1380 lines
35 KiB
C
1380 lines
35 KiB
C
|
int nparticles=NPART;
|
||
|
|
||
|
/*********************/
|
||
|
/* Graphics routines */
|
||
|
/*********************/
|
||
|
|
||
|
int writetiff(char *filename, char *description, int x, int y, int width, int height, int compression)
|
||
|
{
|
||
|
TIFF *file;
|
||
|
GLubyte *image, *p;
|
||
|
int i;
|
||
|
|
||
|
file = TIFFOpen(filename, "w");
|
||
|
if (file == NULL)
|
||
|
{
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
image = (GLubyte *) malloc(width * height * sizeof(GLubyte) * 3);
|
||
|
|
||
|
/* OpenGL's default 4 byte pack alignment would leave extra bytes at the
|
||
|
end of each image row so that each full row contained a number of bytes
|
||
|
divisible by 4. Ie, an RGB row with 3 pixels and 8-bit componets would
|
||
|
be laid out like "RGBRGBRGBxxx" where the last three "xxx" bytes exist
|
||
|
just to pad the row out to 12 bytes (12 is divisible by 4). To make sure
|
||
|
the rows are packed as tight as possible (no row padding), set the pack
|
||
|
alignment to 1. */
|
||
|
|
||
|
glPixelStorei(GL_PACK_ALIGNMENT, 1);
|
||
|
|
||
|
glReadPixels(x, y, width, height, GL_RGB, GL_UNSIGNED_BYTE, image);
|
||
|
TIFFSetField(file, TIFFTAG_IMAGEWIDTH, (uint32) width);
|
||
|
TIFFSetField(file, TIFFTAG_IMAGELENGTH, (uint32) height);
|
||
|
TIFFSetField(file, TIFFTAG_BITSPERSAMPLE, 8);
|
||
|
TIFFSetField(file, TIFFTAG_COMPRESSION, compression);
|
||
|
TIFFSetField(file, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
|
||
|
TIFFSetField(file, TIFFTAG_ORIENTATION, ORIENTATION_BOTLEFT);
|
||
|
TIFFSetField(file, TIFFTAG_SAMPLESPERPIXEL, 3);
|
||
|
TIFFSetField(file, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
|
||
|
TIFFSetField(file, TIFFTAG_ROWSPERSTRIP, 1);
|
||
|
TIFFSetField(file, TIFFTAG_IMAGEDESCRIPTION, description);
|
||
|
p = image;
|
||
|
for (i = height - 1; i >= 0; i--)
|
||
|
{
|
||
|
// if (TIFFWriteScanline(file, p, height - i - 1, 0) < 0)
|
||
|
if (TIFFWriteScanline(file, p, i, 0) < 0)
|
||
|
{
|
||
|
free(image);
|
||
|
TIFFClose(file);
|
||
|
return 1;
|
||
|
}
|
||
|
p += width * sizeof(GLubyte) * 3;
|
||
|
}
|
||
|
TIFFClose(file);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
void init() /* initialisation of window */
|
||
|
{
|
||
|
glLineWidth(3);
|
||
|
|
||
|
glClearColor(0.0, 0.0, 0.0, 1.0);
|
||
|
glClear(GL_COLOR_BUFFER_BIT);
|
||
|
|
||
|
glOrtho(XMIN, XMAX, YMIN, YMAX , -1.0, 1.0);
|
||
|
}
|
||
|
|
||
|
|
||
|
void hsl_to_rgb(h, s, l, rgb) /* color conversion from HSL to RGB */
|
||
|
/* h = hue, s = saturation, l = luminosity */
|
||
|
double h, s, l, rgb[3];
|
||
|
{
|
||
|
double c = 0.0, m = 0.0, x = 0.0;
|
||
|
|
||
|
c = (1.0 - fabs(2.0 * l - 1.0)) * s;
|
||
|
m = 1.0 * (l - 0.5 * c);
|
||
|
x = c * (1.0 - fabs(fmod(h / 60.0, 2) - 1.0));
|
||
|
|
||
|
if (h >= 0.0 && h < 60.0)
|
||
|
{
|
||
|
rgb[0] = c+m; rgb[1] = x+m; rgb[2] = m;
|
||
|
}
|
||
|
else if (h < 120.0)
|
||
|
{
|
||
|
rgb[0] = x+m; rgb[1] = c+m; rgb[2] = m;
|
||
|
}
|
||
|
else if (h < 180.0)
|
||
|
{
|
||
|
rgb[0] = m; rgb[1] = c+m; rgb[2] = x+m;
|
||
|
}
|
||
|
else if (h < 240.0)
|
||
|
{
|
||
|
rgb[0] = m; rgb[1] = x+m; rgb[2] = c+m;
|
||
|
}
|
||
|
else if (h < 300.0)
|
||
|
{
|
||
|
rgb[0] = x+m; rgb[1] = m; rgb[2] = c+m;
|
||
|
}
|
||
|
else if (h < 360.0)
|
||
|
{
|
||
|
rgb[0] = c+m; rgb[1] = m; rgb[2] = x+m;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
rgb[0] = m; rgb[1] = m; rgb[2] = m;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void rgb_color_scheme(i, rgb) /* color scheme */
|
||
|
int i;
|
||
|
double rgb[3];
|
||
|
{
|
||
|
double hue, y, r;
|
||
|
|
||
|
hue = (double)(COLORSHIFT + i*360/NCOLORS);
|
||
|
r = 0.9;
|
||
|
|
||
|
while (hue < 0.0) hue += 360.0;
|
||
|
while (hue >= 360.0) hue -= 360.0;
|
||
|
|
||
|
hsl_to_rgb(hue, r, 0.5, rgb);
|
||
|
/* saturation = r, luminosity = 0.5 */
|
||
|
}
|
||
|
|
||
|
void blank()
|
||
|
{
|
||
|
if (BLACK) glClearColor(0.0, 0.0, 0.0, 1.0);
|
||
|
else glClearColor(1.0, 1.0, 1.0, 1.0);
|
||
|
glClear(GL_COLOR_BUFFER_BIT);
|
||
|
}
|
||
|
|
||
|
|
||
|
void save_frame()
|
||
|
{
|
||
|
static int counter = 0;
|
||
|
char *name="part.", n2[100];
|
||
|
char format[6]=".%05i";
|
||
|
|
||
|
counter++;
|
||
|
// printf (" p2 counter = %d \n",counter);
|
||
|
strcpy(n2, name);
|
||
|
sprintf(strstr(n2,"."), format, counter);
|
||
|
strcat(n2, ".tif");
|
||
|
printf(" saving frame %s \n",n2);
|
||
|
writetiff(n2, "Billiard in an ellipse", 0, 0,
|
||
|
WINWIDTH, WINHEIGHT, COMPRESSION_LZW);
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
void write_text( double x, double y, char *st)
|
||
|
{
|
||
|
int l,i;
|
||
|
|
||
|
l=strlen( st ); // see how many characters are in text string.
|
||
|
glRasterPos2d( x, y); // location to start printing text
|
||
|
for( i=0; i < l; i++) // loop until i is greater then l
|
||
|
{
|
||
|
glutBitmapCharacter(GLUT_BITMAP_TIMES_ROMAN_24, st[i]); // Print a character on the screen
|
||
|
// glutBitmapCharacter(GLUT_BITMAP_8_BY_13, st[i]); // Print a character on the screen
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void draw_billiard() /* draws the billiard boundary */
|
||
|
{
|
||
|
double x0, x, y, phi, r = 0.01, alpha, dphi;
|
||
|
int i;
|
||
|
|
||
|
if (BLACK) glColor3f(1.0, 1.0, 1.0);
|
||
|
else glColor3f(0.0, 0.0, 0.0);
|
||
|
glLineWidth(4);
|
||
|
|
||
|
glEnable(GL_LINE_SMOOTH);
|
||
|
|
||
|
switch (B_DOMAIN) {
|
||
|
case (D_RECTANGLE):
|
||
|
{
|
||
|
glBegin(GL_LINE_LOOP);
|
||
|
glVertex2d(LAMBDA, -1.0);
|
||
|
glVertex2d(LAMBDA, 1.0);
|
||
|
glVertex2d(-LAMBDA, 1.0);
|
||
|
glVertex2d(-LAMBDA, -1.0);
|
||
|
glEnd();
|
||
|
break;
|
||
|
}
|
||
|
case (D_ELLIPSE):
|
||
|
{
|
||
|
glBegin(GL_LINE_LOOP);
|
||
|
for (i=0; i<=NSEG; i++)
|
||
|
{
|
||
|
phi = (double)i*DPI/(double)NSEG;
|
||
|
x = LAMBDA*cos(phi);
|
||
|
y = sin(phi);
|
||
|
glVertex2d(x, y);
|
||
|
}
|
||
|
glEnd ();
|
||
|
|
||
|
/* draw foci */
|
||
|
if (FOCI)
|
||
|
{
|
||
|
glColor3f(0.3, 0.3, 0.3);
|
||
|
x0 = sqrt(LAMBDA*LAMBDA-1.0);
|
||
|
|
||
|
glLineWidth(2);
|
||
|
glEnable(GL_LINE_SMOOTH);
|
||
|
glBegin(GL_LINE_LOOP);
|
||
|
for (i=0; i<=NSEG; i++)
|
||
|
{
|
||
|
phi = (double)i*DPI/(double)NSEG;
|
||
|
x = x0 + r*cos(phi);
|
||
|
y = r*sin(phi);
|
||
|
glVertex2d(x, y);
|
||
|
}
|
||
|
glEnd();
|
||
|
|
||
|
glBegin(GL_LINE_LOOP);
|
||
|
for (i=0; i<=NSEG; i++)
|
||
|
{
|
||
|
phi = (double)i*DPI/(double)NSEG;
|
||
|
x = -x0 + r*cos(phi);
|
||
|
y = r*sin(phi);
|
||
|
glVertex2d(x, y);
|
||
|
}
|
||
|
glEnd();
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case D_STADIUM:
|
||
|
{
|
||
|
glBegin(GL_LINE_LOOP);
|
||
|
for (i=0; i<=NSEG; i++)
|
||
|
{
|
||
|
phi = -PID + (double)i*PI/(double)NSEG;
|
||
|
x = 0.5*LAMBDA + cos(phi);
|
||
|
y = sin(phi);
|
||
|
glVertex2d(x, y);
|
||
|
}
|
||
|
for (i=0; i<=NSEG; i++)
|
||
|
{
|
||
|
phi = PID + (double)i*PI/(double)NSEG;
|
||
|
x = -0.5*LAMBDA + cos(phi);
|
||
|
y = sin(phi);
|
||
|
glVertex2d(x, y);
|
||
|
}
|
||
|
glEnd();
|
||
|
break;
|
||
|
}
|
||
|
case D_SINAI:
|
||
|
{
|
||
|
glColor3f(0.5, 0.5, 0.5);
|
||
|
glBegin(GL_TRIANGLE_FAN);
|
||
|
glVertex2d(0.0, 0.0);
|
||
|
for (i=0; i<=NSEG; i++)
|
||
|
{
|
||
|
phi = (double)i*DPI/(double)NSEG;
|
||
|
x = LAMBDA*cos(phi);
|
||
|
y = LAMBDA*sin(phi);
|
||
|
glVertex2d(x, y);
|
||
|
}
|
||
|
glEnd();
|
||
|
|
||
|
if (BLACK) glColor3f(1.0, 1.0, 1.0);
|
||
|
else glColor3f(0.0, 0.0, 0.0);
|
||
|
|
||
|
glBegin(GL_LINE_LOOP);
|
||
|
for (i=0; i<=NSEG; i++)
|
||
|
{
|
||
|
phi = (double)i*DPI/(double)NSEG;
|
||
|
x = LAMBDA*cos(phi);
|
||
|
y = LAMBDA*sin(phi);
|
||
|
glVertex2d(x, y);
|
||
|
}
|
||
|
glEnd();
|
||
|
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
case D_DIAMOND:
|
||
|
{
|
||
|
alpha = atan(1.0 - 1.0/LAMBDA);
|
||
|
dphi = (PID - 2.0*alpha)/(double)NSEG;
|
||
|
r = sqrt(LAMBDA*LAMBDA + (LAMBDA-1.0)*(LAMBDA-1.0));
|
||
|
glBegin(GL_LINE_LOOP);
|
||
|
for (i=0; i<=NSEG; i++)
|
||
|
{
|
||
|
phi = alpha + (double)i*dphi;
|
||
|
x = -LAMBDA + r*cos(phi);
|
||
|
y = -LAMBDA + r*sin(phi);
|
||
|
glVertex2d(x, y);
|
||
|
}
|
||
|
for (i=0; i<=NSEG; i++)
|
||
|
{
|
||
|
phi = alpha - PID + (double)i*dphi;
|
||
|
x = -LAMBDA + r*cos(phi);
|
||
|
y = LAMBDA + r*sin(phi);
|
||
|
glVertex2d(x, y);
|
||
|
}
|
||
|
for (i=0; i<=NSEG; i++)
|
||
|
{
|
||
|
phi = alpha + PI + (double)i*dphi;
|
||
|
x = LAMBDA + r*cos(phi);
|
||
|
y = LAMBDA + r*sin(phi);
|
||
|
glVertex2d(x, y);
|
||
|
}
|
||
|
for (i=0; i<=NSEG; i++)
|
||
|
{
|
||
|
phi = alpha + PID + (double)i*dphi;
|
||
|
x = LAMBDA + r*cos(phi);
|
||
|
y = -LAMBDA + r*sin(phi);
|
||
|
glVertex2d(x, y);
|
||
|
}
|
||
|
glEnd();
|
||
|
break;
|
||
|
}
|
||
|
case (D_TRIANGLE):
|
||
|
{
|
||
|
glBegin(GL_LINE_LOOP);
|
||
|
glVertex2d(-LAMBDA, -1.0);
|
||
|
glVertex2d(LAMBDA, -1.0);
|
||
|
glVertex2d(-LAMBDA, 1.0);
|
||
|
glEnd();
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
printf("Function draw_billiard not defined for this billiard \n");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*********************/
|
||
|
/* some basic math */
|
||
|
/*********************/
|
||
|
|
||
|
double vabs(x) /* absolute value */
|
||
|
double x;
|
||
|
{
|
||
|
double res;
|
||
|
|
||
|
if (x<0.0) res = -x;
|
||
|
else res = x;
|
||
|
return(res);
|
||
|
}
|
||
|
|
||
|
double module2(x, y) /* Euclidean norm */
|
||
|
double x, y;
|
||
|
|
||
|
{
|
||
|
double m;
|
||
|
|
||
|
m = sqrt(x*x + y*y);
|
||
|
return(m);
|
||
|
}
|
||
|
|
||
|
double argument(x, y)
|
||
|
double x, y;
|
||
|
|
||
|
{
|
||
|
double alph;
|
||
|
|
||
|
if (x!=0.0)
|
||
|
{
|
||
|
alph = atan(y/x);
|
||
|
if (x<0.0)
|
||
|
alph += PI;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
alph = PID;
|
||
|
if (y<0.0)
|
||
|
alph = PI*1.5;
|
||
|
}
|
||
|
// if (alph < 0.0) alph += DPI;
|
||
|
return(alph);
|
||
|
}
|
||
|
|
||
|
int polynome(a, b, c, r)
|
||
|
double a, b, c, r[2];
|
||
|
{
|
||
|
double delta, rdelta;
|
||
|
int im = 1;
|
||
|
|
||
|
delta = b*b - 4*a*c;
|
||
|
if (delta<0.0)
|
||
|
{
|
||
|
/* printf("ca deconne!");*/
|
||
|
rdelta = 0.0;
|
||
|
im = 0;
|
||
|
}
|
||
|
else rdelta = sqrt(delta);
|
||
|
|
||
|
r[0] = (-b + rdelta)/(2.0*a);
|
||
|
r[1] = (-b - rdelta)/(2.0*a);
|
||
|
|
||
|
return(im);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*********************************/
|
||
|
/* computation of the collisions */
|
||
|
/*********************************/
|
||
|
|
||
|
/* The variable config contains information on the state of the particle
|
||
|
* and on its next collision with the boundary:
|
||
|
* [0] position of next collision (ellipse parametrised by (LAMBDA*cos(s), sin(s))
|
||
|
* [1] angle to tangent of boundary after next collision
|
||
|
* [2] running time
|
||
|
* [3] initial distance to next collision
|
||
|
* [4,5] initial position
|
||
|
* [6,7] coordinates of next collision
|
||
|
* The running time is incremented until it equals the distance to the next collision
|
||
|
*/
|
||
|
|
||
|
|
||
|
void print_config(conf) /* for debugging purposes */
|
||
|
double conf[8];
|
||
|
{
|
||
|
printf("s = %.3lg, u = %.3lg, t = %.3lg, L = %.3lg, x0 = %.3lg, y0 = %.3lg, x1 = %.3lg, y1 = %.3lg\n", conf[0], conf[1]/PI, conf[2], conf[3], conf[4], conf[5], conf[6], conf[7]);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* rectangle billiard */
|
||
|
|
||
|
|
||
|
int pos_rectangle(conf, pos, alpha)
|
||
|
/* determine position on boundary of rectangle */
|
||
|
/* the corners of the rectangle are (-LAMBDA,-1), ..., (LAMBDA,1) */
|
||
|
/* returns the number of the side hit, or 0 if hitting a corner */
|
||
|
double conf[2], pos[2], *alpha;
|
||
|
|
||
|
{
|
||
|
double s, theta;
|
||
|
|
||
|
s = conf[0];
|
||
|
if (s<0.0) s = 0.0;
|
||
|
if (s>4.0*LAMBDA + 4.0) s = 4.0*LAMBDA + 4.0;
|
||
|
|
||
|
theta = conf[1];
|
||
|
|
||
|
/* we treat the cases of starting in one corner separately */
|
||
|
/* to avoid numerical problems due to hitting a corner */
|
||
|
|
||
|
/* bottom left corner */
|
||
|
if ((s==0)||(s==4.0*LAMBDA + 4.0))
|
||
|
{
|
||
|
pos[0] = -LAMBDA;
|
||
|
pos[1] = -1.0;
|
||
|
if (theta > PID) theta = PID;
|
||
|
*alpha = theta;
|
||
|
return(0);
|
||
|
}
|
||
|
/* bottom right corner */
|
||
|
else if (s==2.0*LAMBDA)
|
||
|
{
|
||
|
pos[0] = LAMBDA;
|
||
|
pos[1] = -1.0;
|
||
|
if (theta > PID) theta = PID;
|
||
|
*alpha = theta + PID;
|
||
|
return(0);
|
||
|
}
|
||
|
/* top right corner */
|
||
|
else if (s==2.0*LAMBDA + 2.0)
|
||
|
{
|
||
|
pos[0] = LAMBDA;
|
||
|
pos[1] = -1.0;
|
||
|
if (theta > PID) theta = PID;
|
||
|
*alpha = theta + PI;
|
||
|
return(0);
|
||
|
}
|
||
|
/* top left corner */
|
||
|
else if (s==4.0*LAMBDA + 2.0)
|
||
|
{
|
||
|
pos[0] = LAMBDA;
|
||
|
pos[1] = -1.0;
|
||
|
if (theta > PID) theta = PID;
|
||
|
*alpha = theta + 3.0*PID;
|
||
|
return(0);
|
||
|
}
|
||
|
/* bottom side */
|
||
|
else if ((s>0)&&(s<2.0*LAMBDA))
|
||
|
{
|
||
|
pos[0] = s - LAMBDA;
|
||
|
pos[1] = -1.0;
|
||
|
*alpha = theta;
|
||
|
return(1);
|
||
|
}
|
||
|
/* right side */
|
||
|
else if (s<2.0*LAMBDA + 2.0)
|
||
|
{
|
||
|
pos[0] = LAMBDA;
|
||
|
pos[1] = s - 2.0*LAMBDA - 1.0;
|
||
|
*alpha = theta + PID;
|
||
|
return(2);
|
||
|
}
|
||
|
/* top side */
|
||
|
else if (s<4.0*LAMBDA + 2.0)
|
||
|
{
|
||
|
pos[0] = 3.0*LAMBDA + 2.0 - s;
|
||
|
pos[1] = 1.0;
|
||
|
*alpha = theta + PI;
|
||
|
return(3);
|
||
|
}
|
||
|
/* left side */
|
||
|
else
|
||
|
{
|
||
|
pos[0] = -LAMBDA;
|
||
|
pos[1] = 4.0*LAMBDA + 3.0 - s;
|
||
|
*alpha = theta + 3.0*PID;
|
||
|
return(4);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
int vrectangle_xy(config, alpha, pos)
|
||
|
/* determine initial configuration for start at point pos = (x,y) */
|
||
|
double config[8], alpha, pos[2];
|
||
|
{
|
||
|
double l, s0, c0, x1, y1, margin = 1e-12;
|
||
|
int c, intb=1;
|
||
|
|
||
|
/* initial position and velocity */
|
||
|
|
||
|
s0 = sin(alpha);
|
||
|
c0 = cos(alpha);
|
||
|
|
||
|
/* intersection with lower part of boundary */
|
||
|
if (s0<0.0)
|
||
|
{
|
||
|
x1 = pos[0] - c0*(1.0 + pos[1])/s0;
|
||
|
y1 = -1.0;
|
||
|
if ((x1>=-LAMBDA)&&(x1<=LAMBDA))
|
||
|
{
|
||
|
config[0] = x1 + LAMBDA;
|
||
|
if ((x1 <= -LAMBDA + margin)||(x1 >= LAMBDA -margin)) config[1] = alpha + PI; /* corners */
|
||
|
// if ((x1 == -LAMBDA)||(x1 == LAMBDA)) config[1] = alpha + PI; /* corners */
|
||
|
else config[1] = -alpha;
|
||
|
intb = 0;
|
||
|
}
|
||
|
}
|
||
|
/* intersection with right-hand part of boundary */
|
||
|
if (intb&&(c0>0.0))
|
||
|
{
|
||
|
x1 = LAMBDA;
|
||
|
y1 = pos[1] + s0*(LAMBDA - pos[0])/c0;
|
||
|
if ((y1>=-1.0)&&(y1<=1.0))
|
||
|
{
|
||
|
config[0] = 2.0*LAMBDA + 1.0 + y1;
|
||
|
if ((y1 <= -1.0 + margin)||(y1 >= 1.0 -margin)) config[1] = alpha + PI; /* corners */
|
||
|
// if ((y1 == -1.0)||(y1 == 1.0)) config[1] = alpha + PI; /* corners */
|
||
|
else config[1] = PID-alpha;
|
||
|
intb = 0;
|
||
|
}
|
||
|
}
|
||
|
/* intersection with upper part of boundary */
|
||
|
if (intb&&(s0>0.0))
|
||
|
{
|
||
|
x1 = pos[0] + c0*(1.0 - pos[1])/s0;
|
||
|
y1 = 1.0;
|
||
|
if ((x1>=-LAMBDA)&&(x1<=LAMBDA))
|
||
|
{
|
||
|
config[0] = 3.0*LAMBDA + 2.0 - x1;
|
||
|
if ((x1 <= -LAMBDA + margin)||(x1 >= LAMBDA -margin)) config[1] = alpha + PI; /* corners */
|
||
|
// if ((x1 == -LAMBDA)||(x1 == LAMBDA)) config[1] = alpha + PI; /* corners */
|
||
|
else config[1] = PI-alpha;
|
||
|
intb = 0;
|
||
|
}
|
||
|
}
|
||
|
/* intersection with left-hand part of boundary */
|
||
|
if (intb&&(c0<0.0))
|
||
|
{
|
||
|
x1 = -LAMBDA;
|
||
|
y1 = pos[1] + s0*(-LAMBDA - pos[0])/c0;
|
||
|
if ((y1>=-1.0)&&(y1<=1.0))
|
||
|
{
|
||
|
config[0] = 4.0*LAMBDA + 3.0 - y1;
|
||
|
if ((y1 <= -1.0 + margin)||(y1 >= 1.0 -margin)) config[1] = alpha + PI; /* corners */
|
||
|
// if ((y1 == -1.0)||(y1 == 1.0)) config[1] = alpha + PI; /* corners */
|
||
|
else config[1] = 3.0*PID-alpha;
|
||
|
intb = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (config[1] < 0.0) config[1] += DPI;
|
||
|
|
||
|
config[2] = 0.0; /* running time */
|
||
|
config[3] = module2(x1-pos[0], y1-pos[1]);
|
||
|
config[4] = pos[0];
|
||
|
config[5] = pos[1];
|
||
|
config[6] = x1;
|
||
|
config[7] = y1;
|
||
|
|
||
|
return(c);
|
||
|
}
|
||
|
|
||
|
int vrectangle(config)
|
||
|
double config[8];
|
||
|
|
||
|
{
|
||
|
double pos[2], alpha;
|
||
|
int c;
|
||
|
|
||
|
/* position et vitesse de depart */
|
||
|
|
||
|
c = pos_rectangle(config, pos, &alpha);
|
||
|
|
||
|
vrectangle_xy(config, alpha, pos);
|
||
|
|
||
|
return(c);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* elliptic billiard */
|
||
|
|
||
|
int pos_ellipse(conf, pos, alpha)
|
||
|
/* determine position on boundary of ellipse */
|
||
|
double conf[2], pos[2], *alpha;
|
||
|
|
||
|
{
|
||
|
double theta;
|
||
|
|
||
|
pos[0] = LAMBDA*cos(conf[0]);
|
||
|
pos[1] = sin(conf[0]);
|
||
|
|
||
|
theta = argument(-LAMBDA*pos[1],pos[0]/LAMBDA);
|
||
|
*alpha = theta + conf[1];
|
||
|
|
||
|
return(1);
|
||
|
}
|
||
|
|
||
|
|
||
|
int vellipse_xy(config, alpha, pos)
|
||
|
/* determine initial configuration for start at point pos = (x,y) */
|
||
|
double config[8], alpha, pos[2];
|
||
|
|
||
|
{
|
||
|
double c0, s0, lam2, a, b, c, x1, y1, t, theta;
|
||
|
int i;
|
||
|
|
||
|
c0 = cos(alpha);
|
||
|
s0 = sin(alpha);
|
||
|
lam2 = LAMBDA*LAMBDA;
|
||
|
|
||
|
/* intersection with ellipse, using parametric equation of line */
|
||
|
a = c0*c0 + lam2*s0*s0;
|
||
|
b = pos[0]*c0 + lam2*pos[1]*s0;
|
||
|
c = pos[0]*pos[0] + lam2*pos[1]*pos[1] - lam2;
|
||
|
|
||
|
t = (-b+sqrt(b*b - a*c))/a;
|
||
|
x1 = pos[0] + t*c0;
|
||
|
y1 = pos[1] + t*s0;
|
||
|
|
||
|
/* parameter of intersection with boundary ellipse */
|
||
|
config[0] = argument(x1/LAMBDA, y1);
|
||
|
while (config[0] < 0.0) config[0] += DPI;
|
||
|
while (config[0] > DPI) config[0] -= DPI;
|
||
|
|
||
|
/* computation of outgoing angle after collision with boundary */
|
||
|
theta = argument(-LAMBDA*y1,x1/LAMBDA);
|
||
|
config[1] = theta - alpha;
|
||
|
while (config[1] < 0.0) config[1] += DPI;
|
||
|
while (config[1] > DPI) config[1] -= DPI;
|
||
|
|
||
|
config[2] = 0.0; /* running time */
|
||
|
config[3] = module2(x1-pos[0], y1-pos[1]); /* distance to collision */
|
||
|
config[4] = pos[0]; /* start position */
|
||
|
config[5] = pos[1];
|
||
|
config[6] = x1; /* position of collision */
|
||
|
config[7] = y1;
|
||
|
|
||
|
return(1);
|
||
|
}
|
||
|
|
||
|
int vellipse(config)
|
||
|
/* determine initial configuration when starting from boundary */
|
||
|
double config[8];
|
||
|
|
||
|
{
|
||
|
double pos[2], theta, alpha;
|
||
|
int i;
|
||
|
|
||
|
pos[0] = LAMBDA*cos(config[0]);
|
||
|
pos[1] = sin(config[0]);
|
||
|
|
||
|
theta = argument(-LAMBDA*pos[1],pos[0]/LAMBDA);
|
||
|
alpha = theta + config[1];
|
||
|
|
||
|
vellipse_xy(config, alpha, pos);
|
||
|
|
||
|
return(1);
|
||
|
}
|
||
|
|
||
|
/* stadium billiard */
|
||
|
|
||
|
int pos_stade(conf, pos, alpha)
|
||
|
/* determine position on boundary of stadium */
|
||
|
double conf[2], pos[2], *alpha;
|
||
|
|
||
|
{
|
||
|
double s, theta, l, psi0, psi;
|
||
|
|
||
|
s = conf[0];
|
||
|
theta = conf[1];
|
||
|
l = LAMBDA/2.0;
|
||
|
|
||
|
if (l >= 0.0)
|
||
|
{
|
||
|
if ((s>=0)&&(s<=LAMBDA))
|
||
|
{
|
||
|
pos[0] = s - l;
|
||
|
pos[1] = -1.0;
|
||
|
*alpha = theta;
|
||
|
return(0);
|
||
|
}
|
||
|
else if (s<=LAMBDA+PI)
|
||
|
{
|
||
|
pos[0] = l + sin(s - LAMBDA);
|
||
|
pos[1] = -cos(s - LAMBDA);
|
||
|
*alpha = theta + s - LAMBDA;
|
||
|
return(1);
|
||
|
}
|
||
|
else if (s<=2.0*LAMBDA+PI)
|
||
|
{
|
||
|
pos[0] = 3.0*l + PI - s;
|
||
|
pos[1] = 1.0;
|
||
|
*alpha = theta + PI;
|
||
|
return(2);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
pos[0] = -l - sin(s - 2.0*LAMBDA - PI);
|
||
|
pos[1] = cos(s - 2.0*LAMBDA - PI);
|
||
|
*alpha = theta + s - 2.0*LAMBDA;
|
||
|
return(3);
|
||
|
}
|
||
|
}
|
||
|
else /* for lens-shaped billiard, to be checked */
|
||
|
{
|
||
|
psi0 = asin(-l);
|
||
|
if ((s>=0)&&(s<=PI-2.0*psi0))
|
||
|
{
|
||
|
psi = s + psi0;
|
||
|
pos[0] = sin(psi) + l;
|
||
|
pos[1] = -cos(psi);
|
||
|
*alpha = theta + psi;
|
||
|
return(0);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
psi = s + 3.0*psi0 - PI;
|
||
|
pos[0] = - sin(psi) - l;
|
||
|
pos[1] = cos(psi);
|
||
|
*alpha = theta + psi + PI;
|
||
|
return(2);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
int vstade_xy(config, alpha, pos)
|
||
|
/* determine initial configuration for start at point pos = (x,y) */
|
||
|
double config[8], alpha, pos[2];
|
||
|
|
||
|
{
|
||
|
double l, s0, c0, t, x, y, x1, y1, a, b, res[2];
|
||
|
double smin, psi, margin = 1e-12;
|
||
|
int c, intb=1, intc, i;
|
||
|
|
||
|
/* initial position and velocity */
|
||
|
|
||
|
l = LAMBDA/2.0;
|
||
|
if (l>=0.0) smin = 0.0; else smin = -l;
|
||
|
s0 = sin(alpha);
|
||
|
c0 = cos(alpha);
|
||
|
|
||
|
/* intersection with lower straight part of boundary */
|
||
|
if ((s0<0.0)&&(l>0))
|
||
|
{
|
||
|
x1 = pos[0] + c0*(-1.0 - pos[1])/s0;
|
||
|
y1 = -1.0;
|
||
|
if ((x1>=-l)&&(x1<=l))
|
||
|
{
|
||
|
config[0] = x1 + l;
|
||
|
config[1] = -alpha;
|
||
|
intb = 0;
|
||
|
}
|
||
|
}
|
||
|
/* intersection with upper straight part of boundary */
|
||
|
if (intb&&(s0>0.0)&&(l>0))
|
||
|
{
|
||
|
x1 = pos[0] + c0*(1.0 - pos[1])/s0;
|
||
|
y1 = 1.0;
|
||
|
if ((x1>=-l)&&(x1<=l))
|
||
|
{
|
||
|
config[0] = 3.0*l + PI - x1;
|
||
|
config[1] = PI-alpha;
|
||
|
intb = 0;
|
||
|
}
|
||
|
}
|
||
|
/* intersection with right-hand arc of boundary */
|
||
|
if (intb)
|
||
|
{
|
||
|
a = 2.0*pos[0]*c0 + 2.0*pos[1]*s0 - LAMBDA*c0;
|
||
|
b = pos[0]*pos[0] + pos[1]*pos[1] + l*l - LAMBDA*pos[0] - 1.0;
|
||
|
intc = polynome(1.0, a, b, res);
|
||
|
if (intc) for(i=0; i<2; i++)
|
||
|
{
|
||
|
x = pos[0] + c0*res[i];
|
||
|
y = pos[1] + s0*res[i];
|
||
|
psi = argument(-y, x-l);
|
||
|
if (intb&&(sin(psi) >= smin)&&(res[i]>margin))
|
||
|
{
|
||
|
if (l>0.0) config[0] = LAMBDA + psi;
|
||
|
else config[0] = psi - asin(-l);
|
||
|
config[1] = -alpha + psi;
|
||
|
intb = 0;
|
||
|
x1 = x; y1 = y;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* intersection with left-hand arc of boundary */
|
||
|
if (intb)
|
||
|
{
|
||
|
a = 2.0*pos[0]*c0 + 2.0*pos[1]*s0 + LAMBDA*c0;
|
||
|
b = pos[0]*pos[0] + pos[1]*pos[1] + l*l + LAMBDA*pos[0] - 1.0;
|
||
|
intc = polynome(1.0, a, b, res);
|
||
|
if (intc) for(i=0; i<2; i++)
|
||
|
{
|
||
|
x = pos[0] + c0*res[i];
|
||
|
y = pos[1] + s0*res[i];
|
||
|
psi = argument(y, -l-x);
|
||
|
if (intb&&(sin(psi) >= smin)&&(res[i]>margin))
|
||
|
{
|
||
|
if (l>0.0) config[0] = 2.0*LAMBDA + PI + psi;
|
||
|
else config[0] = psi - 3.0*asin(-l) + PI;
|
||
|
config[1] = -alpha + psi + PI;
|
||
|
intb = 0;
|
||
|
x1 = x; y1 = y;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
config[2] = 0.0; /* running time */
|
||
|
config[3] = module2(x1-pos[0], y1-pos[1]);
|
||
|
config[4] = pos[0];
|
||
|
config[5] = pos[1];
|
||
|
config[6] = x1;
|
||
|
config[7] = y1;
|
||
|
|
||
|
return(c);
|
||
|
}
|
||
|
|
||
|
int vstade(config)
|
||
|
double config[8];
|
||
|
{
|
||
|
double alpha, pos[2];
|
||
|
int c;
|
||
|
|
||
|
c = pos_stade(config, pos, &alpha);
|
||
|
|
||
|
vstade_xy(config, alpha, pos);
|
||
|
|
||
|
return(c);
|
||
|
}
|
||
|
|
||
|
/* Sinai billiard */
|
||
|
|
||
|
int pos_sinai(conf, pos, alpha)
|
||
|
/* determine position on boundary of Sinai billiard */
|
||
|
/* s in [0,2 Pi) is on the circle, other s are on boundary of window */
|
||
|
double conf[2], pos[2], *alpha;
|
||
|
|
||
|
{
|
||
|
double s, theta, psi0, psi, s1, s2, s3, s4;
|
||
|
|
||
|
s = conf[0];
|
||
|
theta = conf[1];
|
||
|
if (conf[1] < 0.0) conf[1] += DPI;
|
||
|
|
||
|
s1 = DPI + XMAX - XMIN;
|
||
|
s2 = s1 + YMAX - YMIN;
|
||
|
s3 = s2 + XMAX - XMIN;
|
||
|
s4 = s3 + YMAX - YMIN;
|
||
|
|
||
|
if (s < DPI) /* circle */
|
||
|
{
|
||
|
pos[0] = LAMBDA*cos(s);
|
||
|
pos[1] = LAMBDA*sin(s);
|
||
|
theta = PID + s;
|
||
|
*alpha = theta - conf[1];
|
||
|
return(0);
|
||
|
}
|
||
|
else if (s < s1) /* boundary of window */
|
||
|
{
|
||
|
pos[0] = XMIN + s - DPI;
|
||
|
pos[1] = YMIN;
|
||
|
*alpha = conf[1];
|
||
|
return(-1);
|
||
|
}
|
||
|
else if (s < s2)
|
||
|
{
|
||
|
pos[0] = XMAX;
|
||
|
pos[1] = YMIN + s - s1;
|
||
|
*alpha = conf[1];
|
||
|
return(-2);
|
||
|
}
|
||
|
else if (s < s3)
|
||
|
{
|
||
|
pos[0] = XMAX - s + s2;
|
||
|
pos[1] = YMAX;
|
||
|
*alpha = conf[1];
|
||
|
return(-3);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
pos[0] = XMIN;
|
||
|
pos[1] = YMAX - s + s3;
|
||
|
*alpha = conf[1];
|
||
|
return(-4);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
int vsinai_xy(config, alpha, pos)
|
||
|
/* determine initial configuration for start at point pos = (x,y) */
|
||
|
double config[8], alpha, pos[2];
|
||
|
|
||
|
{
|
||
|
double l, s0, c0, t, t1, x, y, x1, y1, a, b, delta, res[2], s1, s2, s3, s4, s, r;
|
||
|
double psi, lam2, margin = 1e-12;
|
||
|
int c, intb=1, intc, i;
|
||
|
|
||
|
/* initial position and velocity */
|
||
|
|
||
|
c0 = cos(alpha);
|
||
|
s0 = sin(alpha);
|
||
|
s1 = DPI + XMAX - XMIN;
|
||
|
s2 = s1 + YMAX - YMIN;
|
||
|
s3 = s2 + XMAX - XMIN;
|
||
|
s4 = s3 + YMAX - YMIN;
|
||
|
|
||
|
/* intersection with circle, using parametric equation of line */
|
||
|
b = pos[0]*c0 + pos[1]*s0;
|
||
|
a = pos[0]*pos[0] + pos[1]*pos[1] - LAMBDA*LAMBDA;
|
||
|
delta = b*b - a;
|
||
|
|
||
|
if ((delta > margin)&&(a > margin))
|
||
|
{
|
||
|
t = - b - sqrt(delta);
|
||
|
x1 = pos[0] + t*c0;
|
||
|
y1 = pos[1] + t*s0;
|
||
|
s = argument(x1,y1);
|
||
|
if (s<0.0) s += DPI;
|
||
|
if (s>=DPI) s -= DPI;
|
||
|
config[0] = s;
|
||
|
config[1] = 3.0*PID - s + alpha;
|
||
|
c = 0;
|
||
|
}
|
||
|
else if (c0 > 0.0) /* intersection with boundary of window */
|
||
|
{
|
||
|
y1 = pos[1] + (XMAX - pos[0])*s0/c0;
|
||
|
if ((y1 >= YMIN)&&(y1 <= YMAX)) /* hitting right boundary */
|
||
|
{
|
||
|
x1 = XMAX;
|
||
|
config[0] = s3 + YMAX - y1;
|
||
|
config[1] = alpha;
|
||
|
c = 2;
|
||
|
}
|
||
|
else if (s0 > 0.0) /* hitting upper boundary */
|
||
|
{
|
||
|
x1 = pos[0] + (YMAX - pos[1])*c0/s0;
|
||
|
y1 = YMAX;
|
||
|
config[0] = DPI + x1 - XMIN;
|
||
|
config[1] = alpha;
|
||
|
c = 3;
|
||
|
}
|
||
|
else /* hitting lower boundary */
|
||
|
{
|
||
|
x1 = pos[0] + (YMIN - pos[1])*c0/s0;
|
||
|
y1 = YMIN;
|
||
|
config[0] = s2 + XMAX - x1;
|
||
|
config[1] = alpha;
|
||
|
c = 1;
|
||
|
}
|
||
|
}
|
||
|
else if (c0 < 0.0)
|
||
|
{
|
||
|
y1 = pos[1] + (XMIN - pos[0])*s0/c0;
|
||
|
if ((y1 >= YMIN)&&(y1 <= YMAX)) /* hitting left boundary */
|
||
|
{
|
||
|
x1 = XMIN;
|
||
|
config[0] = s1 + y1 - YMIN;
|
||
|
config[1] = alpha;
|
||
|
c = 4;
|
||
|
}
|
||
|
else if (s0 > 0.0) /* hitting upper boundary */
|
||
|
{
|
||
|
x1 = pos[0] + (YMAX - pos[1])*c0/s0;
|
||
|
y1 = YMAX;
|
||
|
config[0] = DPI + x1 - XMIN;
|
||
|
config[1] = alpha;
|
||
|
c = 3;
|
||
|
}
|
||
|
else /* hitting lower boundary */
|
||
|
{
|
||
|
x1 = pos[0] + (YMIN - pos[1])*c0/s0;
|
||
|
y1 = YMIN;
|
||
|
config[0] = s2 + XMAX - x1;
|
||
|
config[1] = alpha;
|
||
|
c = 1;
|
||
|
}
|
||
|
}
|
||
|
else /* vertical motion */
|
||
|
{
|
||
|
if (s0 > 0.0)
|
||
|
{
|
||
|
x1 = pos[0];
|
||
|
y1 = YMAX;
|
||
|
config[0] = DPI + x1 - XMIN;
|
||
|
config[1] = alpha;
|
||
|
c = 3;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
x1 = pos[0];
|
||
|
y1 = YMIN;
|
||
|
config[0] = s2 + XMAX - x1;
|
||
|
config[1] = alpha;
|
||
|
c = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (config[1] < 0.0) config[1] += DPI;
|
||
|
|
||
|
config[2] = 0.0; /* running time */
|
||
|
config[3] = module2(x1-pos[0], y1-pos[1]);
|
||
|
config[4] = pos[0];
|
||
|
config[5] = pos[1];
|
||
|
config[6] = x1;
|
||
|
config[7] = y1;
|
||
|
|
||
|
return(-c);
|
||
|
/* return a negative value if the disc is not hit, for color scheme */
|
||
|
}
|
||
|
|
||
|
int vsinai(config)
|
||
|
double config[8];
|
||
|
|
||
|
{
|
||
|
double alpha, pos[2];
|
||
|
int c;
|
||
|
|
||
|
/* position et vitesse de depart */
|
||
|
|
||
|
c = pos_sinai(config, pos, &alpha);
|
||
|
|
||
|
vsinai_xy(config, alpha, pos);
|
||
|
|
||
|
return(c);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* triangle billiard */
|
||
|
|
||
|
|
||
|
int pos_triangle(conf, pos, alpha)
|
||
|
/* determine position on boundary of triangle */
|
||
|
/* the corners of the triangle are (-LAMBDA,-1), (LAMBDA,-1), (-LAMBDA,1) */
|
||
|
/* we use arclength for horizontal and vertical side, x for diagonal */
|
||
|
double conf[2], pos[2], *alpha;
|
||
|
|
||
|
{
|
||
|
double s, theta;
|
||
|
|
||
|
s = conf[0];
|
||
|
theta = conf[1];
|
||
|
|
||
|
if ((s>=0)&&(s<=2.0*LAMBDA))
|
||
|
{
|
||
|
pos[0] = s - LAMBDA;
|
||
|
pos[1] = -1.0;
|
||
|
*alpha = theta;
|
||
|
return(0);
|
||
|
}
|
||
|
else if (s<=4.0*LAMBDA)
|
||
|
{
|
||
|
pos[0] = 3.0*LAMBDA - s;
|
||
|
pos[1] = -3.0 + s/LAMBDA;
|
||
|
*alpha = theta + PI - argument(LAMBDA, 1.0);
|
||
|
return(1);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
pos[0] = -LAMBDA;
|
||
|
pos[1] = 4.0*LAMBDA + 1.0 - s;
|
||
|
*alpha = theta + 3.0*PID;
|
||
|
return(2);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
int vtriangle_xy(config, alpha, pos)
|
||
|
/* determine initial configuration for start at point pos = (x,y) */
|
||
|
/* Warning: reflection in the corners is not yet implemented correctly */
|
||
|
double config[8], alpha, pos[2];
|
||
|
|
||
|
{
|
||
|
double s0, c0, t, x, y, x1, y1, psi;
|
||
|
int c, intb=1, intc, i;
|
||
|
|
||
|
/* initial position and velocity */
|
||
|
|
||
|
s0 = sin(alpha);
|
||
|
c0 = cos(alpha);
|
||
|
|
||
|
/* intersection with lower part of boundary */
|
||
|
// if ((s0<0.0)&&(pos[1]>0.0))
|
||
|
if (s0<0.0)
|
||
|
{
|
||
|
x1 = pos[0] - c0*(1.0 + pos[1])/s0;
|
||
|
y1 = -1.0;
|
||
|
if ((x1>=-LAMBDA)&&(x1<=LAMBDA))
|
||
|
{
|
||
|
config[0] = x1 + LAMBDA;
|
||
|
config[1] = -alpha;
|
||
|
intb = 0;
|
||
|
}
|
||
|
}
|
||
|
/* intersection with left-hand part of boundary */
|
||
|
if (intb&&(c0<0.0))
|
||
|
{
|
||
|
x1 = -LAMBDA;
|
||
|
y1 = pos[1] + s0*(-LAMBDA - pos[0])/c0;
|
||
|
if ((y1>=-1.0)&&(y1<=1.0))
|
||
|
{
|
||
|
config[0] = 4.0*LAMBDA + 1.0 - y1;
|
||
|
config[1] = 3.0*PID-alpha;
|
||
|
intb = 0;
|
||
|
}
|
||
|
}
|
||
|
/* intersection with diagonal part of boundary */
|
||
|
if (intb)
|
||
|
{
|
||
|
t = -(pos[0] + LAMBDA*pos[1])/(c0 + LAMBDA*s0);
|
||
|
x1 = pos[0] + t*c0;
|
||
|
y1 = pos[1] + t*s0;
|
||
|
if ((x1>=-LAMBDA)&&(x1<=LAMBDA))
|
||
|
{
|
||
|
psi = argument(LAMBDA, 1.0);
|
||
|
config[0] = 3.0*LAMBDA - x1;
|
||
|
config[1] = PI - alpha - psi;
|
||
|
// config[1] = PI - alpha - atan(1.0/LAMBDA);
|
||
|
intb = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
config[2] = 0.0; /* running time */
|
||
|
config[3] = module2(x1-pos[0], y1-pos[1]);
|
||
|
config[4] = pos[0];
|
||
|
config[5] = pos[1];
|
||
|
config[6] = x1;
|
||
|
config[7] = y1;
|
||
|
|
||
|
return(c);
|
||
|
}
|
||
|
|
||
|
int vtriangle(config)
|
||
|
double config[8];
|
||
|
|
||
|
{
|
||
|
double alpha, pos[2];
|
||
|
int c;
|
||
|
|
||
|
/* position et vitesse de depart */
|
||
|
|
||
|
c = pos_triangle(config, pos, &alpha);
|
||
|
|
||
|
vtriangle_xy(config, alpha, pos);
|
||
|
|
||
|
return(c);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* general billiard */
|
||
|
|
||
|
int pos_billiard(conf, pos, alpha)
|
||
|
/* determine initial configuration for start at point pos = (x,y) */
|
||
|
double conf[8], pos[2], *alpha;
|
||
|
{
|
||
|
switch (B_DOMAIN) {
|
||
|
case (D_RECTANGLE):
|
||
|
{
|
||
|
return(pos_rectangle(conf, pos, &alpha));
|
||
|
break;
|
||
|
}
|
||
|
case (D_ELLIPSE):
|
||
|
{
|
||
|
return(pos_ellipse(conf, pos, &alpha));
|
||
|
break;
|
||
|
}
|
||
|
case (D_STADIUM):
|
||
|
{
|
||
|
return(pos_stade(conf, pos, &alpha));
|
||
|
break;
|
||
|
}
|
||
|
case (D_SINAI):
|
||
|
{
|
||
|
return(pos_sinai(conf, pos, &alpha));
|
||
|
break;
|
||
|
}
|
||
|
case (D_TRIANGLE):
|
||
|
{
|
||
|
return(pos_triangle(conf, pos, &alpha));
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
printf("Function vbilliard_xy not defined for this billiard \n");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
int vbilliard_xy(config, alpha, pos)
|
||
|
/* determine initial configuration for start at point pos = (x,y) */
|
||
|
double config[8], alpha, pos[2];
|
||
|
{
|
||
|
switch (B_DOMAIN) {
|
||
|
case (D_RECTANGLE):
|
||
|
{
|
||
|
return(vrectangle_xy(config, alpha, pos));
|
||
|
break;
|
||
|
}
|
||
|
case (D_ELLIPSE):
|
||
|
{
|
||
|
return(vellipse_xy(config, alpha, pos));
|
||
|
break;
|
||
|
}
|
||
|
case (D_STADIUM):
|
||
|
{
|
||
|
return(vstade_xy(config, alpha, pos));
|
||
|
break;
|
||
|
}
|
||
|
case (D_SINAI):
|
||
|
{
|
||
|
return(vsinai_xy(config, alpha, pos));
|
||
|
break;
|
||
|
}
|
||
|
case (D_TRIANGLE):
|
||
|
{
|
||
|
return(vtriangle_xy(config, alpha, pos));
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
printf("Function vbilliard_xy not defined for this billiard \n");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* TO DO: fix returned value */
|
||
|
|
||
|
int vbilliard(config)
|
||
|
/* determine initial configuration when starting from boundary */
|
||
|
double config[8];
|
||
|
{
|
||
|
double pos[2], theta, alpha;
|
||
|
int c;
|
||
|
|
||
|
switch (B_DOMAIN) {
|
||
|
case (D_RECTANGLE):
|
||
|
{
|
||
|
c = pos_rectangle(config, pos, &alpha);
|
||
|
|
||
|
return(vrectangle(config, alpha, pos));
|
||
|
break;
|
||
|
}
|
||
|
case (D_ELLIPSE):
|
||
|
{
|
||
|
c = pos_ellipse(config, pos, &alpha);
|
||
|
|
||
|
return(vellipse(config, alpha, pos));
|
||
|
break;
|
||
|
}
|
||
|
case (D_STADIUM):
|
||
|
{
|
||
|
c = pos_stade(config, pos, &alpha);
|
||
|
|
||
|
return(vstade(config, alpha, pos));
|
||
|
break;
|
||
|
}
|
||
|
case (D_SINAI):
|
||
|
{
|
||
|
c = pos_sinai(config, pos, &alpha);
|
||
|
|
||
|
return(vsinai(config, alpha, pos));
|
||
|
break;
|
||
|
}
|
||
|
case (D_TRIANGLE):
|
||
|
{
|
||
|
c = pos_triangle(config, pos, &alpha);
|
||
|
|
||
|
return(vtriangle(config, alpha, pos));
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
printf("Function vbilliard_xy not defined for this billiard \n");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int xy_in_billiard(x, y)
|
||
|
/* returns 1 if (x,y) represents a point in the billiard */
|
||
|
double x, y;
|
||
|
{
|
||
|
double l2, r2;
|
||
|
|
||
|
switch (B_DOMAIN) {
|
||
|
case D_RECTANGLE:
|
||
|
{
|
||
|
if ((vabs(x) <LAMBDA)&&(vabs(y) < 1.0)) return(1);
|
||
|
else return(0);
|
||
|
break;
|
||
|
}
|
||
|
case D_ELLIPSE:
|
||
|
{
|
||
|
if (x*x/(LAMBDA*LAMBDA) + y*y < 1.0) return(1);
|
||
|
else return(0);
|
||
|
break;
|
||
|
}
|
||
|
case D_STADIUM:
|
||
|
{
|
||
|
if ((x > -0.5*LAMBDA)&&(x < 0.5*LAMBDA)&&(y > -1.0)&&(y < 1.0)) return(1);
|
||
|
else if (module2(x+0.5*LAMBDA, y) < 1.0) return(1);
|
||
|
else if (module2(x-0.5*LAMBDA, y) < 1.0) return(1);
|
||
|
else return(0);
|
||
|
break;
|
||
|
}
|
||
|
case D_SINAI:
|
||
|
{
|
||
|
if (x*x + y*y > LAMBDA*LAMBDA) return(1);
|
||
|
else return(0);
|
||
|
break;
|
||
|
}
|
||
|
case D_DIAMOND:
|
||
|
{
|
||
|
l2 = LAMBDA*LAMBDA;
|
||
|
r2 = l2 + (LAMBDA-1.0)*(LAMBDA-1.0);
|
||
|
if ((x*x + y*y < 1.0)&&((x-LAMBDA)*(x-LAMBDA) + (y-LAMBDA)*(y-LAMBDA) > r2)
|
||
|
&&((x-LAMBDA)*(x-LAMBDA) + (y+LAMBDA)*(y+LAMBDA) > r2)
|
||
|
&&((x+LAMBDA)*(x+LAMBDA) + (y-LAMBDA)*(y-LAMBDA) > r2)
|
||
|
&&((x+LAMBDA)*(x+LAMBDA) + (y+LAMBDA)*(y+LAMBDA) > r2)) return(1);
|
||
|
else return(0);
|
||
|
break;
|
||
|
}
|
||
|
case D_TRIANGLE:
|
||
|
{
|
||
|
if ((x>-LAMBDA)&&(y>-1.0)&&(LAMBDA*y+x<0.0)) return(1);
|
||
|
else return(0);
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
printf("Function ij_in_billiard not defined for this billiard \n");
|
||
|
return(0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|