*(double)i/(double)NSTEPS); // if (intstep > MAX_DT) // { // nvid *= intstep/MAX_DT; // intstep = MAX_DT; // } // printf("Steps per frame: %i\n", nvid); // printf("Integration step %.5lg\n", intstep); printf("Evolving wave\n"); for (j=0; j= INITIAL_TIME)&&(DOUBLE_MOVIE)) { draw_wave_rde(1, phi, xy_in, rde, wsphere, wsphere_hr, potential_field, ZPLOT_B, CPLOT_B, COLOR_PALETTE_B, 0, 1.0, REFRESH_B); if ((ADD_TRACERS)&&(!PLOT_3D)) draw_tracers(phi, tracers, i, 0, 1.0); // draw_billiard(); if (PRINT_PARAMETERS) print_parameters(phi, rde, xy_in, time, PRINT_LEFT, viscosity_printed, noise); if (DRAW_COLOR_SCHEME) draw_color_bar_palette(CPLOT_B, COLORBAR_RANGE_B, COLOR_PALETTE_B, CIRC_COLORBAR_B, 0, 1.0); glutSwapBuffers(); // if (NO_EXTRA_BUFFER_SWAP) glutSwapBuffers(); save_frame_counter(NSTEPS + MID_FRAMES + 1 + counter); counter++; } else if (NO_EXTRA_BUFFER_SWAP) glutSwapBuffers(); /* TEST */ // if (ADAPT_STATE_TO_BC) adapt_state_to_bc(phi, bc_field, xy_in); /* it seems that saving too many files too fast can cause trouble with the file system */ /* so this is to make a pause from time to time - parameter PAUSE may need adjusting */ if (i % PAUSE == PAUSE - 1) { printf("Making a short pause\n"); sleep(PSLEEP); s = system("mv wave*.tif tif_bz/"); } } else printf("Computing frame %i\n", i); } if (MOVIE) { if (DOUBLE_MOVIE) { draw_wave_rde(0, phi, xy_in, rde, wsphere, wsphere_hr, potential_field, ZPLOT, CPLOT, COLOR_PALETTE, 0, 1.0, 1); if ((ADD_TRACERS)&&(!PLOT_3D)) draw_tracers(phi, tracers, NSTEPS, 0, 1.0); // draw_billiard(); if (PRINT_PARAMETERS) print_parameters(phi, rde, xy_in, time, PRINT_LEFT, viscosity_printed, noise); if (DRAW_COLOR_SCHEME) draw_color_bar_palette(CPLOT, COLORBAR_RANGE, COLOR_PALETTE, CIRC_COLORBAR, 0, 1.0); // if (!NO_EXTRA_BUFFER_SWAP) glutSwapBuffers(); glutSwapBuffers(); if (!FADE) for (i=0; i