import bpy import random from mathutils import Vector, Matrix #variables count = 50 cubes=[] #delete every existing node_group for grp in bpy.data.node_groups: bpy.data.node_groups.remove(grp) #delete every existing object for ob in bpy.data.objects: bpy.data.objects.remove(ob) #add counter object, set position of counter object below other cube bpy.ops.mesh.primitive_cube_add(location = (-2.5, 0, -3.375)) bpy.context.active_object.name = 'Counter' #add geometry node modifier bpy.ops.object.modifier_add(type='NODES') #get and clear node_group node_grp = bpy.data.node_groups[-1] node_grp.nodes.clear() #add nodes stringToCurves = node_grp.nodes.new("GeometryNodeStringToCurves") fillCurve = node_grp.nodes.new("GeometryNodeFillCurve") transform = node_grp.nodes.new("GeometryNodeTransform") joinStrings = node_grp.nodes.new("GeometryNodeStringJoin") comparisonString = node_grp.nodes.new("FunctionNodeInputString") comparisonCounter = node_grp.nodes.new("FunctionNodeValueToString") arrayString = node_grp.nodes.new("FunctionNodeInputString") arrayCounter = node_grp.nodes.new("FunctionNodeValueToString") groupOutput = node_grp.nodes.new('NodeGroupOutput') #90 degree rotation of the counter object transform.inputs[2].default_value[0] = 1.5708 #set default values of some nodes comparisonString.string = "Comparisons:" arrayString.string = "Array Accesses:" stringToCurves.inputs[1].default_value = 2 joinStrings.inputs[0].default_value = " " #connect nodes to eachother node_grp.links.new(fillCurve.outputs[0], groupOutput.inputs[0]) node_grp.links.new(transform.outputs[0], fillCurve.inputs[0]) node_grp.links.new(stringToCurves.outputs[0], transform.inputs[0]) node_grp.links.new(joinStrings.outputs[0], stringToCurves.inputs[0]) node_grp.links.new(comparisonCounter.outputs[0], joinStrings.inputs[1]) node_grp.links.new(comparisonString.outputs[0], joinStrings.inputs[1]) node_grp.links.new(arrayCounter.outputs[0], joinStrings.inputs[1]) node_grp.links.new(arrayString.outputs[0], joinStrings.inputs[1]) #fill arrays with numbers between 1 & count ran = list(range(1,count+1)) #randomize array order random.shuffle(ran) #sets origin of cube to bottom of mesh def origin_to_bottom(ob, matrix=Matrix()): me = ob.data mw = ob.matrix_world local_verts = [matrix @ Vector(v[:]) for v in ob.bound_box] o = sum(local_verts, Vector()) / 8 o.z = min(v.z for v in local_verts) o = matrix.inverted() @ o me.transform(Matrix.Translation(-o)) mw.translation = mw @ o #create cubes with random location for i in range(count): bpy.ops.mesh.primitive_cube_add(location=(ran[i], 0, 0), scale=(0.25, 0.25, 0.25)) #shuffle array random.shuffle(ran) #assign random scale to all cubes and add them to array i = 0 for ob in bpy.data.objects: if ob.type == 'MESH' and ob.name != "Counter": origin_to_bottom(ob) ob.scale.z = ran[i] cubes.append(ob) i += 1 #sort array based on location.x cubes.sort(key = lambda obj: obj.location.x) #start at frame 0 iframe=0 originFrame = 0 #insertion sort alogrithm for i in range(0, count): #defines key_item that is compared until correct location key_item = cubes[i] key_item.location.x = i j = i - 1 print(i) while j >= 0 and cubes[j].scale.z > key_item.scale.z: #sets position of item in array cubes[j + 1] = cubes[j] cubes[j + 1].location.x = j #sets location cubes[j].location.x = j + 1 j -= 1 #adding keyframes to all cubes whenever one position/location is shifted for cube in cubes: cube.keyframe_insert(data_path="location", frame=iframe) #next frame iframe+=1 #place key_item into correct position/location cubes[j + 1] = key_item cubes[j + 1].location.x = i key_item.location.x = j + 1 #origin and target index of key_item in array origin = i target = j + 1 x = 0 while x <= (origin-target): #set location/position for key_item + add keyframes key_item.location.x = origin - x key_item.keyframe_insert(data_path="location", frame= originFrame + x - 1) x += 1 originFrame = iframe