/* Global variables and parameters for lennardjones */ /* Basic math */ #define PI 3.141592654 #define DPI 6.283185307 #define PID 1.570796327 /* shape of domain */ #define D_CIRCLES 20 /* several circles */ #define D_CIRCLES_IN_RECT 201 /* several circles in a rectangle */ #define NMAXCIRCLES 200000 /* total number of circles/polygons (must be at least NCX*NCY for square grid) */ #define MAXNEIGH 20 /* max number of neighbours kept in memory */ #define NMAXOBSTACLES 1000 /* max number of obstacles */ #define NMAXSEGMENTS 1000 /* max number of repelling segments */ #define NMAXGROUPS 50 /* max number of groups of segments */ #define NMAXCOLLISIONS 200000 /* max number of collisions */ #define NMAXPARTNERS 30 /* max number of partners in molecule */ #define NMAXPARTNERMOLECULES 30 /* max number of partners of a molecule */ #define NMAXPARTINCLUSTER 500 /* max number of particles in cluster */ #define NMAXBELTS 10 /* max number of conveyor belts */ #define NMAXSHOVELS 50 /* max number of shovels */ #define C_SQUARE 0 /* square grid of circles */ #define C_HEX 1 /* hexagonal/triangular grid of circles */ #define C_RAND_DISPLACED 2 /* randomly displaced square grid */ #define C_RAND_PERCOL 3 /* random percolation arrangement */ #define C_RAND_POISSON 4 /* random Poisson point process */ #define C_CLOAK 5 /* invisibility cloak */ #define C_CLOAK_A 6 /* first optimized invisibility cloak */ #define C_LASER 7 /* laser fight in a room of mirrors */ #define C_POISSON_DISC 8 /* Poisson disc sampling */ #define C_GOLDEN_MEAN 10 /* pattern based on vertical shifts by golden mean */ #define C_GOLDEN_SPIRAL 11 /* spiral pattern based on golden mean */ #define C_SQUARE_HEX 12 /* alternating between square and hexagonal/triangular */ #define C_POOL_TABLE 20 /* pool table initial position */ #define C_ONE 97 /* one single circle, as for Sinai */ #define C_TWO 98 /* two concentric circles of different type */ #define C_NOTHING 99 /* no circle at all, for comparisons */ /* pattern of additional obstacles */ #define O_CORNERS 0 /* obstacles in the corners (for Boy b.c.) */ #define O_GALTON_BOARD 1 /* Galton board pattern */ #define O_GENUS_TWO 2 /* obstacles in corners of L-shape domeain (for genus 2 b.c.) */ #define O_POOL_TABLE 3 /* obstacles around pockets of pool table */ #define O_HLINE_HOLE_SPOKES 181 /* tips of spokes for S_HLINE_HOLE_SPOKES segment pattern */ #define O_CIRCLE 4 /* one circle at the origin */ #define O_FOUR_CIRCLES 5 /* four circles */ #define O_HEX 6 /* hexagonal lattice */ #define O_SIDES 7 /* grid along the sides of the simulation rectangle */ #define O_SIDES_B 71 /* finer grid along the sides of the simulation rectangle */ #define O_SIEVE 8 /* obstacles form a sieve */ #define O_SIEVE_B 81 /* obstacles form a sieve, v2 */ #define O_SIEVE_LONG 82 /* obstacles form a long sieve */ #define O_SIEVE_LONG_B 83 /* obstacles form a long sieve, version with varying spacing */ /* pattern of additional repelling segments */ #define S_RECTANGLE 0 /* segments forming a rectangle */ #define S_CUP 1 /* segments forming a cup (for increasing gravity) */ #define S_HOURGLASS 2 /* segments forming an hour glass */ #define S_PENTA 3 /* segments forming a pentagon with 3 angles of 120° and 2 right angles */ #define S_CENTRIFUGE 4 /* segments forming "centrifuge" (polygon with radial segments) */ #define S_POLY_ELLIPSE 5 /* segments forming a polygonal approximation of an ellipse */ #define S_POOL_TABLE 6 /* pool table with pockets */ #define S_CENTRIFUGE_RND 7 /* segments forming centrifuge with more rounded bins */ #define S_CENTRIFUGE_LEAKY 8 /* segments forming centrifuge with rounded bins and holes */ #define S_CIRCLE_EXT 9 /* segments forming a repelling cicle */ #define S_ROCKET_NOZZLE 10 /* segments forming a rocket with bell-shaped nozzle */ #define S_ROCKET_NOZZLE_ROTATED 101 /* rotated version of rocket with bell-shaped nozzle */ #define S_TWO_ROCKETS 102 /* two different rockets, with nozzles specified by NOZZLE_SHAPE and NOZZLE_SHAPE_B */ #define S_TWO_CIRCLES_EXT 11 /* segments forming two repelling cicle */ #define S_DAM 12 /* segments forming a dam that can break */ #define S_DAM_WITH_HOLE 13 /* segments forming a dam in which a hole can open */ #define S_DAM_WITH_HOLE_AND_RAMP 14 /* segments forming a dam in which a hole can open */ #define S_MAZE 15 /* segments forming a maze */ #define S_MAZE_DIAG 151 /* segments forming a maze with diagonally opposed exits */ #define S_EXT_RECTANGLE 16 /* particles outside a rectangle */ #define S_DAM_BRICKS 17 /* dam made of several bricks */ #define S_HLINE_HOLE 18 /* horizontal line with a hole in the bottom */ #define S_HLINE_HOLE_SPOKES 181 /* horizontal line with a hole in the bottom and extra spokes */ #define S_HLINE_HOLE_SLOPED 182 /* slanted lines with a hole */ #define S_EXT_CIRCLE_RECT 19 /* particles outside a circle and a rectangle */ #define S_BIN_OPENING 20 /* bin containing particles opening at deactivation time */ #define S_BIN_LARGE 201 /* larger bin */ #define S_POLYGON_EXT 21 /* exterior of a regular polygon */ #define S_WEDGE_EXT 22 /* exterior of a wedge */ #define S_MIXER 23 /* exterior of a blender made of rectangles */ #define S_AIRFOIL 24 /* exterior of an air foil */ #define S_COANDA 25 /* wall for Coanda effect */ #define S_COANDA_SHORT 26 /* shorter wall for Coanda effect */ #define S_CYLINDER 27 /* walls at top and bottom, for cylindrical b.c. */ #define S_TREE 28 /* Christmas tree(s) */ #define S_CONE 29 /* cone */ #define S_CONVEYOR_BELT 30 /* conveyor belt */ #define S_TWO_CONVEYOR_BELTS 31 /* two angled conveyor belts */ #define S_PERIODIC_CONVEYORS 32 /* one wrapping belt, and one short horizontal belt */ #define S_TEST_CONVEYORS 321 /* test */ #define S_CONVEYOR_SHOVELS 33 /* conveyor belt with shovels */ #define S_CONVEYOR_MIXED 34 /* multiple conveyor belts with and without shovels */ #define S_CONVEYOR_SIEVE 35 /* conveyor belts for polygon sieve */ #define S_CONVEYOR_SIEVE_B 351 /* conveyor belts for polygon sieve, v2 with backward top conveyor */ #define S_CONVEYOR_SIEVE_LONG 352 /* conveyor belts for long polygon sieve */ #define S_MASS_SPECTROMETER 36 /* bins for mass spectrometer */ #define S_WIND_FORCE 361 /* bins for sorting by wind force */ /* particle interaction */ #define I_COULOMB 0 /* Coulomb force */ #define I_LENNARD_JONES 1 /* Lennard-Jones force */ #define I_LJ_DIRECTIONAL 2 /* Lennard-Jones with direction dependence of square symmetry */ #define I_LJ_PENTA 3 /* Lennard-Jones with pentagonal symmetry */ #define I_GOLDENRATIO 4 /* Lennard-Jones type with equilibria related by golden ratio */ #define I_LJ_DIPOLE 5 /* Lennard-Jones with a dipolar angle dependence */ #define I_LJ_QUADRUPOLE 6 /* Lennard-Jones with a quadropolar angle dependence */ #define I_LJ_WATER 7 /* model for water molecule */ #define I_VICSEK 8 /* Vicsek-type interaction */ #define I_VICSEK_REPULSIVE 9 /* Vicsek-type interaction with harmonic repulsion */ #define I_VICSEK_SPEED 10 /* Vicsek-type interaction with speed adjustment */ #define I_VICSEK_SHARK 11 /* Vicsek-type interaction with speed adjustment, and one shark */ #define I_COULOMB_LJ 12 /* Coulomb force regularised by Lennard-Jones repulsion */ #define I_COULOMB_PENTA 13 /* Lennard-Jones force with or without pentagonal symmetry depending on charge */ #define I_COULOMB_IMAGINARY 14 /* Coulomb interaction with "imaginary charge" */ #define I_DNA_CHARGED 15 /* Coulomb-type interaction between end points of DNA nucleotides */ #define I_DNA_CHARGED_B 151 /* stronger Coulomb-type interaction between end points of DNA nucleotides */ #define I_SEGMENT 16 /* harmonic interaction between segments */ #define I_SEGMENT_CHARGED 161 /* harmonic interaction between segments and Coulomb interaction between ends*/ #define I_POLYGON 17 /* harmonic interaction between regular polygons */ #define I_POLYGON_ALIGN 171 /* harmonic interaction between polygons with an aligning torque */ /* Boundary conditions */ #define BC_SCREEN 0 /* harmonic boundary conditions outside screen area */ #define BC_RECTANGLE 1 /* harmonic boundary conditions on a resizeable rectangle */ #define BC_CIRCLE 2 /* harmonic boundary conditions outside a moving circle */ #define BC_PERIODIC 3 /* periodic boundary conditions */ #define BC_PERIODIC_CIRCLE 4 /* periodic boundary conditions and harmonic b.c. outside moving circle */ #define BC_EHRENFEST 5 /* Ehrenfest urn-type configuration */ #define BC_PERIODIC_FUNNEL 6 /* funnel with periodic boundary conditions */ #define BC_RECTANGLE_LID 7 /* rectangular container with moving lid */ #define BC_PERIODIC_TRIANGLE 8 /* periodic boundary conditions and harmonic b.c. outside moving triangle */ #define BC_RECTANGLE_WALL 9 /* rectangular container with vertical movable wall */ #define BC_KLEIN 11 /* Klein bottle (periodic with twisted vertical parts) */ #define BC_SCREEN_BINS 12 /* harmonic boundary conditions outside screen area plus "bins" (for Galton board) */ #define BC_BOY 13 /* Boy surface/projective plane (periodic with twisted horizontal and vertical parts) */ #define BC_GENUS_TWO 14 /* surface of genus 2, obtained by identifying opposite sides of an L shape */ #define BC_ABSORBING 20 /* "no-return" boundary conditions outside BC area */ #define BC_REFLECT_ABS 21 /* reflecting on lower boundary, and "no-return" boundary conditions outside BC area */ #define BC_REFLECT_ABS_BOTTOM 22 /* absorbing on lower boundary, and reflecting elsewhere */ /* Regions for partial thermostat couplings */ #define TH_VERTICAL 0 /* only particles at the right of x = PARTIAL_THERMO_SHIFT are coupled */ #define TH_INSEGMENT 1 /* only particles in region defined by segments are coupled */ #define TH_INBOX 2 /* only particles in a given box are coupled */ #define TH_LAYER 3 /* only particles above PARTIAL_THERMO_HEIGHT are coupled */ #define TH_LAYER_TYPE2 4 /* only particles above highest type 2 particle are coupled */ #define TH_RING 5 /* only particles outside disc of radius PARTIAL_THERMO_WIDTH are coupled */ #define TH_RING_EXPAND 6 /* only particles outside disc of radius changing from PARTIAL_THERMO_RIN to PARTIAL_THERMO_RFIN are coupled */ #define TH_INIT 7 /* only particles in region defined by INITXMIN, etc are coupled */ #define TH_THERMO 8 /* only particles in region defined by THERMOXMIN, etc are coupled */ #define TH_CONE 9 /* cone defined by S_CONE */ /* temperature schedules */ #define TS_EXPONENTIAL 0 /* temperature follows an exponential in time */ #define TS_CYCLING 1 /* temperature cycling */ #define TS_PERIODIC 2 /* periodic time dependence */ #define TS_LINEAR 3 /* linear time dependence */ #define TS_COSINE 4 /* periodic time dependence, cosine */ #define TS_EXPCOS 5 /* periodic time dependence, exponential of cosine */ #define TS_ASYM_EXPCOS 6 /* periodic time dependence, asymmetric exponential of cosine */ #define TS_ATAN 7 /* atan approaching asymptotic value */ #define TS_TANH 8 /* tanh approaching asymptotic value */ /* Gravity schedules */ #define G_INCREASE_RELEASE 1 /* slow increase and instant release */ #define G_INCREASE_DECREASE 2 /* slow increase and decrease */ /* Rocket shapes */ #define RCK_DISC 0 /* disc-shaped rocket */ #define RCK_RECT 1 /* rectangular rocket */ #define RCK_RECT_HAT 2 /* rectangular rocket with a hat */ #define RCK_RECT_BAR 3 /* rectangular rocket with a hat and a separating bar */ /* Nozzle shapes */ #define NZ_STRAIGHT 0 /* straight nozzle */ #define NZ_BELL 1 /* bell-shaped nozzle */ #define NZ_GLAS 2 /* glas-shaped nozzle */ #define NZ_CONE 3 /* cone-shaped nozzle */ #define NZ_TRUMPET 4 /* trumpet-shaped nozzle */ #define NZ_BROAD 5 /* broad straight nozzle */ #define NZ_DELAVAL 6 /* a type of de Laval nozzle */ #define NZ_NONE 99 /* no nozzle */ /* Types of chemical reactions */ #define CHEM_RPS 0 /* rock-paper-scissors reaction */ #define CHEM_AAB 1 /* reaction A + A -> B */ #define CHEM_ABC 2 /* reaction A + B -> C */ #define CHEM_A2BC 3 /* reaction 2A + B -> C */ #define CHEM_CATALYSIS 4 /* reaction 2A + C -> B + C */ #define CHEM_BAA 5 /* reaction B -> A + A (dissociation) */ #define CHEM_AABAA 6 /* reaction A + A <-> B (reversible) */ #define CHEM_POLYMER 7 /* reaction A + B -> C, A + C -> D, etc */ #define CHEM_POLYMER_DISS 8 /* polimerisation with dissociation */ #define CHEM_POLYMER_STEP 9 /* step growth polimerisation with dissociation */ #define CHEM_AUTOCATALYSIS 10 /* autocatalytic reaction 2A + B -> 2B */ #define CHEM_CATALYTIC_A2D 11 /* catalytic reaction A + B -> C, A + C -> B + D */ #define CHEM_ABCAB 12 /* reaction A + B <-> C (reversible) */ #define CHEM_ABCDABC 13 /* reactions A + B <-> C, A + C <-> D */ #define CHEM_BZ 14 /* simplified Belousov-Zhabotinski reaction with 6 types (Oregonator) */ #define CHEM_BRUSSELATOR 15 /* Brusselator oscillating reaction */ #define CHEM_ABDACBE 16 /* A + B -> D, A + C -> B + E */ #define CHEM_H2O_H_OH 20 /* H2O <-> H+ + OH- */ #define CHEM_2H2O_H3O_OH 21 /* 2 H2O <-> H3O+ + OH- */ #define CHEM_AGGREGATION 22 /* agregation of molecules coming close */ #define CHEM_AGGREGATION_CHARGE 23 /* agregation of charged molecules coming close */ #define CHEM_AGGREGATION_NNEIGH 24 /* agregation of molecules with limitation on neighbours */ #define CHEM_DNA 25 /* aggregation of DNA molecules */ #define CHEM_DNA_ALT 251 /* aggregation of DNA molecules with constraints on connections */ #define CHEM_DNA_DOUBLE 252 /* aggregation of DNA molecules with different ends */ #define CHEM_DNA_DSPLIT 253 /* aggregation/splitting of DNA molecules with different ends */ #define CHEM_DNA_BASE_SPLIT 254 /* aggregation/splitting of DNA molecules when base pairs don't match */ #define CHEM_DNA_ENZYME 255 /* aggregation/splitting of DNA molecules in presence of enzymes */ #define CHEM_DNA_ENZYME_REPAIR 256 /* aggregation/splitting of DNA molecules in presence of enzymes and additional repairing of bad connections */ #define CHEM_POLYGON_AGGREGATION 26 /* aggregation of polygons */ #define CHEM_POLYGON_CLUSTER 261 /* clustering of polygons into new clusters */ #define CHEM_POLYGON_ONECLUSTER 262 /* clustering of polygons, with only one cluster allowed */ /* Initial conditions for chemical reactions */ #define IC_NOTHING 99 /* do not change particle types */ #define IC_UNIFORM 0 /* all particles have type 1 */ #define IC_UNIFORM2 20 /* all particles have type 2 */ #define IC_RANDOM_UNIF 1 /* particle type chosen uniformly at random */ #define IC_RANDOM_TWO 2 /* particle type chosen randomly between 1 and 2, with TYPE_PROPORTION */ #define IC_CIRCLE 3 /* type 1 in a disc */ #define IC_CATALYSIS 4 /* mix of 1 and 2 in left half, only 1 in right half */ #define IC_LAYERS 5 /* layer of 2 below 1 */ #define IC_BZ 6 /* initial state for BZ reaction */ #define IC_SIGNX 7 /* type 1 or 2 depending on sign of x */ #define IC_TWOROCKETS 8 /* type 1 or 2 depending on rocket position */ #define IC_TWOROCKETS_TWOFUELS 9 /* type 1 and 2 or 1 and 3 depending on rocket */ #define IC_DNA_POLYMERASE 10 /* initial condition for DNA polymerase */ #define IC_DNA_POLYMERASE_REC 11 /* initial condition for DNA polymerase with recombination */ /* Initial conditions for option TWO_TYPES */ #define TTC_RANDOM 0 /* assign types randomly */ #define TTC_CHESSBOARD 1 /* assign types according to chessboard, works with hex initial config */ #define TTC_COANDA 2 /* type 1 in a band of width LAMBDA */ /* Initial speed distribution */ #define VI_RANDOM 0 /* random (Gaussian) initial speed distribution */ #define VI_COANDA 1 /* nonzero speed in a band of width LAMBDA */ /* Plot types */ #define P_KINETIC 0 /* colors represent kinetic energy of particles */ #define P_NEIGHBOURS 1 /* colors represent number of neighbours */ #define P_HEALTH 2 /* colors represent health (for SIR model) */ #define P_BONDS 3 /* draw lattice based on neighbours */ #define P_ANGLE 4 /* colors represent angle/spin of particle */ #define P_TYPE 5 /* colors represent type of particle */ #define P_DIRECTION 6 /* colors represent direction of velocity */ #define P_ANGULAR_SPEED 7 /* colors represent angular speed */ #define P_DIRECT_ENERGY 8 /* hue represents direction, luminosity represents energy */ #define P_DIFF_NEIGHB 9 /* colors represent number of neighbours of different type */ #define P_THERMOSTAT 10 /* colors show which particles are coupled to the thermostat */ #define P_INITIAL_POS 11 /* colors depend on initial position of particle */ #define P_NUMBER 12 /* colors depend on particle number */ #define P_EMEAN 13 /* averaged kinetic energy (with exponential damping) */ #define P_LOG_EMEAN 131 /* log of averaged kinetic energy (with exponential damping) */ #define P_EMEAN_DENSITY 132 /* averaged kinetic energy divided by the cluster size */ #define P_DIRECT_EMEAN 14 /* averaged version of P_DIRECT_ENERGY */ #define P_NOPARTICLE 15 /* particles are not drawn (only the links between them) */ #define P_NPARTNERS 16 /* number of partners */ #define P_CHARGE 17 /* colors represent charge */ #define P_MOL_ANGLE 18 /* orientation of molecule defined by partners */ #define P_CLUSTER 19 /* colors depend on connected component */ #define P_CLUSTER_SIZE 20 /* colors depend on size of connected component */ #define P_CLUSTER_SELECTED 21 /* colors show which clusters are slected for growth */ #define P_COLLISION 22 /* colors depend on number of collision/reaction */ #define P_RADIUS 23 /* colors depend on particle radius */ /* Rotation schedules */ #define ROT_SPEEDUP_SLOWDOWN 0 /* rotation speeds up and then slows down to zero */ #define ROT_BACK_FORTH 1 /* rotation goes in one direction and then back */ /* Initial position dependence types */ #define IP_X 0 /* color depends on x coordinate of initial position */ #define IP_Y 1 /* color depends on y coordinate of initial position */ /* Space dependence of magnetic field */ #define BF_CONST 0 /* constant magnetic field */ #define BF_SQUARE 1 /* magnetic field concentrated in square */ /* Interaction types for polyatomic molecules */ #define POLY_STAR 0 /* star-shaped graph (central molecule attracts outer ones) */ #define POLY_ALL 1 /* all-to-all coupling */ #define POLY_STAR_CHARGED 11 /* star-shaped graph with charged molecules */ #define POLY_POLYGON 12 /* polygonal shape */ #define POLY_WATER 2 /* star-shaped with a 120° separation between anions */ #define POLY_SOAP 3 /* polymers with all-to-all coupling and polar end */ #define POLY_SOAP_B 4 /* polymers with pairwise coupling and polar end */ #define POLY_SOAP_N 41 /* polymers with pairwise coupling and neutral polar end */ #define POLY_SOAP_NMIX 42 /* polymers mixing neutral polar and neutral end */ #define POLY_PLUSMINUS 5 /* polymers with ends of opposite charge */ #define POLY_HYDRA 6 /* star-shaped with longer arms */ #define POLY_HYDRA_RIGID 61 /* star-shaped with longer arms and rigid first ring */ #define POLY_DNA 7 /* simplified model for DNA */ #define POLY_DNA_ALT 71 /* simplified model for DNA with different short ends */ #define POLY_DNA_DOUBLE 72 /* simplified model for DNA with double ends for rigidity */ #define POLY_DNA_FLEX 73 /* simplified model for DNA with less backbone rigidity (beta) */ #define POLY_KITE 8 /* kite for kites and darts quasicrystal */ #define POLY_DART 81 /* dart for kites and darts quasicrystal */ #define POLY_SEG_POLYGON 9 /* polygon of segments */ /* Background color schemes */ #define BG_NONE 0 /* no background color */ #define BG_DENSITY 1 /* background color depends on number of particles */ #define BG_CHARGE 2 /* background color depends on charge density */ #define BG_EKIN 3 /* background color depends on kinetic energy */ #define BG_FORCE 4 /* background color depends on total force */ /* Particle add regions */ #define ADD_RECTANGLE 0 /* rectangular region, defined by ADDXMIN, etc */ #define ADD_RING 1 /* ring_shaped region, defined by ADDRMIN, ADDRMAX */ /* Color schemes */ #define C_LUM 0 /* color scheme modifies luminosity (with slow drift of hue) */ #define C_HUE 1 /* color scheme modifies hue */ #define C_PHASE 2 /* color scheme shows phase */ #define C_ONEDIM 3 /* use preset 1d color scheme (for Turbo, Viridis, Magma, Inferno, Plasma, Twilight) */ #define C_ONEDIM_LINEAR 4 /* use preset 1d color scheme with linear scale */ /* Color palettes */ #define COL_JET 0 /* JET color palette */ #define COL_HSLUV 1 /* HSLUV color palette (perceptually uniform) */ #define COL_GRAY 2 /* grayscale */ #define COL_TURBO 10 /* TURBO color palette (by Anton Mikhailov) */ #define COL_VIRIDIS 11 /* Viridis color palette */ #define COL_MAGMA 12 /* Magma color palette */ #define COL_INFERNO 13 /* Inferno color palette */ #define COL_PLASMA 14 /* Plasma color palette */ #define COL_CIVIDIS 15 /* Cividis color palette */ #define COL_PARULA 16 /* Parula color palette */ #define COL_TWILIGHT 17 /* Twilight color palette */ #define COL_TWILIGHT_SHIFTED 18 /* Shifted twilight color palette */ #define COL_TURBO_CYCLIC 101 /* TURBO color palette (by Anton Mikhailov) corrected to be cyclic, beta */ #define VICSEK_INT ((INTERACTION == I_VICSEK)||(INTERACTION == I_VICSEK_REPULSIVE)||(INTERACTION == I_VICSEK_SPEED)||(INTERACTION == I_VICSEK_SHARK)) typedef struct { double xc, yc, radius; /* center and radius of circle */ double angle; /* angle of particle's "spin" */ short int active; /* circle is active */ double energy; /* dissipated energy */ double emean; /* mean energy */ double vx; /* x velocity of particle */ double vy; /* y velocity of particle */ double omega; /* angular velocity of particle */ double mass_inv; /* inverse of particle mass */ double charge; /* electric charge */ double inertia_moment_inv; /* inverse of moment of inertia */ double fx; /* x component of force on particle */ double fy; /* y component of force on particle */ double torque; /* torque on particle */ double damping; /* factor in front of damping coefficient */ double dirmean; /* time averaged direction */ int close_to_boundary; /* has value 1 if particle is close to a boundary */ short int thermostat; /* whether particle is coupled to thermostat */ int hashcell; /* hash cell in which particle is located */ int neighb; /* number of neighbours within given distance */ int diff_neighb; /* number of neighbours of different type */ int hash_nneighb; /* number of neighbours in hashgrid */ int hashneighbour[9*HASHMAX]; /* particle numbers of neighbours in hashgrid */ double deltax[9*HASHMAX]; /* relative position of neighbours */ double deltay[9*HASHMAX]; /* relative position of neighbours */ short int type; /* type of particle, for mixture simulations */ short int interaction; /* type of interaction */ double eq_dist; /* equilibrium distance */ double spin_range; /* range of spin-spin interaction */ double spin_freq; /* angular frequency of spin-spin interaction */ double color_hue; /* color hue of particle, for P_INITIAL_POS plot type */ int color_rgb[3]; /* RGB colors code of particle, for use in ljones_movie.c */ int partner[NMAXPARTNERS]; /* partner particles for option PAIR_PARTICLES */ short int npartners; /* number of partner particles */ double partner_eqd[NMAXPARTNERS]; /* equilibrium distances between partners */ double partner_eqa[NMAXPARTNERS]; /* equilibrium angle between partners */ int p0, p1; /* numbers of two first partners (for P_MOL_ANGLE color scheme) */ // short int mol_angle; /* for color scheme P_MOL_ANGLE */ int cluster; /* number of cluster */ int cluster_color; /* color of cluster */ int cluster_size; /* size of cluster */ int molecule; /* number of molecule */ short int tested, cactive; /* for cluster search */ short int coulomb; /* has value 1 if DNA-Coulomb interaction is attractive */ short int added; /* has value 1 if particle has been added */ short int reactive; /* has value 1 if particle can react */ short int paired; /* has value 1 if belongs to base-paired molecule */ short int flip; /* keeps track of which particles in a cluster are flipped by PI */ int partner_molecule; /* number of partner molecule */ int collision; /* number of collision */ } t_particle; typedef struct { short int active; /* has value 1 if cluster is active */ short int thermostat; /* has value 1 if cluster is coupled to thermostat */ short int selected; /* has value 1 if cluster is selected to be able to grow */ double xg, yg; /* center of gravity */ double vx, vy; /* velocity of center of gravity */ double angle; /* orientation of cluster */ double omega; /* angular velocity of cluster */ double mass, mass_inv; /* mass of cluster and its inverse */ double inertia_moment, inertia_moment_inv; /* moment of inertia */ double fx, fy, torque; /* force and torque */ double energy, emean; /* energy and averaged energy */ double dirmean; /* time-averaged direction */ int nparticles; /* number of particles in cluster */ int particle[NMAXPARTINCLUSTER]; /* list of particles in cluster */ // int angle_ref; /* reference particle for orientation */ } t_cluster; typedef struct { int number; /* total number of particles in cell */ int particles[HASHMAX]; /* numbers of particles in cell */ int nneighb; /* number of neighbouring cells */ int neighbour[9]; /* numbers of neighbouring cells */ double x1, y1, x2, y2; /* coordinates of hashcell corners */ double hue1, hue2; /* color hues */ double charge; /* charge of fixed obstacles */ } t_hashgrid; typedef struct { double xc, yc, radius; /* center and radius of circle */ short int active; /* circle is active */ double energy; /* dissipated energy */ double vx; /* x velocity of particle */ double vy; /* y velocity of particle */ double mass_inv; /* inverse of particle mass */ double fx; /* x component of force on particle */ double fy; /* y component of force on particle */ int hashx; /* hash grid positions of particles */ int hashy; /* hash grid positions of particles */ int neighb; /* number of neighbours */ int health; /* 0 = healthy, 1 = infected, 2 = recovered */ double infected_time; /* time since infected */ int protected; /* 0 = not protected, 1 = protected */ } t_person; typedef struct { double xc, yc, radius; /* center and radius of circle */ double xc0, yc0; /* center of oscillation for option RATTLE_OBSTACLES */ short int active; /* circle is active */ double charge; /* charge of obstacle, for EM simulations */ double omega0, omega; /* speed of rotation */ double angle; /* angle of obstacle */ short int oscillate; /* has value 1 if the obstacles oscillates over time */ int period; /* oscillation period */ double amplitude, phase; /* amplitude and phase of oscillation */ } t_obstacle; typedef struct { double x1, x2, y1, y2; /* extremities of segment */ double xc, yc; /* mid-point of segment */ double nx, ny; /* normal vector */ double nangle; /* angle of normal vector */ double c; /* constant term in cartesian eq nx*x + ny*y = c */ double length; /* length of segment */ short int concave; /* corner is concave, to add extra repelling force */ short int cycle; /* set to 1 if (x2, y2) is equal to (x1, y1) of next segment */ short int group; /* group to which segment belongs (for several obstacles) */ double angle1, angle2; /* angles in which concave corners repel */ short int active; /* segment is active */ double x01, x02, y01, y02; /* initial values of extremities, in case of rotation/translation */ double nx0, ny0; /* initial normal vector */ double angle01, angle02; /* initial values of angles in which concave corners repel */ double fx, fy; /* x and y-components of force on segment */ double torque; /* torque on segment with respect to its center */ double pressure; /* pressure acting on segement */ double avrg_pressure; /* time-averaged pressure */ short int inactivate; /* set to 1 for segment to become inactive at time SEGMENT_DEACTIVATION_TIME */ short int conveyor; /* set to 1 for segment to exert lateral force */ double conveyor_speed; /* speed of conveyor belt */ short int align_torque; /* set to 1 for segment to exert aligning torque */ } t_segment; typedef struct { double xc, yc; /* center of circle */ } t_tracer; typedef struct { double xc, yc; /* center of mass of obstacle */ double angle; /* orientation of obstacle */ double vx, vy; /* velocity of center of mass */ double omega; /* angular velocity */ double mass; /* mass of obstacle */ double moment_inertia; /* moment of inertia */ } t_group_segments; typedef struct { double xc, yc; /* coordinates of centers of mass */ double vx, vy; /* velocities */ double omega; /* angular velocity */ } t_group_data; typedef struct { double x, y; /* location of collision */ int time; /* time since collision */ int color; /* color hue in case of different collisions */ } t_collision; typedef struct { int nparticles; /* number of particles */ int particle[2*NPARTNERS+1]; /* list of particles */ int npartners; /* number of partner molecules */ int partner[NMAXPARTNERMOLECULES]; /* list of partner molecules */ int connection_type[NMAXPARTNERMOLECULES]; /* types of particles in connection */ short int added; /* has value 1 if molecule has been added */ } t_molecule; typedef struct { double x1, y1, x2, y2; /* positions of extremities */ double width; /* width of belt */ double speed; /* speed of conveyor belt */ double position; /* position of belt (needed for display of rotating parts) */ double length; /* distance between (x1,x2) and (y1,y2) */ double angle; /* angle of (x1,x2) - (y1,y2) */ double tx, ty; /* coordinates of tangent vector */ int nshovels; /* number of shovels */ double shovel_pos[NMAXSHOVELS]; /* position od each shovel */ int shovel_segment[NMAXSHOVELS]; /* first segment of each shovel */ } t_belt; typedef struct { int nactive; /* number of active particles */ double beta; /* inverse temperature */ double mean_energy; /* mean energy */ double krepel; /* force constant */ double xmincontainer, xmaxcontainer; /* container size */ double fboundary; /* boundary force */ double pressure; /* pressure */ double gravity; /* gravity */ double radius; /* particle radius */ double angle; /* orientation of obstacle */ double omega; /* angular speed of obstacle */ double bdry_fx, bdry_fy; /* components of boundary force */ double efield, bfield; /* electric and magnetic field */ double prop; /* proportion of types */ double thermo_radius; /* radius of thermostat region */ } t_lj_parameters; int frame_time = 0, ncircles, nobstacles, nsegments, ngroups = 1, counter = 0, nmolecules = 0, nbelts = 0, n_tracers = 0; FILE *lj_log;